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We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide
range of scalar field parameters and neutron star equations of state. Even though massless scalars
have been the focus of interest in spontaneous scalarization so far, recent observations of binary
systems rule out most of their interesting parameter space. We point out that adding a mass term
to the scalar field potential is a natural extension to the model that avoids these observational bounds
if the Compton wavelength of the scalar is small compared to the binary separation. Our model
is formally similar to the asymmetron scenario recently introduced in application to cosmology,
though here we are interested in consequences for neutron stars and thus consider a mass term that
does not modify the geometry on cosmological scales. We review the allowed values for the mass
and scalarization parameters in the theory given current binary system observations and black hole
spin measurements. We show that within the allowed ranges, spontaneous scalarization can have
nonperturbative, strong effects that may lead to observable signatures in binary neutron star or
black hole-neutron star mergers, or even in isolated neutron stars.

I. INTRODUCTION

Spontaneous scalarization is a phenomenon that oc-
curs in certain scalar-tensor theories of gravity where the
scalar field vacuum can be unstable to condensation of
the field in the presence of certain kinds of matter [1].
As we discuss in more detail below, at the linear level
the instability is a long wavelength tachyon instability,
where the minimum wavelength is inversely related to
the density of matter. Non-linear coupling of the scalar
field to matter saturates the growth of the field at a value
related to a parameter in the coupling potential. These
facts together allow for the intriguing possibility that,
with certain potentials, amongst all compact matter ob-
jects known in the Universe only neutron stars offer an
environment where scalarization can occur. Moreover,
the effects can be non-perturbative, allowing order-of-
unity deviation in the structure of neutron stars. Hence
this offers a (rare) example of an alternative theory to
general relativity (GR) that is consistent with current
weak field observational bounds [2], yet could have siz-
able deviations in the dynamical, strong-field, in partic-
ular as pertains to gravitational wave emission in merger
events [3, 4].

To date, most investigations of spontaneous scalariza-
tion have considered massless scalars. However, recent
observations of a pulsar-white dwarf binary [5] have al-
lowed rather stringent bounds to be placed on the mass-
less theory, eliminating most of the range of relevance
to future gravitational wave observations. Moreover, as
we show below, a massless scalar would have condensed
on cosmological scales, and could be ruled out by cos-

mological observations alone1. A simple way to adjust
the theory to evade these observational constraints, yet
preserve the property of giving neutron stars large, non-
perturbative corrections to the predictions of GR, is to
give the scalar field a mass mφ. Such a modification
is also rather “natural” compared to the machinations
theorists often resort to to conform their favorite theory
to observational contraints (questions about the natural-
ness of the original theory aside). The effect of the mass
term is two-fold. First, it suppresses the tachyon insta-
bility for wavelengths longer than the Compton wave-
length λφ = 2π/mφ of the field (unless otherwise stated
we use units where Newton’s constant G, the speed of
light c and Planck’s constant ~ are set to 1). Thus a
very light mass can prevent the instability on cosmolog-
ical scales. Second, it screens the presence of the field
outside a scalarized neutron star in that the field falls off
as e−r/λφ/r rather than the 1/r decay of a massless field.
This will effectively shut-off dipole radiation in a white
dwarf-neutron star system if the orbital radius is signifi-
cantly larger than λφ [8]; it is the lack of inferred dipole
radiation that allows the observations presented in [5] to
so tightly constrain the massless theory.

Motivated by the above considerations, in this work
we present an initial study of massive scalar field spon-
taneous scalarization in neutron stars. Our main goal

1 On the flip side, this can actually be a “feature” if one wants to
explain aspects of dark energy or dark matter with scalar tensor
gravity, rather than limit its effects to neutron stars. As far as
we are aware two models similar to the spontaneous scalariza-
tion theory described here are the so-called “symmetron” [6] and
more recently introduced “asymmetron” cosmologies [7]; we will
discuss similarities with our work and this latter model further
below.
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is to investigate the static solutions representing isolated
non-spinning neutron stars within this theory, for vari-
ous parameters of the theory and neutron star equations
of state (EOS). This is a first step toward exploring the
mergers of binary neutron star and black hole-neutron
star systems, which we are currently pursuing and will
present the results of elsewhere. Much of what has been
discussed above about scalarization is well known. In-
dependent of our work, a mass term has recently been
discussed [7] in what the authors dub the asymmetron
scenario. While the primary motivation for the asym-
metron is cosmological, we are interested in a modified
theory which differs from GR only on small scales rel-
evant to the late stages of compact object coalescence
involving neutron stars. We will discuss the differences
between our model and the asymmetron in the results
section.

The effects of scalar potential terms in scalar-tensor
theories have been investigated in the post-Newtonian
expansion [9–11], though to our knowledge no detailed
work on neutron star structure or binary mergers have
been performed for massive field scalarization in the fully
nonlinear regime2. We aim to start this discussion by un-
derstanding the properties of isolated scalarized neutron
stars. As such, after introducing the theory in Sec. II
we give back-of-the-envelope calculations illustrating the
properties discussed above. This suggests masses in the
range 10−15eV . mφ . 10−9eV are consistent both with
present observational constraints, yet can produce non-
perturbative deviations in the structure of neutron stars.
A mid-section 10−13eV . mφ . 10−11eV of this range
can further be eliminated if putative measurements of the
spin of solar mass black holes are accurate [12], and these
are old black holes. The reason is if a rapidly spinning
black hole forms with Schwarschild radius close to the
Compton wavelength of a massive scalar field, superra-
diant amplification of the scalar field will occur, causing
the black hole to loose most of its angular momentum on
timescales sufficiently short to make observation of the
initially highly spinning black hole unlikely [13, 14].

In Sec. IV we solve the analog of the Tolman-
Oppenheimer-Volkov (TOV) equations in this theory to
find the static neutron star solutions. We search over the
parameter space of the scalar tensor theory to see where
scalarization in neutron stars occur, and ascertain its ef-
fect on the star’s structure. We show that for λφ much
larger than the radius of the neutron star, the mass term
(unsurprisingly) has little effect compared to the mass-
less theory. For λφ much smaller than the radius of the
neutron star, the mass term prevents scalarization, and
the usual neutron stars of GR result. Scalarization can

2 After submission of our manuscript Stoytcho Yazadjiev and Dim-
itar Popchev informed us that they have independently been
working on massive scalarization as part of Popchev’s Diploma
at Sofia University. Their work is being written up and will be
submitted for publication shortly.

lead to large observable effects in certain parts of the pa-
rameter space even for isolated stars. We will discuss
the implications of such effects and how future gravita-
tional wave observations of binary mergers could con-
strain this theory. We will investigate non-rotating stars
in the β < 0 regime, which has been the primary inter-
est in the literature, though some recent work has also
explored β > 0 [15–17].

II. EQUATIONS OF MOTION AND THE
ORIGIN OF SPONTANEOUS SCALARIZATION.

The Lagrangian of the scalar-tensor theory that leads
to spontaneous scalarization is given by [1]

1

16π

∫
d4x
√
g
[
R− 2gµν∂µφ∂νφ− 2m2

φφ
2
]

+ Sm
[
ψm, A

2(φ)gµν
]

(1)

where gµν is the metric in the Einstein frame, φ is the
scalar field and mφ is the parameter coupling to the mass
potential. Sm is any ordinary matter contribution to the
Lagrangian with the matter degrees of freedom repre-
sented by ψm. ψm couple to a conformally scaled version
of the metric, g̃µν = A2(φ)gµν , rather than the minimal
coupling in GR. The scaled metric defines the so-called
Jordan frame, and is the physical metric observers use
to measure proper length-scales. We use a tilde to de-
note any tensor defined in this frame. The equations of
motion are

Rµν = 8π

(
Tµν −

1

2
gµνT

)
+ 2∂µφ∂νφ+m2

φφ
2gµν

�gφ = −4πα(φ)T +m2
φφ (2)

where α = ∂ (lnA) /∂φ and �g is the wave operator
with respect to the Einstein frame metric. We use

A(φ) = eβφ
2/2 throughout this study, with β a constant

parameter, but other choices are also possible3. We will
only consider negative values as in [1]

Note that φ = 0 is a solution in this theory, and is
equivalent to GR. Spontaneous scalarization occurs when
this solution is unstable, i.e. an arbitrarily small pertur-
bation of φ grows and the system ends up in a stable
configuration with nonzero φ.

First, let us give a sketch of the physical mechanism
behind spontaneous scalarization (see [1, 4, 7]) for alter-
native approaches). To relate the dynamics of the field to

3 Aside from the coefficient of the parabolic φ term, β, another
important property of the potential A is its asymptotic value
A∞ = A(φ → ∞). This parameter determines the deviation
from GR for extremely strong scalar fields. Our choice of A∞ = 0
gives the maximal possible deviation, whereas values closer to 1
set an a-priori upper limit on the observable differences from GR.
The asymmetron scenario considers such nonzero A∞ values.
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physical properties of matter, we rewrite the scalar field
equation of motion as follows

�gφ = −4πβe2βφ
2

φT̃ +m2
φφ (3)

where T̃ is the trace of the physical stress-energy ten-
sor. Beginning with a small perturbation about the GR
solution φ = 0, we can expand to linear order in φ:

�gφ ≈
(
−4πβT̃ +m2

φ

)
φ (4)

For matter that can be modeled as a perfect fluid,
T̃ = −ρ̃ + 3P̃ , where ρ̃ and P̃ is the (physical) rest-
frame density and pressure of the fluid respectively. For
non-relativistic matter, ρ̃� P̃ , T̃ ≈ −ρ̃, and so for β < 0
the first term on the right in (4) is effectively a negative
mass-squared term. At the linear level the theory thus
suffers a tachyon instability where λeff < λφ, with

λeff ≡
√

π

|β|ρ̃
. (5)

Consequently all Fourier modes with wavelength λ >
λeff/

√
1− (λeff/λφ)2 that “fit” within the region where

λeff < λφ will initially experience exponential growth.
This of course by itself would be disastrous for the the-
ory, though from (3) one can see that the non-linear term

e2βφ
2

will eventually become important and suppress the
growth, saturating φ at a value, order of magnitude, of
1/
√
|β|.

For a star, approximating ρ̃ ∼ M/R3, where M is the
mass of the star and R its radius,

λeff,star ∼
R√
C|β|

, (6)

with C ≡ 2M/R being its compactness. To be suscep-
tible to scalarization, λeff,star < λφ, and the shortest
wavelength unstable mode must fit inside the star, or
roughly R > λeff,star. Thus, for a given β, only stars
that are sufficiently compact

C & 1/|β| (7)

can scalarize. For a typical 1.4M� neutron star C is
approximately between 1/5 and 1/3 (depending on the
equation of state), a white dwarf has C ∼ 10−3, and
a main sequence solar mass star has C ∼ 10−6. Note
however, that for very massive neutron stars, and again
depending on the EOS, the core can become relativistic
in that T̃ & 0, which will suppress scalarization.

On cosmological scales, during the radiation domi-
nated epoch T̃ ≈ 0, however in the matter dominated era
T̃ ≈ −ρ̃m, where ρ̃m is the average, redshift z-dependent
energy density in matter. Thus, unless the scalar field has
a sufficiently large mass term, the entire Universe would
scalarize (see also the discussion in [18]). To estimate
how large a mass term is required to prevent this, let us

assume that the non-relativistic component of matter be-
came relevant at matter-radiation equilibrium zeq ≈ 103.
Then, ρ̃ ≡ ρ̃m,eq ≈ ρ̃m0z

3
eq, where ρm0 ∼ 3×10−27kg/m3

is the present day baryonic matter density. Relative to
the matter density at zeq, to prevent scalarization would
thus require

λφ . 105pc

√
ρ̃m,eq
|β|ρ̃m

, (8)

or

mφ & 10−27eV

√
|β|ρ̃m
ρ̃m,eq

. (9)

Note that a similar order of magnitude estimate could
have been obtained using the earlier analysis for stars,
since considered a uniform density sphere the compact-
ness of the Universe reaches unity for a radius of order
the Hubble length. If a tachyonic instability were excited
in the Universe, a simple estimate for its growth rate can
be obtained solving (4) on a flat background and assum-

ing ρm is constant : φ ∝ eat, with a =
√

4π|β|ρ̃m. Scaled
to zeq, this gives an e-folding time of

ts ∼ 106yr

√
ρ̃m,eq
|β|ρ̃m

. (10)

Thus unless |β| is extremely small scalarization happens
very rapidly on a cosmological timescale. Though note
that regardless of the magnitude of β, once the instability
saturates the effect is an order unity scaling between the

Einstein and Jordan frame metrics (g̃µν = e4βφ
2

gµν , φ ∝
1/
√
|β|).

Returning to stellar sources, far from the star, the
spherically symmetric static solution for the case with
a mass term is

φ(r →∞) ∼ ae
−2πr/λφ

r
. (11)

For the massless case, this changes radically to

φ(r →∞) ∼ φ∞ +
a

r
, (12)

where φ∞ and a are constants. Thus it is apparent that
the mass term effectively screens the potential on scales
larger that λφ, and also removes the ambiguity in the
vacuum state of the field (i.e. φ∞=0).

A. Theoretical and observational bounds on the
parameters of the theory

Our main theoretical motivation for considering spon-
taneous scalarization is to explore the consequences of
an alternative theory of gravity to GR that (i) is con-
sistent with GR in all regimes where it has been tested
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by experiment or observation, (ii) predicts large devia-
tions from GR in the dynamics and consequently gravi-
tational wave emission during strong-field merger events,
and (iii) has a classical, mathematically well-posed ini-
tial value problem. There are several reasons why these
restrictions are important. First is to understand the is-
sue of theoretical bias in the gravitational wave detection
effort [19]. This can arise due to the heavy reliance on
theoretical templates for gravitational wave observation:
if GR does not exactly describe the dynamical strong-
field regime relevant to the late stages of merger, unless
templates are used that explicitly measure this, the re-
sult could likely be detections erroneously attributed to
pure GR with “wrong” parameters for the binary. Vari-
ous methods, such as the parameterized post Einsteinian
(ppE) approach [19], have been proposed to try to mea-
sure the consistency of a signal with GR, though without
explicit examples beyond perturbation theory for how
the waveforms can differ, it is unclear how effective these
approaches may be. Case in point is the “dynamical
scalarization” effect noted in binary neutron star mergers
within the massless theory in [3], where at close separa-
tions prior to merger a scalarized neutron star is able to
induce scalarization in its initially un-scalarized compan-
ion; this affects the waveform in a manner not well cap-
tured by the original ppE parameterization. Second, it is
unclear whether using a theory that violates (i) is useful,
even if only to use as a strawman to measure the effects
of deviations from GR; i.e. consistency in the weak-field
and with the leading order radiative dynamics of GR may
in general severely constrain possible deviations in the
strong-field. Lastly, if a theory violates (iii), aside from
the obvious doubts that would place on its viability, it
will not be solvable using standard numerical methods.
It is rather remarkable that (to our knowledge) scalar ten-
sor theories with spontaneous scalarization are the only
class of alternatives that have been demonstrated to sat-
isfy (i), (ii) and (iii).

These considerations thus guide the following choice
of parameters within the theory that we consider vi-
able. First, the observational constraints inferred from
the pulsar-white dwarf binary PSR J0348+0432 [5] have
come close to ruling out essentially the entire range of pa-
rameters in the massless theory that lead to neutron stars
being scalarized. The massless theory also necessarily af-
fects the Universe on cosmological scales. We thus re-
quire a mass term (see [7] for an alternative cosmological
view). To avoid bounds from PSR J0348+0432 requires
that the mass be sufficiently large such that λφ � rp,
with rp ∼ 1010m is the periapse of the orbit (the actual
orbital parameters of the binary are very accurately mea-
sured, though here we just give the order of magnitude
results). This translates to a lower limit for the mass

mφ � 10−16eV, (13)

which also easily suppresses cosmological effects4. From
(7), to allow a star as compact as a neutron star to scalar-
ize, but not a white dwarf, bounds β to the range

3 . −β . 103. (14)

To not have the mass term prevent scalarization in a
neutron star requires λeff,star < λφ, which depends on
the structure of the star (see (6)). For a strict upper limit
consider a neutron star where C|β| is maximal (C ∼ 1/3
and |β| = 103); with R ≈ 10km this gives

mφ . 10−9eV. (15)

For |β| approaching its lower limit, this upper limit on
mφ increases by about two orders of magnitude.

A further restriction on the scalar mass can be leveled if
claimed measurements of high spins for several candidate
stellar mass black holes are correct [12]. The reason is
highly spinning black holes are superradiantly unstable in
the presence of a massive scalar field with Compton wave-
length on order the size of the black hole [13]. The effect
of the instability is to spin down the black hole; thus ob-
servation of a highly spinning, old black hole rules out
existence of a related range of scalar field masses. Tak-
ing the present observations of black hole spins as doing
so rules out the mass window from roughly 10−11 eV to
10−13 eV.

III. RESULTS

With the above guidance on restrictions to the scalar-
tensor theory parameters, we investigate the spontaneous
scalarization scenario for various equations of state and
various values of β and mφ.

A. TOV Framework.

We seek the static solutions for perfect fluid neutron
stars in the spontaneous scalarization theory with a mass
term; the massless-case study was originally carried out
in [1]. We use the following Einstein-frame ansatz for the
metric:

gµνdx
µdxν = −eν(r)dt2 +

dr2

1− 2µ(r)/r
+ r2dΩ2. (16)

In terms of physical quantities, the perfect fluid stress
energy tensor is

T̃µν = (ρ̃+ p̃)ũµũν + p̃g̃µν , (17)

4 The asymmetron scenario proposes a lower bound of 10−11eV [7].
This arises from a completely different consideration motivated
by cosmology.
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where the energy density ρ̃, pressure p̃, and components
of the fluid 4-velocity ũα only depend on the radial coor-
dinate r (and due to the symmetries ũα = e−ν/2(∂/∂t)α).
The equations of motion (2) reduce to the following set
of ordinary differential equations (ODEs):

µ′ = 4πr2A4(φ)ρ̃+
1

2
r(r − 2µ)ψ2 +

1

2
r2m2

φφ
2

ν′ = rψ2 +
1

r(r − 2µ)

[
r3[8πA4(φ)p̃−m2

φφ
2] + 2µ

]
φ′ = ψ

ψ′(r − 2µ) = 4πrA4(φ) [α(φ)(ρ̃− 3p̃) + rψ(ρ̃− p̃)]
+m2

φ(r2φ2ψ + rφ)− 2ψ(1− µ/r)
p̃′ = −(ρ̃+ p̃) (ν′/2 + α(φ)ψ) (18)

where ′ denotes a derivative with respect to r. This sys-
tem of equations is closed by supplying an equation of
state of the form ρ̃ = ρ̃(p̃). Then, to solve the equations
requires specifying initial conditions at r = 0, and inte-
grating outwards. At the surface of the star the pressure
goes to zero, and beyond this point we set ρ̃ and p̃ to
zero, integrating only the scalar field and metric equa-
tions further outward. Regularity at the origin requires
µ(0) = ν(0) = ψ(0) = 0. In general one can freely spec-
ify p̃(0) = p̃0 and φ(0) = φ0, for which the asymptoptic
solution for the scalar field of an isolated star takes the
form rφ(r) = Ae−2πr/λφ +Be2πr/λφ . Only solutions with
B = 0 are physically relevant, and hence for a given p̃0,
if a scalarized solution exists it will correspond to a par-
ticular (non-zero) value of φ0. We numerically find these
solutions using the shooting method. This begins with a
guess for values of φ0 that bracket B = 0, then using
a bisection search to reduce the range to |B| < ε, for
some predetermined small tolerance ε. Of course, for any
finite B the solution will eventually blow up, though if
sufficiently small it will match the B = 0 solution to a de-
sired accuracy for r < r1, with r1 a chosen outer bound-
ary location. We use a 4th-order Runge-Kutta method
to integrate the ODEs. A further issue for the B = 0
solutions is a sub-class of them turn out to be dynami-
cally unstable to perturbations. As we will describe later,
to investigate this we evolved a set of neutron stars us-
ing the numerical code described in [20, 21] (imposing
axisymmetry).

IV. RESULTS

We investigate the existence and the strength of spon-
taneous scalarization for different values of β and mφ, as
well as different EOS. We use the piecewise-polytropic
parameterization for the EOS introduced in [22], de-
signed to approximate the zero temperature limit of
many of the current nuclear-physics-inspired EOS, and
bracket much of the theoretically plausible range. These
equations of state named 2B, B, HB, H, 2H correspond to
successively increasing stiffness for the neutron star mat-
ter, 2B being the softest, and 2H the stiffest. We measure

the strength of the scalar field by its value at the center
of the neutron star, where it is maximal, and also dis-
cuss its dependence on the radius for various scalar field
parameters.

Radial profiles of the density and scalar field of a spher-
ically symmetric neutron star with representative values
of β and mφ, and for the HB equation of state, are shown
in Figs. 1 and 2. For the cases with stronger scalar fields,
the structure of the star changes noticeably, especially
near the center where the deviation from general relativ-
ity is greatest. Also, the campactness of the star can be
significantly different for higher values of |β| & 10.

The strength of spontaneous scalarization for several
different points in β −mφ parameter space and for var-
ious EOS is illustrated in Fig. 3. For a given point in
parameter space (i.e one of the subplots in Fig. 3) and a
given EOS, there is a finite ADM mass range for the star
that allows spontaneous scalarization. Even though the
EOS can affect the neutron star mass range where spon-
taneous scalarization can occur, it does not have a strong
effect on its qualitative behavior, i.e. the existence of the
effect and the maximum strength of the scalar field has
a comparatively weak dependence on the EOS compared
to varying β and mφ.

One interesting feature of the dependence of the scalar
field strength on the ADM mass is that in certain cases
two different scalar field profiles are possible for a given
ADM mass. Anticipating that only one of these solutions
is dynamically stable, we evolved these stars using the
code described in [20, 21], and found that the star with
the lower φ(r = 0) value is unstable in all cases (the thin
parts of the curves in Fig. 3). These solutions quickly
evolve to either a stable configuration with similar ADM
mass, or collapse to a black hole. This is analogous to
behavior seen in boson star solutions within pure GR,
e.g [23]. All unstable configurations we investigated have
more than one extrema as a function of radius, whereas
the stable stars have monotonically decreasing scalar field
profiles.

A. Discussion

Figs. 1-3 clearly demonstrate that increasing mφ weak-
ens, and eventually prevents spontaneous scalarization
for all β, which is to be expected from (4). Theoretical
studies of the massless theory have already shown that
the maximal value of the spontaneously scalarized field
(or total scalar charge) drops by a few orders of magni-
tude around β = −4.5, and then disappears completely
around β = −4 for a wide variety of EOS [3, 4]. This
is consistent with the estimate (7), and still qualitatively
true for massive scalars (see Fig. 3). Although this is not
surprising for low mφ, where the TOV-like equations are
small perturbations of the massless scalar case near the
star, it holds true even near the upper scalar mass lim-
its imposed by the radius of the neutron star. In short,
a scalar mass term does not significantly alter the least
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FIG. 1: Effect of varying β on the radial profiles of the matter density (left) and conformal factor 1 −A(φ) (right) for neutron
stars. The physical radius r̃ = A(φ(r))r is the radial coordinate associated with the Jordan frame metric. All cases have a fixed
ADM mass of 1.70M�, mφ = 1.6× 10−13eV and HB EOS. The baryon mass of the neutron star is 2.06, 2.07, 2.10, 2.32, 5.37M�
for β = 0,−4.5,−6,−10,−100 respectively. Even for moderate values of β, the structure of the star is altered significantly. For
large values such as β = −100, observations of isolated stars might already be able to test spontaneous scalarization.

negative value of β below which spontaneous scalariza-
tion occurs, as compared to the massless theory. For even
more negative β values, neutron stars can again support
significant scalar fields for a wide range of mφ values,
with an upper bound that depends on the radius of the
star.

On the other hand, as discussed in the introduction,
even though the range of β that allows strong sponta-
neous scalarization is similar for the massive and massless
cases, a significant difference appears once observations
are used to restrict the parameter space. Namely, more
negative β values (. −4.5) that lead to strong scalariza-
tion for a massless scalar but which are ruled out by the
white dwarf-pulsar binary [5] are still viable for a mas-
sive scalar field, due to its suppression of dipole radiation
for large binary separations. However, significantly more
negative values of β start to induce radical changes to the
structure of a star that might be constrained by observa-
tions of single neutron stars (see also [17]). For example,
at fixed ADM mass, scalarization leads to a more than
50% increase in the stellar radius around β ∼ −100 (see
Fig. 1). Such large radii could likely be ruled out by
existing observations of thermonuclear bursts from neu-
tron stars (see e.g. [24]). Though to properly connect

these observations to inferred mass/radii require models
of the bursts and subsequent light propagation within the
geometry of the star, and how this is affected by scalar-
ization. This would be an interesting line of inquiry for
a future study.

We also note that the effect of scalarization on the
star’s structure depends strongly on the EOS, but al-
ways increases the maximum allowed ADM mass. This
is especially evident for the softest 2B EOS, which cannot
support a neutron star with the highest observed mass
under GR[5, 25], but can do so for β . −5.

Another avenue to test spontaneous scalarization is via
gravitational wave observations of compact object merg-
ers involving neutron stars. We expect the dynamical
scalarization effect [3], the phenomena where the strong
scalar field of one neutron star can induce scalarization
in a companion which in isolation would not carry a sig-
nificant field, to become less pronounced as the mass of
the field increases. This is due to the exponential decay
of the field outside the star. As scalarization also al-
lows significantly higher ADM mass values for β . −10
(see Fig. 3), if that is the case a larger fraction of binary
neutron star mergers will leave a massive neutron star
remnant versus a black hole. These starkly contrasting
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FIG. 2: Effect of varying mφ on the radial profiles of the matter density (left) and conformal factor 1−A(φ) (right) for neutron
stars. The physical radius r̃ = A(φ(r))r is the radial coordinate associated with the Jordan frame metric. All cases have a
fixed ADM mass of 1.70M�, β = −4.5 and HB EOS. Increasing mφ always inhibits the scalarization of the star and eventually
kills it. Below a certain value (mφ ∼ 10−13eV for this case) the field profile changes only marginally, asymptoting to the case
of a massless scalar. This characteristic dependence on mφ holds qualitatively for higher β as well, but the cutoff value of mφ

that allows scalarization is typically higher for more negative β. The baryon mass of the neutron star is within a percent of
2.06M� for all cases.

outcomes will produce very different gravitational wave
signals after coalescence. We plan to pursue some of these
directions of study in follow-up work.

Lastly, we give brief comments contrasting our re-
sults to the asymmetron model [7], focusing on conse-
quences for scalarized stars. The asymmetron imposes
mφ & 10−11eV and β � −1. However, a direct compar-
ison in terms of these two parameters is not straight-
forward, as the asymmetron model imposes a differ-
ent limiting value on the conformal scaling function A,
namely that A∞ = A(φ → ∞) is a positive, order-of-
unity value not close to 0. A∞ = 1 corresponds to
GR, while A∞ = 0 is the strongest possible deviation
from GR, as in our model. Thus some of the radical
changes mentioned above to neutron star structure for
very large, negative β values can be ameliorated in the
asymmetron model by varying the asymptotic behavior
of A. However, in general (without more careful “engi-
neering” of the conformal scaling function A), parameters
in our model designed to give large but viable deviations
to compact object physics are not relevant to physics on
cosmological scales, and vice versa.

V. CONCLUSIONS

A significant feature of the original spontaneous scalar-
ization scenario was that it was immune to existing weak
field and binary pulsar constraints, allowing for the in-
triguing possibility that large deviations to the structure
of neutron stars were possible compared to the predic-
tions within pure general relativity. The more recently
discovered white dwarf-pulsar binary system has now
almost ruled out this massless version of spontaneous
scalarization. In this work we pointed out that the ad-
dition of a mass term to the scalar field potential can
restore this feature of spontaneous scalarization without
being in conflict with these observations.

Our preliminary calculations show that roughly a five
order of magnitude range for the scalar field mass mφ

is viable. We computed the static solutions for isolated
neutron stars for representative values of mφ within this
range, showing that spontaneous scalarization exists and
can be strong (depending on the coupling parameter β).
Our primary goal for exploring this theory is to have a
well-posed vehicle to explore deviations to general rela-
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FIG. 3: Maximum value of the scalar field for different representative values of β and scalar field mass mφ. Each subplot shows
the maximum scalar field value with respect to the ADM mass of the neutron star for various EOSs described in [22], 2H is the
stiffest and 2B is the softest. Upper row: mφ = 1.6× 10−13eV, middle row: mφ = 4.8× 10−13, lower row: mφ = 1.6× 10−12eV,
left column: β = −4.5, middle column: β = −6, right column: β = −10. When two scalar field values are possible for a
given ADM mass, the solution corresponding to the lower scalar field is unstable (thinner lines on the right end of the curves).
Spontaneous scalarization becomes weaker with increasing mφ and decreasing β, and eventually disappears (lower left). Note
that the allowed maximum ADM mass of scalarized neutron stars can be quite large compared to the GR maximum mass even
for moderately negative values of β.

tivity in the dynamical strong-field, of relevance to the
late stages of binary compact object coalescence. As such
this study is a first step toward studies of merger simu-
lations of scalarized binary neutron star and black hole
neutron star systems in the massive theory, which we
plan to pursue in future work. A simpler alternative to
studying mergers with full non-linear simulations would
be to adapt the semi-analytic approach developed in [26]
to the massive theory, though this will likely first require
calibration with full simulations.
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