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We introduce a fully-coherent method for searching for gravitational wave signals generated by
the merger of black hole and/or neutron star binaries. This extends the coherent analysis previously
developed and used for targeted gravitational wave searches to an all-sky, all-time search. We apply
the search to one month of data taken during the fifth science run of the LIGO detectors. We
demonstrate an increase in sensitivity of 25% over the coincidence search, which is commensurate
with expectations. Finally, we discuss prospects for implementing and running a coherent search
for gravitational wave signals from binary coalescence in the advanced gravitational wave detector
data.

I. INTRODUCTION

In recent years, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] and Virgo
[2] have operated as a network of ground-based gravi-
tational wave (GW) detectors in an attempt to detect
and study signals of astrophysical origin. The data have
been searched for evidence of gravitational waves from
compact binary coalescences (CBCs) [3–5], unmodelled
GW bursts [4, 6], non-axisymmetric spinning neutron
stars [7], and a stochastic gravitational-wave background
(SGWB) [8]. While these searches yielded no direct
detections, great strides were made in both instrumental
science and data analysis techniques, paving the way
for highly-anticipated second-generation, or advanced,
detectors [9, 10]. The advanced LIGO detectors began
operation in late 2015, with Virgo expected to join a year
or two later, and all detectors evolving to their design
sensitivity over the following years [11]. In addition,
the KAGRA detector [12] in Japan and a third LIGO
detector in India [13] are expected to join the global
network.

In the coming years, the first direct observations of
gravitational waves are expected [14] and binary mergers
of neutron stars and/or black holes are the most promis-
ing astrophysical sources. It has long been argued that
the most sensitive way to search for gravitational waves
from a network of detectors is to use a coherent search
[15–19] in which data from all detectors are combined in
an optimal way prior to performing the search. While
this method has been applied to searches for unmodelled
burst sources [20], it has proven more difficult to use for
the binary merger search. Instead, a coincidence search
has been used [3, 21], whereby the data from individ-
ual detectors are searched independently and the events
recorded in the different detectors checked for time and
mass consistency appropriate for a gravitational wave sig-
nal.

The benefit of the coincidence search is that it reduces

the computational cost, at the expense of some loss in
sensitivity. The dominant cost of the search is in per-
forming a matched filter of the data against a bank of
template waveforms [22]. The coincidence search per-
forms this task once per detector per template. A search
over the sky location of the signal is then trivially done
by time-shifting the results from the different detectors
accordingly [21]. Similarly, the noise background is esti-
mated by applying larger time shifts to the data (signif-
icantly longer than the light travel time between detec-
tors) to search for noise coincidences. A naive implemen-
tation of the coherent search would require an indepen-
dent filtering of the data for each template and each sky
point, with the search repeated for each time-shift used
to estimate the noise background. Computationally, this
is not feasible.

There are, however, good reasons to believe that the
coherent search will be more sensitive than the coincident
one [16], providing the motivation to overcome the com-
putational challenges of the coherent analysis [17, 23]. In
a coincidence search, it is necessary to place a thresh-
old on the signal-to-noise ratio (SNR) of events which
will be stored by the analysis prior to identifying coinci-
dences. This means that the power in the GW signal will
only be accumulated in those detectors where there was
an event above threshold. In comparison, the coherent
analysis naturally incorporates the SNR from all opera-
tional detectors. In the coincidence analysis, each detec-
tor is searched independently, and there is no guarantee
that the observed signals in each detector are compatible
with a GW source with two polarizations. In the coher-
ent analysis the data from all detectors is combined to
extract the two physical GW polarizations. When there
are more than two detectors, it is then possible to gener-
ate a null stream (or streams) [24, 25] which will contain
only noise. Removing these additional noise contribu-
tions from the SNR will enhance the sensitivity of the
search. The benefit of a coherent analysis becomes more
significant as the number of detectors in the global net-
work increases. Thus, with the realistic prospect of a five
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detector network operating in the next few years, there
is increased motivation to overcome the challenges posed
by a coherent CBC search.

In the past few years, a coherent search for gravita-
tional waves associated with gamma-ray bursts (GRBs)
has been developed [26, 27] and used in analyses of LIGO
and Virgo data [4, 28]. The observed GRB signal is used
to restrict the sky location and arrival time of the GW
signal, which significantly reduces the computational cost
of the analysis. Nonetheless, in developing a coherent,
targeted search for binary merger signals, many of the
issues involved in performing an all-sky, all-time analy-
sis have been addressed. In particular, the analysis has
been constructed so that each template is filtered inde-
pendently through the data from each detector and the
single detector (complex) SNR time series are used to
search over the sky and also perform a small number of
time shifts. Thus, the calculation of the single detector
SNR remains the dominant computational cost. Further-
more, the algorithm was shown to improve search sensi-
tivity by around 30% when compared to a coincidence-
based search over the same data [26]. In this work, we
extend the targeted, coherent search to an all-sky search,
demonstrating the first fully-coherent all-sky search for
GWs from CBCs.

This paper is laid out as follows. In section II, we
begin by briefly reviewing the coherent search as imple-
mented in [26], then we describe our new methods to
extend that work to an all-sky coherent search. This
requires searching over amplitude parameters, sky posi-
tion, time, component masses and spins. In addition, we
briefly recap the signal consistency tests that are used
to mitigate the effects of non-stationary data. In III, we
describe in detail the search as performed with the three-
detector, two-site LIGO network as it existed in LIGO’s
fifth science run, giving the results of the search in IV.
We also discuss the prospects for a coherent analysis of
advanced detector data, and evaluate the likely sensitiv-
ity improvements. We end, in section V, with a summary
and discussion of future prospects.

II. A COHERENT SEARCH FOR COALESCING
BINARY SYSTEMS

The gravitational waveforms emitted by a coalescing
binary can be calculated by the post-Newtonian formal-
ism when the two compact objects are well separated
[29]. As they spiral closer, higher order terms in the post-
Newtonian expansion become increasingly important and
numerical relativity is used to calculate the waveform in
the final stages of inspiral and through the merger and
ringdown of the merged system [30, 31]. Using this in-
formation, a number of phenomenological models have
been constructed that accurately describe the gravita-
tional waveform over a large region of the parameter
space of binaries which do not precess (i.e. the compo-
nents are either non-spinning or have spins aligned with

the orbital angular momentum) [32, 33]. Consequently,
when performing a search for these systems, matched fil-
tering techniques are generally used.

The binary coalescence waveform for binaries in circu-
lar orbit depends upon at least fifteen parameters, and
possibly more if we include the equation of state for neu-
tron stars. These parameters are the two masses, six
components of the spin (encoding magnitude and ori-
entation of the two spins), the location (distance, right
ascension and declination) and orientation (inclination,
polarization and phase) of the binary, and the time of
coalescence. The search we describe below is restricted
to binaries where the spin-induced precession of the or-
bit can be neglected, for which the component spins must
be aligned with the binary’s orbital angular momentum
[32, 33]. This restricts the number of parameters to
eleven. In addition, we focus only on the dominant har-
monic of the waveform and ignore higher modes [34–36].

In the rest of this section, we describe the method by
which each of these 11 dimensions of the parameter space
is covered in the search. Finally, we discuss additional
features which have been developed to mitigate the pres-
ence of non-gaussian artefacts in the detector data.

A. Maximizing over amplitude parameters:
D, ι, ψ, φ

We begin by considering four parameters — the dis-
tance, binary inclination, polarization and coalescence
phase — that affect only the observed amplitude and
phase of the waveform in the various detectors. For the
purposes of a coherent search, the amplitude of a GW
signal from a non-precessing binary inspiral can be de-
composed into two polarisations [26],

h+(t) = A1h0(t) +A3hπ/2(t), (1a)

h×(t) = A2h0(t) +A4hπ/2(t) . (1b)

Here, h0(t) and hπ/2(t) describe the two phases of the
waveform, which depend upon the masses and spins of
the binary components and are usually assumed to be
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orthogonal. The amplitudes Ai are

A1 =
D0

D

(
1 + cos2 ι

)
2

cos 2φ0 cos 2ψ

− D0

D
cos ι sin 2φ0 sin 2ψ, (2a)

A2 =
D0

D

(
1 + cos2 ι

)
2

cos 2φ0 sin 2ψ

+
D0

D
cos ι sin 2φ0 cos 2ψ, (2b)

A3 = −D0

D

(
1 + cos2 ι

)
2

sin 2φ0 cos 2ψ

− D0

D
cos ι cos 2φ0 sin 2ψ, (2c)

A4 = −D0

D

(
1 + cos2 ι

)
2

sin 2φ0 sin 2ψ

+
D0

D
cos ι cos 2φ0 cos 2ψ. (2d)

These terms are dependent on four parameters of the
source: its distance, D; the coalescence phase, φ0; the
polarisation angle, ψ; and the inclination angle, ι. D0

is a scaling distance, which is used in normalizing the
waveforms h0,π/2.

The GW signal seen by detector X is a combination of
the two polarisations weighted by the detector antenna
response, FX{+,×} [37],

hX(t) = FX+ h+(tX) + FX× h×(tX). (3)

where the time of arrival in detector X depends upon
the sky location of the source relative to the detector
and the time of arrival at a fiducial location, for example
the Earth’s centre [26].

The matched-filter is described by an inner product
between a template GW waveform of the above form, h,
and the detector data s. In general, the inner product
between two such time series, aX and bX , is given by

(
aX |bX

)
= 4 Re

∫ ∞
0

ãX(f) · [b̃X(f)]?

SXh (f)
, (4)

where SXh (f) is the noise power spectral density (PSD)
in detector X. For a network of detectors, we define
the multi-detector inner product as the sum of the single
detector inner products,

(a|b) ≡
D∑
X=1

(
aX
∣∣bX) (5)

where D is the number of detectors in the network. The
multi-detector log-likelihood is then calculated as [26],

ln Λ = (s|h)− 1

2
(h|h)

= Aµ(s|hµ)− 1

2
AµMµνAν , (6)

where hµ = (F+h0,F×h0,F+hπ/2,F×hπ/2), and

Mµν ≡ (hµ|hν). (7)

Maximising the log-likelihood over the values of Ai, the
coherent SNR is defined as

ρ2coh ≡ 2 ln Λ|max = (s|hµ)Mµν(s|hν), (8)

where Mµν is the inverse of Mµν .
We can rewrite eqn (8) in a manner that makes it eas-

ier to compare to the coincident search. To do so, we
introduce the complex SNR zX in detector X as

zX = (sX |hX0 ) + i(sX |hXπ/2) . (9)

Then, we can write the coherent SNR as

ρ2coh =

D∑
X,Y=1

zXPXY z
Y , (10)

where PXY is a projection of the SNR onto the 2-
dimensional signal space:

PXY =

[
(σXFX+ )(σY FY+ )∑

Z(σZFZ+ )2
+

(σXFX× )(σY FY× )∑
Z(σZFZ× )2

]
, (11)

and σX =
√

(h0|h0)X encodes the sensitivity of each
detector.

Meanwhile the coincident SNR, obtained by filtering
the same template waveform in all detectors, is given by

ρ2coinc =

D∑
X,Y=1

zXδXY z
Y . (12)

Thus, for a signal in the absence of noise (i.e. PXY zY =
zX) the coincident and coherent SNRs are identical. For
noise events, the coincident SNR includes all of the noise,
while the coherent SNR incorporates only those contri-
butions which are compatible with a coherent signal at
all detectors.

B. Covering the sky

The coherent SNR derived above depends upon the
sky location of the source in two ways: through its de-
pendence on the detector sensitivities, encoded in F+,×,
and through the differences in arrival time of the signal
at the different detectors. Consequently, the value of the
coherent SNR will change depending on the sky location
of the source. There is no analytic way to maximize over
the sky position and instead we must search over a dis-
crete grid of sky points, much as we do for the binary
masses and spins. The density of points required will de-
pend upon the template’s autocorrelation time [38]. For
binary mergers, this depends upon the bandwidth of the
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signal [39] which is typically around 100 Hz and varies
only slowly across the mass parameter space. In what
follows, we neglect the mass dependence of the sky grid
and instead place a grid which is sufficiently dense for all
templates. While this results in a (somewhat) over-dense
grid for higher mass templates, the effect is small.

The effect of timing on the coherent SNR is more sig-
nificant than the change of the antenna response of the
detectors [38]. In addition, the antenna responses change
slowly in regions of the sky where the detectors have good
sensitivity and most rapidly near the nulls of the detector.
This further reduces the significance of the changes in
F+,× and consequently we ignore these effects and place
points in the sky based solely on time delays. We do,
however, make use of the appropriate detector responses
when performing the search

1. Sky tiling for a two-site network

Sky coverage is significantly easier for a two-site net-
work than one with three or more sites. For such a net-
work, there exists only a single time-delay baseline be-
tween the observatories meaning that we can use a one-
dimensional sky grid. As we have remarked earlier, the
coherent SNR calculated for a two detector network is no
different from the coincidence SNR. However, for the first
eighteen months of LIGO’s Science Run 5 (S5) (Novem-
ber 2005 – April 2007), the three LIGO detectors formed
a two-site, three-detector network, with both LIGO Han-
ford Observatory (LHO) instruments taking part in the
run alongside a single instrument at LIGO Livingston
Observatory (LLO). In this case, there is a benefit to
performing a coherent analysis. This is an ideal first test
case as we can explore the effects of a coherent search,
but with a reduced sky grid. The second-generation
Advanced LIGO (aLIGO) instruments will form a two-
detector, two-site network during the first observing run
in 2015 [9, 11]. However, there is no good reason that
a coherent analysis would offer improved sensitivity to a
coincidence one for this network.

For a two-site network, localisation by triangulation
will reconstruct only the difference in time of arrival be-
tween the sites, mapping to a ring on the celestial sphere.
Furthermore, for the initial LIGO network, the maxi-
mized coherent SNR is completely indepedent of the val-
ues of F+,×. As a result, the most efficient tiling of the
sky sphere for a two-site ‘all-sky’ search is given by the
one-dimensional space of physically allowed time-delays.

The allowed time delays are bounded by the light travel
time, T , between sites. If we choose a temporal resolution
δt, then the size of the grid is

N =

⌊
T

δt

⌋
. (13)

The required temporal resolution depends upon the
waveform’s autocorrelation time. For a signal with a
bandwidth around 100 Hz, template’s autocorrelation

FIG. 1. A two-site all-sky grid for the LIGO detector network.
The points span the allowed time-delays between sites, and
are chosen such that they form a great circle passing overhead
both.

falls off on time scales of ∼ 1 ms[39]. This gives an idea
of the required spacing of points, and we have found em-
pirically that δt = 0.5ms is an appropriate value.1 The
light travel time between LHO and LLO is T = 10 ms so
the two-site LIGO grid requires 40 sky points.

To seed this grid, we lay points with time delay τ in
the range [−T, T ), evenly spaced by δt. Each value of δt
corresponds to a ring on the sky, but we wish to chose
only a single point, at any location along that ring. To
do this we find the intersection between each value of δt
and the great circle containing both sites. The resulting
set of points for the LHO, LLO two-site network is shown
in figure 1. The grid has greatest density where the time-
delay is smallest, with density dropping symmetrically in
either direction, as the time delay grows.

2. Sky tiling for a three-site network

During the last six months of S5 [40] and throughout
Science Run 6 (S6) [3], the LIGO and Virgo detectors op-
erated a three-site network, allowing much more accurate
time-delay triangulation, and better sky localisation [41].
This is likely to be the same network running during the
middle years of the advanced detector era, after both
Advanced LIGO and Advanced Virgo are observing, but
before other detectors are operating.

1 The GW data are downsampled to 4096Hz when performing this
analysis. Since it is more straightforward to shift by an inte-
ger number of samples, we actually use a time shift of 2/4096
seconds.
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With three detectors, the network can triangulate any
signal to a single point in the hemisphere above the plane
of the network. A symmetry still exists in that plane, pro-
ducing a second point in the other hemisphere. However,
in many cases, the different detector responses allow us
to distinguish between these points [42]. The unfortu-
nate consequence of better sky localisation is the need
for much larger sky grids for a full coherent analysis, in-
creasing the computational cost of the search.

In order to map the sky for three sites, we follow the
analytical models of [43]. Consider a network of D de-
tectors, and define the time-delay vector

τ =

 τ2
...
τD

 , (14)

where τn is the arrival time difference between detector 1
and detector n. Let Tm be the light travel time between
detector 1 and detector m, and define αmn as the angle
separating the lines connecting detectors 1 and m, and
detectors 1 and n. Then, we can construct a bounding
ellipse for the physically-admissible time delays,

τTADτ ≤ BD, (15)

where, for the case of three detectors,

A3 =

[
T 2
3

T 2
2

−T3

T2
cos (α23)

−T3

T2
cos (α23) 1

]
(16a)

B3 = T 2
3 sin2 (α23) . (16b)

Here, cosα23 effectively measures the correlation between
the two time delays. When cosα23 = ±1, the three
sites lie in a line, the time delay matrix A3 is singular
and B3 = 0. In this case, the time-delays are degen-
erate and the localization is no better than a two-site
network. When α23 = π/2, the time-delays are inde-
pendent (cosα23 = 0) and the time-delay baselines form
the major and minor axes of the bounding ellipse. For
values of α23 between these two extremes, there is some
correlation between the time delays observed in the two
detectors, and the ellipse of permitted time delays will
not be aligned with the baselines between detectors.

A grid of hexagonal time-delay tiles is laid in (τ2,
τ3) coordinates, such that the distance between any
two points matches the desired resolution. In addition,
all points must lie within the ellipse defined by equa-
tions (16a) and (16b). The resulting time-delay grid for
the three-site LIGO-Virgo network is shown in figure 2.

The time-delay grid is then projected onto the celes-
tial sphere by constructing a detector network coordinate
system, as shown in figure 3, where the time-delay coor-
dinates are related to network longitude, φ, and latitude

−0.015 −0.010 −0.005 0.000 0.005 0.010 0.015
Time-delay H → L

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

T
im

e-
d

el
ay

H
→

V

FIG. 2. Time-delay tiles for the LIGO-Virgo three-site net-
work. All physically admissible points in this space are laid
in a hexagonal grid, with a minimal 0.5 ms spacing between
neighbouring points.

z

S

x

y
D3

D2

D4

D1

θ

φ
ψ4

α23

FIG. 3. The network coordinate system used in projecting
points in time-delay space onto the sky [43]. A three-site
network defines a right-handed coordinate system, with a po-
tential fourth-detector breaking the symmetry x-z plane.

θ, via

φ = ± cos−1

(
− T2τ3 − T3τ2 cos(α23)

T3
√
T 2
2 − τ22 sin(α23)

)
, (17a)

θ = cos−1
(
− τ2
T2

)
. (17b)

The network coordinates (φ, θ) are then related to earth-
fixed longitude and latitude with a simple rotation. This
projection is done twice, once for each hemisphere above
and below the plane of the detector network. In the end,
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(a) (b)

FIG. 4. The three-site all-sky coherent search sky grid for
the LIGO-Virgo detector network. (a) and (b) view the same
grid from different angles.

we obtain a fixed grid in the Earth-centric frame.

Figure 4 shows an all-sky grid for the LIGO-Virgo net-
work; 4a views the grid from nearly overhead the plane of
the network, where the grid is densest, while 4b shows the
relative sparsity of the grid parallel to the network plane.
This grid, using a time-delay resolution of δt = 0.5 ms,
contains over 2,700 points, representing a huge computa-
tional cost if applied näıvely to the coherent analysis.

C. Searching over coalescence time

The matched filter between a template signal with co-
alescence time tc and the data can be written as:

(s|htc) = 4 Re

∫ ∞
0

s̃(f) · [h̃tc=0(f)]?e2πiftc

Sh(f)
. (18)

Therefore, it is possible to generate single detector SNR
time series efficiently by using a Fourier transform [22].
In practice, this is done by dividing the data into seg-
ments of a fixed length and performing a fast Fourier
transform (FFT) on each segment. Due to the finite du-
ration of the templates (and also the inverse power spec-
trum), filter wraparound will lead to the corruption of
the SNR time series at the beginning and end of each
segment. This effect is mitigated by simply overlapping
the FFT segments.

These single detector SNR time series are then used
to calculate the coherent SNR as a function of time. In
practice, we find that it is not necessary to calculate the
coherent SNR for every sky point and every time sam-
ple. Instead, we require that the single detector SNRs
are above a threshold prior to proceeding with the cal-
culation of the coherent SNR. This greatly reduces the
computational cost of the calculation so that the compu-
tation of coherent SNR, for a three-site sky grid, remains
dominated by the calculation of the single detector SNR
time series.

D. Searching over mass and spin

The amplitude and phase evolution of the waveform
depends sensitively on the masses and spins of the binary
components. To search over the mass and (aligned-)spin
parameters, we make use of a discrete bank of template
waveforms, which covers the parameter space of bina-
ries sufficiently densely that the difference between any
system and the nearest template is small enough that
minimal signal power is lost [44, 45].

For the coincidence searches performed on the initial
detector data, a separate template bank was constructed
for each detector based upon its sensitivity [21], where
the density of templates depends upon the noise power
spectrum of the data from the detector. For a coherent
search, we must use the same bank for all detectors in
the network. However, at different points in the sky, the
detectors have different antenna responses and so con-
tribute differently to the coherent analysis. Thus, in prin-
ciple, the template bank should be dependent upon the
sky location. However, as discussed above, for simplicity
we do not do this. Indeed, a detailed investigation [38]
showed that the effect is minimal. Instead, one would
naturally use the harmonic mean of the detector PSDs
to construct an average PSD for generating the template
bank [26]. For the analysis presented here, where the
PSDs of the LIGO instruments have very similar shape,
we make a more straightforward choice and simply used
a bank for one of the detectors as we found that this had
little effect on the results.

E. Signal consistency tests and null SNR

In Gaussian data, the coincident or coherent SNR
would serve as a detection statistic: the greater the value
of the SNR the less likely to arise due to noise fluctuations
alone. However, in real detector data, there are numer-
ous non-stationarities in the data which can lead to high
SNR events. Various techniques have been developed to
mitigate the effect of these “glitches” and get the search
as close to the Gaussian limit as possible [21, 26, 46, 47].

1. Null SNR

A coherent gravitational wave search involves combin-
ing the data from the detectors in the network to produce
data streams that are sensitive to the two polarizations
of gravitational radiation. When there are more than
two detectors in the network, it is possible to construct
additional data streams which do not contain any grav-
itational wave contribution [24]. Using the framework
above, we denote the null SNR as

ρ2null = ρ2coinc − ρ2coh . (19)

In Gaussian noise, this would be χ2-distributed with
2(d − 2) degrees of freedom. Removing this noise con-
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tribution from the coherent SNR increases the sensitiv-
ity of the coherent search. When the data contain non-
stationary transients, they will tend to be observed in a
single detector and will not be consistent with a coherent
signal. They will, therefore, have a large null SNR, and
we can remove events with high null SNR from the search
results.

2. Single detector SNR threshold

We also make use of thresholds on the single detector
SNRs to reject events which are unlikely to be caused
by real signals. By requiring that the SNR is above a
given threshold in at least two detectors, we can elimi-
nate the vast majority of events caused by non-stationary
transients, as they appear in only a single detector. As
discussed above, an additional benefit of the single de-
tector thresholds is that they are very cheap to compute.
Consequently, we apply them before calculating the co-
herent SNR in order to reduce the computational cost of
the analysis.

3. χ2 tests

Finally, we make use of signal consistency tests, typ-
ically called χ2 vetoes [46, 47]. The basic concept is
to subtract the template that matches the observed sig-
nal and then check that what remains is consistent with
Gaussian noise. This is done by filtering the residual
data with test waveforms, T i, that are orthogonal to the
best fit template and calculating the sum of squares of
SNRs in those templates. In Gaussian noise, the value
will be χ2-distributed with 4N degrees of freedom (where
N is the number of test waveforms used). Any mis-match
between the signal and the template will lead to im-
perfect cancellation of the signal and a contribution to
the χ2. This mis-match could be due to the discrete-
ness of the template-bank, differences between the true
waveforms and those used as templates, or errors due to
the calibration of the detectors. To account for this, an
SNR-dependent threshold is typically used when reject-
ing events with a large χ2 value.

In this analysis, we make use of three different χ2 tests,
as implemented for the targeted coherent search [26]:

1. Frequency bins: The test waveforms T i are gener-
ated by chopping up the template h(t) into (N +1)
sub-templates in the frequency domain, each of
which contains an equal fraction of the power.
From these, we can construct N orthonormal wave-
forms, all of which are orthogonal to h(t).

2. Template bank: The test waveforms T i are bi-
nary merger waveforms with different mass and
spin parameters. In general, they will not be ex-
actly orthogonal to h(t), so we simply remove the
part proportional to h(t). Note, however, that the

test waveforms will also not be orthonormal, and
consequently the expected distribution is not χ2-
distributed with 4N degrees of freedom. We do
not attempt to resolve this issue but instead apply
an empirical threshold.

3. Autocorrelation: The test waveforms T i are time-
shifted copies of the original waveform h(t). As
with the template bank test, these waveforms are
neither orthonormal nor orthogonal to h(t). We
proceed as above.

III. SEARCH IMPLEMENTATION AND
TESTING

In this section we demonstrate the first implementation
of a fully-coherent, all-sky search for signals from binary
neutron star inspirals. The full analysis calculates the
coherent SNR for each template in a bank, along with
a number of signal-consistency statistics that allow dis-
tinction between non-Gaussian noise artefacts and true
signals [26, 27].

A. Data selection

The coherent all-sky analysis was used to search one
month of data from S5, during which the three LIGO in-
struments formed a two-site, three detector network [1].
As usual, the 4km detectors at Hanford and Livingston
will be denoted H1 and L1 respectively, while the 2km
Hanford detector is denoted H2. Only those data seg-
ments during which all three detectors were operating
nominally are used, with the additional requirement that
each segment was longer than 2176 seconds to allow for
accurate measurement of the detector noise PSD; figure 5
shows the segments that were selected. The sensitivity
of the detectors to neutron star mergers is characterized
by the sky and source orientation averaged distance at
which the signal from a 1.4 − 1.4M� binary would be
observed with a SNR of 8 in a single detector. Figure 6
shows the sensitive range for each detector in the net-
work during this period. The smaller H2 detector main-
tained a range between 6–7 Mpc throughout, while the
larger instruments improved as the run progressed, with
H1 peaking at 16 Mpc.

B. Generating a template bank

The coherent search was performed over the parame-
ter space of neutron star binaries. We take a mass range
of 1 − 3M� for the binary components, and neglect the
effect of spins on the waveform [48]. A bank of template
inspiral waveforms was laid using the methods of [26, 45],
with a single-detector bank for the L1 detector used as a
simple approximation to a fully-coherent template bank.
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FIG. 5. Analysis segments for coherent all-sky search of one
month of S5 data.
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FIG. 6. Inspiral averaged sensitive range for the LIGO net-
work during one month of S5.

For the analysis, non-spinning, 3.5 post-Newtonian (PN)-
order, binary neutron star (BNS) inspiral waveforms were
placed with a maximum combined mass of 6.2 M�, re-
sulting in ∼2,200 templates, as shown in figure 7. These
waveforms were generated from the point at which the
gravitational-wave frequency reaches 40Hz, below which
Initial LIGO sensitivity degrades rapidly, and the longest
template in the bank is therefore approximately 45 sec-
onds long.

C. Performing the coherent analysis

For computational ease, each analysis segment is di-
vided into chunks of 2176 seconds, overlapping by 64
seconds on each end; a template bank is generated for
each of these chunks (due to changing detector sensitiv-
ity), with each chunk processed separately. The data
from each detector are used to estimate its PSD, using
the average of sixteen 50% overlapped 256-second sensi-
tivity estimates.

For each of the 256-second blocks, the data from each
detector are filtered against each template in turn, pro-
ducing time-series of single-detector SNR. The SNR time
series at the beginning and end of each block is corrupted
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FIG. 7. The template bank used for the coherent all-sky
search of one month of S5 data.

due to wraparound of the (up to) 45 s filters and effects of
data conditioning [22], and only the middle 128-seconds
is retained. When the single detector SNRs are above
threshold, the sky grid is used to construct coherent com-
binations of these time-series and calculate the coherent
SNR. At any time sample where the coherent SNR for a
given sky point is above threshold, the value is recorded
and the signal consistency tests calculated.

1. Background estimation with time-slides

The noise background is measured using time-shifted
data. Since a fully-coherent search combines detector
data at the filtering stage, each time-slide analysis re-
quires re-computing the coherent matched-filter SNR.
This represents a huge computational cost, in compar-
ison to the coincidence-based analysis where time-shifts
are performed on the single-detector events produced af-
ter filtering.

In this analysis, 10 time-shifts were constructed, each
sliding data from the L1 detector forward by a multiple
of 128-seconds. Such large slides are computationally
simple and performed by combining data from the LHO
instruments with those from L1 in a different 256-second
block. The slides are performed on a ring (formed by
the sixteen analysis blocks for a single chunk), whereby
any L1 data slid off the end of the analysis chunk is re-
inserted at the start and filtered against the data from the
LHO instruments in the first block. The computational
cost for each of these time shifts is equal to the original
analysis.
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2. Simulations

A set of non-spinning BNS inspiral simulations were
used to inform tuning of the signal-consistency cuts and
the detection statistic, and measure search performance
through simulation recovery efficiency. The signals were
uniformly distributed in mass (with component masses
between 1M� and 3M�), sky location and orientation.
Observed signals are expected to be distributed uni-
formly in volume. However, if simulations are distributed
uniformly in volume, the vast majority of simulated sig-
nals will be at large distances and below the detection
threshold of the pipeline. Instead, we generate sim-
ulations with distances uniformly distributed between
1− 60 Mpc.

Throughout the following descriptions of signal-based
and data quality cuts, we use time-shifted and simulated
events to assess the sensitivity of the analysis, and to
determine appropriate thresholds to separate signal from
background.

D. Event down-selection

While the data from gravitational-wave detectors are
often modelled as Gaussian, in practice this is rarely the
case. The data are regularly contaminated with non-
stationary, and non-Gaussian noise artefacts (‘glitches’)
that will be detected, even in a coherent analysis, with
high SNR. As a result, the rate of events identified as
significant by the matched-filter is too high to be either
useful or practical – large noise glitches will trigger across
the full template bank, producing multiple events from a
single noise input.

Events are down-selected by identifying those most sig-
nificant relative to the surrounding data. The full list of
events are divided into 100 ms bins, with an event se-
lected only if it is the loudest in its own bin, and louder
than all events in a 100 ms window around itself. This
selection method typically reduces the event rate by a
factor of 100 or more, by identifying those event triggers
that represent the peak of an excess power transient in
the data (either noise or GW signal).

1. Signal-consistency cuts

Each of the signal-consistency tests outlined in Sec-
tion II E are applied equally to the event triggers from
the foreground data, each of the time-slide background
trials, and the simulations. The SNR thresholds for the
search are:

i single-detector SNR ≥ 5 in one detector, and ≥ 4.5
in a second detector,

ii coherent SNR ≥ 7.

These limits are chosen empirically to avoid the number
of event triggers being stored from becoming unmanage-
able, and as a way of rejecting noise artefacts, which are
often seen with a loud SNR in only one detector. The
first signal-consistency cut, on single-detector SNR, iden-
tifies those events with power in a single detector only,
typically removing more than 90% of all events. Figure 8
shows the impact of this cut on the events from the S5
analysis, applied to both H1 and L1 data, including both
the background from time slides and from the simulation
set. Those background triggers (blue dots) on the diag-
onal in each figure represent events with power only in
that detector, and fail the cut (black line) in the other
detector. The simulated signals are below the diagonal
because their coherent SNR is accumulated from a strong
component in each detector.

The χ2-based signal consistency tests are used to fur-
ther reduce the impact of noise triggers. To do so, we
first calculate the re-weighted SNR [21], in a similar way
as was done for the coincidence analysis, as:

ρχ2 =


ρ, χ2 ≤ ndof
ρ[(

1 +
(
χ2

ndof

)3)
/2

]1/6 , χ2 > ndof, (20)

where ndof denotes the number of degrees of freedom for
the χ2 tests.

We then apply the following thresholds:

iii frequency-bin χ2 re-weighted SNR > 7,

iv template-bank χ2 re-weighted SNR ≥ 7,

v autocorrelation χ2 re-weighted SNR ≥ 7.

vi an SNR dependent threshold on the null SNR:

ρnull ≤


6, ρ ≤ 20,

6 +

(
ρ− 20

5

)
ρ > 20,

(21)

Figures 9a to 9c show the impact of the three χ2 consis-
tency cuts, each evaluated after the single-detector SNR
cut has been applied. These statistics clearly differen-
tiate between the recovered simulations and the noise
background, removing those events inconsistent with a
true signal. Figure 9d shows the impact of the null SNR
cut, similarly evaluated after the single-detector SNR cut
has been applied. The null SNR cuts a relatively small
number of noise events that are incoherent between de-
tectors.

The final detection statistic is constructed using two
signal-consistency statistics to down-rank likely noise
events. First, we use the frequency-bin χ2 test to re-
weight the SNR, using equation (20). The curves in fig-
ure figure 9a are lines of constant ρχ2 and show how high
SNR noise events are down-weighted while simulated sig-
nals have a re-weighted SNR similar to their coherent
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(a) (b)

FIG. 8. The impact of the single-detector SNR cut on events from an all-sky coherent search. The blue dots are those from the
noise background, while the red pluses are those from simulated BNS signals. The shaded region represents the single-detector
cut as applied. All events with power only in a single-detector are vetoed as likely noise artefacts.

SNR. Second, we use the null SNR to further re-weight
SNR into the detection statistic. We introduce an SNR
dependent threshold, ξnull:

ξnull =


4.25, ρ ≤ 20

4.25 +

(
ρ− 20

5

)
, ρ > 20

(22)

and down-weight any triggers for which the null SNR
is greater than this value. The dashed line in figure fig-
ure 9d shows the threshold above which events are down-
weighted based upon their null SNR. This downweighting
reduces the significance of many background events, but
affects only a handful of simulated signals.

The final detection statistic is

ρdet =


ρχ2 , ρnull ≤ ξnull
ρχ2

ρnull − (ξnull − 1)
, ρnull > ξnull .

(23)

2. Data quality cuts

Instrumental and environmental disturbances can lead
to periods of poor data quality in the detectors. The
signal consistency tests described above are used to mit-
igate the impact of these poor data. In addition, data
quality (DQ) vetoes are also used to identify noise arte-
facts in the data, using instrumental and environmental
correlations. We use the same data quality definitions as
used in the coincidence search [49] (for a more detailed
description of how they are utilized, see [21, 50]). Three
different categories of data quality are generated. Data
that are too poor to use at all, and would corrupt the
PSD estimate are labelled category 1. When the impact

is less severe, it is preferable to include the data in the
analysis, and then remove any triggers at times of poor
data quality. If we were to remove these data prior to
filtering, we would lose an additional 64s on either side
as discussed in Section III C. Category 2 data quality ve-
toes identify times of instrumental problems with known
correlations to the GW channel, while category 3 vetoes
identify times of poor data, often identified by statistical
correlations with the GW channel.

These DQ vetoes are applied to data from each of the
foreground, background and simulations such that if an
event is vetoed in any one instrument then it is removed
from the search [51]. Figure 10 shows the impact of cate-
gory 2 and 3 DQ vetoes on the background events (from
time slides), after the application of the signal-based ve-
toes. The category 2 vetoes are successful in removing
the very loudest events, with the loudest event reduced
from 13.9 to 11.8. In applying the category 2 vetoes, we
discard around 1% of the available data. Category 3 ve-
toes are effective at removing the remaining tail of loud
events in the coherent search, with the loudest event re-
duced to a detection statistic value of 9.3. However, to
achieve this, we lose 25% of the available data since a
DQ veto in any one of the three detectors leads to the
data being discarded from the coherent analysis. One
may question whether there is benefit in applying the ve-
toes if they lead to the removal of such a large amount of
data. We have removed 25% of the data and succeeded in
reducing the SNR of the loudest background events by a
similar amount. This equates to improving the distance
reach of the search by the same amount. Since sources
are expected to be uniformly distributed in time and vol-
ume, imposing DQ cuts has improved the sensitivity of
the search by around 50%.

The amount of time removed due to the data quality
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(a) (b)

(c) (d)

FIG. 9. The impact of signal-consistency cuts on the background of an all-sky coherent search. The blue dots are background
events from time-slid analysis, and the red pluses are events from BNS simulations, and the shaded region covers those events
failing the signal-consistency test. In figures (a) to (c), the contours represent constant values of the re-weighted SNR (dashed
lines for half-integers, solid for integers). The detection statistic is constructed from the χ2 re-weighted SNR, and the null SNR,
figure (d), for which events above the dashed line are down-ranked using equation (23).

vetoes is still too high to be acceptable in a real search.
However, for much of this time, the data quality is poor
in only one detector. Therefore, it is possible to “recover”
this time by performing a two-detector analysis on this
data. Indeed, this is the procedure that has been followed
in the coincidence search [21, 49, 50]. As we have noted
previously, there is no reason for a two detector analysis
to be performed coherently, so it would be natural to run
the coincidence search over these times.

We can qualify the overall impact of the combined
signal-based and data-quality vetoes, and the effective-
ness of the chosen detection statistic, by comparing the
high coherent SNRs seen in figure 8 to the final distribu-
tion in figure 10.

IV. SEARCH PERFORMANCE

The performance of the search is measured using the
results of the simulation run, after all signal consistency
tests and data quality cuts have been applied. All simu-
lations for which no event was recorded are classed as
missed. Those simulations with an associated trigger
with a larger value of the detection statistic than all of the
background events are classed as recovered, while those
events with an associated trigger that is not louder than
all background events are ‘marginally’ recovered.

Figure 11 shows the distribution of injections and their
recovery as a function of the injected decisive distance
and chirp mass. We use these two parameters as they
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FIG. 11. Recovery of simulated BNS signals during the S5
coherent all-sky analysis. Successfully recovered signals as
marked with black crosses, missed signals with red crosses,
and marginally-recovered signals with dots coloured by false
alarm probability. The ‘decisive’ distance is the second-largest
effective distance for the network, as detailed in the text.

best encode the expected sensitivity of the search. The
overall amplitude of the GW signal scales with the chirp

mass,M = m
3/5
1 m

3/5
2 (m1 +m2)−1/5, of the system. The

sensitivity of the search is typically limited by the SNR of
the second most sensitive detector, and this is encoded in
the decisive distance. The effective distance of a source is
the distance at which an optimally-oriented and located
signal would have the produced the same SNR as the
given simulation [52]. The decisive distance is the second
largest effective distance for the detectors in the network.
Given a requirement of power in at least two detectors,
the ability to detect an event will depend upon its decisive
distance.

At lower masses, the majority of simulations injected
below 30 Mpc (∼ 13 Mpc angle-averaged range) are suc-
cessfully recovered, consistent with the network sensitive
distance during S5 (figure 6)2, with recovery improving as
mass increases. With the background highly cleaned by
the myriad cuts and vetoes, resulting in a low-significance
loudest event, very few simulations are marginally re-
covered, with the transition rapidly made to completely
missed signals at higher distances.

A. Comparison with the coincidence-based pipeline

We can compare the sensitivity of the coherent analy-
sis with that achieved by the coincidence-based pipeline
used to search data from the initial LIGO and Virgo de-
tectors [3, 40, 49]. We have run the coincidence analysis
with the same configuration as used in the LIGO-Virgo
search results, to allow for a fair comparison between
the coherent analysis and the coincidence-based ihope
analysis, which is described in detail in [21]. Briefly, the
search uses independent template banks in the opera-
tional detectors to identify triggers above a given SNR
threshold in a single detector. Coincidences are formed
from triggers which have comparable mass parameters
and whose arrival time at the two detectors are consistent
with an astrophysical origin [53]. For coincident triggers,
a frequency-bin χ2 test is performed and a re-weighted
SNR calculated for each detector that recorded the trig-
ger. The final detection statistic is the quadrature sum of
the re-weighted SNRs in the individual detectors. Data
quality cuts are applied in the same way as for the coher-
ent analysis described above. Background is estimated
through time-shifting triggers and repeating the coinci-
dence and χ2 stages of the pipeline, while simulated sig-
nals are used to test the sensitivity of the search. We note
that, as independent template banks are used in this coin-
cidence pipeline, the coincident SNR is not the same as in
Eq. 12 because the template filtered in each detector will
be different. “Exact-match” coincident searches, using
the same template bank in each detector, and demanding
that coincidences are formed only from triggers occurring
from the same template in multiple detectors, are being
developed for use in the advanced detector era [54, 55].
Comparisons between “exact-match” coincident searches
and searches using independent template banks in each
detector are discussed in [18, 19, 55].

To compare the sensitivity of the coincidence-based
and coherent analysis, an identical set of simulated sig-
nals were added to the data analysed by the two searches.
These simulated signals are used to calculate the per-
centage of signals detected as a function of distance and,
by integrating over distance, we obtain the cumulative

2 The angle-averaged range shown in figure 6 is calculated for a
BNS with mass m1 = m2 = 1.4 M�, for which Mc ' 1.2.
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volume to which the searches are sensitive. In order to
perform the comparions, the same data segments were
analysed using the coincidence-based ihope pipeline [21].
The same data quality veto method was used, whereby
those events vetoed in a single detector are removed from
the search. Finally, the coincidence search was performed
using identical template parameters and simulation pa-
rameters, allowing a direct comparison of search effi-
ciency with the new coherent pipeline.

1. Computational cost

The coherent and coincident algorithms are both lim-
ited by the speed of the FFT — the computational core
of the matched-filter. The coherent search has been im-
plemented to ensure that the computation of the co-
herent SNR time series, even when considering a large
number of sky points, is dominated by the FFT compu-
tations needed to obtain the single detector SNR time
series. Therefore, in Gaussian noise, where coherent
SNR is the optimal detection statistic, the computational
cost of our coherent search and a coincidence search
would be roughly equivalent. However, to counteract
non-Gaussianities in the data we compute a set of χ2

statistics, which themselves include FFT computations.
As the number of sky-points increases, the number of
times the χ2 statistics must be computed also increases,
and for large sky grids this can be the dominant com-
putational cost. The coherent search has been imple-
mented to ensure that the CPU-intensive calculation of
the χ2 statistics is minimized by first applying single de-
tector thresholds and by applying the cheaper signal con-
sistency tests—null SNR, auto χ2 and bank χ2—before
computing the expensive frequency-bin χ2. Nevertheless,
for the 2-site coherent search presented here we found
that the algorithm was roughly a factor of 2 more expen-
sive than its coincidence-based predecessor due to addi-
tional frequency-bin χ2 calculations. Recent work has
demonstrated that a non-FFT based implementation of
the frequency-bin χ2 can greatly reduce the computa-
tional cost of that operation in the coincidence search
[23]. We plan to investigate whether a similar implemen-
tation can provide a similar improvement when applied
to the coherent search.

The implementation of background estimation via time
shifts used in this analysis is computationally costly.
Since we permute the order of the data segments, it is
necessary to re-compute the single detector SNR time
series for each time shift. Thus, each time-slide is com-
putationally equivalent to the zero-lag foreground, result-
ing in a further factor of ten increase in computational
cost for this search. Performing time shifts in the co-
incidence analysis has only a small impact in the total
computational cost [21]. So, with ten time shifts, the
coherent search is a factor of twenty more costly than
the coincidence search. Of course, ten background trials
is nowhere near sufficient to estimate event significance
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FIG. 12. Comparison of search performance between the co-
incident and coherent all-sky searches for one month of S5
data. The top panel shows the injection recovery (efficiency)
as a function of distance, while the second panel shows the the
cumulative volume, comparing between the coincident (black)
and coherent (red) searches. The bottom panel shows the rel-
ative volume improvement of the coherent search. The coher-
ent search outperforms the coincident with nearly 25% greater
volume sensitivity.

to detection level, where we might require a false rate of
one per hundred or thousand years [3]. It will be a chal-
lenge to achieve this in a coherent analysis. Recent devel-
opments [27] have led to the implementation of shorter
time shifts which can be performed without the need to
recalculate the single detector SNR. This allows for ∼ 30
unique background trials at little additional cost. Using
this method, a search including 1, 000 trials, using the
current implementation, would result in around a ×60
computational cost in moving from coincidence-based to
coherent.

2. Signal recovery

Figure 12 compares the efficiency of simulation recov-
ery between the two analyses. The top and centre pan-
els compare the injection recovery and cumulative vol-
ume respectively as functions of distance between the two
searches; the bottom panel shows the relative volume im-
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provement of the coherent search. At low distances, the
coherent search recovers slightly fewer simulated signals
than the coincident analysis, but the differences are not
statistically significant. However, the near 25% improve-
ment in sensitive volume over the full simulation cam-
paign highlights the advantage of this coherent pipeline
compared to the previously published algorithm.

All comparisons are performed at a fixed false rate of
one event per analysis time, corresponding to an SNR
of around 9.3. Ideally, we would present the sensitiv-
ity comparison as a function of the false alarm rate, be-
tween one per month (as shown in figure 12) and one per
hundreds or thousands of years. However, as discussed
above, the computational cost of the coherent search, as
implemented, makes this impractical and we present the
results at a single false alarm rate.

We can compare the increased sensitivity of the coher-
ent search with expectations. The coherent search em-
ploys a lower single detector SNR threshold than the co-
incident search. Specifically, the S5 search used a thresh-
old of 5.5 in each detector, while we have required an
SNR above 5 in one detector and 4.5 in a second. Fur-
thermore, in the coherent analysis, the SNR of the third
detector will contribute to the coherent SNR, regardless
of its amplitude. In the coincident search, the SNR of the
third detector will only contribute if it is above threshold.
For the S5 data, where H2 was roughly half as sensitive
as H1 and L1, this means that a large fraction of signals
will be below threshold in H2.

To estimate the impact of these different thresholds, we
generate a large number of simulated signals, uniformly
distributed in volume, with uniform binary orientation.
For each, we calculate the expected SNR in each detec-
tor (ignoring noise contributions) and count the number
which would be “detected” by the coincident and coher-
ent searches. For the coherent search, we require the
SNR to be greater than 5 in one detector, and greater
than 4.5 in a second, with the combined SNR of 9.3 or
more. In the coincident search, the SNR in each detector
must be above 5.5 before it contributes in the combined
SNR, which must be greater than 9.3. We do not account
for the discreteness of the template bank, which will lead
to a loss of SNR due to a mis-match between the signal
and template waveforms. Similarly, we neglect the loss
in SNR due to the discreteness of the sky grid used in
the coherent search.

The majority of events that pass the coherent search
threshold have an SNR below 5.5 in H2: 25% are ob-
served above threshold in H2, compared to over 90% in
both H1 and L1. This means that only 25% of the coher-
ent sources are recovered as three detector coincidences.
The remainder are observed in only two detectors (typi-
cally H1 and L1, although there is a very small fraction
that are seen only in H1 and H2). For these events, the
SNR from the third detector is not included in the coinci-
dent network SNR, and consequently many of them will
not be found above threshold. Of the simulated events
observable by the coherent search, only 80% are observed

by the coincident search. This is in excellent agreement
with the results obtained by a full analysis on real data,
where we find the coherent analysis to be 25% more sen-
sitive.

B. Future prospects

We have demonstrated the benefits of performing a
fully coherent search and shown that it leads to a 25%
increase in sensitivity for the H1-H2-L1 network that op-
erated during the initial detector era. However, since the
H2 detector does not form part of advanced LIGO, this
network will not operate in the future. Indeed, it seems
unlikely that there will be two co-located detectors until
the Einstein Telescope is operational [56]. Prior to that,
the coherent analysis presented here will need to be ex-
tended to a three (or more) site analysis before it will be
useful. Before undertaking this effort, it is worthwhile to
investigate the likely benefits.

A planned evolution for the advanced LIGO and Virgo
detectors is laid out at [11]. The first science run, in late
2015, involved only the advanced LIGO detectors. Fol-
lowing that, the advanced Virgo detector will join the
network with a sensitivity around a half of the advanced
LIGO detectors during early runs, rising to two thirds
when the detectors are operating at design sensitivity at
the end of the decade. A third advanced LIGO detec-
tor, located in India [13], is expected to be operational
around 2022 with a similar sensitivity to the other LIGO
detectors. The Japanese KAGRA [12] detector is being
built and is expected to operate with a range similar to
that of the advanced LIGO detectors. Therefore, the
advanced detector network is expected to evolve from
a two detector network in the first run to a five detec-
tor network by early next decade. Since the coherent
analysis is not expected to benefit a two-detector search,
we consider only networks of three or more detectors.
Concretely, we evaluate the benefit of the coherent anal-
ysis for the LIGO-Virgo (HLV), LIGO-KAGRA-Virgo
(HKLV), LIGO (with India)-Virgo (HILV) and LIGO
(with India)-KAGRA-Virgo (HIKLV) network.

Table I provides the relative sensitivities of the coin-
cident and coherent searches. As before, we generate
a large number of simulated signals and identify those
which would be observed by the searches. Again, we
ignore any loss in SNR due to the discreteness of tem-
plates in the mass space or points in the sky grid. The
sensitive volume available to each network is calculated
assuming the only threshold is on the coherent network
SNR. We evaluate the search sensitivity at a network
threshold of 12, corresponding to a very low false rate,
as might be expected for first detections, and 10, which
might be more realistic during the routine detection era.
For the coincident and coherent searches, we apply ad-
ditional thresholds on the single detector SNRs and we
calculate the fraction of sources which would be detected
by the search. In the coherent search, we require an SNR
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TABLE I. The relative performance of the coherent and coincident searches for various future detector networks operating at
their design sensitivity. For each network, we consider a detection threshold of 10 and 12. For the coherent search, we require
two detectors to observe the signal above the SNR threshold of 5, but include the SNR from all detectors. For the coincident
search, we only include the SNR contribution from detectors where the signal would be above threshold. The percentages give
the sensitivity relative to a search which imposes only a threshold on the network SNR

Network Network Sensitive Volume Coherent Search Coincident Search

Threshold (106Mpc3) SNR 5 SNR 4 SNR 5.5

HLV
12 40 > 99% 97% 90%

10 65 > 99% 94% 82%

HILV
12 55 > 99% 94% 79%

10 95 97% 87% 67%

HKLV
12 60 > 99% 94% 80%

10 103 96% 87% 67%

HIKLV
12 80 > 99% 90% 70%

10 135 93% 80% 57%

above 5 in at least two detectors for the event to be de-
tected, but the SNR from all detectors contributes to the
network SNR. It is clear from table I that this require-
ment has minimal impact on the search sensitivity. It is
only for the five detector network that the single detector
thresholds will reduce the detection rate by greater than
5%, and these events would be recovered if we were able
to lower the single detector threshold to four.

For the coincident search, we impose a single detec-
tor threshold of 5.5 in each detector and only those
detectors with a signal above threshold contribute to
the network SNR. This has a significant impact on the
search sensitivity, with 10%/20%/30% of sources lost in
a three/four/five detector search at SNR 12, increasing
to 20%/30%/40% if the threshold can be lowered to 10.
As an alternative to implementing a fully coherent anal-
ysis, one could simply lower the single detector thresh-
old in the coincidence search. This would necessitate
storing significantly more single detector triggers prior
to performing the coincidence step. If the single detec-
tor threshold can be lowered to 4, then the majority of
sources are recovered. Only with the five detector net-
work, with observations being made at SNR 10, do we
lose 20% of possible sources. We note that requiring a
larger SNR threshold, say 5 or 5.5, in two detectors may
help to reduce noise background and will have minimal
effect on signals.

There are two additional effects that must be taken
into account when doing a careful comparison of searches:
the computational cost of the searches, and their noise
background. The sensitivity of the coincidence search
will be reduced due to the fact that the noise contribu-
tions from all detectors are incorporated into the net-
work SNR. Thus, in Gaussian noise, the coherent search
background will be χ2 distributed with four degrees of
freedom, while for the coincidence search it will be χ2

distributed with 2D degrees of freedom.3 The impact of
this is investigated in detail in [57], where noise back-
ground for the coincidence search is shown to be several
orders of magnitude higher that the coherent search, at
a fixed SNR. Thus, a comparison of the searches at fixed
false alarm rate requires a higher threshold on the coinci-
dence search, further reducing the sensitivity. However,
as discussed above, the computational cost of the coher-
ent analysis will be higher than the coincidence search.
The computational cost of a search can be reduced by
laying templates more sparsely in the mass-spin param-
eter space. This will lead to a loss in sensitivity as a
signal is likely to have a poorer match with the closest
template waveform. When computing resources are lim-
ited, comparison of the searches at fixed computational
cost would favour the coincidence search. However, with-
out a full implementation of the coherent analysis, it is
not possible to perform the comparison. We have argued
that the current implementation of the coherent analy-
sis, with 1,000 background trials, is around 60 times that
of the coincidence search. Thus, strategies to reduce the
computational cost of the coherent analysis are required
before we can make such a comparison.

As an alternative to implementing the full coherent
analysis, we could instead calculate the coherent SNR
for coincident events observed in three or more detectors.
The time delays between the detectors give a unique sky
location (up to a reflection symmetry in the three de-
tector case), and this determines the detector responses,
FX+,×. Then, given the complex SNR, zX , from each de-
tector, we can calculate the coherent SNR from equa-
tion (11), and also the null SNR from equation (19). This
will reduce the noise background of the coincident search

3 Since the searches impose single detector thresholds, the noise
distribution will not be exactly χ2 distributed, even in Gaussian
noise. Nonetheless, the background from the coincidence search
will be elevated, relative to the coherent search.
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and provide the null SNR as an additional signal con-
sistency test, and should yield many of the benefits of
the coherent search, but with significantly lower over-
head. We note, however, that the maxima of the single
detector SNRs need not correspond to the maximum co-
herent SNR. Additionally, for four or more detectors, the
measured time delays may not be consistent with a phys-
ical sky location. Thus, it may be necessary to keep a
short stretch of the SNR time series around each trig-
ger to reconstruct the coherent SNR [58] and, at this
stage, it may be easier to simply implement the coherent
search. Nonetheless, it is certainly worth investigating
this approach, as it could give a significant boost to the
sensitivity of coincidence searches at minimal additional
computational cost. We note that this would not have
been possible with the ihope pipeline [21] as it used dif-
ferent template banks for each detector. However, the
analysis pipelines developed for the advanced detector
era [54, 55] do make use of a common template bank for
all detectors.

V. DISCUSSION

We have demonstrated the first implementation of a
fully-coherent all-sky search for gravitational waves from
the inspiral of two compact objects. This search extends
the previously published targeted search for GW signals
associated with short GRBs [26, 27] to the untargeted
all-sky, all-time analysis. This fully-coherent, two-site
search was seen to improve sensitive volume by nearly
25% over a coincidence-based search of the same data.

We have argued that a similar improvement is to be
expected for three detector networks in the advanced de-
tector era. The benefits for four and five detector net-
works are expected to be even greater. Nonetheless, the
computational cost per template is significantly higher
for the coherent analysis than the coincidence search.
Additionally, estimating the noise background through
a time-shifted analysis of the data further increases the
cost of the coherent analysis. It will be difficult to obtain

a background to “detection level” of one per hundred
or thousand years using this method, and alternatives
[59, 60] may be needed. We have also discussed methods
by which the sensitivity of the coincidence search could
be enhanced, most notably by lowering the single detec-
tor thresholds (particularly on the least sensitive detec-
tors), implementing a coherent follow up to all coincident
events and incorporating the null SNR. These possibili-
ties deserve detailed investigation, in order to determine
the best way to implement a coherent analysis. In ad-
dition, the search presented here made use of much of
the ihope infrastructure [21] used for the analysis of ini-
tial LIGO and Virgo data. In the meantime, there has
been significant effort to modernise and optimize the co-
incident analysis [23, 54]. Any coherent analysis of the
advanced detector data will have to build upon this new
analysis infrastructure.

The first advanced detector runs will feature only
the two LIGO detectors and, for this network, a co-
herent analysis is equivalent to the coincident analysis.
Nonetheless, the Virgo, KAGRA and LIGO India detec-
tors will soon join the global network and, at this time,
a coherent analysis has the potential to significantly in-
crease the rate at which gravitational wave signals from
binary mergers are observed.
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