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Abstract

We perform a comprehensive study of models of dark matter (DM) in a Universe with a non-thermal
cosmological history, i.e with a phase of pressure-less matter domination before the onset of big-bang nu-
cleosynethesis (BBN). Such cosmological histories are generically predicted by UV completions that contain
gravitationally coupled scalar fields (moduli). We classify the different production mechanisms for DM in
this framework, generalizing previous works by considering a wide range of DM masses/couplings and allow-
ing for DM to be in equilibrium with a “dark” sector. We identify four distinct parametric regimes for the
production of relic DM, and derive accurate semi-analytic approximations for the DM relic abundance. Our
results are particularly relevant for supersymmetric theories, in which the standard non-thermally produced
DM candidates are disfavored by indirect detection constraints. We also comment on experimental signals
in this framework, focusing on novel effects involving the power spectrum of DM density perturbations. In
particular, we identify a class of models where the spectrum of DM density perturbations is sensitive to the
pressure-less matter dominated era before BBN, giving rise to interesting astrophysical signatures to be looked
for in the future. A worthwhile future direction would be to study well-motivated theoretical models within
this framework and carry out detailed studies of the pattern of expected experimental signals.

January 7, 2016



Contents

1 Motivation and Introduction 2

2 Overview of Two-Sectors - Models and Cosmology 3

2.1 Cosmological Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Solution of the Boltzmann Equations and the Dark Matter Abundance 7

3.1 Useful Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Approximate solutions for Φ, R and R′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.2 Temperature-scale factor relation and the “maximum” temperature . . . . . . . . . . . 8

3.1.3 Approximate solution for X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Classifying Production Mechanisms for Relic Dark Matter . . . . . . . . . . . . . . . . . . . . . 11

3.3 Efficient Annihilation at T ′D: 〈σv〉′ > 〈σv〉′c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Non-relativistic quasi-static equilibrium (QSEnr) . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Standard freezeout during radiation domination (FOrad
r & FOrad

nr ) . . . . . . . . . . . . 14

3.4 Inefficient Annihilation at T ′D: 〈σv〉′ < 〈σv〉′c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Non-relativistic freezeout during modulus domination (FOmod
nr ) . . . . . . . . . . . . . . 16

3.4.2 Non-relativistic and relativistic inverse annihilation (IAnr & IAr) . . . . . . . . . . . . . 17

3.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Implications for UV-motivated Supersymmetric Theories 22

5 Experimental/Observational Consequences 25

5.1 Cosmological/Astrophysical Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Prospects for the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Hidden/Extra Sectors in Explicit String Constructions 30

6.1 Heterotic Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Local Models in a Global Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Summary and Future Directions 34

Appendix A Justifying Approximations for R and R′ 36

Appendix B A Very Long-lived X Particle (ΓX . Γφ) 37

Appendix C Accuracy of Approximate Solutions 39

Appendix D Temperature Dependence of 〈σv〉′ 40

1



1 Motivation and Introduction

Apart from its existence, the nature and non-gravitational interactions of dark matter (DM) are still very

uncertain. The most popular class of dark matter models - Weakly Interacting Massive Particles (WIMPs)

- rely on two key assumptions to reproduce the observed relic abundance. First, WIMPs are assumed to

annihilate into Standard Model (SM) particles with an electroweak-scale cross section. Second, the universe

is usually assumed to be radiation dominated between the end of inflation and matter-radiation equality.

However, there are no clear indications that either of these assumptions are valid. With regards to the

former, large regions of WIMP parameter space have been ruled out by various direct and indirect detection

experiments. With regards to the latter, the earliest evidence for a radiation dominated universe arises during

BBN, which occurs at temperatures of order an MeV. The energy budget of the Universe has not been probed

for temperatures above that at the time of BBN. Of course, it is still possible that dark matter is a simple

WIMP, but because of the above reasons it is well-motivated to go beyond the traditional WIMP paradigm,

both in terms of DM candidates as well as the production mechanisms for DM.

A well-motivated alternative to the standard “thermal” cosmological history mentioned above is that of a

non-thermal cosmological history, in which BBN is preceeded by a phase of pressureless matter domination.

Such a situation is predicted in many top-down theories for new physics e.g. low-energy limits of supergravity

and string/M-theory compactifications. These theories, under some very mild assumptions, contain gravita-

tionally coupled scalars called moduli. When the Hubble parameter drops below moduli masses, moduli begin

coherent oscillations and behave as pressure-less matter, dominating the energy density of the universe until

the longest-lived one (φ) decays to reheat the universe. In these cosmological histories, an electroweak-scale

Wino provides a natural candidate for supersymmetric (SUSY) DM, provided that the modulus dominated

phase ends at temperatures below a GeV or so [1,2]. However, recent FERMI-LAT and HESS observations of

Galactic Center photons have placed severe limits on Wino DM [3, 4]. If the Wino is stable, satisfying these

constraints in the cosmological histories mentioned above requires a large hierarchy between the modulus and

gravitino masses [3]. Such a hierarchy is quite unnatural for a broad class of models in which moduli stabi-

lization sets the scale of supersymmetry breaking [5–8]. This conclusion also holds if the lightest superpartner

is some more general admixture of MSSM particles [9]. A simple way to avoid these constraints is to assume

that the lightest visible sector superpartner, hereafter referred to as the LOSP, is unstable.

Motivated by the above statements, this work provides a comprehensive study of relic DM production in

cosmological histories with a late phase of modulus domination. To perform as general an analysis as possible,

we go beyond the standard WIMP picture by i). allowing for a wide range of DM masses and annihilation

cross sections and ii). allowing for the possibility that DM is in kinetic equilibrium with some sector other

than the visible sector. These two assumptions are well motivated in SUSY theories with an unstable LOSP,

but can also be true in general. If the LOSP decays, DM is not a visible sector particle; a priori there is

no reason to expect its DM mass or annihilation cross section to be near the electroweak scale. Moreover,

if the DM resides in a sector that couples weakly to the visible sector, DM could be in kinetic equilibrium

with a “dark sector” instead of the thermal bath of visible sector particles. As we will see, our results can be

straightforwardly reduced to that of the single-sector case despite assumption ii).

The analysis of DM models in this framework can be effectively separated into three questions.

• How does one classify production mechanisms for relic DM and accurately compute ΩDMh
2?

• What is the pattern of experimental and observational signals arising within such a framework?
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• What kind of DM candidates and interactions naturally arise in well-motivated theories?

In this paper, we focus primarily on the first question by solving the Boltzmann equations for a two-

sector system with a late phase of modulus domination. A brief overview of this framework, along with

the Boltzmann equations describing its cosmological evolution, is presented in Section 2. We then classify

all potential mechanisms for the production of relic DM, and compute ΩDMh
2 for a large range of DM

masses and annihilation cross sections. The entire parameter space of these DM models can be classified into

four different parametric regimes, each with distinct production mechanisms for relic DM. We derive (semi)

analytic approximations for ΩDMh
2 in these different regimes, and confirm their validity by comparison with

the numerical solution. This is the main new result of our work, and is discussed in detail in Section 3.

Readers may go directly to Section 3.5, which contains a self-contained summary of the above results. In

Section 4, we discuss the implications of our results for UV-motivated SUSY theories where the modulus mass

is of order the gravitino mass, and show that this framework provides several viable alternatives to MSSM

dark matter.

In the remainder of the paper, we briefly discuss the latter two questions listed above. In Section 5, we

discuss potential experimental signatures of the DM models considered here. A significant portion of the

parameter space predicts free-streaming lengths characteristic of warm dark matter. Furthermore, we identify

a class of DM models in which the DM power spectrum is sensitive to the linear growth of subhorizon DM

density perturbations during the modulus dominated era. This can lead to interesting astrophysical signatures,

such as an abundance of earth-mass (or smaller) DM microhalos which are far denser than their counterparts

in standard cosmologies [10]. Finally, Section 6 briefly addresses the third question, and describes work done

in string theory models that have dark sectors. In a companion paper, we will elaborate further on some

classes of these models. We present our conclusions in Section 7. The appendices contain technical results

which will be referred to in the main text.

2 Overview of Two-Sectors - Models and Cosmology

The framework considered here consists of two sectors: a visible sector containing SM (and perhaps MSSM)

particles and a dark sector containing the DM. Both the visible and dark sectors are assumed to have sufficient

interactions such that thermal equilibrium is separately maintained within the two sectors, whose temperatures

are T and T ′ respectively. We assume that there exist very weak portal interactions between the two sectors,

so that T and T ′ may not be equal to each other. Finally, we assume that the Universe is dominated by the

coherent oscillations of a modulus field φ at some time which is much earlier than when BBN occurs1. The

cosmological framework described above is depicted schematically in Figure 1. The results of our work will

be straightforward to reduce to the single sector case, see the discussion in Section 3.5.

As denoted in Figure 1, the visible sector contains radiation degrees of freedom R, comprised of relativistic

particles in equilibrium with the SM bath at temperature T . We also track the abundance of an unstable

WIMP-like particle X which is in equilibrium with the visible sector. X corresponds to the LOSP in the SUSY

theories discussed in the introduction. The dark sector is assumed to contain a stable DM candidate X ′, along

with dark radiation R′. “Dark radiation” refers to dark sector particles which are in thermal equilibrium and

are relativistic at a given dark sector temperature T ′. Henceforth, visible (dark) sector quantities are denoted

1In general, there could be many moduli present in the early Universe. In this case, φ should be thought of as the longest-lived
modulus. DM produced from shorter-lived moduli will be diluted by entropy production [11].
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Figure 1: Schematic representation of the Two-sector Framework under consideration.

using unprimed (primed) variables. For simplicity and concreteness, we assume that no DM asymmetry

is present, so DM particles and antiparticles need not be separately tracked in the Boltzmann equations.

Relaxing this assumption is worth exploring in future studies, see for example [9]. Finally we make the

assumption that MX , MX′ � mφ, which is naturally expected for the supersymmetric theories discussed in

the introduction and in Section 4.

Before moving on to study the cosmological evolution of this system, it is worth mentioning that there are

constraints on hidden sector relativistic degrees of freedom during BBN and during recombination, through

their contribution to the expansion rate of the Universe. These constraints are typically presented in terms

of the number of effective extra neutrino species ∆Neff , which is related to the number of relativistic hidden

sector degrees of freedom g′∗(T
′) by:

∆Neff(TBBN ) = 0.57 g′?(T
′
BBN ) ξ4(TBBN ), ∆Neff(TCMB) = 2.2 g′?(T

′
CMB) ξ4(TCMB) (1)

where TBBN ∼ 1 MeV, TCMB ∼ 1 eV and ξ(T ) ≡ (T ′/T )4. The current 95% CL bounds are ∆Neff(TBBN ) ≤
1.44 [12] and ∆Neff(TCMB) ≤ 0.4 [13]. We will discuss the implications of these constraints for the two sector

models considered here in Section 3.1.2.

2.1 Cosmological Evolution

The cosmology of the framework can be studied by writing down the Boltzmann equations for the time

evolution of the relevant quantities which comprise the total energy density of the Universe. This includes

the modulus energy density ρφ, the energy density arising from X and X ′ with number densities nX and

nX′ respectively, and the energy densities of radiation in the visible and dark sector, denoted by ρR and ρR′

respectively. The relevant parameters in the Boltzmann equations turn out to be:

{TRH ,ΓX ,MX ,MX′ , 〈σ v〉, 〈σ v〉′, BX , BX′ , η, g∗(T ), g′∗(T
′)}. (2)
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Here ΓX is the decay width of the unstable X particle, MX and MX′ denote the masses of X and X ′

respectively, while 〈σ v〉 and 〈σ v〉′ denote the thermally averaged annihilation cross-section of X and X ′

respectively. g∗(T ) and g′∗(T
′) are the relativistic degrees of freedom in the visible and dark sectors at a

given temperature T, T ′. The quantities BX and BX′ denote the branching fractions of the modulus to X

and X ′ respectively2. Given the assumption MX , MX′ � mφ, η approximately denotes the fraction of the

energy density from the modulus going to dark radiation, with the remaining fraction (1− η) going to visible

radiation. Finally, following established convention we define TRH in terms of the decay width of the modulus

Γφ as follows:

TRH ≡
√

ΓφMpl

(
45

4π3g∗(TRH)

)1/4

, (3)

where Mpl = 1.22×1019 GeV is the Planck scale, and g?(TRH) is the number of relativistic degrees of freedom

in the visible sector at TRH . We will discuss the physical intepretation of TRH in Section 3.1.2.

A priori, the nine parameters in (2) can vary over a wide range of values, and could affect the computation

of the DM relic abundance in a variety of ways. However, we will show that for ΓX > O(1)Γφ, the DM

production mechanisms only depend on a subset of the parameters in (2), in particular:

{TRH , Btot, mφ, η,MX′ , 〈σv〉′, g?(T ), g′?(T
′)}, (4)

where Btot ≡ BX + BX′ if X decays to X ′ and Btot ≡ BX′ if X does not decay to X ′. Note that there is

no dependence on parameters measuring the attributes of the LOSP X– {ΓX ,MX , 〈σv〉}! Furthermore, as

will be discussed in Section 4, the parameters TRH and mφ are completely determined by the masses and

couplings of the modulus φ. Thus these parameters are insensitive to the details of the dark sector. In the

forthcoming analysis, we find it useful to choose benchmark values for the following parameters:

Benchmark : TRH = 10 MeV, Btot = 0.1, mφ = 50 TeV, η = 0.1, g?(T ) = 10.75, g′?(T
′) = 10.75 (5)

The theoretical motivation for these benchmark values will be clear from the discussion in Section 4. With

these parameters fixed, the DM abundance will depend only on MX′ and 〈σv〉′, and we will see that these can

take a wide range of values for viable DM production mechanisms. As mentioned above, for most of the paper

we take ΓX > Γφ since this is naturally obtained if ΓX is not Planck suppressed. In Appendix B, however,

we will briefly discuss the case ΓX . Γφ.

The Boltzmann equations which describe this system are a natural generalization of those which are

applicable to a single sector framework within a modulus dominated Universe, as studied in [14–17]. As

pointed out in these papers, it is more convenient to define dimensionless variables corresponding to the

energy and number densities and also to convert derivatives with respect to time to those with respect to the

(dimensionless) scale factor A ≡ a
aI

, with aI ≡ T−1
RH . Thus, following [14,15] we define:

Φ ≡
ρφA

3

T 4
RH

, R ≡ ρR
A4

T 4
RH

, X ≡ nX
A3

T 3
RH

, R′ ≡ ρR′
A4

T 4
RH

, X ′ ≡ nX′
A3

T 3
RH

,

H̃ ≡
(

Φ +
R+R′

A
+
EX′X

′ + EXX

TRH

)1/2

. (6)

2Note that BX also includes channels in which φ decays to X through intermediate states; BX′ is similarly defined.
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EX ≈ (M2
X + 3T 2)1/2 and EX′ ≈ (M2

X′ + 3T ′2)1/2 are the thermally averaged X, X ′ energies assuming that

X and X ′ are in kinetic equilibrium. The Boltzmann equations in terms of these comoving dimensionless

variables are:

H̃
dΦ

dA
= − c1/2

ρ A1/2Φ

H̃
dR

dA
= c1/2

ρ A3/2
(
1− B̄

)
(1− η)Φ + c

1/2
1 Mpl

[
2EX 〈σv〉
A3/2

(
X2 −Xeq

2
)

+A3/2

(
EX − EX′
TRH

3

)〈
ΓRX
〉
X

]
H̃
dX

dA
=

c
1/2
ρ TRHBX

mφ
A1/2Φ + c

1/2
1 MplTRHA

−5/2 〈σv〉
(
Xeq

2 −X2
)
−
c

1/2
1 Mpl

TRH
2 A1/2X 〈ΓX〉 (7)

H̃
dX ′

dA
=

c
1/2
ρ TRHBX′

mφ
A1/2Φ + c

1/2
1 MplTRHA

−5/2 〈σv〉′
(
X ′eq

2 −X ′2
)

+
c

1/2
1 Mpl

TRH
2 A1/2X 〈ΓX〉

H̃
dR′

dA
= c1/2

ρ A3/2
(
1− B̄

)
ηΦ + c

1/2
1 Mpl

[
2EX′ 〈σv〉′

A3/2

(
X ′

2 −X ′eq
2
)

+A3/2

(
EX − EX′
TRH

3

)〈
ΓR
′

X

〉
X

]

with cρ =
(
π2g∗(TRH)

30

)
, c1 = ( 3

8π ) and

B̄ ≡ BXEX +BX′EX′

mφ
. (8)

Xeq and X ′eq are related to the X and X ′ equilibrium number densities via:

Xeq ≡
(

A

TRH

)3 gTMX
2

2π2
K2

(
MX

T

)
if MX � T,

(
A

TRH

)3 cξ ζ(3)T 3

π2
if MX � T, (9)

where g counts the degrees of freedom of X and cξ = g (3g/4) for bosonic (fermionic) X. X ′eq is given by (9)

with primed variables replacing unprimed variables.

Note that we have assumed in (7) that X decays to X ′; we neglect X ′ + ... → X inverse decays, as the

dynamics which fix ΩX′ occur when T ′ .MX (see Section 3.2) at which point inverse decays are exponentially

suppressed. The thermally averaged X decay rate is given by:

〈ΓX〉 = ΓX
K1(MX/T )

gXK2(MX/T )
, 〈ΓX〉

MX�T−−−−−→ ΓX
gX

. (10)

where ΓX is the X decay rate in the X rest frame, and K1 and K2 are modified Bessel functions of the second

kind. The quantities
〈
ΓRX
〉

and
〈

ΓR
′

X

〉
are respectively the thermally averaged partial widths for X → X ′R

and X → X ′R′. In the remainder of this work, we focus on the case where all X decay channels yield X ′ such

that (7) is valid; this corresponds to X and X ′ both being charged under the DM stabilization symmetry. It

is also possible for X to instead decay directly to visible radiation, as is the case for R-parity violating SUSY

models. In this case X and X ′ are essentially decoupled in the Boltzmann equations, which significantly

simplifies the analysis. In Section 3 we focus on the more complicated case where X decays to X ′, and discuss

how relaxing this assumption affects our results.

The above differential equations are solved subject to the following initial conditions:

A = 1, Φ = ΦI =
3H2

I M
2
pl

8π T 4
RH

, R = 0, R′ = 0, X = 0, X ′ = 0 (11)
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These initial conditions are somewhat unphysical as they imply ρR = ρR′ = 0 at A = 1. However, at early

times the visible and dark radiation energy densities are subdominant, so this approximation is justified.

HI is the initial value of the Hubble parameter which fixes the initial energy density of the modulus field,

parameterized by ΦI . As we will see, in most cases the DM relic abundance is largely insensitive to the initial

condition ΦI .

3 Solution of the Boltzmann Equations and the Dark Matter Abundance

Given the system of equations (7), it is possible to numerically solve it for various choices of the parameters

in (2). However, in order to get a good physical intuition of the qualitatively different mechanisms at play, it

is advisable to study various approximate (semi) analytic solutions which are applicable in different regions

of the parameter space. We carry out such an exercise in this section. In Appendix C, we compare our

approximations to the full numerical analysis and find very good agreement.

3.1 Useful Approximations

We now derive useful approximations which allow us to obtain semi-analytic expressions for ΩDMh
2 in Sec-

tion 3.2. To start with, it is worth noting that Φ remains constant until H ∼ Γφ to a very good approximation.

Thus in the following analysis we set H̃ = ΦI
1/2 throughout the period of modulus domination, considerably

simplifying the Boltzmann equations. Our strategy will be to use physically well-motivated approximations

to first solve for Φ, R, R′ and X, and then use these solutions to study the equation for X ′.

3.1.1 Approximate solutions for Φ, R and R′

Consider first the Boltzmann equation for Φ. With H̃ = Φ
1/2
I , it is straightforward to solve for Φ:

Φ ≈ ΦI exp

[
−2

3

(
cρ
ΦI

)1/2

(A3/2 − 1)

]
. (12)

Thus, as expected, Φ remains approximately constant at ΦI , and only begins to decay vigorously when the

dimensionless scale factor satisfies A > A?, with

A? ≡

(
3

2

(
ΦI

cρ

)1/2

+ 1

)2/3

. (13)

Now consider the equations for R and R′. As can be seen from (7), in addition to the modulus decay term

these equations contain the X and X ′ annihilation terms as well as the X decay term. However, it turns out

that for MX ,MX′ � mφ all these terms are quite sub-dominant compared to the modulus decay term. This

is because if MX , MX′ � mφ, the energy densities of X and X ′ are subdominant to ρφ during the modulus

dominated era; a more detailed argument for this is presented in Appendix A. Given this approximation, the

solutions to (7) do not depend on the branching fractions of X. Thus the approximate solutions for R and R′

7



can be found readily by integrating the modulus decay term:

R(A) ≈
(
cρ
ΦI

)1/2

(1− η)

∫ A

1
(1− B̄)A′

3/2
Φ(A′) dA′; R′(A) ≈ η

1− η
R(A) (14)

Rfinal ≡ R(A→∞) ≈ (1− η)(1−Beff) Γ

(
5

3

) [(
3

2

)2/3(ΦI

cρ

)1/3

ΦI

]
; R′final ≈

η

1− η
Rfinal.

In the second line of (14), Rfinal represents the late time solution for R, i.e when the scale factor A � A∗.

Note that R ≈ Rfinal during the radiation dominated era. We have approximated B̄ as

Beff ≡
BX

(
MX

2 + 3TD
2
)1/2

+BX′
(
MX′

2 + 3T ′D
2
)1/2

mφ
, (15)

where TD and T ′D approximately correspond to the temperatures at which the integrand (14) peaks. These

temperatures characterize the transition between modulus and radiation domination, and are defined more

precisely in Section 3.1.2. To obtain the result above for Rfinal, we have expanded the function obtained after

the integration as a series expansion in
cρ
ΦI

with
cρ
ΦI
� 1 and kept the leading term. This can be justified by

taking ΦI as given by (11), where HI is the Hubble parameter when the modulus φ starts dominating the

energy density of the Universe. Thus, for HI = γ Γφ with γ � 1,3 one finds
cρ
ΦI

= 1
γ2 � 1.

3.1.2 Temperature-scale factor relation and the “maximum” temperature

The temperature of a system is measured by the radiation energy density, and the relation between the two

is given in general by:

T =

(
30

π2g∗(T )

)1/4 R1/4

a
=

(
30

π2g∗(T )

)1/4 R1/4

(A/TRH)
. (16)

In a radiation dominated Universe, it is well known that R1/4 = (ρ
1/4
R a) remains constant with time, giving

T ∝ a−1. However, the situation is different within a modulus dominated Universe since R1/4 does not remain

constant with time. It can be shown that at early times when T � TRH , Φ ≈ ΦI and the temperatures and

scale factor are related approximately by [14]:

T ≈
(

88

3355

)1/20(
g∗(Tmax)

g∗(T )

)1/4

Tmax

(
A−3/2 −A−4

)1/4
, (17)

where Tmax, the maximum temperature attained during modulus domination, is given by:

Tmax ≡ (1− η)1/4

(
3

8

)2/5( 5

π3

)1/8
(
g∗(TRH)1/2

g∗(Tmax)

)1/4

(MplHIT
2
RH)1/4 . (18)

Thus, we see that the temperature has a more complicated dependence on the scale factor compared to that in

radiation domination. Using the fact that HI = γ Γφ with γ � 1, one finds that Tmax ∼ γ1/4TRH . From (14)

3We expect γ � 1 because the modulus dominates the energy density of the universe when mφ & H � Γφ.
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it is straightforward to relate the visible and dark sector temperatures:

T ′ ≈
(

η g∗(T )

(1− η) g′∗(T
′)

)1/4

T =⇒ ξ ≡ T ′

T
≈
(

η g?(T )

(1− η)g′?(T
′)

)1/4

. (19)

Combining (18) and (19) gives T ′max for the dark sector. As mentioned in Section 2.1, bounds on Neff at both

TBBN ∼ 1 MeV and TCMB ∼ 1 eV constrain T ′BBN/TBBN and T ′CMB/TCMB, which through (19) can be

mapped into a constraint on η. Comparing (19) with the Neff bound (1), we see that the resulting constraint

on η is insensitive to g′∗(T
′) assuming g′∗(T

′) 6= 0. Taking g∗(TBBN ) = 10.75 and g∗(TCMB) = 3, the ∆Neff

constraints (1) imply η . 0.20 (BBN) and η . 0.06 (CMB).

In the presence of dark radiation4, TRH as defined in (3) no longer corresponds to the visible sector

temperature when H = Γφ, assuming the modulus has completely decayed (Φ = 0). Instead, we define the

temperatures TD, T ′D as the visible and dark sector temperatures when H
∣∣
Φ=0

= Γφ:

H
∣∣
Φ=0

=
(8π/3)1/2

Mpl
(ρR + ρR′)

1/2 =
(8π/3)1/2

Mpl

(
ρR

1− η

)1/2

= Γφ

⇒ TD ≈ TRH(1− η)1/4, T ′D ≈
(
g∗(TD)

g′∗(T
′
D)

)1/4

η1/4 TRH (20)

The bounds from Neff discussed above imply TD ≈ TRH . Hence, for simplicity we will set g∗(TRH) = g∗(TD).

It is also useful to compute the scale factor AD which corresponds to the temperature TD, T
′
D. We compute

AD by substituting T = TD and R = Rfinal in (16):

AD =
[
Γ(5/3) (3/2)2/3 (1−Beff)

]1/4
(

ΦI

cρ

)1/3

≈ 1.5(1−Beff)1/4

(
ΦI

g∗(TRH)

)1/3

(21)

From the definition of A? in (13), we see that A? ∼ AD.

We caution the reader that the definitions of TD, T ′D and AD established above are limited in the following

sense. The above expressions for TD, T ′D and AD were derived from H = Γφ assuming that the universe

has reached radiation domination, i.e. Φ = 0 and R = Rfinal, R
′ = R′final. However, modulus decay is a

continuous process which occurs when H ∼ Γφ, but does not have a well-defined start or end point. Upon

solving the Boltzmann equations, one finds that when H = Γφ, the modulus has not finished decaying and

the radiation dominated phase has not yet been reached (R 6= Rfinal). In the next subsection we will verify

this fact graphically, utilizing the full numerical solutions for Φ and R (see Figure 2 below). Despite this

ambiguity, we find TD, T ′D and AD to be useful qualitative proxies for the temperature and scale factor at

which the universe transitions from the modulus dominated to radiation dominated era.

3.1.3 Approximate solution for X

Now consider the Boltzmann equation for X. Motivated by earlier statements, we are interested in the case

where X is a LOSP with weak scale mass and annihilation cross section; thus Xeq will be exponentially

suppressed for temperatures of a few GeV. In our analysis, we will mostly consider the situation that the

LOSP X decays before the modulus (typically much before), i.e. ΓX > O(1)Γφ. Such a condition can be

4For further discussion of the effects of dark radiation in non-thermal histories, see e.g. [18–21].
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naturally achieved since the modulus decays by Planck-suppressed operators. In Appendix B, we will briefly

consider the case where ΓX . Γφ.

In the Boltzmann equation for X ′, the X decay term grows like A1/2; thus we are interested in the

solution for X in the low temperature regimes where Xeq can be neglected (this approximation is justified in

Appendix B). With this approximation, the Boltzmann equation for X can be written as:

dX

d logA
= −

(
X2

Xcrit
+

A3

Xcrit 〈σv〉
ΓX

gXT 3
RH

X

)
+

(
A3

Xcrit 〈σv〉
c

1/2
ρ BX

mφc
1/2
1 Mpl

Φ

)
, (22)

where Xcrit is the critical value required for annihilations to be efficient for a given value of the Hubble

parameter. More precisely, Xcrit is given by:

Xcrit ≡ (nX)crit
A3

T 3
RH

=
HA3

〈σv〉T 3
RH

=
H̃A3/2

c
1/2
1 MplTRH 〈σv〉

. (23)

Now, if the processes for depletion of X (the first and second terms on the right hand side of (22)) and the

production of X (the third term in the right hand side of (22)) are larger than X itself, then these are each

faster than the Hubble rate and one rapidly reaches a situation where the two processes cancel each other,

giving rise to what is known as quasi-static equilibrium (QSE) [22]. The QSE solution is found by equating

the right hand side of (22) to zero:

XQSE =
ΓXA

3

2T 3
RHgX 〈σv〉

(1 +
4g2
XBXc

1/2
ρ ΦTRH

6 〈σv〉
c

1/2
1 A3mφMplΓ

2
X

)1/2

− 1

 . (24)

Given the criteria described above (24), QSE occurs when:(
XQSE +

A3

〈σv〉
ΓX

gX T 3
RH

)
> Xcrit &

A3

〈σv〉

[(
c

1/2
ρ BX

c
1/2
1 mφMpl

) (
Φ

XQSE

)]
> Xcrit . (25)

Upon inspection, one finds that the QSE condition (25) is equivalent to the familiar condition ΓX/gX > H.

Thus, we see that as long as ΓX > gX Γφ, the QSE condition will be satisfied during the modulus dominated

era such that X ≈ XQSE for ΓX > gXH.

We can gain further insight into the QSE solution for X by rewriting (24) as:

XQSE =
ΓXA

3

2T 3
RHgX 〈σv〉

[(
1 +

〈σv〉
〈σv〉∗

)1/2

− 1

]
,

=⇒ XQSE ≈

(
gX bBX

c
1/2
ρ T 3

RH

c
1/2
1 ΓX mφMpl

)
Φ ; b ≈

 1 ; 〈σv〉 � 〈σv〉∗
2
(
〈σv〉c
〈σv〉

)1/2
; 〈σv〉 � 〈σv〉∗

. (26)

Physically, the QSE solution for X occurs when moduli decay into X, and X decay into X ′, balance one

10
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Figure 2: Plots of the exact solutions for Y = Φ, R and X (normalized to their maximum values) as functions of the scale
factor A. We have taken HI = 1015Γφ, BX = 0.1, 〈σv〉 = 10−7 GeV−2 and ΓX = 10−5 GeV. All other parameters taken to
their benchmark values (5). The dashed vertical line represents the scale factor A = AD defined in (21), which characterizes the
transition between a modulus dominated and a radiation dominated universe.

another; this explains the dependence of XQSE on Φ. In the above expression, 〈σv〉∗ is defined as:

〈σv〉∗ ≡
(

1

4g2
XBX

)(
A3

ΦI

)√
c1

cρ

(
MplmφΓX

2

T 6
RH

)
(27)

≈ 4.48× 1024 GeV−2 ×
(

5

g2
X BX

)(
A

AD

)3 ( mφ

50 TeV

)(10 MeV

TRH

)6( ΓX
10−5 GeV

)2( 10.75

g∗(TRH)

)3/2

.

Note that for the benchmark choice of parameters in (5), and ΓX not extremely small, 〈σv〉∗ is quite large

(compared to a WIMP cross-section ∼ 10−7 − 10−10 GeV−2). We expect the same qualitative conclusion as

long as the portal coupling is not extremely tiny. Thus for supersymmetric models where X is the LOSP, we

expect 〈σv〉 � 〈σv〉∗, and hence b ≈ 1 in the QSE solution for X in the second line of (26).

Figure 2 shows a plot of the solutions for the values of Φ, R and X (normalized to their maximum values)

as functions of the scale factor A for the choice of benchmark parameters as in (5). As can be seen from (12),

(14) and (26), respectively, the solutions for Φ, R and X do not depend on MX , MX′ or 〈σv〉′ to a good

approximation. Moreover the solution for X depends does not depend on 〈σv〉 for most models of interest in

which 〈σv〉 � 〈σv〉∗ as we have just discussed above.

3.2 Classifying Production Mechanisms for Relic Dark Matter

We now move on to studying the main quantity of interest – the Boltzmann equation for X ′, whose solution

will give us the expression for the relic abundance ΩDMh
2 of dark matter X ′ in terms of a subset of the

11



parameters (2) appearing in the Boltzmann equations. More precisely, the X ′ relic abundance is given by:

ΩDMh
2 =

ρX′(T
′
f )

ρR(Tf )

Tf
Tnow

ΩRh
2 = MX′

X ′(T ′f )

R(Tf )

AfTf
TnowTRH

ΩRh
2 . (28)

In the above expression, Tf is the temperature at any very late time in which the universe has become

radiation dominated (Tf � TD) and the X ′ comoving abundance has become constant. The parameters

Tnow ≈ 2.35×10−13 GeV and ΩRh
2 ≈ 4.17×10−5 are the present day temperature and radiation relic density.

Taking R(Tf ) ≈ Rfinal and using (16) to relate Af and Tf , (28) can be written as:

ΩDMh
2 ≈ L−3/4

X ′(T ′f )

ΦI

MX′

Tnow
ΩRh

2, L ≡ (1− η)(1−Beff)Γ(5/3)

(
3

2

)2/3

(29)

In order to derive semi-analytic approximations for X ′(Tf ) and ΩDMh
2, we will solve the Boltzmann equation

for X ′ given the approximations stated in the previous sections. In the following we will show that X ′(Tf ) ∝
ΦI , so ΩDMh

2 is insensitive to ΦI as mentioned above.

Using the approximate solutions for Φ, R,R′ and X in (12), (14) and (26), respectively, we can reduce the

system of Boltzmann equations in (7) to a single ordinary differential equation for the evolution of X ′:

dX ′

dA
≈
c

1/2
1 MplTRH 〈σv〉′A−5/2

H̃

[
X ′eq

2 −X ′2
]

+
c

1/2
1 A1/2

H̃

(
c

1/2
ρ TRHBX′

c
1/2
1 mφ

Φ +
ΓXMpl

gXT 2
RH

XQSE

)
(30)

where XQSE is defined in (26). Note that if X does not decay to X ′, the X ′QSE term in (30) is absent. Using

a similar definition for the critical annihilation for X ′ as was used for X in (23), one can rewrite (30):

dX ′

d logA
≈ −

[
X ′2

X ′crit

]
+

[
X ′eq

2

X ′crit

+
A3

X ′crit 〈σv〉
′

(
c

1/2
ρ Btot

c
1/2
1 mφMpl

Φ

)]
(31)

X ′crit(A) ≡ HA3

〈σv〉′ T 3
RH

=
H̃A3/2

c
1/2
1 MplTRH 〈σv〉′

,

where Btot ≡ BX +BX′ if X decays to X ′5, and Btot ≡ BX′ if X does not decay to X ′. Just as for the case of

X, if the processes of depletion of X ′ (first term on the right hand side of (31)) and production of X ′ (second,

third and fourth terms on the right hand side of (31)) are each greater than X ′ itself, X ′ will rapidly reach a

quasi-static equilibrium (QSE) attractor solution such that terms on the right hand side of (31) cancel among

themselves:

X ′QSE(A) =

[
A3

〈σv〉′

(
c

1/2
ρ Btot

c
1/2
1 mφMpl

Φ

)
+X ′eq

2

]1/2

. (32)

Comparing (31) and (32), and using (26) for the QSE solution for X, we see that the QSE conditions hold

when:

X ′QSE > X ′crit . (33)

5Note that as discussed below (27), 〈σv〉 � 〈σv〉∗ for most models where X is a LOSP, for which b ≈ 1 from (26). Therefore,
we have used the expression for XQSE with b ≈ 1 in (31).
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Note that in contrast to X for 〈ΓX〉 > Γφ, X ′ does not necessarily enter QSE during the modulus dominated

phase. One reason for this is that in contrast to X, which is assumed to be a WIMP, we are exploring a much

more general set of possibilities for the mass and interactions of the DM particle X ′.

In order to understand better the broad possibilities that could arise for X ′, it is important to find the

conditions necessary for QSE to hold at A ≈ AD. If the QSE conditions hold at A ≈ AD, then the positive

contribution to X ′ from modulus decay is annihilated away such that X maintains its QSE value. In this

case, the final X ′ abundance is insensitive6 to modulus decay parameters such as mφ and Btot. Conversely

if QSE does not hold at A ≈ AD, ΩX′h
2 will be sensitive to contributions from modulus decay, along with

other sources for X ′ production during the modulus dominated era. Comparing (31) and (32), we see that

requiring X ′QSE(AD) > X ′crit(AD) places a lower bound on 〈σv〉′. Keeping the above statements in mind, it

is useful to define a critical annihilation cross section such that X ′QSE = X ′crit at A = AD, to delineate the

various possibilities:

〈σv〉′c ≡

(
c

1/2
Γ

c1Btot

)(
mφ

T 2
RHMpl

)
; MX′ � T ′D (34)

〈σv〉′c ≡

(
π2 c

−1/2
Γ

θ g′ ζ(3)

(
2

3

)1/4 1

Γ(5/3)3/8

)(
g′∗(T

′
D)

g∗(TD) η

)3/4 1

TRHMpl
; MX′ � T ′D

≈ 2.35

(
3.0

θ g

)(
g′?(T

′
D)

η

)3/4( 10.75

g?(TRH)

)1/4 1

TRHMpl
(35)

where we have approximated H̃ ≈ ΦI at A = AD. In the above expressions, cΓ ≡
(

45
4π3 g?(TRH)

)
, g′ is the

degrees of freedom of X ′, and θ = 1 (3/4) for bosonic (fermionic) X ′. The above expressions were obtained

by taking X ′eq → 0 in the MX′ � T ′D case and X ′QSE = X ′eq in the MX′ � T ′D case.

In the following sections, we will classify production mechanisms for X ′ according to whether or not

〈σv〉′ |T ′=T ′D > 〈σv〉′c, or equivalently whether or not X ′ annihilations are efficient at T ′D. To simplifiy the

following analysis, we will assume that 〈σv〉′ is temperature independent. The generalization of our results to

temperature dependent 〈σv〉′ is presented in Appendix D.

3.3 Efficient Annihilation at T ′D: 〈σv〉′ > 〈σv〉′c

If 〈σv〉′ > 〈σv〉′c, X ′ tracks its QSE value until X ′QSE drops below X ′crit at A & AD. When X ′QSE drops

below X ′crit, annihilations are no longer efficient and the comoving X ′ abundance becomes constant. The

dynamics of this process, along with the resulting parametrics for ΩX′ , depends on whether or not the freeze-

out temperature for X ′, T̂ ′FO, is larger than T ′D. Here T̂ ′FO is the X ′ freeze-out temperature, which is computed

assuming a radiation dominated universe (38). If T̂ ′FO > T ′D we can neglect X ′eq in X ′QSE for T ∼ TD; in this

case X ′QSE ∝ Φ1/2, and X ′QSE drops below X ′crit when the modulus decays at T ′ ∼ T ′D. If instead T ′D > T̂ ′FO,

X ′ remains in thermal equilibrium during the onset of radiation domination (X ′QSE ≈ X ′eq for T ′ . T ′D). In

this case the X ′ relic abundance is determined by the standard freeze-out mechanism.

6Modulo logarithmic sensitivity, as will be discusssed in Section 3.3.1.
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3.3.1 Non-relativistic quasi-static equilibrium (QSEnr)

First consider the case where T̂ ′FO > T ′D such that X ′eq can be neglected for T ′ & T ′D. Assuming 〈σv〉′ > 〈σv〉′c,
X ′ tracks X ′QSE ∝ Φ1/2 until A & AD, after which the ratio X ′QSE/X

′
crit begins to drop exponentially due to

the decay of Φ according to (12). The final X ′ value is given by X ′QSE(Ac), where Ac is determined by solving

the transcendental equation:

X ′QSE(Ac) =
1

κ
X ′crit(Ac)⇒

(
Φ

H̃2

) ∣∣∣∣∣
Ac

=
〈σv〉′c
κ2 〈σv〉′

⇒ log
[
Ãc

]
=

2

3
c1/2
ρ

[
Ãc

]3/2
+ log

[
cρ
−1/3

(
3

2

)2/3

Γ(5/3)

]
− log

[(
κ2 〈σv〉′

〈σv〉′c
− 1

)]
. (36)

We have defined Ãc ≡ Ac ΦI
1/3 and have used the approximation R(Ac) ≈ Rfinal. Taking κ ≈ 2 gives close

agreement with the full numerical result. We denote the above mechanism for DM production as QSEnr.

Upon solving (36) for Ãc, it is straightforward to compute ΩDMh
2 using (29) with X ′(T ′f ) = κ−1X ′crit(Ac):

Ωh2 [QSEnr] ≈
B

1/2
tot

L3/4c
1/4
Γ

Ã
3/2
c exp

(
−1

3c
−1/2
ρ Ã

3/2
c

)
(Mplmφ 〈σv〉′)1/2

[
MX′

Tnow

] [
ΩRh

2
]

(37)

≈

[
(Γ(5

3) (3
2)2/3)1/2

κ c
1/6
ρ c

1/2
1 L3/4

][
Ãc

MX′Mpl 〈σv〉′
MX′

TRH

] [
MX′

Tnow

] [
ΩRh

2
]
.

In the above, we have made the approximation e
− 2

3

[
cρ
ΦI

]1/2

≈ 1, see discussion below (12). Also, in the second

line, we have used (36) to get rid of the exponential factor in the first line. The factor Ãc in the numerator

depends logarithmically on both 〈σv〉′ and 〈σv〉′c.

3.3.2 Standard freezeout during radiation domination (FOrad
r & FOrad

nr )

Now consider the case where T̂ ′FO < T ′D with 〈σv〉′ > 〈σv〉′c. Then, as discussed above, X ′QSE(T ′D) ≈ X ′eq(T ′D),

which implies that X ′ is in thermal equilibrium at T ′ ≈ T ′D and freezes out at some T̂ ′FO < T ′D when X ′eq drops

below X ′crit. The universe is radiation dominated for T ′ . T ′D; thus the X ′ relic abundance is determined by

the standard thermal freeze-out mechanism. Furthermore, there are two possible sub cases - i) non-relativistic

freezeout during radiation domination when T ′D > M ′X > T̂ ′FO, which we denote as FOrad
nr , and ii) relativistic

freezeout when T ′D > T̂ ′FO > MX′ , which we denote as FOrad
r . The relic abundance in the two cases are

given by (28) with Tf = T̂FO, T ′f = T̂ ′FO and ρX′(T̂
′
FO) determined by the standard freeze-out calculation.

Specifically, ρX′(T̂
′
FO) = ρX′eq

(T̂ ′FO), where T̂ ′FO is defined by n′eq(T ′FO) ≡ H/ 〈σv〉′. Assuming non-relativistic

freeze-out, T̂ ′FO is given by solving the transcendental equation:

x̂′F ≡
MX′

T ′FO
= log

(
3

8π3

√
10 η

g′∗(T
′
FO)
〈σv〉′ g′MX′Mpl(x̂

′
F )1/2

)
(38)
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Figure 3: Plot of the exact solution of the Boltzmann equations for X ′ (normalized to its maximum value) as a function of the
scale factor A corresponding to the QSEnr mechanism. We have taken HI = 1015Γφ, 〈σv〉′ = 10−6 GeV−2 and MX′ = 10 GeV,
with all other parameters set to the benchmark values (5). We have also plotted X ′crit (31) and X ′QSE (32). The horizontal dashed
line corresponding to A = Ac is determined by solving the transcendental equation (36) for Ac.

and the resulting relic abundance is given by:

Ωh2 [FOrad
nr ] ≈

[
4
√

5√
π

][
η1/4

(1− η)3/4

][
1

g∗(TFO)g′∗(T
′
FO)

]1/4 [ x̂′F
MX′Mpl 〈σv〉′

] [
MX′

Tnow

]
[ΩR h

2] . (39)

If instead x̂′F . 3, X ′ freeze-out occurs relativistically, and:

Ωh2 [FOrad
r ] ≈

[
30 ζ(3)

π4

] [
ηg∗(TFO)

(1− η) g′∗(T
′
FO)

]3/4 [ cξ
g?(TFO)

] [
MX′

Tnow

]
[ΩR h

2] (40)

where cξ = g′ (3g′/4) for bosons (fermions).

Note that although the mechanism for DM production discussed here is standard thermal freezeout, the

relevant parametric region is very different compared to that of usual thermal WIMP freezeout. In particular,

here T̂ ′FO is smaller than T ′D ≈ TRH (η)1/4
(
g?(TD)
g′?(T ′D)

)1/4
. (0.1−0.5)TRH for reasonable choices of parameters.

This implies that MX′ < x̂′FT
′
D . 10 × TRH . Furthermore, for the cosmological scenarios described in the

introduction and in Section 4, one expects TRH to be in the range: few MeV . TRH . 100 MeV. Thus, the

DM in this case is much lighter than a typical electroweak-scale WIMP, even if the underlying mechanism is

non-relativistic freezeout during radiation domination (FOrad
nr ). On the other hand, DM undergoing relativistic

thermal freezeout in the dark sector (FOrad
r ) is qualitatively similar to the case of neutrino decoupling in the

visible sector. We reiterate that in all other regions of MX′ and 〈σv〉′ parameter space, the standard thermal

freeze-out calculation will not be valid.
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3.4 Inefficient Annihilation at T ′D: 〈σv〉′ < 〈σv〉′c

We now consider the case where 〈σv〉′ < 〈σv〉′c such that X ′ is not in QSE for T & TD. In contrast to the

previous case, the X ′ relic abundance will be sensitive to both early-time X ′ production during the modulus

dominated era and the modulus branching ratio Btot. Because the annihilation rate Γ(X ′) ∼ n2
X′ 〈σv〉

′ is

much smaller than the Hubble parameter for T ′ & T ′D, the X ′2 term in (30) can be neglected for T ′ & T ′D.

The Boltzmann equation for X ′ becomes linear in this limit, and the contributions to ΩDM can be separated

into two sources:

ΩDM h2 = Ωann h
2 + Ωdecay h

2. (41)

The first term, Ωdecay h
2, is the contribution from modulus and X decays. This term can be computed

by taking H̃ = ΦI
1/2 and integrating the second term in the RHS of (30) to A = Af � A∗. Taking

exp(−2c
1/2
ρ /3ΦI

1/2) ≈ 1, equation (29) gives:

Ωdecay h
2 ≈ L−3/4

[
Btot

TRH
mφ

]
MX′

Tnow

[
ΩR h

2
]

(42)

On the other hand, as the name suggests, Ωann h
2 parameterizes contributions to X ′ production which arise

from the annihilation term in (30). This has been discussed in [14] in models with a single sector. There are

two qualitatively different cases regarding the parameterics of Ωann h
2.

The first case arises when the DM particle X ′ attains equilibrium at high temperatures (but 〈σv〉′ is still

smaller than 〈σv〉′c) and freezes out during modulus domination; hence T ′max > T ′FO > T ′D. Here T ′FO is the X ′

freeze-out temperature computed assuming a modulus dominated universe (43). Now, one might naively think

that both non-relativistic and relativistic thermal freezeout may be possible during modulus domination, just

as they are during radiation domination (see section 3.3.2). However, as noted in [14], relativistic freeze-out

cannot occur during modulus domination if 〈σv〉′ ∝ (T ′)n with n < 6. To see this, note that the term

in (31) corresponding to R′R′ → X ′X ′ inverse annihilations scales like X ′eq
2 〈σv〉′ /X ′crit ∝ (T ′)(−6+n) when

X ′ is relativistic. Thus if X ′ decouples from the thermal bath of dark radiation while relativistic at some

temperature T ′dec, the X ′ comoving abundance will continue to grow for T ′ < T ′dec due to inverse annihilations,

provided n < 6. In this work we will only consider n < 6; thus for the models considered here, freeze-out

during modulus domination occurs only if T ′max > T ′FO > T ′D and MX′ > T ′FO.

The second case arises when T ′FO > T ′max > T ′D (X ′ never reaches equilibrium) or when T ′max > T ′FO > MX′

(X ′ decouples while relativistic). In this case, it turns out that the contribution to DM abundance comes

predominantly from inverse annihilations via R′R′ → X ′X ′, as will be seen shortly.

3.4.1 Non-relativistic freezeout during modulus domination (FOmod
nr )

Let us first consider the case where X ′ reaches chemical equilibrium and then undergoes freeze-out during

modulus domination (T ′max > T ′FO > T ′D). From the arguments above, we note that freezeout can only occur

when DM is non-relativistic, hence we denote this mechanism as FOmod
nr . The X ′ freezeout temperature,

defined as T ′FO such that neq
X′(T

′
FO) 〈σv〉 ≡ H(T ′FO), is given by solving the following transcendental equation

for x′F ≡
MX′
T ′FO

:

x′F = ln

[(
3

2
√

10π3

)(
g′g∗(TRH)1/2

g′∗(T
′
FO)

)(
Mpl

MX′

)
[T 2
RH 〈σv〉

′] η x′F
5/2

]
(43)
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Figure 4: Plot of the exact solution for X ′ (normalized to its maximum value) as a function of the scale factor A corresponding
to the FOmod

nr mechanism. We have taken HI = 1015Γφ, 〈σv〉′ = 10−6 GeV−2, MX′ = 10 GeV as in Figure 3, but have instead
chosen Btot = 0 so that the QSE condition is not satisfied, see (34). All other parameters set to benchmark values (5). For
comparison we have also plotted the comoving X ′ equilibrium number density X ′eq.

where x′F ≡
MX′
T ′FO

. Note that the above equation, and hence the parameters T ′FO and x′F , are valid only if

T ′max > T ′FO > T ′D and MX′ > T ′FO, i.e. 1 < x′F <
(
MX′
T ′D

)
.

Then Ωannh
2 is given by (29) with X ′(Tf ) = X ′eq(T ′FO):

Ωann h
2 [FOmod

nr ] ≈
[

8 η√
5π L3/4

][
g∗(TRH)1/2

g′∗(T
′
FO)

] [
TRH
MX′

]3
[

x′F
4

MX′Mpl 〈σv〉′

][
MX′

Tnow

]
[ΩR h

2] (44)

where x′F is the solution of (43). From (43), it can be seen that the condition x′F > 1 is equivalent to

〈σv〉′ > 〈σv〉′0 or MX′ < M0 where:

〈σv〉′0 (MX′) ≡

[
2e
√

10π3

3

][
g′∗(T

′
FO)

g′g∗(TRH)1/2

] [
MX′

Mpl T
2
RH η

]

M0 (〈σv〉′) ≡
[

3

2e
√

10π3

][
g′g∗(TRH)1/2

g′∗(T
′
FO)

] [
MplT

2
RH 〈σv〉

′ η
]

(45)

In addition, x′F must be smaller than MX′/T
′
D, which puts an additional constraint on the parameters. Thus

the parameter space for viable FOmod
nr is rather limited, as we will show in Section 4.

3.4.2 Non-relativistic and relativistic inverse annihilation (IAnr & IAr)

Finally, let us consider the situation when one of the conditions in the previous subsection, i.e. T ′max > T ′FO >

T ′D or MX′ > T ′FO, is not satisfied. In this case, X ′ is instead populated by R′R′ → X ′X ′ inverse annihilations.

This occurs if X ′ never reaches equilibrium for T ′ < T ′max, or if X ′ decouples from the thermal bath while
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Figure 5: Plot of the exact solution of the Boltzmann equations for X ′ (normalized to its maximum value) as a function of
the scale factor A corresponding to the IAnr and IAr mechanisms. We have chosen 〈σv〉′ = 10−16 GeV−2, MX′ = 10 GeV for
IAnr, and 〈σv〉′ = 10−16 GeV−2, MX′ = 10−4 GeV for IAr, with Btot = 0 and HI = 1015Γφ; all other parameters taken to their
benchmark values (5).

relativistic. In either case X ′2 � X ′eq
2 for T ′ .MX′ , allowing us to neglect the X ′2 term in (30). Integrating

the first term on the right hand side of (30) from A = A0 ≡ (8/3)2/5 to some scale factor A = Af , one gets7:

X ′(Af ) ≈ c1/2
1 Mpl 〈σv〉′ TRH−5

∫ Af

A0

dA
A7/2 n′eq

2

H̃
. (46)

While X ′ is relativistic, the integrand of (46) grows like A5/4 in the modulus dominated phase (H̃ ≈ ΦI
1/2)

and falls like A−3 in the radiation dominated phase (H̃ ≈
√
R/A). Thus if MX′ > T ′D, X ′ production occurs

predominantly when X ′ first becomes non-relativistic, while if MX′ < TD′ X
′ production occurs predominantly

at the transition between modulus domination and radiation domination.

In either case the important dynamics for X ′ production approximately occurs during modulus domination;

thus taking H̃ ≈ ΦI
1/2 we can use (17) to rewrite (46) as:

X ′(T ′f ) ≈ η3

[
192

(125π7)1/2

] [
g?

3/2(TRH)

g′?
3(T ′?)

] [
TRH

7Mpl 〈σv〉′ ΦI

M12
X′

] ∫ MX′
T ′
f

MX′
T ′max

dx′ x′
11
n′eq

2
, (47)

where we have defined x′ ≡ MX′/T
′. Here T ′∗ is defined as the temperature at which the integrand of∫

dx′x′11n′eq
2 is peaked, and T ′f is a temperature chosen such that X ′(T ′) is essentially constant for T ′ < T ′f .

For relativistic X ′, the integrand of (46) peaks at T ′ ≈ T ′D/1.75. Thus we will henceforth take T ′f ≈ T ′D/1.75,

though if MX′ � T ′D the integrand of (46), (47) falls rapidly well before T ′f .

The evaluation of the integral in (47) is different in different regimes. If MX′ > T ′D, we can evaluate (47)

7A0 corresponds to the scale factor at which T = Tmax, see (18).
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assuming X ′ satisfies Maxwell-Boltzmann statistics. The integral in (47) can then be expressed as:

∫ MX′
T ′
f

MX′
T ′max

dx′x′
11
n′eq

2
=
g′2M6

X′

4π4

∫ MX′
T ′
f

MX′
T ′max

dx′x′
9
K2(x′)2 . (48)

The function x′9K2(x′)2 peaks at x′? ≈ 3.6, corresponding to T ′∗ ≈ 0.28MX′ . Thus the maximum X ′ pro-

duction takes place when X ′ is non-relativistic, justifying our assumption of Maxwell-Boltzmann statistics.

Finally, if
MX′
T ′max

> x′?, then (48) will be exponentially suppressed, in particular by exp(−2MX′/T
′
max). We de-

note the above mechanism of DM production via non-relativistic inverse annihilations as IAnr. We remind the

reader that for MX′ > TD′ , (47) is valid if T ′FO > T ′max or if T ′FO > MX′ where T ′FO is given by (43); otherwise

Ωannh
2 is determined by non-relativistic freeze-out during modulus domination as described in Section 3.4.1.

What happens when MX′ < T ′D? In this case, X ′ production peaks when X ′ is relativistic at T ′∗ = T ′D/1.75,

and Fermi-Dirac or Bose-Einstein statistics must be taken into account. The integral in (48) can then be

expressed as: ∫ MX′
T ′
f

MX′
T ′max

dx′x′
11
n′eq

2
=
ζ(3)2cξ

2MX′
6

π4

∫ MX′
T ′
f

MX′
T ′max

dx′x′
5 ≈

1.756 ζ(3)2cξ
2MX′

12

6π4T ′D
6 (49)

where again cξ = g′ (3g′/4) for bosons (fermions). We denote the above mechanism of DM production via

relativistic inverse annihilations as IAr.

Given (29) and (47)-(49), the relic abundance from inverse annihilations can be readily computed:

Ωann h
2 [IAnr] ≈

[
48 g′2 χη3

1251/2π15/2 L3/4

][
g?

3/2(TRH)

g′?
3(T ′?)

] [(
TRH
MX′

)7

MplMX′ 〈σv〉′
][

MX′

Tnow

]
[ΩR h

2] (50)

Ωann h
2 [IAr] ≈

[
32 cξ

2 ζ(3)2 (1.75)6

1251/2π15/2 L3/4

][
η3/2

g′?
3/2(T ′D)

] [(
TRH
MX′

)
MplMX′ 〈σv〉′

] [
M ′X
Tnow

]
[ΩR h

2] (51)

where χ ≡
∫ MX′

T ′
D

MX′
T ′max

dx′x′9K2(x′)2 and we have taken g∗(TD) = g∗(TRH) and g′∗(T
′
D) = g′∗(T

′
f ) in (51). Of all the

production mechanisms we have studied, the only scenario where the X ′ relic abundance depends on T ′max is

IAnr in the case where MX′ > T ′max.

Note that we have assumed above that 〈σv〉′ is independent of temperature. For the QSEnr, FO
rad
nr , FOmod

nr

and IAnr, the processes which determine the DM relic abundance occur when X ′ is non-relativistic. Thus for

these mechanisms, a temperature-independent 〈σv〉′ is typically a good assumption for s-wave annihilation

(p-wave annihilations are considered in Appendix D). However for IAr, the relevant process responsible for the

DM abundance (inverse annihilation) takes place when X ′ is relativistic8. Since IAr requires 〈σv〉′ < 〈σv〉′c,
it is expected that 〈σv〉′ in this case is schematically given by 〈σv〉′ = Tn

Λn+2 for some heavy mediator scale Λ

and positive integer n. The temperature-independent 〈σv〉′ case studied here corresponds to n = 0. Another

well motivated case is n = 2, corresponding to fermionic X ′ annihilating via a heavy bosonic mediator. We

consider this possibility in Appendix D, and show that the n = 2 case can be recovered from (51) by making

the replacement 〈σv〉′ → 0.17× T ′D
2/Λ4.

8The process responsible for DM abundance for FOrad
r does take place when X ′ is relativistic, but in this case the DM

abundance is independent of 〈σv〉′, see (40).
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3.5 Summary of Results

DM Production Mechanism Parametric Region

I. Efficient Annihilation at T ′D A. Non-Relativistic QSE MX′ > x̂′FT
′
D

[QSEnr]

〈σv〉′ > 〈σv〉′c
B. FO During Radiation Domination MX′ < x̂′FT

′
D

[FOrad
nr &FOrad

r ]

II. Inefficient Annihilation at T ′D A.
FO During Matter Domination + {T ′max,MX′} > T ′FO > T ′D

Production from Modulus Decay
[
〈σv〉′ > 〈σv〉′0

]
[FOmod

nr ]

〈σv〉′ < 〈σv〉′c
B.

Inverse Annihilations(R′R′ → X ′X ′) +

Production from Modulus Decay IIA condition not satisfied

[IAnr & IAr]
[
〈σv〉′ < 〈σv〉′0

]
Table 1: Summary of the different parametric regimes for ΩDMh

2 as discussed in Section 3.2. The quantity 〈σv〉′c is defined
in (34) and 〈σv〉′0 in (45). The temperatures T ′max is defined in (18), T ′D in (20), and T ′FO above (43).

In this section, we summarize the results of this section for the benefit of the reader. There are four

qualitatively distinct parametric regimes for ΩDMh
2 in the framework considered. These different regimes

are summarized in Table 1; 〈σv〉′ is defined in (34), T ′D is defined in (20), and Tmax is defined in (18). The

quanitites T̂ ′FO and T ′FO are respectively the X ′ freezeout temperatures during radiation domination (38)

and modulus domination (43). Here we briefly review the parametrics for ΩDMh
2 in these different regimes,

and collect the semi-analytic expressions for ΩDMh
2 derived earlier. In the following expressions we will set

g∗(TRH) = g∗(TD) = 10.75, which is the SM value for g∗(T ) at T ∼ 10 MeV. We also assume a fermionic DM

candidate and set g′ = 2. Note that the various mechanisms are valid in different parameteric regions; this is

reflected in the different fiducial values for MX′ and 〈σv〉′ chosen in the expressions below. In Appendix C

we compare our approximate expressions with numerical solutions to the Boltzmann equations (7) and find

close agreement.

• I.A: Non-Relativistic QSE (QSEnr):

DM annihilations are large enough to drive X ′ to its quasi-static equilibrium (QSE) value until T ′ is

close to T ′D, soon after which QSE is lost and the comoving DM abundance becomes constant. The relic

abundance in this regime is given by (37):

Ωh2 [QSEnr] ≈ 5.2× (1− η)−3/4

(
Ãc
3

)(
MX′

10 GeV

)(
10 MeV

TRH

)(
10−8 GeV−2

〈σv〉′
)

(52)
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Ãc is defined below (36), and lies in the range : 1 . Ãc . 5 for 〈σv〉′c . 〈σv〉
′ . 105 〈σv〉′c. QSEnr is

the precise generalization of the “non-thermal WIMP miracle” studied in [1, 2], and also captures the

sub-dominant logarithmic dependence on 〈σv〉′ and 〈σv〉′c via Ãc which was not considered in [1, 2].

• I.B: Freeze-out during radiation domination (FOrad
nr &FOrad

r ):

X ′ tracks its equilibrium value until after T ′ ≈ T ′D, and freezes-out after the modulus decays and the

Universe becomes radiation dominated. Both non-relativistic (FOrad
nr ) and relativistic (FOrad

r ) thermal

freezeout are possible. FOrad
nr is the dark sector analogue of standard WIMP freeze-out during radia-

tion domination, while FOrad
r is the dark analogue of neutrino decoupling in the visible sector. This

mechanism occurs only for MX′ . T ′D; see Table 1. The relic abundances are given by (39) and (40):

Ωh2 [FOrad
nr ] ≈ 0.13×

(
η

(1− η)3 g∗(T̂F )g′∗(T̂
′
F )

)1/4(
x̂′F

17.5

)(
10−8 GeV−2

〈σv〉′
)

(53)

Ωh2 [FOrad
r ] ≈ 100×

(
η3

(1− η)3 g∗(T̂F )g′∗(T̂
′
F )3

)1/4(
MX′

1 KeV

)
(54)

x̂′F is defined in (38) and captures the standard logarithmic sensitivity to 〈σv〉′ for thermal freezeout.

• II.A: Freeze-out during modulus domination and production from modulus decay (FOmod
nr ):

X ′ reaches its equilibrium value and then freezes out during the modulus dominated phase. After freeze-

out, modulus decay continues to populate X ′ until T . TD. As discussed in Section 3.4, non-relativistic

freeze-out during modulus domination occurs only if T ′max > T ′FO > T ′D and MX′ > T ′FO. This implies

1 < x′F <
MX′
T ′D

, and 〈σv〉′0 < 〈σv〉
′ < 〈σv〉′c where 〈σv〉′0 is given in (45). The relic abundance is given by

ΩDM h2 = Ωdecay h
2 + Ωann h

2 where Ωdecay h
2 and Ωann h

2 are given respectively by (42) and (44) :

Ωdecay h
2 ≈ 0.31×

(
Btot

(1− η)3/4

)(
MX′

10 MeV

)(
TRH

10 MeV

)(
50 TeV

mφ

)
(55)

Ωann h
2 [FOmod

nr ] ≈

(
1.1× 10−6 η

g′∗(T
′
FO) (1− η)3/4

)(
x′F
19

)4( TRH
10 MeV

)3(10 GeV

MX′

)3(10−8 GeV−2

〈σv〉′
)

(56)

x′F in (56) is defined in (43) and is logarithmically sensitive to 〈σv〉′.

• II.B: Inverse annihilation and production from modulus decay (IAnr & IAr):

X ′ does not undergo freezeout during modulus domination. DM production takes place predominantly

by inverse annihilations as well as production from modulus decay. Specifically, ΩDM h2 = Ωdecay h
2 +

Ωann h
2 where Ωdecay h

2 is given by (55), while Ωann h
2 gets contributions from inverse annihilations.

There are two different parametrics for Ωann h
2 depending on whether MX′ > T ′D or vice versa.

(i) MX′ > T ′D: The inverse annihilation contribution peaks at T ′∗ ≈ 0.28MX′ and:

Ωann h
2[IAnr] ≈

(
6.2× 10−7 η3

(1− η)3/4g′∗(T
′
∗)

3

)( χ

292

)( TRH
10 MeV

)7(10 GeV

MX′

)5( 〈σv〉′

10−16 GeV−2

)
(57)

where χ is defined below (51). To a good approximation, χ ≈ 292 if T ′max > T ′∗ > T ′D. On the other

hand, if T ′∗ > T ′max (MX′ is very large), χ will become suppressed by a factor of exp(−2MX′/T
′
max).
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ii) MX′ < TD′ : The inverse annihilation contribution peaks at T ′∗ ≈ T ′D/1.75, and:

Ωann h
2 [IAr] ≈ 95×

(
η3/2

(1− η)3/4g′∗(T
′
D)3/2

)(
TRH

10 MeV

)(
MX′

1 KeV

)(
〈σv〉′

10−16 GeV−2

)
(58)

Reducing to a Single Sector

Though the results derived in this Section assume a two-sector cosmology as described in Section 2, it is

straightforward to reduce these expressions to the single sector case. To see this, we define a temperature

T 0 ≡ T 0
max

(
A−3/2 −A−4

)−1/4
where:

T 0
max ≡

(
3

8

)2/5( 5

π3

)1/8
(
g∗(TRH)1/2

g∗(Tmax)

)1/4

(MplHIT
2
RH)1/4 . (59)

T 0 corresponds to the temperature for a given value of A in single sector cosmologies (see eq. (15) in [14]).

Reducing our expressions to the single sector case amounts to replacing both T and T ′ with T 0 in the above

expressions for ΩDMh
2. Comparing (59) to (17)-(20), this amounts to making the replacements (1− η) → 1

and η/g′∗(T
′)→ 1/g∗(T ) in the above expressions.

4 Implications for UV-motivated Supersymmetric Theories

In this section, we examine the implications of the results obtained in Section 3 for UV-motivated super-

symmetric theories that contain moduli fields, and identify regions of parameter space which yield suitable

DM candidates. As discussed in Section 2 the DM relic abundance in these models is fixed by the following

parameters:

TRH , mφ, Btot, η, g∗(T ), g′∗(T
′),MX′ , 〈σv〉′ (60)

To simplify our analysis, we will henceforth assume that g∗(T ) and g′∗(T
′) are constant, and take g∗(T ) =

g′∗(T
′) = 10.75. We also fix η = 0.1, which is a reasonable value assuming the modulus couplings are not

sequestered from the dark sector9. Relaxing these assumptions will change the computed relic abundance as

per the formulae in Section 3.2, but will not qualitatively effect the results presented here.

As mentioned in Section 2, the parameters TRH , mφ and Btot can be viewed as inputs from the UV theory,

and are fixed by the couplings and masses of the moduli fields. For a particular UV framework, these quantities

are constrained to lie within a particular range of values. We will focus here on UV completions which contain

gravitationally coupled moduli fields while also yielding TeV scale supersymmetry. If the modulus interacts

gravitationally, dimensional analysis suggests that Γφ = c1mφ
3/M2

pl, and TRH as defined in (3) is related to

the modulus mass via:

TRH ≈ 14 MeV ×
( mφ

50 TeV

)3/2
c1

1/2 (61)

Thus the BBN bound TRH & MeV places a lower bound on mφ in the tens of TeV range.

9For this value of η, the latest CMB bound on Neff requires that all dark radiation particles have masses greater than ∼ 1 eV.
Otherwise, η must be smaller. The qualitative features of our results will be the same for smaller η as well.
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The range of values for mφ is further restricted by imposing the requirement of TeV scale supersymmetry.

We focus here on models in which SUSY breaking is mediated to the visible sector via gravitational interactions;

this arises naturally in theories containing moduli. In the minimal case (i.e. no sequestering or large volume

suppression of SUSY breaking), the lightest modulus mass is order the gravitino mass m3/2, which sets the

scale of the SUSY breaking parameters [5–8]. For many such models, the scalar superpartner masses will

be comparable to m3/2, while the gauginos may be parametrically lighter by roughly a loop factor. The

lightest superpartners in the visible sector will then be gauginos whose masses are suppressed with respect

to m3/2. This is true for Type II and heterotic models with KKLT-type moduli stabilization, M-theory

compactifications with stabilized moduli, and also for spectra with pure anomaly mediation. Thus for these

SUSY models, the requirement of TeV scale supersymmetry along with constraints from BBN imply:

30 TeV . mφ . O(100) TeV, 5 MeV . TRH . O(100) MeV, (62)

assuming c1 ∼ O(1). This justifies our choice of benchmark parameters in (5). If the DM is an MSSM particle

there is a tension between (62) and indirect detection constraints, which require TRH & 1 GeV [3,9].

The quantity Btot is more difficult to constrain from a theoretical point of view, as it depends on the precise

interactions between the modulus and visible/dark sector particles. Nevertheless, if the canonically normalized

lightest modulus contains a non-trivial fraction of the modulus that determines the gauge coupling of the visible

and/or dark sector, then one expects a contribution to Btot by operators of the form
∫
d2θΦWαW

α where Wα

is the chiral gauge superfield of either the visible or dark sector10. Therefore, in M-theory compactifications [11]

and also roughly isotropic Type II compactifications, Btot is expected to be O(0.1). However, in anisotropic

compactifications in which the visible and dark sectors are localized at different regions of the internal manifold,

it is possible that Btot is suppressed, see [23, 24] for example. We will consider below a wide range of values

for Btot to perform as general an analysis as possible.

In the following, we fix TRH , mφ and Btot to particular values, and scan over 〈σv〉′ and MX′ to give a fairly

model-independent characterization of the viable regions of DM parameter space. All other parameters are

taken to their benchmark values (5). In Figure 6, we have scanned over the 〈σv〉′, MX′ parameter space for

various values of Btot, with TRH = 10 MeV, mφ = 50 TeV for the left column and TRH = 100 MeV, mφ = 150

TeV for the right column (consistent with the TRH ∝ mφ
3/2 scaling manifest in (61)).

Btot determines both the cross section required for QSEnr (see (34)), and the size of the modulus decay

contribution (42) in the inefficient annihilation region. Thus the available parameter regions are quite sensitive

to orders of magnitude changes in Btot. For Btot = 0.1, the viable parameter space effectively splits into two

regions. In the upper region 〈σv〉′ & 10−9 GeV−2, the relic DM abundance is produced via either QSEnr
or FOradnr , while in the lower region 〈σv〉′ . 10−17 and the relic DM abundance is populated via inverse

annihilations and/or modulus decay. In the inefficient annihilation regime, most of the parameter space with

MX′ > TRH results in an overabundance of DM due to the modulus decay contribution for Btot = 0.1 (see

(42)). The value of MX′ where the modulus decay contribution (42) saturates ΩDMh
2 = 0.12 scales like

Btot
−1; thus for smaller values of Btot, much more of the MX′ > TRH parameter space becomes available.

Particularly, for Btot . 10−3 both the FOmodnr and IAnr mechanisms can give the correct relic abundance for

a significant portion of the parameter space. These mechanisms are absent for Btot = 0.1, as the DM masses

required would result in too large a contribution from modulus decay.

10This allows the lightest modulus to decay to visible or dark sector gauginos, which would then cascade decay to the DM X ′.
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Figure 6: Left column: scan of the 〈σv〉′, MX′ parameter space with TRH = 10 MeV, mφ = 50 TeV, and various values of
Btot. Right column: similar plots with TRH = 100 MeV, mφ = 150 TeV. All other parameters are fixed to the benchmark values
(5). Solid (dashed) contours correspond to ΩDMh

2 = 0.12 (0.012). Green, blue and gray regions represent ΩDMh
2 < 0.012,

0.012 < ΩDMh
2 < 0.12 and 0.12 < ΩDMh

2. For these plots we have taken HI = 1020Γφ, corresponding to T ′max ∼ 3 TeV (18).
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5 Experimental/Observational Consequences

In this section, we discuss potential experimental probes of the framework analyzed above. As one can imagine,

since our analysis covers a large range of values for the mass and couplings of DM in MX′ and 〈σv〉′, there are

variety of interesting possibilities for observations. A detailed analysis of the various experimental signatures

which can arise in this framework is beyond the scope of this paper. Instead, we will limit ourselves here to

making some general and preliminary remarks which will be relevant for future studies.

A nice schematic illustration of the framework studied here is provided in Figure 1. From there we see that

there are three different kinds of couplings, denoted as: {λV−V , λV−D and λD−D}. Now, the very assumption

that the visible and dark sectors are ‘separate’ sectors implies that the “portal” couplings of type λV−D are

parametrically smaller than the {λV−V , λD−D} couplings. When this is true, 〈σv〉 dominantly depends on

λV−V , while 〈σv〉′ depends mostly on λD−D. However, within this framework, it is the portal couplings of

type λV−D that determine the signals for all “standard” searches for dark matter, such as direct-detection,

indirect-detection, and collider experiments. The portal couplings λV−D can cover a huge range. At one

extreme, it is possible to have λV−D ' λgrav, the latter corresponding to gravitational strength couplings

suppressed by the Planck scale. In this case, the decay width of the LOSP X, ΓX , is comparable to that

of the modulus Γφ
11. In our work, we have not focused on this case for both theoretical and experimental

reasons, see Appendix B. At the other extreme, it is possible that λV−D is large enough so that the two sectors

are in thermal equilibrium with each other and thus combine to form one sector. As mentioned above, we

have also not focused on such a regime.

Nevertheless, the models considered here can still accommodate a huge range of values 1� λV−D > λgrav
for the portal coupling λV−D, which in turn allows for a wide variety of DM signals (or lack thereof) in direct

detection, indirect detection and collider searches. For this range of portal couplings, our results from Section

3.2 show that the relic abundance for the dark matter X ′ does not depend on the properties of the LOSP X

– {MX ,ΓX , 〈σv〉}, or equivalently the portal couplings λV−D. Thus, in order to characterize the “standard”

DM signals which arise in this framework, one must consider explicit dark sector models in which the size

of the portal couplings λV−D are calculable. We save this exercise for future work, except for making some

comments about the consequences of a decaying LOSP.

The LOSP X, being a visible sector particle, can be produced at colliders. Since it is unstable, it is possible

that the LOSP is charged and/or colored. Prospects for detecting a charged/colored LOSP at the LHC are

much better than that for a neutral LOSP, as a charged/colored LOSP will interact with detector materials

and slow down considerably relative to a neutral LOSP. Charged/colored LOSP decay widths in the range:

10−13 GeV & ΓX & 10−31 GeV can be measured in principle. However, subject to model-dependent details,

large windows in the above range are now disfavored [25]. On the other hand, only decay widths larger than

around 10−17 GeV (τX . 10−9 s) can be measured for a neutral LOSP because then a sizable fraction of

LOSP particles decay inside the detector. The LOSP decay width ΓX can be parameterized as:

ΓX ∼
λ2
V−D
16π

MX . (63)

Thus, one requires λV−D & 10−9 in order for a weak scale neutral LOSP to significantly decay inside the

detector so that its decay products could be measured in principle. Otherwise the neutral LOSP is stable for

collider purposes, and manifests itself as missing energy.

11This is because the modulus also couples with gravitational strength to both the visible and dark sectors
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We now describe some possible signatures of the framework that do not depend on portal couplings between

the visible and dark sectors.

5.1 Cosmological/Astrophysical Effects

Here, we comment on astrophysical and cosmological effects arising from two sources – i) that from DM

couplings of type λD−D, i.e. from interactions within the dark sector, and ii) from the presence of a modulus-

dominated phase in the early Universe. Since these effects are independent of λV−D couplings, the observables

which arise are independent of the pattern of “standard” signals for DM. As such, they provide additional

observables to probe DM and its properties. Some interesting examples of such effects include:

• Observables sensitive to power spectrum of density fluctuations of dark matter.

• Observables sensitive to the morphology of galactic DM halos.

Understanding these and other observables is becoming increasingly important, both because of the realization

that interactions in dark sector can affect these observables, as well as from the fact that the quantity and

quality of cosmological and astrophysical data has been getting steadily better. Here, we briefly discuss the

following issues:

• Sensitivity to Modulus-Dominated Era:

The presence of a modulus-dominated era in the early Universe can have important implications. As

pointed out in [10, 26], this can lead to substantial linear growth of sub-horizon DM perturbations

during the modulus-dominated era. More precisely, the presence of a (low) reheat temperature sets a

new cosmological length scale, LRH ≡ (aRH HRH)−1, the comoving horizon at the time of reheating.

Therefore, in the absence of other effects, DM perturbations on length scales l < LRH grow linearly

during the modulus dominated phase, and could have interesting observable effects. However, presence

of other relevant scales can affect whether such sub-horizon growth of DM perturbations are observable

or not. These scales are described below.

• Damping of DM Perturbations due to Acoustic Oscillations & Free-Streaming:

It is well known that chemical equilibrium is in general different from kinetic equilibrium. In the context

of DM interactions, the former is set by number-changing interactions in which DM number is not

preserved, while the latter is set by number-preserving interactions in which DM number is conserved.

For example, within the standard WIMP paradigm, chemical decoupling leaving to thermal freezeout

happens much earlier than kinetic decoupling since the interaction rate for the latter is enhanced by the

relativistic abundance of light SM species in interactions of the type: DM + SM → DM + SM .

There are two important scales related to kinetic decoupling that determine the length scale at which

DM perturbations get damped or suppressed:

i) Scale arising due to the coupling of DM to the dark radiation fluid (and also to the visible radiation

and baryons in general). The effect of coupling of DM to visible baryons and radiation is also present for

standard WIMPs in general [27], but qualitatively different effects may arise here due to the presence

of dark radiation (DR) in addition [20, 28]. It is expected that the DM-DR interactions will give rise

to damped oscillatory features in the DM power spectrum with a characteristic length scale denoted as
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Ld, given by.

Ld =
ηkd
xd
, (64)

where ηkd is the conformal time at kinetic decoupling, and xd is a numerical factor of O(1) (we take

xd ≈ 7, see [27,28] for example).

ii) Scale arising due to the free-streaming of particles after kinetic decoupling. This length scale is

defined as Lfs ≡
∫ t0
t∗
v/a dt, where v is the average DM velocity, a is the scale factor, t0 is the current

age of the Universe, and t∗ is a characteristic time which is different for different mechanisms and will

be discussed shortly. If the universe is radiation dominated at t∗, then Lfs is given by (see e.g. [26]):

Lradfs ≈
1

H0

√
ΩR

∫ 1

a∗

[(
1 +

(
MX′a

p∗a∗

)2
)(

1 +
a

aeq

)]−1/2

da (65)

where aeq ≈ 2.9 × 10−4 and H0 ≈ 1.5 × 10−42 GeV. If the universe is modulus dominated at t∗, Lfs is

instead given by:

Lmodfs ≈
a

1/2
RH

H0

√
ΩR

∫ aRH

a∗

a−1/2

(
1 +

(
MX′a

p∗a∗

)2
)−1/2

da+ Lradfs

(
a∗ → aRH , p∗ → prh

)
(66)

where we have taken H = HRH (aRH/a)3/2 during modulus domination. Here aRH corresponds to the

scale factor at which H = Γφ, normalized such that a = 1 today.

Both scales above are present in general, and the damping scale is determined by Lcut = max(Ld, Lfs). The

scale Lcut is relevant in determining the mass of the smallest DM proto-halos: Mproto ∝ L3
cut.

As discussed above, DM perturbations on length scales l such that Lcut < l < LRH grow linearly during

modulus domination and the growth during this era is not washed out by free-streaming and/or acoustic

damping effects. Thus, these perturbations could have interesting and novel effects. For example, as pointed

out in [10], a low reheat temperature of order 10 MeV or so can give rise to an abundance of earth-mass dark

matter microhalos in the early Universe containing a significant fraction of dark matter. A possible way to

observe these microhalos is via their strong gravitational lensing effects on quasars [29,30], or via their impact

on pulse arrival times from millisecond pulsars [31]. Furthermore, if the portal couplings λV−D are large

enough, these DM microhalos can annihilate to γ-rays, thereby acting as γ-ray point sources and contributing

to the γ-ray background [32–34]. It is worthwhile to explore these possibilities in more detail.

In the case where Lcut > LRH such that the growth of DM perturbations during modulus domination is

washed out, the damping of DM perturbations below the scale Lcut can still give rise to observable effects.

Notably, “warm” dark matter with Lcut = Lfs ∼ 1−100 Kpc can reconcile many of the discrepancies between

ΛCDM cosmology and observations on galactic/sub-galactic scales [35–39]. If the damping scale becomes too

large i.e. Lcut & 1 Mpc, bounds from Lyman-α will start to apply [40].

5.2 Prospects for the Framework

What can be said about the effects mentioned above vis-a-vis the framework considered? Qualitatively, there

are two different scenarios which are determined by whether or not T ′kd is larger than T ′D. If T ′kd < T ′D, then
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X ′ kinetically decouples during radiation domination after the modulus has decayed. Depending on the mass

and kinetic decoupling temperature, either Lfs or Ld will determine the damping scale Lcut. Alternatively, if

T ′kd > T ′D then the DM kinetically decouples during the modulus dominated phase; Lfs will then determine

Lcut for most of the relevant parameter space.

In order to discuss observational signatures for the framework considered here, it is pertinent to consider

what range of values for T ′kd is expected, given the DM production mechanisms discussed in Section 3.2.

Generically, one expects that crossing symmetry relates the X ′X ′ → R′R′ annihilation cross section (〈σv〉′)
to the (X ′R′ → X ′R′) elastic scattering cross section (σ′el). In the case of fermionic DM annihilating into

fermionic R′ through a massive bosonic mediator, 〈σv〉′ ∼ (MX′
2 + T ′2)/Λ4 and σ′el ∼ T ′

2/Λ4 where Λ is the

mediator mass scale (see e.g. [41, 42]). If this is the only X ′ −R′ scattering process, X ′ kinetically decouples

when the scattering rate Γel ∼ σ′eln
′
eq ω drops below the Hubble rate, where ω = 1 (T ′/MX′) for relativistic

(non-relativistic) X ′. Taking the benchmark parameters (5) for this example, T ′kd < T ′D implies Λ . 800 GeV

(250MX′
−1/4 GeV) if X ′ kinetically decouples while relativistic (non-relativistic).

However, in a more realistic model there may be other (e.g. inelastic) processes which also keep X ′ in

kinetic equilibrium; thus the precise relationship between 〈σv〉′ and T ′kd is fairly model-dependent. In the

following, we will treat T ′kd as a free parameter, though it will be useful to keep the above toy example in

mind as a benchmark scenario.

Kinetic Decoupling During Radiation Domination: In this case, the DM particle X ′ is in kinetic equi-

librium until T ′ < T ′D. The kinetic decoupling temperature will then determine the length scales Ld in

(64) and Lfs in (65). Specifically, Lfs is computed using (65) with T ′(t∗) = T ′kd and p∗ =
√

3T ′kd ω
1/2

where ω = 1 (MX′/T
′
kd) for MX′ < T ′kd (MX′ > T ′kd). From Figure 7, we see that for larger DM masses

10−2 GeV . MX′ . 102 GeV and smaller kinetic decoupling temperatures T ′KD < 0.1T ′D, LD is larger than

Lfs and determines Lcut and the mass of the smallest proto-halos. All of this parameter space is consistent

with the upper bounds arising from the observables studied in [20]. In the complementary parameter space,

Lcut is determined by Lfs. A large region of this parameter space is consistent with the Lyman-α forest upper

bound on Lfs of about 1 Mpc. Finally, for most of the parameter space Lcut = max(Ld, Lfs) is greater than

Lrh, implying that growth of DM perturbations in the modulus-dominated era is washed out. Only in a very

small region of parameter space with 1 . MX′ . 100 GeV and 0.1T ′D . T ′KD . T ′D, one has Lcut < LRH so

that the memory of growth of DM perturbations on length scales l with Lcut < l < LRH , is retained. This

can have interesting implications as mentioned previously.

Kinetic Decoupling During Modulus Domination: In this case, X ′ kinetically decouples before the begin-

ning of radiation domination such that T ′kd > T ′d. If kinetic decoupling occurs after X ′ production, Lfs is

given by (66) with T ′(t∗) = T ′kd and p∗ =
√

3T ′kd ω
1/2. Note that this scenario requires MX′ > T ′D, as for

MX′ < T ′D DM production occurs predominantly when T ′ . T ′D (see Section 3.5). For the allowed parameter

regions depicted in Figure 6, one finds in this case that Ld < LRH < Lfs � 1 Mpc, assuming a single DM

particle accounts for all of the dark matter.

If kinetic decoupling occurs before X ′ production, T ′(a∗) is the characteristic temperature at which X ′

production occurs, and p∗ depends on the mechanism for X ′ production. The production mechanisms which

allow for X ′ to be produced out of kinetic equilibrium are (see Section 3.2):

• Inverse annihilation: As discussed in Section 3.4.2, DM production from inverse annihilations peaks at

T ′∗ ≈ T ′D/1.75 for IAr and T ′∗ ≈ 0.28MX′ for IAnr. We then take p∗ ≈
√

3T ′∗ in computing Lfs.

• Production from Modulus Decay : If the DM abundance comes predominantly from modulus decay (i.e.
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Figure 7: Hierarchies among the cosmological length scales Lfs, Ld, LRH shown in the MX′ − T ′KD plane, assuming T ′kd < T ′D.
The pink region corresponds to Ld > Lfs, the green region corresponds to Lfs > Ld, the blue region corresponds to LRH > Lcut,
and the brown region corresponds to Lcut > 1 Mpc. The other relevant parameters are set to their benchmark values, see (5).

ΩDMh
2 ≈ Ωdecayh

2 (42)), then T ′∗ ≈ T ′D and p∗ ≈ mφ/2 assuming 2-body modulus decays.

To be precise, if X ′ kinetically decouples before X ′ production occurs, one must replace X ′ in the Boltzmann

equations with an integral over the X ′ phase space distribution function. However for the inverse annihilation

and modulus decay production mechanisms, terms involving X ′ can be neglected in the X ′ Boltzmann equa-

tion; thus the results in Section 3.4 are still valid despite this departure from kinetic equilibrium12 Nonetheless,

in order to properly compute p∗ and Lfs, a precise knowledge of the DM phase space distribution function at

T ′∗ is required. In lieu of a more precise computation we will use the approximate values for p∗ quoted above,

with the understanding that our results for Lfs are meant to be qualitative.

Figure 8 summarizes the cosmological length scales which can arise in the case where X ′ is produced out

of kinetic equilibrium. Because X ′ is not coupled to the dark radiation bath when produced, there is no

acoustic damping effect to consider; thus Lcut = Lfs. We see from Figure 8 that for the IAr case, most of the

parameter space easily avoids Lyman-α constraints. The IAr scenario can also naturally accomodate warm

DM candidates, with Lfs ∼ 1− 100 kpc. Perhaps more interestingly, we see that for a majority of the IAnr
parameter space, Lfs < LRH . Thus, the linear growth of DM perturbations during modulus domination is

not washed out for a large portion of the IAnr parameter space, leading to potentially interesting effects as

discussed above.

Finally, let us comment on the case where relic DM is produced from modulus decay. If DM particles in

this scenario are kinetically decoupled at T ′D, they will be highly boosted when produced from modulus decay.

12One additional subtlety is that if X ′ is out of kinetic equilibrium, we are no longer justified in assuming EX′ ≈
√

3T ′2 +MX′2

in (7). However if BX′ . 0.1, this subtlety will not significantly effect our results.
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If the modulus decay contribution is the dominant contribution to the overall DM abundance, DM masses

within the range 10−3 GeV .MX′ . few GeV are at odds with Lyman-α bounds Lfs . 1 Mpc; this is evident

from Figure 8. Thus if the relic DM is predominantly produced via modulus decays, Lyman-α constraints

require MX′ & O(1) GeV; this in turn implies Btot . 10−3 as can be seen from (42).
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Figure 8: Plot of the free-streaming length Lfs in Mpc. The blue lines correspond to DM produced predominantly via inverse
annihilations, while the black lines correspond to DM produced predominantly via modulus decay. The solid lines were obtained
for TRH = 10 MeV, mφ = 50 TeV while the dashed lines were obtained for TRH = 100 MeV, mφ = 150 TeV. The other relevant
parameters are chosen as in (5).

To summarize, we find that there are various interesting possibilities for cosmological/astrophysical ob-

servables which can probe the framework considered, both in terms of providing constraints on the parameter

space as well as by providing insights for potential signals. In particular, we find that there is sensitivity to

the modulus domination era for a large portion of the IAnr parameter space. This is in contrast to the result

obtained in [26], primarily because the framework considered here encompasses a wider variety of DM masses

and couplings compared to the analysis in [26,43]. The results obtained in this section are largely qualitative.

It would therefore be interesting to carry out a more detailed and comprehensive analysis of the constraints

and potential observations which have been suggested in this section.

6 Hidden/Extra Sectors in Explicit String Constructions

The system of Boltzmann equations studied in this paper are relevant for cases in which the the dark matter is

located in a hidden sector, weakly coupled to the observable sector, and the universe undergoes a substantial

period in which the total energy density is controlled by a single modulus field. In addition, we have chosen

to study a benchmark case in which the number of relativistic degrees of freedom for the dark sector is similar
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to that of the Standard Model. How well motivated is this framework?

Certainly, the presence of hidden sectors is generic in string theory, as observed in the earliest days of

model-building based on the E8×E8 heterotic string. Furthermore, every four-dimensional effective supergrav-

ity theory representing a string compactification has moduli. Barring some remarkable feat of engineering,

therefore, a long period of modulus domination in the early universe is essentially guaranteed. These two

components of our framework are therefore exceedingly well motivated from the point of view of string theory.

But this paper adds a third component: a portal that connects the hidden sector and observable sector.

Our analysis generally assumes that the strength of this presumed coupling is greater than that of gravity-

mediated operators suppressed by the Planck scale. Interactions between the dark sector and the observable

sector complicate the system of Boltzmann equations, as we have explained at length. Measurements neces-

sarily constrain the observable sector, but the presence of a portal of appreciable strength mean that these

measurements also constrain the nature of the dark, hidden sector in a manner that would not exist if the

coupling between the sectors was utterly negligible. This constraint is summarized in the very first equation

presented in the paper, and it involves the number of relativistic degrees of freedom in the hidden sector. It

is thus important to ask what, if any, statements can be made about the nature of hidden sectors in actual

string constructions, and what sorts of interactions are observed to exist between these hidden sectors and

the Standard Model.

6.1 Heterotic Orbifolds

Calculating the massless spectrum in a string compactification is easiest to perform in cases where conformal

field theory tools are available. This tends to restrict explicit calculations to orbifolds and their orientifold

analogues. These techniques have been used extensively in weakly-coupled heterotic string theory, but also in

Type II string theory. The latter have generally been conducted in the context of Type IIA theory compactified

on orientifolds with intersecting D6-branes.

String phenomenologists tend to be concerned primarily with the observable sector, and ensuring that

three generations of fields charged under the Standard Model gauge group emerge from the compactification.

The hidden sector is often left undetermined, or only computed years later when they become necessary (for

example) in guaranteeing global consistency conditions. Therefore, meaningful examples in the literature

are relatively sparse. An important early computation involved Z6 asymmetric orbifolds of heterotic string

theory, in which quasi-realistic GUT models were constructed at higher Kac-Moody level [44,45]. A search for

constructions which yielded an E6, SO(10), SU(6) or SU(5) GUT model was conducted. Satisfactory cases

were required to have three (net) families of GUT representations capable of realizing the SM, and an adjoint

Higgs representation for breaking the group to the Standard Model. The three families in this case arise from

demanding a Z3 outer-automorphism.

In addition to the GUT gauge group, the hidden sector groups were identified, and the massless matter

content for all sectors was computed. For E6 and SO(10) GUTs, the hidden sector consisted of at least one,

and sometimes two, SU(2) factors. In one class of constructions bifundamental representations between the

SM and a hidden SU(2) were identified, suggesting the possibility of a Higgs-like portal between the sectors.

In addition, there were several (non-anomalous) U(1) factors and the SM states typically carried charges

under these ‘hidden’ U(1)’s. For the SU(5) and SU(6) GUTs, the hidden sector gauge groups can again be

SU(2), but occasionally SU(3) and even SU(4) were observed. Again, some twisted sectors tend to contain

states that are fundamentals of the SU(N) GUT group, but also a doublet under a hidden SU(2) factor. We
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note that in most of the cases studied, the SU(2) factor remains weakly coupled to very low energies. This

suggests that a relatively sparse dark sector that contains a WIMP, interacting with the observable sector via

a Higgs portal or U(1) portal, would not be unusual in this particular class of theories.

An example in which the hidden sector analysis followed that of the observable sector by nearly a decade,

is the venerable case of heterotic E8 × E8 string theory compactified on a Z3 orbifold. The original work of

classifying all possible twist embeddings for the Z3 orbifold, with two Wilson lines, that yield the Standard

Model gauge group was performed in the late 1980’s [46]. But this analysis did not fully specify the embedding

for the hidden sector E8 factor. This completion was performed in 2000 [47]. The classification required three

generations of Standard Model matter. In practice it is the demand that three quark doublets be present that

puts the most restrictions on the allowed Wilson lines. This, in turn, restricts the allowed hidden sector gauge

group to the relatively small list of SO(10), SU(5), SU(4), SU(3) and SU(2), plus additional U(1) factors to

fill the rank-eight product group (one of which will be anomalous). In a follow-up study [48], the field content

charged under the full rank-sixteen gauge group was computed, and it was common to find states in twisted

sectors which were bifundamental between the SM SU(2)L and a hidden SU(2). In addition, Standard Model

fields and hidden sector fields were generally charged under any number of common U(1) factors.

Years later, a much more exhaustive search was performed, this time in the context of the Z6−II orbifold

of heterotic string theory. This so-called ‘mini-landscape’ study [49] required a gauge embedding of the

orbifold action such that an intermediary SO(10) or E6 GUT structure emerges. The authors then scan over

all possible completions of the embedding with up to two Wilson lines such that intermediate GUT gauge

group ultimately breaks to the SM gauge group. Further requirements included the demand of three (net)

generations of SM fields and a hypercharge candidate which is non-anomalous. Unfortunately, only a single

explicit example of a hidden sector was given, that of an SO(8)× SU(2) hidden sector. Again, the massless

spectrum contained states which were bifundamental under the SU(2)L of the Standard Model and a hidden

SU(2), though these states were vector-like with respect to the overall gauge group and might therefore receive

large masses if an appropriate set of singlet vacuum expectation values were to arise. A follow-up study relaxed

the restriction to intermediate SO(10) and E6 structures, and allowed up to three Wilson lines [50]. Once

again, however, a single example of a hidden sector was illustrated, containing both an SU(3) and an SU(5)

factor. Interestingly, this example had states which were fundamentals under the hidden SU(3) and yet were

charged under various parts of the Standard Model gauge group. It is hard to assess just how generic such

portals are in this promising class of constructions, as the raw data was not presented in the papers. However,

a later paper by Goodsell et al. [51] investigated this same data set, analyzing the prospects for kinetic mixing

between U(1)Y and hidden sector U(1) factors. The authors found that over 95% of the models allow for

such mixing, and some explicit dark sectors and dark forces were constructed. Their conclusion was that such

sectors and portals were indeed ‘generic’ in this class.

It would be interesting to know if such properties were also common in smooth Calabi-Yau compacti-

fications of the heterotic string, away from the orbifold point in moduli space. A systematic investigation

of hidden sectors in this context has yet to be performed. An initial foray into the subject was presented

in [52], in which a search was conducted for consistent vector bundle configurations of the E8 × E8 hidden

sector, given a holomorphic observable sector bundle with structure group SU(4), which was shown to allow

for the three-generation Standard Model field content [53]. From this, two examples were presented, with

gauge groups SO(12) and E7, and neither case seemed to contain a portal between the two sectors. But we

note that this paper was meant as a proof-of-concept, not an exhaustive survey.
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6.2 Local Models in a Global Embedding

Recent years has seen an explosion in model building in the context of Type II string theory compactified on

orientifolds. For the most part, this model building has occurred in the form of ‘local’ models: the study of

D-branes at singularities in the Calabi-Yau manifold, in which other effects (including the presence of possible

hidden sectors) can be safely neglected. Models are constructed using representative quiver gauge theories,

or the related techniques of dimer diagrams/brane tilings.

Unfortunately, these studies tend to focus exclusively on the Standard Model field content. Hidden sec-

tors only emerge when an effort is made to embed these local constructions in a global Calabi-Yau context.

To a first approximation, such global embeddings amount to the imposition of certain consistency condi-

tions, including the requirement of N = 1 supersymmetry, Ramond-Ramond tadpole cancellation and various

anomaly constraints. These additional requirements generally necessitate sectors beyond the local Standard

Model quiver (i.e. hidden sectors), as the Standard Model theory generally does not satisfy them on its own.

In fact, in the context of quiver gauge theories, these consistency conditions will generally require that matter

charged under hidden sector ‘nodes’ are binfundamental with the nodes of the SM gauge group.

An early example involved Type IIA orientifolds on T 6/Z2 × Z2 with intersectiong D6-branes [54]. These

models achieve the three-generation Standard Model via the Pati-Salam gauge group SU(4)×SU(2)×SU(2).

A scan was performed over all possible brane configurations and wrapping numbers consistent with the

Standard Model field content (via the Pati-Salam symmetry) and global consistency conditions. This yielded

explicit hidden sectors which could then be classified. Typical hidden sectors involved the USp(4) and USp(2)

symplectic groups. In some cases, the field content charged under these gauge groups allowed for confinement

of the USp(n) gauge group, and the authors speculate as to the appearance of various ‘mesonic’ and ‘baryonic’

bound states. It is noteworthy that such composites would generally carry charges under the various residual

U(1) symmetries, including that of the Standard Model. Typically, the number of such objects in the massless

spectrum was of order ten, consistent with the number of degrees of freedom in the Standard Model below

the QCD confinement scale.

A more expansive survey was conducted some time later [55]. In this case the survey began with the

original three-node ‘Madrid’ quiver [56] and all its three-node generalizations. These quivers represent gauge

theories which contain the field content of the Standard Model. From this, additional nodes (i.e. gauge groups)

were added to the quiver until all global embedding conditions were satisfied. All of the quiver extensions

considered in this paper had an anomalous U(1) factor, under which the newly introduced ‘hidden’ states are

chiral, not vector-like. As a result, there is a mixed anomaly between this U(1) factor and any other U(1)

under which these states are charged. In particular, when the hidden sector states carry hypercharge, a mixed

anomaly between hypercharge and the anomalous U(1) provides a portal between the two sectors, with a

potentially light mediating Z ′ boson. For the phenomenology, and some toy models, see [57].

In Type IIB string theory, much of the recent work has focused on singularities of toric del Pezzo surfaces

(dPn surfaces). The advantage here is that toric surfaces afford a certain ‘modularity’ in constructing models,

in which one can work in a bottom-up approach, beginning with various phenomenological demands [58].

Another benefit is access to the large Kreuzer-Skarke database of reflexive polytopes [59], which generate

these toric ambient spaces, and the Calabi-Yau manifold realized as a hypersurface within these ambient

spaces [60].

Local models with promising phenomenological features were constructed in this context in recent years [61,

62]. While these early efforts concentrated almost exclusively on the observable (Standard Model) sector, some
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attempts at embedding these into a global Calabi-Yau context have been made, by enforcing consistency

conditions such as the Ramond-Ramond tadpole conditions and vanishing of K-theory torsion charges [63,64].

In these papers, some rudimentary hidden sectors were constructed. The authors chose flux parameters in

such a way as to avoid chiral matter in the hidden sector, resulting in a pure SO(8) or SU(4) gauge theory

with no portal to the observable sector. However, this was again a proof-of-principle and not an exhaustive

scan over all possible hidden sector configurations.

To our knowledge, no such survey has been conducted within the Type IIB context in analogy with

the above-mentioned work in Type IIA. However, some interesting examples of non-trivial hidden, or ‘dark’

sectors, were constructed using the ‘toric Lego’ approach of [58]. One such example involved the construction

of a “dark sector” which mimics the MSSM (visible) sector. This was a toy model designed to exhibit the

power of the modular approach. The model was based on two dP0 singularities and a dP1 singularity – the

former pair for the visible and dark sectors, the last for the SUSY breaking sector. The dark and visible sectors

were patterned on the phenomenological model of [65], in which kinetic mixing between U(1) factors in the

observable and dark sectors provide the portal. The global embedding was identified some time later [66],

by identifying those reflexive polytopes from the Kreuzer-Skarke database with the appropriate singularity

structure in one of their two-dimensional faces to give rise to this trio of sectors. Remarkably, nearly 300,000

such polytopes were shown to exist, implying at least as many (and perhaps many more) Calabi-Yau manifolds

which would generate this model upon compactification.

Analysis of hidden sectors in bona fide string constructions – at the level needed to describe early universe

dynamics – is still in its earliest stages, lagging the construction of viable observable sectors in many respects.

The areas that have been investigated were those that were identified as being phenomenologically interesting

from the point of view of observable sector physics, and may not be a representative sample of heterotic or

Type II string theory, let alone the entire string theory landscape. Nevertheless, the basic elements that are

needed for our cosmological framework are often present.

7 Summary and Future Directions

In this work, we have provided a general classification of dark matter models in a Universe which undergoes

a phase of pressure-less matter (modulus) domination. Such non-thermal cosmological histories are predicted

in a wide class of UV completions to the Standard Model (e.g. compactified string theories), and are also phe-

nomenologically viable provided that the matter dominated phase ends before BBN. Our analysis generalizes

previous works by going far beyond the standard WIMP paradigm. In particular:

• We consider DM masses and annihilation cross sections which span several orders of magnitude above

and below the electroweak scale.

• We allow the possibility that DM in thermal equilibrium with a ‘dark sector’, whose temperature need

not be the same as that of the visible sector.

Upon analyzing the relevant Boltzmann equations, we classify the mechanisms by which relic DM can be

produced. We find four distinct mechanisms (QSEnr, FO
mod
nr , IA{r,nr} and FOrad

{r,nr}), each of which have

different parametrics for ΩDMh
2. The first three mechanisms are different from standard thermal freeze-out.

We derive semi-analytic approximations for these various production mechanisms, and discuss their regimes

of validity. For the convenience of the reader, these results are summarized in Section 3.5.
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Our results have interesting implications for supersymmetric theories containing moduli fields. As discussed

in Sections 2 and 3, ΩDMh
2 does not depend on the masses or couplings of the (unstable) lightest visible sector

superpartner (LOSP), provided the LOSP decays before the end of modulus domination13. Once the modulus

mass and couplings are fixed and the dark relativistic degrees of freedom g′∗(T
′) are specified, ΩDMh

2 depends

only on MX′ and 〈σv〉′. In Section 4, we fixed the modulus mass and couplings by considering models with

gravity mediated SUSY breaking in which mφ is of order the gravitino mass. We mapped out the parameter

space of these models by scanning over MX′ , 〈σv〉′ for various values of Btot, see Figure 6. Here Btot is

the branching ratio of the modulus decay into DM, including contributions from intermediate states. For

Btot ∼ O(0.1), the viable DM parameter space splits into two seperate regions: large annihilation cross

section 〈σv〉′ & 10−9 GeV−2, or small annihilation cross section 〈σv〉′ . 10−17 GeV−2. Intermediate values

of 〈σv〉′ result in DM overproduction. Moreover in the 〈σv〉′ . 10−17 GeV−2 region, the DM mass must be

. 100 MeV to avoid being overproduced by moduli decay. If however the modulus branching ratio to DM is

suppressed i.e. Btot � 1, much more of the DM parameter space becomes available. These features can easily

be inferred from Figure 6.

We have also briefly discussed potential experimental signatures for the theoretical framework considered

here. Since ΩDMh
2 is insensitive to the portal couplings between the visible and dark sectors for the models

considered, the “standard” DM signals in direct detection, indirect detection and collider experiments, which

crucially depend on portal couplings between the visible and dark sectors, can cover a wide range of possibilities

are rather model-dependent. On the other hand, observables which involve couplings within the dark sector

yield more robust predictions, as these couplings are correlated with the DM relic abundance. One such set

of observables involves the power spectrum of DM density perturbations. If the DM kinetically decouples

during the radiation dominated era after BBN, the sensitivity of DM density perturbations to the modulus

dominated phase is maintained only for a very small region of parameter space, as shown in Figure 7. On the

other hand, when DM kinetically decouples during modulus domination, the power spectrum of DM density

perturbations depends on the mechanism by which relic DM is produced:

• If DM is produced by annihilation of thermal bath particles while the DM is non-relativistic (we call

this case IAnr, see Section 3.5), the free-streaming length is smaller than the comoving horizon at TRH .

The linear growth of DM density perturbations during modulus domination is not washed out, leading

to potentially interesting astrophysical signatures as discussed in [10].

• If DM is produced by annihilation of thermal bath particles while the DM is relativistic (we call this case

IAr, see Section 3.5), the free-streaming length is larger than the comoving horizon at TRH . Even though

the growth of DM perturbations during modulus domination is erased, a large region of parameter space

yields Lfs ∼ 1− 100 Kpc which leads to signatures similar to warm DM.

• If DM is dominantly produced by modulus decay, then the DM has large free streaming lengths Lfs & 1

Mpc, which is in tension with constraints on warm dark matter from Lyman-α measurements.

There are many opportunities for future research. From the point of view of the Boltzmann equations,

including n → 2 annihilation processes where n ≥ 3 would be worth understanding in this framework (this

would be the non-thermal analog of [67]). From the point of view of model-building, it would be worthwhile

to study explicit models of DM candidates and portal interactions within the general framework so that

detailed predictions for “standard” DM signals (e.g. direct and indirect detection) could be made. From

13The contrary case is briefly considered in Appendix B.
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a string theory perspective, although there is some existing work on dark sectors and portal interactions

as described in Section 6, clearly much more needs to be done. Finally, our discussion in Section 5 of the

astrophysical/cosmological effects of DM interactions within its own sector has been largely qualitative. A

more precise analysis would involve solving for the DM phase space distribution at kinetic decoupling in order

to determine the appropriate transfer function relevant for the power spectrum of DM density fluctuations.

We hope that future studies in these directions will help shed important light on the nature of dark matter.
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A Justifying Approximations for R and R′

In Section 3.1, analytic approximations for R and R′ were obtained assuming that all other terms aside from

the modulus decay term can be neglected in dR′/dA and dR/dA if MX′ ,MX � mφ. In this appendix, we will

justify this approximation. Note from (7) that the modulus decay terms in dR′/dA and dR/dA grow like A3/2

during the modulus domination phase, and peak when T ∼ TD. Thus in determining whether or not certain

terms in dR′/dA and dR/dA are negligible compared to the modulus decay term, it is sufficient to focus on

the Boltzmann equations at temperatures near TD.

First, consider the X → X ′ + ... decay term in dR′/dA and dR/dA. At T & TD, X has already reached

QSE, assuming 〈ΓX〉 > Γφ. Taking X = XQSE with b ≈ 1, the X ′ → X + ... decay terms are given by:

H̃
dR

dA
= BXBX→X′R c

1/2
ρ

(
EX − EX′

mφ

)
A3/2Φ+... H̃

dR′

dA
= BXBX→X′R′ c

1/2
ρ

(
EX − EX′

mφ

)
A3/2Φ+... (67)

Here BX→X′R and BX→X′R′ are the branching fractions of X into X ′R and X ′R′. Thus we see that the

X → X ′+... decay terms are suppressed with respect to the modulus decay term by a factor of (EX−EX′)/mφ;

a similar conclusion holds if X does not decay to X ′. Next, consider the annihilation terms. For the 〈σv〉 term

in dR/dA, Xeq ≈ 0 and X ≈ XQSE for T ∼ TD. Thus for temperature-independent 〈σv〉, the annihilation

term in dR/dA falls like A−3/2 for T & TD, and will be numerically insignificant at TD due to suppression by

negative powers of the scale factor.

The argument for the 〈σv〉′ term in dR′/dA is less straightforward. First, consider the case where 〈σv〉′ >
〈σv〉′c such that X ′ reaches QSE at T ′ ∼ T ′D. If X ′QSE ≈ X ′eq, the annihilation term vanishes and is trivially

negligible. If instead X ′eq is negligible in X ′QSE (32) at T ′ ∼ T ′D (as is the case for QSEnr), we can take

X ′ ≈ X ′QSE and write the 〈σv〉′ term as:

H̃
dR′

dA
= c1/2

ρ Btot

(
2EX′

mφ

)
A3/2Φ + ... (68)
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which is suppressed with respect to the modulus decay term by a factor of EX′/mφ. Now consider the case

where 〈σv〉′ < 〈σv〉′c such that X ′ is not in QSE at T ′D. As discussed in Section 3.4, we can write X ′ at

T ′ & T ′D as X ′ = X ′mod +X ′ann, where X ′mod comes from integrating the modulus decay term:

X ′mod =
2

3
cρ

1/2TRHBtot

mφ
A3/2Φ1/2 (69)

and X ′ann is determined by the 〈σv〉′ term. In the case where MX′ > TD′ , X
′
ann is negligible compared to

X ′mod unless Btot � 1 (see Sections 3.4.1 and 3.4.2). Taking X ′ ≈ X ′mod, the 〈σv〉′ term in dR′/dA can be

written as:

H̃
dR′

dA
=

4

9
cρ

1/2

(
2
BtotEX′

mφ

)
〈σv〉′

〈σv〉′c
A3/2Φ + ... (70)

Thus in the case where 〈σv〉′ < 〈σv〉′c and MX′ > T ′D, the 〈σv〉′ term in dR′/dA is suppressed by at least a

factor of EX′/mφ with respect to the modulus decay term.

Finally, consider the case where 〈σv〉′ < 〈σv〉′c and MX′ < T ′D, corresponding to the IAr scenario (see

Section 3.4.2). In this case X ′ � X ′eq and we can write the 〈σv〉′ annihilation term as:

H̃
dR′

dA
≈ c1/2

1 Mpl η
2 48 g∗(TRH) cξ

2 ζ(3)2EX′ 〈σv〉′ T 2
RH

5π6g′∗(T
′)2 T ′2

ΦIA
3/2 + ... (71)

where we have used (17)-(19) to relate A and T ′. Evaluating (71) at T ′ = T ′D, we obtain:

H̃
dR′

dA

∣∣∣
T ′=T ′D

≈ c1/2
1 Mpl TRH η

(
η g∗(TRH)

g′∗(T
′
D)

)3/4
(

48
√

3 cξ
2ζ(3)2 〈σv〉′

5π6 g′∗(T
′)

)
ΦIA

3/2 + ... (72)

≈ c1/2
ρ η

(
0.16 cξ ζ(3)

g′∗(T
′
D)

)(
〈σv〉′

〈σv〉′c

)
ΦIA

3/2 + ... (73)

Thus the 〈σv〉′ term in dR′/dA is suppressed with respect to the modulus decay term by a factor of the order

of 0.1 〈σv〉′ / 〈σv〉′c.
To summarize, the above arguments show that the approximations made in solving the equations for R

and R′ in solving (7) are justified, as can also be confirmed by the agreement of the approximate and exact

solutions in Appendix C.

B A Very Long-lived X Particle (ΓX . Γφ)

For most of this work, we have assumed ΓX > O(1) Γφ such that X decays are efficient before the end of

modulus domination. This assumption is well-motivated from both theoretical and phenomenological points

of view. To see this, note that the modulus decays through Planck suppressed operators such that the decay

width is parametrically given by: Γφ ∼ m3
φ/M

2
pl ∼ 10−24 GeV for mφ ∼ 50 TeV. Thus, as long as the visible and

dark sectors are coupled by larger than gravitational strength interactions, one expects ΓX � Γφ for a wide

class of dark sector models. This is also true if the coupling between the two sectors arises by integrating out

Kaluza-Klein (KK) modes of the extra dimensions or heavy GUT multiplets of some underlying GUT model,

as even these mediators are lighter than the Planck scale. In addition, from a phenomenological point of view,

X decays to visible sector particles can spoil the successful predictions of BBN if ΓX < H(TBBN ) ∼ T 2
BBN/Mpl
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where TBBN ∼ 1 MeV [68]. To avoid these constraints, for ΓX . Γφ, ΓX should lie in a narrow window:

T 2
RH ' ΓφMpl & ΓXMpl & T 2

BBN . (74)

Despite these considerations, for completeness we briefly discuss in this appendix the case where ΓX . Γφ.

In this case, X is effectively stable during modulus domination (as H > Γφ > ΓX). Thus for H > ΓX we

can treat X as a stable relic. If X is a WIMP, its comoving abundance will become fixed at T ∼ TD via

the QSEnr mechanism, which is the precise generalization of the non-thermal WIMP miracle [1,2]. Once the

Hubble parameter drops below ΓX during radiation domination, the remaining X abundance will decay to

yield X ′ particles. The dynamics of such a process was studied in detail in [22]. From the results of [22], we

see that there are three possibilities for the resulting parametrics of ΩX′h
2:

• X ′ is in equilibrium when H = ΓX (which is only possible for FOrad
nr and FOrad

r ). X ′ will continue to

track its equilibrium abundance until freeze-out. In this case ΩDM h2 is completely insensitive to X

decays.

• X ′ is out of equilibrium when H = ΓX , and X decays yield an X ′ abundance which is less than the

critical abundance required for X ′ annihilations. This gives rise to the freezeout & decay (FO&D)

mechanism described in [22]. In terms of dimensionless comoving variables, XQSE(Ac) < X ′crit

∣∣
H=ΓX

,

where XQSE(Ac) is given by the QSEnr mechanism as described in Section 3.3.1 and X ′crit is defined

in (23). The resulting contribution to the X ′ comoving abundance is insensitive to ΓX , and is given

simply by ∆X ′ ≈ XQSE(Ac). This contribution must be added to the X ′ abundance which results from

the production mechanisms described in Section 3.2.

• X ′ is out of equilibrium when H = ΓX , and X decays yield an X ′ abundance which exceeds the

critical abundance required for X ′ annihilations. In terms of dimensionless comoving variables this

occurs if XQSE(Ac) > X ′crit

∣∣
H=ΓX

. The X ′ particles produced from X decays will then annihilate until

X ′ ≈ X ′crit

∣∣
H=ΓX

. This was referred to as the “freezeout & decay and re-annihilation” (FO&Dr) in [22];

the resulting X ′ relic abundance scales like ΩDM h2 ∝ 1

Γ
1/2
X 〈σv〉

′ .

Before concluding this appendix, we remark that the ‘freeze-in’ mechanisms (FI and FIr) described

in [22, 69] are not important for the models considered here. Recall that FI is due to X → X ′ + ... decays

which occur during the radiation domination era when X is still relativistic and in equilibrium. However, it

turns out that freeze-in due to X decays is negligible during the modulus dominated era. To see this, consider

the X decay term in dX ′/dA. We saw in section 3.1.3 that X attains QSE at some scale factor A (say AX)

before AD if ΓX > O(1) Γφ. For A < AX , X is given by X ≈ Xeq, while for AX < A . AD, X is given by

X ≈ XQSE. In the analysis in Section 3.1.3, the effect of X decays when 1 < A ≤ AX and X ≈ Xeq, which

corresponds to freeze-in effects from X decays, was neglected. To see that it is justified to do so, note that

the integration of the decay term gives (up to overall constants):∫ AD

1
dAXA1/2 ≈

∫ AX

1
dAXeqA

1/2 +

∫ AD

AX

dAXQSEA
1/2

≈
cξ

π2T 3
RH

∫ AX

1
dAA7/2T 3 +

2

3
AD

3/2

(
gXBX

ΓφTRH
ΓXmφ

)
Φ (75)
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where AX corresponds to the scale factor at which either X becomes non-relativistic or X enters QSE

(whichever occurs first). Comparing the first and second terms in (75), we find:∫ AX
1 dAXeqA

1/2∫ AD
AX

dAXQSEA1/2
∼
(
TD
TX

)4( ΓXmφ

BXΓφT
4
RH

)
(κTmax)8

TX
5ΦI

∼
(
T 6
RHΓXmφMpl

TX
9BX

)
(76)

where we have used T ≈ κTmaxA
−3/8 and (κTmax)8/ΦI ∼ TRH

8 (see (18)). There are now two possibilities

for TX . If X enters QSE before X becomes non-relativistic, then TX ∼ (ΓXMplTRH
2)1/4 > MX . If instead

X becomes non-relativistic before QSE is reached, then TX ∼MX and ΓX .
M4
X

TRH
2Mpl

. Since TX is smaller in

the latter case, the ratio (76) is maximized for TX ∼MX , and one gets:∫ AX
1 dAXeqA

1/2∫ AD
AX

dAXQSEA1/2
.
T 4
RH mφ

BXM5
X

' 10−13

BX

(
TRH

10 MeV

)4 ( mφ

100 TeV

)(100 GeV

MX

)5

. (77)

Thus the freeze-in production of X ′ from X decays can be neglected for reasonable choices of parameters,

provided BX is not extremely tiny.

C Accuracy of Approximate Solutions
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Figure 9: Left: ΩDMh
2 as a function of 〈σv〉′ for MX′ = 10 GeV and Btot = 0.1. The green curve shows the numerical

solution, while the black curve shows the approximate QSEnr solution (34). The vertical dashed line represents 〈σv〉′ = 〈σv〉′c as
defined in (34), while the horizontal dashed line shows represents the modulus decay contribution given in (42), which is valid for
〈σv〉′ < 〈σv〉′c. Right: the ratio of the approximate result for QSEnr to the exact result.

In this section, we compare the semi-analytic approximations obtained above with the full numerical

solution to (7). The accuracy of these approximations is depicted in Figures 9 and 10. In these plots we

use the benchmark values of parameters as in (5); however we take g′∗(T
′) = 20 6= g∗(T ) to ensure that the

g′∗(T
′) dependence has been properly captured. Figure 9 shows the accuracy of the approximate solutions

for MX′ = 10 GeV and Btot = 0.1. In the left plot, the green curve shows the numerical solution, while the

black curve in the left plot shows the approximate expression for DM production through QSEnr (37). The

right-hand plot shows the ratio of the approximate QSEnr result to the exact result, which is close to unity

if 〈σv〉′ � 〈σv〉′c.
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Figure 10: Left: ΩDMh
2 as a function of 〈σv〉′ for MX′ = 10 GeV and Btot = 0. Right: similar plot for MX′ = 10−6 GeV

and Btot = 0. The green curves show the numerical solution, the red curve shows the approximation for IAnr (left) and IAr

(right), while the black curve shows the approximation for FOmod
nr (left) and FOrad

nr (right). In the left plot the vertical dashed
line represents 〈σv〉′ = 〈σv〉′0, defined in (45), while in the right plot the vertical line represents 〈σv〉′ = 〈σv〉′c in the case where
MX′ < T ′D (see (34)). The dashed horizontal line in the right plot shows the approximate solution for FOrad

r .

Figure 10 shows the accuracy of the approximate solutions for Btot = 0; note that in this case 〈σv〉′c
becomes effectively infinite for MX′ > T ′D, see (34). The left plot shows ΩDMh

2 as a function of 〈σv〉′ for

MX′ = 10 GeV. For these parameters, DM production occurs either via FOmod
nr for 〈σv〉′ > 〈σv〉′0 or via

IAnr for 〈σv〉′ < 〈σv〉′0 where 〈σv〉′0 is defined in (45). The green curve shows the numerical solution; the red

curve shows the approximation for IAnr (50); and the black curve shows the approximation for FOmod
nr (44).

The right plot shows a similar plot with MX′ = 10−6 GeV. In this case DM production occurs via IAr for

〈σv〉′ < 〈σv〉′c and via thermal freeze-out (FOrad
r and FOrad

nr ) for 〈σv〉′ > 〈σv〉′c. The green curve shows the

numerical solution, the red curve shows the approximate expression for IAr (51), while the black curve shows

the approximate expression for FOrad
nr (39). Within their respective regimes of validity, (50), (51) and (44)

are accurate to within ∼ 5%, while (40) and (39) are accurate to within ∼ 15%.

D Temperature Dependence of 〈σv〉′

In Section 3.2, (semi)-analytic expressions for ΩDM h2 were obtained assuming that 〈σv〉′ is temperature

dependent. In this section, we generalize the results of Section 3.2 for temperature dependent 〈σv〉′. For

scenarios where the contribution to ΩDM h2 is determined by non-relativistic X ′ annihilation (QSEnr, FOrad
nr ,

FOmod
nr and IAnr) we will consider p-wave annihilations where 〈σv〉′ = T ′/Λ3. For scenarios where the

contribution to ΩDMh
2 is determined by relativistic annihilations (IAr) we consider the case where 〈σv〉′ =

T 2/Λ4, corresponding to annihilation through a heavy bosonic mediator. Note that for FOrad
r , ΩDMh

2 is

independent of 〈σv〉′ so (40) holds regardless of the temperature dependence of 〈σv〉′.

• For QSEnr, (36) and (37) are still valid for p-wave annihilation, provided the annihilation cross section

is parameterized as:

〈σv〉′ = T ′

Λ3
=
T ′D
Λ3

(
ÃD

Ãc

)
, (78)

where in the second equality we have assumed T ′ ∝ A−1 as in radiation domination. In order to match
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the numerical result, we instead use κ = 1.8 in (36) and (37).

• For FOrad
nr , the expression for x̂′F is given by:

x̂′F ≡
MX′

T ′FO
= log

(
3

8π3

√
10 η

g′∗(T
′
FO)

g′
(
MX′

2Mpl

Λ3

)
κrad
p (x̂′F )−1/2

)
(79)

while ΩDMh
2 is given by:

Ωh2 [FOrad
nr ] ≈

[
4
√

5√
π

][
η1/4

(1− η)3/4

] [
1

g∗(TFO)g′∗(T
′
FO)

]1/4
[
κmod
p (x̂′F )2 Λ3

MX′
2Mpl

] [
MX′

Tnow

]
[ΩR h

2] (80)

Here κrad
p = 2 is a constant which is chosen to match the full numerical result.

• For FOmod
nr , the expression for x′F is given by:

x′F = ln

[(
3

2
√

10π3

)(
g′g∗(TRH)1/2

g′∗(T
′
FO)

)(
MplT

2
RH

Λ3

)
κmod
p η x′F

3/2

]
(81)

while Ωannh
2 is given by:

Ωann h
2 [FOmod

nr ] ≈
[

8 η√
5π L3/4

][
g∗(TRH)1/2

g′∗(T
′
FO)

][
TRH
MX′

]3
[
κmod
p x′F

5
Λ3

MX′
2Mpl

][
MX′

Tnow

]
[ΩR h

2] (82)

Here κmod
p = 5/4 is a constant which is chosen to match the full numerical result (see also [14]).

• For IAnr, it is straightforward to show that for 〈σv〉′ = T ′/M̃3, the expression analogous to (50) is given

by:

Ωann h
2 [IAnr] ≈

[
48 g′2 χp η

3

1251/2π15/2 L3/4

][
g?

3/2(TRH)

g′?
3(T ′?)

] [(
TRH
MX′

)7 (MplMX′
2

Λ3

)][
MX′

Tnow

]
[ΩR h

2] (83)

where χp is given by:

χp ≡
∫ MX′

T ′
D

MX′
T ′max

dx′x′
8
K2(x′)2 (84)

The integrand peaks at T ′∗ ≈ 0.33MX′ ; if T ′∗ � T ′max and T ′∗ � T ′D, χp ≈ 80.

• For IAr, we are interested in the case where 〈σv〉′ = T ′2/Λ4 (see above). The expression analgous to (51)

is given by:

Ωannh
2 =

[
48cξ

2ζ(3)2

1251/2π15/2L3/4

(
T ′D
T ′∗

)4
][

η2g∗(TRH)1/2

g′∗(T
′
D)2

] [
TRH

3MX′Mpl

TnowΛ4

]
ΩRh

2 (85)

In the above, T ′∗ ≈ T ′D/1.35 is chosen to match the numerical result, and is related to the temperature at

which the integrand of
∫
dAT ′2A7/2n′eq

2H̃−1 peaks. Note that we can recover (85) from (51) by making
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the replacement:

〈σv〉′ → 0.17×

(
η1/2g∗(TRH)1/2

Λ4g′∗(T
′
D)1/2

)
T 2
RH (86)
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