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Constraining cosmology using weak gravitational lensing consists of comparing a measured feature
vector of dimension Nb with its simulated counterpart. An accurate estimate of the Nb ×Nb feature
covariance matrix C is essential to obtain accurate parameter confidence intervals. When C is
measured from a set of simulations, an important question is how large this set should be. To
answer this question, we construct different ensembles of Nr realizations of the shear field, using
a common randomization procedure that recycles the outputs from a smaller number Ns ≤ Nr of
independent ray-tracing N–body simulations. We study parameter confidence intervals as a function
of (Ns, Nr) in the range 1 ≤ Ns ≤ 200 and 1 ≤ Nr . 105. Previous work [1] has shown that Gaussian
noise in the feature vectors (from which the covariance is estimated) lead, at quadratic order, to
an O(1/Nr) degradation of the parameter confidence intervals. Using a variety of lensing features
measured in our simulations, including shear-shear power spectra and peak counts, we show that
cubic and quartic covariance fluctuations lead to additional O(1/N2

r ) error degradation that is not
negligible when Nr is only a factor of few larger than Nb. We study the large Nr limit, and find
that a single, 240Mpc/h sized 5123-particle N–body simulation (Ns = 1) can be repeatedly recycled
to produce as many as Nr = few × 104 shear maps whose power spectra and high-significance
peak counts can be treated as statistically independent. As a result, a small number of simulations
(Ns = 1 or 2) is sufficient to forecast parameter confidence intervals at percent accuracy.
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I. INTRODUCTION

Weak gravitational lensing (WL) is a promising cosmo-
logical probe for constraining the dark energy equation
of state w, and has been considered by a range of past
(CFHTLens [2, 3], COSMOS [4]), ongoing (DES [5]) and
future (LSST [6], Euclid [7], WFIRST [8]) experiments.
In an era where cosmology is data driven, accurate nu-
merical simulations of shear fields are becoming impor-
tant for several reasons, including assessing baryonic ef-
fects [9–14], the utility of non–Gaussian statistics [15–23]
and various systematic effects [24–27].
A fundamental issue with predictions from simulations

is that the finite number of simulations naturally intro-
duces fluctuations in the forecasts, due to inevitable sam-
ple variance [28]. In general, quantities such as the mean
or the variance of any feature (e.g. the shear power spec-
trum at a multipole ℓ), measured from a finite set of sim-
ulations, will fluctuate, and can also suffer a bias. While
biases in the estimates of both the mean and the variance
have been studied extensively, the impact of fluctuations
in the variance has received less attention. These fluctu-
ations have been shown to have non-negligible effects on
estimates of features covariances and hence on parameter
constraints. In particular, in the limit of Gaussian fluc-
tuations, the parameter confidence limits are degraged
by a factor 1 +O(1/Nr) [1, 29].
This work studies these issues further, focusing on the
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number of independent N–body simulations required for
an accurate estimate of the parameter constraints. Ray-
tracing simulations that resolve the cosmic structures re-
sponsible for lensing on arcminute scales are limited to
physical sizes of hundreds of Mpc, and thus cover a solid
angle of only O(10 deg2). As a result, many simulations
are required to tile a significant fraction of the sky, and to
make predictions for large “all-sky” surveys, such as the
ones by DES, LSST, Euclid, WFIRST. In practice, this
has led to the wide-spread use of “pseudo-independent”
realizations, i.e. a procedure in which one randomizes
and re-cycles the output of a single 3D simulation mul-
tiple times. In light of the forthcoming large surveys, it
is imperative to assess the statistical validity of this ap-
proach, and to ask how many times a single simulation
can be fairly recycled. In this paper, we address these
questions with ensembles of up to Nr = 105 random re-
alizations, extracted from up to Ns = 200 independent
ray-tracing N–body simulations. We focus in particular
on the parameter w, and on two different statistics: the
(convergence) power spectrum and the number counts of
peaks.

This paper is organized as follows. In § II, we sum-
marize the shear simulation methods we utilized, and
describe the formalism we adopted to forecast cosmo-
logical parameter constraints. We then vary the number
of simulations and the number of pseudo-independent re-
alizations, and present our main findings in § III. These
results are discussed further in § IV. We offer our conclu-
sions, and suggest follow-up future work in § V.
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II. METHODS

A. Ray-tracing simulations of the convergence field

In this section, we describe how we constructed our
shear field ensembles. Background galaxies at redshift
zs are lensed by large scale structures between z =
0 and zs. The shape distortions due to the cosmic
shear γγγ can be computed in terms of the dark mat-
ter gravitational potential Φ(x, z). Because the evolu-
tion of Φ with redshift is non–linear, it needs to be
computed with numerical simulations. We make use of
the public code Gadget2 [30], with which we run a se-
quence of 200 independent dark–matter–only N–body
simulations that track the evolution of the density fluc-
tuations. We assume a standard ΛCDM background
universe with the parameters (Ωm,ΩΛ, h, w, σ8, ns) =
(0.26, 0.74, 0.72,−1, 0.8, 0.96). We fix the comoving size
of the simulation box to 240Mpc/h, and use 5123 par-
ticles, corresponding to a dark matter particle mass of
≈ 1010M⊙.
We assume a uniform galaxy distribution at a con-

stant redshift zs = 2 (at which the simulation box has
an angular size of θbox = 3.5◦) and we discretize the
mass distribution between zs and the observer at z = 0
with a sequence of 46 two dimensional lenses of thick-
ness 80Mpc/h. The surface density on each lens plane
is computed by projecting the three–dimensional density
measured from Gadget2 snapshots. We then apply the
multi–lens–plane algorithm (see [31, 32] for example) to
trace the deflections of n2

ray = 20482 light rays arranged
on a square grid of total size θbox, from z = 0 to zs. This
corresponds to a pixel angular resolution of 0.1′. Our im-
plementation of this algorithm is part of the LensTools

computing package we have been developing [33], and
have released under the MIT license. Many different real-
izations r of the same shear field γγγr(θθθ) can be generated
by picking different lens planes that lie between the ob-
server and zs. The randomization procedure we adopt is
the following (see [34] for reference):

• For each lens-plane redshift zl, select the snapshot
at zl from the i–th N–body simulation, where i is
a random integer i ∈ [1, Ns].

• Choose randomly between the three orthogonal di-
rections nx,ny,nz: the lens plane will be perpen-
dicular to this direction.

• Choose the position of the plane along the snap-
shot: because the lens thickness is 1/3 the size of
the box, we can cut three different slices of the sim-
ulation box for each orientation nx,ny,nz. This
gives a total of 9 choices for generating a lens plane
out of a single N–body snapshot.

• Perform a periodic random shift of the lens plane
along its two directions.

• Repeat the above procedure for each lens-plane red-
shift zl.

This randomization procedure allows us to produce an
(almost) arbitrary number Nr of shear realizations γγγr(θθθ).
However, these realizations are not guaranteed to be in-
dependent, if Ns is not large enough. Using the set of 200
independent N–body simulations, we construct different
ensembles with different choices of Ns ∈ [1, 200]. Each of
these ensembles consists of the same number Nr = 1000
of shear realizations. We also build an additional ensem-
ble with Ns = 1 andNr = 105 realizations. For each real-
ization of each ensemble, we reconstruct the convergence
κr(θθθ) from the trace of the light-ray deflection Jacobian
matrix, measured from the difference in deflection angles
between nearby light-rays [31, 32, 34].
We measure the κ angular power spectrum P κκ

r (ℓ) de-
fined as

〈κ̃r(ℓℓℓ)κ̃r(ℓℓℓ
′)〉 = (2π)2δD(ℓℓℓ+ ℓℓℓ′)P κκ

r (ℓ) (1)

As an additional summary statistic, we consider the
counts of local κ maxima of a certain height κ0, nr(κ0)
(hereafter peak counts), with varying κ0 chosen between
the minimum and maximum values measured from the
maps (κmin, κmax) = (−0.06, 0.45). Different choices of
κ0 binning used in this work are outlined in Table II.
The fact that the ensemble of Nr realizations is not com-
pletely independent if Ns is not large enough can have
an effect on the covariance estimators of both P κκ and
n(κ0).
To measure the cosmological dependence of the κ peak

counts, we performed a set of additional ray–tracing sim-
ulations with different combinations of the cosmological
parameter triplet (Ωm, w, σ8). A summary of the com-
plete set of shear ensembles used in this work is listed in
Table I.

B. Cosmological parameter inference

Let d̂ be a single estimate for a feature of dimension
Nb, d(p) be the true value of this feature at a point p in
parameter space (which has a dimension Np) and C be
the Nb ×Nb feature covariance matrix. For the purpose
of this work p is the triplet (Ωm, w, σ8) and d is one of
the features – either a power spectrum or a peak count
histogram – in Table II. Although existing emulators
can be used, in principle, to compute both d(p) and C,
the latter is more difficult, and typically only the mean,
d(p), has been computed to date (refs. [35, 36], but see
an exception by ref. [37]). EstimatingC from simulations

involves generating a series of mock realizations d̂r with
r = 1...Nr and computing the sample covariance Ĉ,

d̄ =
1

Nr

Nr
∑

r=1

d̂r, (2)
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Ĉ =
1

Nr − 1

Nr
∑

r=1

(d̂r − d̄)(d̂r − d̄)T . (3)

Assuming a normal feature likelihood, together with a
flat prior on the parameter space, the parameter posterior
distribution L(p|d̂obs) given an observed instance of d̂,

which we call d̂obs, follows from Bayes’ theorem,

−2 logL(p|d̂obs) = [d̂obs−d(p)]T Ĉ−1[d̂obs−d(p)]. (4)

For the sake of simplicity, we approximate the posterior
as a Gaussian around its maximum. This corresponds
to Taylor-expanding the simulated feature to first order
around a point p0 (ideally the maximum of Eq. 4):

d(p) ≈ d0 + d′
0(p− p0). (5)

We chose p0 to be the triplet (Ωm, w, σ8) =
(0.26,−1, 0.8). To measure the derivatives of the features
d′
0 with respect to the cosmological parameters, we make

use of the public code Nicaea [36] for the power spec-
trum, and we use an independent simulation set (contain-
ing simulations with a variety of different combinations
of (Ωm, w, σ8), see Table I) for the peak counts.
We can build the estimator for the posterior maximum

p̂, given the observation d̂obs, as follows:

p̂ = p0 + T̂(d̂obs − d0), (6)

T̂ = (d′T
0 Ĉ−1d′

0)
−1d′T

0 Ĉ−1. (7)

Because p̂ is estimated using a single noisy data instance
d̂obs, its estimate will be scattered around the true value
〈p̂〉O. In the following we use the 〈〉O notation for expec-
tation values taken with respect to observations, while we
keep the notation 〈〉 for expectation values taken with re-
spect to the simulations. Defining the precision matrix

Ψ̂ = Ĉ−1, we can express the estimator of the observa-
tional scatter in p̂:

Σ̂p = F̂−1d′T
0 Ψ̂〈(d̂obs−d0)(d̂obs−d0)

T 〉OΨ̂d′
0F̂

−1, (8)

F̂ = d′T
0 Ψ̂d′

0. (9)

Here we introduced the familiar Fisher matrix estimator
F̂ = d′T

0 Ψ̂d′
0 and, for simplicity, we assumed 〈d̂obs〉O =

d0, so that 〈(d̂obs − d0)(d̂obs − d0)
T 〉O = C. When we

perform an observation d̂obs, the parameter estimate p̂
is a random draw from a probability distribution with
variance Σ̂p, which inherits noise from the simulations.
The noise in the covariance estimator (Eq. 3) and in its

inverse Ψ̂ propagate all the way to the posterior (Eq. 4),
the parameter estimate (Eq. 6) and its variance (Eq. 8).
Following refs. [1, 29, 38] we compute the expectation

value of Eq. (8) over simulations, 〈Σ̂p〉, up to O(1/N2
r )

by expanding Eq. (8) to quartic order in the statistical

fluctuations of Ψ̂. Denoting the true parameter covari-
ance, i.e. the usual inverse Fisher matrix, as Σp = F−1,
we find the result [39]:

〈Σ̂p〉 = Σp

[

1 +
Nb −Np

Nr

+
(Nb −Np)(Nb −Np + 2)

N2
r

]

+O

(

1

N3
r

)

. (10)

Although we truncated the expansion to second
order in 1/Nr, an exact expression for 〈Σ̂p〉 has
been proposed by [40]

〈Σ̂p〉empirical = Σp

(

Nr − 2

Nr −Nb +Np − 2

)

(11)

This empirical expression reduces to equation
(10) when expanded at order O(1/N2

r ) but, to our
knowledge, no first principles proof of its correct-
ness exists. Next, we restrict ourselves to the large
Nr limit, and we further investigate the behavior of the
O(1/Nr) term. We consider three cases [41]:

1. If the true data covariance C is known, the esti-
mator in eq. (8) is biased, and the dominant con-
tribution of the bias comes from the second order
fluctuations in Ψ̂. Once the expectation values over
simulations are taken, the bias sums up to

〈Σ̂p〉 = Σp

(

1 +
Nb −Np

Nr

)

. (12)

This is the result obtained by ref. [1].

2. Usually the true data covariance is unknown, and
it is tempting to plug in its estimator Ĉ, measured
from the same simulation set we use to compute Ψ̂.
This approach has been used before in the literature
(e.g. [17, 24]). If this is done without correcting for

the bias in Ψ̂ (see Ref. [29] and eq. 20 below), the
parameter variance will have a contribution from
both the second and first-order fluctuations in Ψ̂,
which now have a nonzero expectation value. In
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Ωm w σ8 (Ns, Nr) Number of κ ensembles

0.26 −1 0.8 (1 to 200,1024) 16

0.26 −1 0.8 (1,128000) 1

0.29 −1 0.8 (1,1024) 1

0.26 −0.8 0.8 (1,1024) 1

0.26 −1 0.6 (1,1024) 1

TABLE I. Summary of the shear ensembles used in this work. Ns and Nr refer to the number of independent N–body
simulations, and the number of pseudo-independent realizations created from these simulations, respectively.

this case the bias sums up to

〈Σ̂p〉 = Σp

(

1−
Nb −Np

Nr

)

. (13)

3. If we repeat the same exercise as above, but we cor-
rect for the bias in the precision matrix estimator,
we are left with

〈Σ̂p〉 = Σp

(

1 +
1 +Np

Nr

)

. (14)

The error degradation in each parameter p, at leading
order, scales as D/Nr, where D = Nb − Np, Np − Nb,
and 1 + Np for cases 1, 2, and 3, respectively. Note
that in the last case, which is most relevant when fitting
actual data, the estimated degradation turns out to be
too optimistic: the parameter estimate p̂ has a variance
whose noise grows linearly with Nb (eq. 10), whereas the
degradation estimated via eq. (14) is constant with Nb.
This can lead to underestimation of error bars, which can
be mistakenly interpreted as a parameter bias. We test
scaling relations of the form

〈σ̂2
p〉 = σ2

p,∞(Ns)

(

1 +
D

Nr

)

(15)

against our simulations, in the limits of both high and
low Nr. We indicate the diagonal elements of Σ̂p as

σ̂2
p = diag(Σ̂p) and we indicate by σ2

p,∞ the expectation
value of the variance of each parameter in the limit of an
infinite number of realizations Nr → ∞. We call D the
effective dimensionality of the feature space (which, as
seen before, can be negative in some pathological cases).
We compute the expectation values of σ̂2

p (eqs. 8 and
15) by averaging over 100 random resamplings of our
shear ensembles. For the true feature covariance matrix
〈(d̂ − d0)(d̂ − d0)

T 〉 = C we use the estimated covari-
ance from a grand ensemble built with the union of all
the ensembles with different Ns.
The true parameter variance σ2

p,∞(Ns) in principle can
depend on the number of independent N–body simula-
tions Ns, which appears in the randomization procedure
described in § II A above. This is because if Ns is not
large enough, the different shear realizations cannot be all
independent, and hence the true variance σ2

p,∞(Ns → ∞)
cannot be recovered for low Ns even if Nr is arbitrarily
large. In the next section, we present our main findings.

III. RESULTS

In this section we present the main results of this work.
We show the qualitative behavior of a variety of feature
d̂r probability distribution functions (PDFs) in ensem-
bles built with different Ns and Nr. In Figure 1, we show
the PDF of the power spectrum at four selected multi-
poles, spanning the linear (ℓ = 115) to the nonlinear
(ℓ = 5283) regime. In Figure 2, we shows the ensemble
mean for these power spectra, as well as for peak counts
of three different κ0 heights (corresponding to ≈ 2− 13σ
peaks), as a function of Ns. In Figure 3, we show the
variance of the power spectrum at each multipole, as a
function of Ns, in units of the variance expected if the
convergence κ was a Gaussian random field

Var(P κκ
ℓ ) =

(P κκ
ℓ )2

Neff(ℓ).
(16)

Here Neff(l) is the number of independent modes used to
estimate the power spectrum at ℓ.
In practice, we measure P κκ

ℓ on the Fourier transform
of the pixelized simulated map κr(θθθ), using the FFT algo-
rithm, and some care must be taken to count the number
of modes Neff(ℓ) correctly. Each pixel (ix, jy) in Fourier
space corresponds to a mode (ℓx, ℓy) = 2π(ix, iy)/θbox,
with ix = −nray/2, ..., nray/2 and iy = 0, ..., nray/2. Here
nray = 2048 is the linear number of pixels on the ray–
traced convergence maps. We count the number of pixels
N(ℓ) that fall inside a multipole bin (ℓ1, ℓ2). Because the
κ field is real, the modes (±ℓx, 0) are not independent.
If we let N(ℓ, ℓy = 0) be the number of non–independent
modes, the effective number of independent modes for
the variance is given by

Neff(ℓ) =
N2(ℓ)

N(ℓ) +N(ℓ, ℓy = 0)
. (17)

This correction is important at low ℓ, where pixelization
effects are non-negligible; Neff(ℓ ≫ 2π/θbox) ≈ N(ℓ).
In Figures 4 and 5, we show the dependence of the

confidence range 〈σ̂2
w〉 on Nr, derived from the features

used in this work (see Table II for a comprehensive list).
Figure 4 shows the behavior in the limit of a large num-
ber Nr ≫ 500 of realizations, and compares it with the
scaling of the form in equation (15). Figure 5 shows the
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FIG. 1. PDF of the κ power spectrum L(P κκ
l ) at four selected multipoles ℓ = 115, 344, 1349, 5283, for different shear ensembles

constructed from on Ns =1 (black), 2 (blue), 5 (green), 50 (red), and 100 (purple) independent N–body simulations. Each curve
is based on Nr = 1024 realizations. The dashed black curves correspond to ensembles generated with Ns = 1 and Nr = 128000.
For Ns ≥ 2, the distributions appear similar to the eye; this similarity is confirmed by the comparisons in Figures 2 and 3
below.

Feature Specifications Nb Symbol Color

Power Spectrum, log binning ℓ ∈ [100, 800] 8 × black

Power Spectrum, log binning ℓ ∈ [1000, 6000] 7 � black

Power Spectrum, log binning ℓ ∈ [100, 6000] 15 • red

Power Spectrum, linear binning ℓ ∈ [100, 2000] 15 + red

Power Spectrum, linear binning ℓ ∈ [2500, 4500] 15 × red

Power Spectrum, linear binning ℓ ∈ [100, 4500] 30 • green

Power Spectrum, linear binning ℓ ∈ [100, 6000] 39 • blue

Low peaks κ0 ∈ [−0.06, 0.09] 15 + red

Intermediate peaks κ0 ∈ [0.1, 0.27] 15 ⋆ red

High peaks κ0 ∈ [0.28, 0.45] 15 ⋄ red

Low+Intermediate peaks κ0 ∈ [−0.06, 0.27] 30 × green

Intermediate+High peaks κ0 ∈ [0.1, 0.45] 30 � green

All peaks κ0 ∈ [−0.06, 0.45] 45 � magenta

TABLE II. Catalog of feature types used in this work, along with the chosen number of bands Nb and the plot legends for
Figure 4.



6

0 50 100 150 200

Ns

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

[d
i(
N

s
)−

d
i(
20

0)
]/
√ C

ii
(2
00

)

l=115

l=1027

l=5283

κ0 =0.05

κ0 =0.17

κ0 =0.28
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Ns = 200 ensemble is shown, in units of the statistical error
measured in the Ns = 200 ensemble. The colored curves refer
to shear–shear power spectra measured at ℓ = 115 (black),
1027 (cyan), and 5283 (green), and peak counts with heights
κ0 = 0.05 (red), 0.17 (purple), and 0.28 (orange). The κ bin
width for the peak counts has been fixed to ∆κ = 0.011. The
dashed black line shows a level of 0.1σ accuracy for reference.
ForNs ≥ 2, the means are statistically indistinguishable (even
at ∼ 0.1σ) from those in the ensemble with Ns = 200.
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shear ensembles based on Ns =1 (black), 2 (blue), 5 (green),
10 (red), 50 (purple), or 100 (orange) N–body simulations.
Non–Gaussianities of the underlying structures increase the
variance on small scales, but no clear trend with Ns can be
identied on any scale.

large Nr trends of the w constraint. Figure 4 illustrates
the behavior at relatively low Nr, and compares 〈σ̂2

w〉
measured directly from the simulations with the analytic
expectations from equation (10). Finally, in Figure 6, we
show how the w confidence limit changes with Ns.
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bols and colors correspond to the features listed in Table II.
The dashed and this solid curves show the analytic predic-
tions from equation (10) at orders O(1/Nr) and O(1/N2

r ),
respectively. The thick solid curves show the empirical
predictions from equation (11). The asymptotic variance
σ2

w,∞ has been computed from a linear regression of 〈σ̂2

w〉 vs
1/Nr for Nr > 500. The figure clearly shows that terms be-
yond O(1/Nr) need to be considered, unless Nr ≫ Nb.
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(eq. 3). The figure shows both the trend measured in the sim-
ulations (solid lines) and their scaling expected from Eq. (15)
with D = Nb − Np (dashed line). The asymptotic variance
σ2

w,∞ has been estimated to be the value 〈σ̂2

w〉(Nr = 105). Dif-
ferent features are considered: power spectra with logarithmi-
cally spaced ℓ ∈ [100, 6000] (black), ℓ ∈ [100, 250] (red), peak
counts in the unsmoothed maps with height κ0 ∈ [0.44, 0.48]
(green) and peak counts in the smoothed maps (with a Gaus-
sian kernel of size θG = 1′) with height κ0 > 0.15 (blue). No
deviations from the expected 1/Nr behavior are observed up
to Nr ≈ few×104, except for the large-scale power spectrum,
in which case the deviations occur much earlier (Nr ≈ 103).
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FIG. 6. The variance of w in the limit of Nr → ∞ (measured
from the intercept of the fit σ2

w vs 1/Nr), varying the number
of simulations Ns used in the ensemble to estimate the covari-
ance (eq. 3). We show the dependence of σ2

w,∞(Ns) in units
of the mean over the union of 16 ensembles with different
Ns and Nr = 1024, for the power spectrum logarithmically
binned (black, Nb = 15, ℓ ∈ [100, 6000]), the power spectrum
linearly binned (red,Nb = 39, ℓ ∈ [100, 6000]) and the peak
counts (green,Nb = 45, κ0 ∈ [−0.06, 0.45]). No trend with Ns

is seen for Ns ≥ 2, and the differences are only of order 1%.

IV. DISCUSSION

In this section we discuss our main findings and their
implications. Figure 1 shows that, although different
choices of Ns do not affect the power spectrum PDF on
large scales (top two panels), there are some qualitative
differences on smaller scales (bottom two panels). On
these smaller scales, shear ensembles built from Ns = 1
do not produce the same statistical behavior as ensembles
built with larger Ns. In particular, looking at the black
curves, we see that the Ns = 1 ensembles exibit large
shifts with respect to the other PDFs to lower power,
including the locations of the peaks of the PDFs. We at-
tribute these offsets to large (random) statistical errors.

Interestingly, we need as few as Ns = 2 simulations
to recover the right PDF for the small–scale power spec-
trum. Figure 2 shows that multiple independent N–body
simulations Ns ≥ 2 are indeed necessary for measuring
the means of feature ensembles to an accuracy corre-
sponding to 10% of the statistical error. The number
of required simulations Ns depends on the feature type
and ranges from a few (Ns = 1 or 2) for the power spec-
trum at low multipoles (ℓ . 500) to Ns ≈ 30− 50 for the
power spectrum at larger multipoles (ℓ & 1000) or peak
counts above a high threshold (κ0 ≈ 0.3). On the other
hand, relaxing the required accuracy to 50% of the sta-
tistical error, we find Ns = 2 to be always sufficient. As
pointed out by [42], the box size used for the N–
body simulations can also play an important role
in the accuracy of the power spectrum ensemble
means.

Figure 3 shows the variance of convergence power

spectrum computed from different ensembles, in units
of the Gaussian expectation. We find that, even with
Ns = 1, we are able to recover the known result that non–
Gaussian structures increase the variance significantly on
small scales (see [34, 43] for reference). Our results are in
fact in excellent quantitative agreement with [34], which
used Ns = 400 independent N–body simulations. This
result is highly encouraging, suggesting that individual
N–body runs can be recycled repeatedly. However, it is
not sufficient by itself to conclude that Ns does not im-
pact the parameter inferences, since these depend on the
cross band covariances.

Figure 4 investigates the parameter errors. This figure
shows that error degradation estimates truncated at or-
der O(1/Nr) are too optimistic when the number of simu-
lations Nr used to measure the covariance is only a factor
of few larger than the dimension of the feature space Nb.
In these cases effects coming the next–to–leading orders
O(1/N2

r ) become non–negligible on constraint degrada-
tion. In particular, we find that already for Nb = 30 and
Nr ∼ 100, the error degradation estimates to the next
leading order, O(1/N2

r ), remain too optimistic. Accu-
rate analytic estimates in this regime would require at
least terms of order O(1/N3

r ), which come from higher–

than–quartic Ψ̂ fluctations.

In Figure 5, we examine how the degradation in the w
constraint depends on the number of simulations used to
estimate the covariance, in the limit of large Nr. We find
excellent agreement with the expected scaling (eq. 15)
up to Nr ∼ few × 104 when using the κ power spectrum
in the multipole range ℓ ∈ [100, 6000]. The same be-
havior is observed when considering the high-significance
peak counts (> 10σ for unsmoothed maps and > 5σ for
1′ smoothed maps). As the figure shows, around these
values of Nr the 〈σ̂2

w〉 − σ2
w,∞ curve becomes noisy and

reaches negative values. This is a clear indication that
the 1/Nr behavior is broken and a plateau in 〈σ̂2

w〉 is
reached. The negative values in the plot are a conse-
quence of the noise in the estimation of this plateau value
(or equivalently in the estimated value of σ2

w,∞).

We conclude that a single N–body simulation is suf-
ficient to construct an ensemble of up to a few×104

mutually independent convergence power spectra. For
Nr ≫ 104, the shear realizations can no longer be consid-
ered independent. We emphasize that the precise value
of this Nr will depend on the size of the simulation box
(which, in our case, is (240Mpc/h)3, with 5123 particles)
and also on the range of multipoles ℓ used to constrain the
parameters. Figure 5 shows that when we infer w only
from large–scale modes, ℓ . 250, the plateau is reached
at least an order of magnitude earlier in the number of
realizations. In other words, the number of independent
power spectra we can generate decreases as we increase
the spatial scales of interest. This is due to the fact
that, because of the finite box size, the number of in-
dependent lens plane shifts (as described in § II A) de-
creases as the mode size approaches the size of the box.
Similarly, one may expect that the independence in the
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statistics of high-amplitude peaks, which are predomi-
nantly produced by single massive halos, may be compro-
mised by these halos being present repeatedly, in many
of the pseudo-independent realizations. However, Figure
5 shows that this is not the case: the peak count statis-
tics are shown at κ thresholds corresponding to massive
(≈ 1015 M⊙) halos, yet there is no evidence that the inde-
pendence of the maps breaks down until Nr =few×104.
Apparently, randomly projected structures, which vary
from realization-to-realization, contribute significantly to
the statistics of these high peaks.
Figure 6 shows how the “true” w constraint (in the

limit Nr → ∞; or equivalently the w constraint with
the known Nr dependence factored out), depends on Ns.
We find that, in the range Ns ∈ [1, 200] the inferred w–
variance σ2

w,∞ fluctuates stochastically only by 1%, and
does not show any trend with Ns.
Finally, we found that when we estimate the data co-

variance C from the same simulation set used to measure
Ψ̂, the effective dimensionality D decreases with increas-
ing Nb in the case where the Ψ̂ bias is not corrected
(eq. 13). This Nb-dependence disappears when the bias
is corrected (eq. 14). This fact that should be taken into
consideration when forecasting parameter errors purely
from simulations, as the errors will otherwise be under-
estimated. A similar conclusion was reached by [44] (al-
though their paper did not address the impact of using
the same simulation set for C and Ψ̂).

V. CONCLUSIONS

In this work, we have examined the effect of forecasting
cosmological constraints based on shear ensembles gen-
erated from a finite number of N–body simulations. Our
main results can be summarized as follows:

• When the feature covariance matrix is measured
from simulations, parameter constraints are de-
graded. This degradation is appreciably larger than
the O(1/Nr) computed by [1] when the number of
realizations Nr is only a factor of few larger than
the feature vector size Nb.

• We can recycle a single 240Mpc/h N–body sim-
ulation to produce an ensemble of O(104) shear
maps whose small-scale power spectra and high-
signficiance peak counts are statistically indepen-
dent. The mean feature measured from a shear

ensemble, though, could be inaccurate if only one
N–body simulation is used.

• As few as one or two independent N–body simula-
tions are sufficient to forecast w error bars to 1%
accuracy, provided that a sufficiently large number
Nr of realizations are used to measure feature co-
variances. In particular, provided that biases in
the inverse covariance are corrected, percent–level
forecasts require Nr ∼> 100(Nb −Np) realizations.

• Depending on the feature type used to constrain
cosmology, a larger number of N–body simulations
might be needed to measure accurate ensemble
means to an accuracy corresponding 10% of the
statistical error. If this accuracy requirement is re-
laxed to 50% of the statistical error, we find that
as low as Ns = 2 simulations are sufficient for the
feature types we consider in this work.

Future extensions of this work should involve extend-
ing our analysis to a larger set of cosmological param-
eters, and to more general feature spaces, such as the
ones that characterize non–Gaussian statistics (e.g. in-
cluding higher moments of the κ field, Minkowski Func-
tionals, and higher-order κ correlators). While our re-
sults are highly encouraging, and suggest that a single
N–body simulation can be recycled repeatedly, to pro-
duce as many as 104 independent shear power spectra or
peak count histograms. In order to scale our results to
large future surveys, such as LSST, it will be necessary to
determine if our findings hold when challenged by larger
and higher-resolution N–body simulations [45].
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APPENDIX A: CUBIC AND QUARTIC
COVARIANCE FLUCTUATIONS

The goal of this appendix is to give a derivation of
eq. (10). When the simulated feature vector d̂r is drawn
from a Gaussian distribution, the covariance estimator
Ĉ follows the Wishart distribution, and its inverse Ψ̂
follows the inverse Wishart distribution (see Ref. [29]
for analytical expressions for these probability distribu-
tions). Computing expectation values of eq. (8) over
the inverse Wishart distribution is not possible analyti-
cally, and a perturbative expansion is necessary. Writing

Ψ̂ = Ψ + δΨ̂, we can expand eq. (8) in powers of δΨ̂.
The expectation value of each term in this expansion can
be calculated in terms of moments of the inverse Wishart
distribution. Ref. [38] provides a general framework to
compute these moments, and give exact expressions for
moments up to quartic order. First, let us expand the
inverse of the Fisher matrix estimator (eq. 9) in powers

of δΨ̂. The n–th order of this expansion will be

δF̂−1
(n) = (−1)n(F−1δF̂)nF−1 (18)

with

δF̂ = d′T
0 δΨ̂d′

0 (19)

Using eq. (18), we can expand eq. (8) to an arbitrary

order in δΨ̂, take the expectation values of the fluctu-
ations over the inverse Wishart distribution, and finally
arrive at eq. (10). We use the notation ν ≡ Nr − 1 and
γ ≡ (ν −Nb − 1)/2, and we indicate with capital letters
pairs of matrix indices, for example I = (i1, i2), where
ia = 1..Nb. The main results we utilize from ref. [38] re-
garding the first four moments are (up to order O(1/ν2))

〈Ψ̂I〉 =
ν

2γ
ΨI (20)

〈δΨ̂IδΨ̂J〉 =
ν2ΨIΨJ + ν2γΨ{IΨJ}

4γ2(γ − 1)(2γ + 1)
(21)

〈δΨ̂IδΨ̂JδΨ̂K〉 =
ν3Ψ{IΨJΨK}

8γ(γ − 1)(γ − 2)(γ + 1)(2γ + 1)
(22)

〈δΨ̂IδΨ̂JδΨ̂KδΨ̂L〉 =
ν4(2γ2 − 5γ + 9)Ψ{IΨJ}Ψ{KΨL}

16γ(γ − 1)(γ − 2)(γ − 3)(2γ − 1)(γ + 1)(2γ + 1)(2γ + 3)
. (23)

Here the curly bracket notation is a shorthand for a sym-
metrization over pair of indices: for example

Ψ{IΨJ} = Ψi1j1Ψi2j2 +Ψi1j2Ψi2j1 (24)

Eq. (20) expresses the bias in the Ψ̂ estimator that al-
ready appears in the literature [44]. If we want to use the

bias-corrected Ψ̂ estimator (required for the perturbative
expansion of eq. 8), we need to apply an additional factor

of (2γ/ν)n to eqs. (20–23), where n is the order of the
moment up to which we are applying the correction. If
we limit ourselves to computing the expectation value of
eq. (8) up to order O(1/ν2), we do not need to worry
about this correction for eqs. (22–23), as the dominant
term here is already O(1/ν2). The next step is expanding
eq. (8) in powers of δΨ̂ up to fourth order: this is easily
done:

Σ̂p =

(

F−1 +

4
∑

n=1

δF̂−1
(n)

)

d′T
0 (Ψ+ δΨ̂)C(Ψ+ δΨ̂)d′

0

(

F−1 +

4
∑

n=1

δF̂−1
(n)

)

. (25)

Carrying out the calculations is simpler than it looks:
because of the structure of eq. (25), each term in the

expansion is proportional to Σpfa(Nb, Np)/N
a
r , where
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fa(Nb, Np) is a polynomial in Nb and Np. Terms
proportional to Nb arise from index contractions of
type tr(ΨC) = Nb, which come from symmetriza-
tion terms of type Ψ{IΨJ}. Symmetrization factors of
type Ψ{IΨJΨK} or Ψ{IΨJ}Ψ{KΨL}, on the other hand,

give rise to contractions of type tr(ΨC)tr(FF−1) =
NbNp. Moreover, we know that, at every order O(1/Na

r ),
fa(Nb, Np) has to be proportional to Nb−Np, because it
must vanish when Nb = Np. The reason for this is that if
the feature derivative matrix d′

0 is square and invertible
(which it should be in absence of degeneracies), then eq.
(8) reduces to

Σ̂p = (d′
0)

−1C(d′T
0 )−1. (26)

Every trace of the noise is gone, hence powers of 1/Na
r

must not appear at any order if Nb = Np. Armed with
the knowledge of the above considerations, we can com-
pute the expectation value of eq. (25) at second, third

and fourth order in δΨ̂, keeping the terms that are at
most O(1/ν2) = O(1/N2

r ). When the combinatorial fac-
tors that arise from the expansion of eq. (25) are prop-
erly computed and the expectation values over the inverse
Wishart distribution are taken according to eqs. (20–23),
the results take the form















































(δΨ̂)2 → Σp

γ(Nb −Np)

(γ − 1)(2γ + 1)
= Σp

[

Nb −Np

Nr

+
(Nb −Np)(Nb + 3)

N2
r

]

(δΨ̂)3 → −4Σp

(Nb −Np)(1 +Np)

N2
r

(δΨ̂)4 → 3Σp

(Nb −Np)(1 +Np)

N2
r

.

(27)

When the results from eq. (27) are summed, eq. (10)
immediately follows.
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APPENDIX B: NEGATIVE EFFECTIVE
DIMENSIONALITY

The goal of this appendix is to give a justification for
why the effective dimensionality D that appears in eq.
(15) can be negative in some cases. When we use the

same simulation set to estimate C, Ψ̂, eq. (8) reduces to

the inverse Fisher estimator Σ̂p = F̂−1. At second order

in the Ψ fluctuations this becomes

Σ̂p = F−1 + F−1
(

−δF̂+ δF̂F−1δF̂
)

F−1 (28)

If the biased estimator for Ψ̂ is used, we can use eqs.
(20–21) at order O(1/ν) to compute

〈Σ̂p〉 = Σp

(

1−
Nb + 1

Nr

+
1 +Np

Nr

)

= Σp

(

1 +
Np −Nb

Nr

)

. (29)

We immediately see that the coefficient of 1/Nr is neg-
ative, because Nb > Np. This is the result shown in eq.

(13). If the bias correction for Ψ̂ is applied, the first or-

der terms δF̂ average to 0, and we are left with only the
last term in the sum eq. (29), which immediately yields
eq. (14).


