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Large-scale structure surveys in the coming years will measure the redshift-space power spectrum
to unprecedented accuracy, allowing for powerful new tests of the ΛCDM picture as well as mea-
surements of particle physics parameters such as the neutrino masses. We extend the Time-RG
perturbative framework to redshift space, computing the power spectrum Ps(k, µ) in massive neu-
trino cosmologies with time-dependent dark energy equations of state w(z). Time-RG is uniquely
capable of incorporating scale-dependent growth into the Ps(k, µ) computation, which is important
for massive neutrinos as well as modified gravity models. Although changes to w(z) and the neu-
trino mass fraction both affect the late-time scale-dependence of the non-linear power spectrum, we
find that the two effects depend differently on the line-of-sight angle µ. Finally, we use the HACC
N-body code to quantify errors in the perturbative calculations. For a ΛCDM model at redshift
z = 1, our procedure predicts the monopole (quadrupole) to 1% accuracy up to a wave number
0.19h/Mpc (0.28h/Mpc), compared to 0.08h/Mpc (0.07h/Mpc) for the Kaiser approximation and
0.19h/Mpc (0.16h/Mpc) for the current state-of-the-art perturbation scheme. Our calculation agrees
with the simulated redshift-space power spectrum even for neutrino masses above the current bound,
and for rapidly-evolving dark energy equations of state, |dw/dz| ∼ 1. Along with this article, we
make our redshift-space Time-RG implementation publicly available as the code redTime.

I. INTRODUCTION

Two major challenges for cosmology over the next
decade are measuring the neutrino masses and con-
straining the evolution of the dark energy density. The
sum of the neutrino masses, a fundamental Standard
Model parameter, is bounded from above by cosmologi-
cal probes [1, 2]:

∑
mν < 0.23 eV. Improved measure-

ments of large-scale structure and the cosmic microwave
background over the next several years will replace this
bound with a measurement, possibly allowing us to dis-
tinguish between normal and inverted neutrino mass hi-
erarchies [3–9].

Meanwhile, searches for dark energy evolution are en-
tering a decisive era. The cosmological constant Λ, the
simplest model of dark energy, is completely consistent
with current data [1, 2, 10–17]. However, a cosmologi-
cal energy density which is 120 orders of magnitude be-
low fundamental scales, yet coincidentally nearly equal
to the dark matter density today, requires a great deal
of fine-tuning [18–22]. If we consider models in which
the dark energy density ρDE and its equation of state
wDE(z) = PDE/ρDE may vary with redshift z, the uncer-
tainty in dwDE/dz is of order unity today [23]. Current
constraints allow “early dark energy” models in which
ρDE(z) rises rapidly with z, substantially alleviating the
tuning and coincidence problems associated with the cos-
mological constant [24–32]. Over the next ten to fif-
teen years, constraints on dwDE/dz will improve sub-

stantially, allowing models with |dwDE/dz| ∼ 1 to be
distinguished decisively from slowly-evolving equations
of state [3]. Thus cosmology is poised to answer two fun-
damental questions about the nature of the universe.

Such powerful cosmological constraints will be made
possible by combining probes of the expansion rate H(z),
including Type Ia supernova [33] and baryon acoustic os-
cillation (BAO) [2] surveys, with measurements of the
growth factor D(z), including redshift-space distortions
(RSD) [34, 35] and weak lensing [36]. Here we are partic-
ularly interested in the RSD, which probe the logarith-
mic growth rate f(z) = −d log(D)/d log(1 + z). These
are measured at quasi-linear scales 10 Mpc – 100 Mpc,
and they are minimally affected by astrophysical system-
atics such as baryonic feedback. As a result, perturbative
treatments of the redshift-space power spectrum are fea-
sible [37–40].

Time-RG perturbation theory, which directly inte-
grates a system of non-linear equations for the matter
power spectrum P (k) (the Fourier transform of the two-
point correlation function), was designed for models with
scale-dependent growth factors, such as massive neutrino,
modified gravity, and clustering dark energy models [41–
43]. It is implemented in publicly-available codes includ-
ing Copter [44] and CLASS [45]. Its approach to comput-
ing the power spectrum is to truncate the infinite tower
of evolution equations for N -point correlation functions.
Since the continuity and Euler equations of classical fluid
dynamics relate the time derivative of the N -point func-
tion to the (N + 1)-point function, the power spectrum
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P (~k) depends upon the bispectrum B(~k1,~k2,~k3), the bis-
pectrum upon the trispectrum, and so on. Time-RG
truncates this hierarchy by neglecting the connected part
of the trispectrum, allowing the bispectrum to describe
the non-linear evolution of the power spectrum.

Time-RG results were compared with those from N-
body simulations in [44, 46]. In particular, Ref. [46]
showed that Time-RG accurately predicted the power
spectrum even for early dark energy models which cause
Standard Perturbation Theory to fail, and for massive
neutrino models to which other perturbative treatments
are inapplicable. Furthermore, Time-RG was used to test
the approximation of Refs. [47, 48], in which neutrino
clustering is neglected as a source for non-linear dark
matter growth.

In this article, we extend Time-RG to a prediction of
the redshift-space power spectrum using the approach
of Ref. [39], which describes higher-order corrections to
the redshift-space power spectrum in terms of integrals
PB(k, µ) and PT(k, µ) over the bispectrum and trispec-
trum, respectively. In particular, we show that PB(k, µ)
can be expressed as a linear combination of terms de-
pending on k alone, whose time-evolution can be com-
puted in the Time-RG framework. Our treatment au-
tomatically includes corrections to PB due to non-linear
evolution, and we show that these corrections result in a
smearing of baryon oscillations in the PB terms as well as
a transfer in power from larger to smaller scales. Extend-
ing this calculation to massive neutrino models, we show
that

∑
mν and the equation of state parameters affect

the redshift-space power spectrum differently, due to the
scale-dependent growth sourced by massive neutrinos.

Next, we compare our calculations of the redshift-
space power spectrum to the results of the HACC high-
precision N-body simulations [49] used in Ref. [46]. For
models without massive neutrinos, we show that the
Time-RG predictions remain accurate down to smaller
scales than those of Ref. [39], largely due to the bet-
ter small-scale behavior of Time-RG relative to closure
perturbation theory. Finally, we demonstrate that our
approach accurately computes the redshift-space power
spectrum for the full range of

∑
mν allowed by current

data [1, 50], and for models with cosmological constants
as well as rapidly-varying dark energy.

This article is organized as follows. Section II covers
Time-RG perturbation theory, the linear neutrino ap-
proximation used here, and the basics of perturbative
RSD calculations. Our new results are derived in Sec. III,
and after comparing them with the calculations of [39] we
contrast the effects of

∑
mν and the equation of state pa-

rameters on the redshift-space power spectrum. N-body
simulations are used to test our results in Sec. IV. Sec-
tion V concludes that our redshift-space Time-RG calcu-
lation agrees closely with N-body simulations in massive
neutrino and evolving dark energy cosmologies, and dis-
cusses possible applications.

II. BACKGROUND

A. Time-RG Perturbation Theory

Consider a spatially-flat universe containing several
non-relativistic fluids, each with density ρI(τ, ~x) and ve-
locity field ~vI(τ, ~x), where τ and ~x are the conformal
time and comoving position, respectively. [70] Assume
that the fluids interact only gravitationally. In terms of
the density contrasts δI(τ, ~x) = ρI(τ, ~x)/ρ̄I(τ)−1, where
the ρ̄I(τ) are the mean densities, we can write down the
continuity and Euler equations for each fluid as well as a
Poisson equation coupling them:

∂δI
∂τ

+ ~∇ · ~vI + ~∇ · (~vIδI) = 0 (1)

∂~vI
∂τ

+H~vI + (~vI · ~∇)~vI + ~∇Φ = 0 (2)

∇2Φ− 3

2
Ωm(τ)H2

∑
J

fJδJ = 0 (3)

where the total cold matter density ρm =
∑
J fJρJ . Here

Φ is the gravitational potential and H = a−1da/dτ the
conformal Hubble rate. In the regime of validity of cos-
mological perturbation theory, the velocity fields are well-

approximated as irrotational, ~∇ × ~vi = 0. Then each
velocity can be described completely by its divergence

θI = H−1~∇ · ~vi using ∇2~vI = H~∇θI . Henceforth we de-
scribe each fluid in terms of these scalar perturbations δI
and θI .

We may put the equations of motion into a more com-
pact notation. Let η = log[(1+zin)/(1+z)], where zin �
1 is an initial redshift at which non-linear terms in the
equations of motion are negligible. Working in redshift
space, define ϕI0 = exp(−η)δI and ϕI1 = − exp(−η)θI .
With primes (′) denoting derivatives with respect to η,
and summation over repeated lower-case indices, we have

ϕ′Ia + ΩIabϕIb = eη
∫

d3q

(2π)3

d3p

(2π)3
γabc(~k,−~p,−~q) (4)

×ϕIb(~p)ϕIc(~q)(2π3)δ3
D(~k + ~p+ ~q)

ΩI00 = −ΩI01 = 1 (5)

ΩI10 = −3

2
Ωm(η)

fI +
∑
J 6=I

fJ
δJ
δI

 (6)

ΩI11 = 2 +H′/H (7)

γ001(~k, ~q, ~p) = γ010(~k, ~p, ~q) = (~p+ ~q) · ~q/(2p2) (8)

γ111(~k, ~q, ~p) = (~p+ ~q)2~p · ~q/(2p2q2) (9)

with all other γabc zero. In the first line, the ~k-
dependence of ϕ on the left-hand-side has been sup-
pressed, and δD is the Dirac delta function.

Next consider a universe with a single fluid. Us-
ing Eq. (4), Time-RG Perturbation Theory [41] writes
down the equations of motion for the power spec-

trum Pab(~k1)(2π)3δ3
D(~k1 + ~k2) =

〈
ϕa(~k1)ϕb(~k2)

〉
and
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Model h ωm ωb ων ns σ8 w0 wa

ΛCDM 0.71 0.1335 0.02258 0 0.963 0.8 −1 0

νΛCDM 0.71 0.1335 0.02258 0.001 0.963 0.8 −1 0

EDE 0.6167 0.1472 0.02261 0 0.9611 0.8778 −0.7 0.6722

νwCDM 0.7342 0.1543 0.02323 0.003 0.8797 0.8056 −1.21 −1.11

TABLE I: List of cosmological models considered here. For
each component J , ωJ = ΩJ(τ0)h2, where τ0 is the time today.

bispectrum Babc(~k1,~k2,~k3)(2π3)δ3
D(~k1 + ~k2 + ~k3) =〈

ϕa(~k1)ϕb(~k2)ϕc(~k3)
〉

:

P ′ab = −ΩacPcb(k)− ΩbcPac(k)

+eη
∫

d3q

(2π)3
[γacd(k, q, p)Bbcd(k, q, p)

+γbcd(k, q, p)Bacd(k, q, p)] (10)

B′abc = −Ωad(k)Bdbc − Ωbd(q)Badc − Ωcd(p)Babd

+2eη[γade(k, q, p)Pdb(q)Pec(p)

+γbde(q, p, k)Pdc(p)Pea(k)

+γcde(p, k, q)Pda(k)Peb(q)] (11)

where the bispectrum in the second equation is under-
stood to be a function of k, q, and p: Babc = Babc(k, q, p).

Needing to keep track of the functional dependence of
Babc on three different variables would make Time-RG
perturbation theory numerically prohibitive. However, it
is possible to recast the equations of motion in such a
way that the time-dependent quantities depend only on
one variable, k:

P ′ab = −ΩacPbc − ΩbcPac

+eη
4π

k
(Iacd,bcd + Ibcd,acd) (12)

Iacd,bef
k

=

∫
q2dq sinαdα

(2π)3

γacd(k, q, p−)Bbef (k, q, p−)

2
(13)

I ′acd,bef = −ΩbgIacd,gef − ΩegIacd,bgf

−ΩfgIacd,beg + 2eηAacd,bef (14)

Aacd,bef
k

=

∫
q2dq sinαdα

(2π)3

γacd(k, q, p−)

2

×
[
γbgh(k, q, p−)Pge(q)Phf (p−)

+γegh(q, p−, k)Pgf (p−)Phb(k)

+γfgh(p−, k, q)Pgb(k)Phe(q)
]
. (15)

Here, ~p± = ~k ± ~q, and the Pab, Iacd,bef , and Aacd,bef
depend on k unless otherwise specified. Since most of
the γabc are zero, there are only 24 nonzero components
of Iacd,bef at each k, only 14 of which are independent.

Before proceeding, we note that the treatment of non-
linearities in Eq. (14) neglects any scale-dependence in Ω.
In particular, in a cosmological model containing multi-
ple species which cluster differently, such as cold dark
matter and massive neutrinos, Ω10 will depend on k as

given by Eq. (6). Since this is a small correction to a
non-linear correction, it is expected to be small [51], and
it will be further suppressed when the density fraction of
the second species is small. We defer discussion of the
scale dependence of Eq. (14) and its redshift-space gen-
eralization to Appendix C, in which we show that the
associated error is less than 1% all the way to z = 0 and
k = 0.4 h/Mpc even for neutrino masses

∑
mν = 0.94 eV

much larger than current bounds.

The Time-RG calculations of Eqs. (12-15) may be
sped up considerably by replacing the power spectra in-
side the integral of Eq. (15) by the linear-theory power
spectra. Since these scale in a known way with the
growth factor D(z) and its logarithmic derivative f(z) =
−d logD/d log(1 + z), the integral need not be repeated
at each time step. This is known as the “1-loop” ap-
proximation of Time-RG, since it is equivalent to stan-
dard perturbation theory at the 1-loop level [41]. On a
standard 8-core desktop computer, 1-loop Time-RG and
other 1-loop computations take ∼ 1 minute, full Time-
RG takes ∼ 1 hour, and 2-loop perturbation theories take
∼ 1 day to compute the power spectrum over 100 k values
in the range 0.001 h/Mpc ≤ k ≤ 1 h/Mpc.

Figures 1 and 2 show our results for a massless-
neutrino model with cosmological constant (ΛCDM) and
an early dark energy model (EDE) whose parameters are
given in Table I; power spectra have been divided by the
“no-wiggle” power spectrum Pnw(k) of Ref. [52]. Time-
RG is compared to the N-body simulations of Ref. [46],
as well as to the 1- and 2-loop closure theory calcula-
tions of Refs. [53–55] implemented in the Copter code
[44]. Full and 1-loop Time-RG are very similar in this
range of k, with the 1-loop power spectrum slightly larger
at k & 0.25 h/Mpc. While 2-loop closure theory is
highly accurate, its computation time makes it difficult
to use in an analysis exploring a large parameter space.
Meanwhile, 1-loop closure theory is comparable to 1-
loop Time-RG in accuracy as well as running time in
the k ≤ 0.2 h/Mpc range. Although all perturbative
calculations break down for sufficiently large k, one ad-
vantage of Time-RG is that it diverges relatively slowly
from N-body calculations, remaining within ≈ 10% of
the N-body power spectrum up to k = 0.3 h/Mpc for
z ≥ 0.5 in both figures. Figure 3, a comparison to the
high-resolution ΛCDM N-body simulation of Ref. [46],
shows that both versions of Time-RG are correct in the
range k ≤ 1 h/Mpc to < 10% for z ≥ 1 and to < 5%
for z ≥ 2. The figure also shows two other trends: first,
that full and 1-loop Time-RG differ substantially only for
k & 1 h/Mpc; and, second, that full Time-RG underes-
timates the small-scale power at high z while overesti-
mating it at low z. Figure 4 compares Time-RG to the
velocity power spectrum Pθθ and the cross spectrum Pδθ.
Since the velocity field can only be determined to scales
k ≈ 0.5 h/Mpc given our simulation resolution, we trun-
cate the figure there. Evidently Time-RG is accurate at
the 10% level to k = 0.3 h/Mpc for both power spectra.
It is not quite as accurate as it was for the density power
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FIG. 1: Power spectrum Pδδ for the model ΛCDM. (Left) Points with error bars show the N-body simulations of Ref. [46], and
the inner (outer) shaded regions are within 5% (10%) of the simulation points. Full and 1-loop Time-RG are compared with the
closure theory calculations of Ref. [39]. Note that at the wave numbers shown, full and 1-loop Time-RG are indistinguishable
except at z = 0 and k & 0.25 h/Mpc. (Right) Fractional errors associated with the perturbation theories on the left. The
shaded region shows the 2σ N-body simulation error bars.

spectrum, but once again, Time-RG diverges from the
N-body spectra smoothly.

We conclude by addressing an error in the original
Time-RG algorithm [41]. As noted above, there are 14 in-
dependent components of the Aacd,bef (k) integral at each
k; however, the original work included only 12 of them,
as pointed out in Ref. [56]. The erroneous version was
implemented in Copter, and Ref. [44] reported a discrep-
ancy between simulations and the Time-RG predictions
of the density-velocity cross-spectrum as well as the ve-
locity auto-spectrum. In Figure 5, we add the corrected
Time-RG power spectra to their figure. Including all of
the Aacd,bef increases Pδθ and Pθθ, improving agreement
with simulations in the k < 0.1 h/Mpc region. This is
significant because the velocity power spectra are impor-
tant to calculations of the redshift-space power.

B. Massive neutrinos: Linear approximation

The coupled system of equations for multiple, non-
linear, non-interacting fluids was described in Sec. II A.
Since baryonic gas dynamics and feedback effects are only
important at small scales, beyond the reach of perturba-
tion theory, we regard the cold dark matter (CDM) and
baryons as one single fluid, labelled “CB.” We also con-
sider a second fluid “ν” consisting of three equal-mass
neutrino species, which behave as a warm dark matter
component. Though a generalization to more neutrino
species of different masses is straightforward, we focus
on the simplest case here. Henceforth a subscript “m”
refers to CDM, baryons, and neutrinos together, so that
Ωm = ΩCDM + Ωb + Ων . The sum of neutrino masses is
related to the neutrino density fraction ων = Ων,0h

2 by∑
mν = 94ων eV.
Since neutrinos do not cluster strongly, they can fur-

ther be approximated as a purely linear fluid in Time-RG
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FIG. 2: Same as Figure 1, but for the early dark energy model EDE from Table I.

perturbation theory [41, 42]. Thus we may use a linear
code such as CAMB or CMBFAST [57–59] to compute
the coupling matrix ΩCB. Dropping the “CB” subscript
of Ω, we have

Ω10 ≈ −
3

2
Ωm(η) [fCB + Bν(η, k)] (16)

Bν = fν δlin,ν/δlin,CB. (17)

Using δlin,CB rather than δCB in the denominator of Bν

makes only a negligible difference [42]. Non-linear evo-
lution of δν is also not the dominant source of error in
this approximation [51, 60, 61]. Thus Time-RG can in-
corporate massive neutrinos, or other species leading to
scale-dependent CB growth, without much difficulty.

In the two-fluid case, the total matter perturbation is
δm = (ρ̄CBδCB + ρ̄νδν)/ρ̄m = fCBδCB + fνδν . In the lin-
ear neutrino approximation, the non-linear matter power
spectrum is given by

Pm(k) ≈ f2
CBPCB + 2fCBfν

√
PCBPlin,ν + f2

νPlin,ν . (18)

Figure 6 compares PCB, Plin,ν , and
√
PCBPlin,ν to the

linear CB power spectrum.

Based on the figure, the linear-neutrino approxima-
tion should apply even beyond the quasi-linear regime
k ∼ 0.1 h/Mpc. Non-linear effects in each fluid become
important when ∆2

lin ∼ 1, as seen by comparing the
CB × CB and linear curves. Even for a rather large
neutrino mass at z = 0, the neutrino auto-spectrum
remains below 0.1, while the cross-spectrum plateaus
around 0.25. If ∆2

ν(k) − ∆2
lin,ν(k) ∼ ∆4

lin,ν(k), then the

leading-order fractional correction to Eq. (18) will be

∼ (fν/fCB)
√

∆2
lin,ν/∆

2
CB∆2

lin,ν , which is at most ∼ 1%.

Moreover, non-linear corrections to ∆2
ν should diminish

in importance for k � 0.1 h/Mpc, allowing a variant of
this approximation to be used even in N-body simula-
tions [46, 48].

C. Redshift-space distortions

In a perfectly homogeneous universe, there is a pre-
cise relation between the redshift z of an object and
the comoving distance χ(z) =

∫ z
0
dz′/H(z′) to that ob-

ject. Peculiar velocities ~v sourced by density inhomo-
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geneities δ distort this relation, perturbing χ in the line-
of-sight direction r̂ by an amount ~v · r̂/H (where ˆ de-
notes a unit vector). If the homogeneous-universe rela-
tion is used to identify redshift z with position χ(z) (“red-
shift space”), then this peculiar-velocity effect shows up
as a direction-dependent distortion of the power spec-
trum. Such redshift-space distortions (RSD) enhance the
line-of-sight power spectrum in the quasi-linear regime
(“squashing”) and suppress it in the non-linear regime
(“fingers of god”) [62].

A discussion of linear RSD as given in Ref. [37] is in-
structive. A volume element at comoving position ~x and
redshift z, at which point the velocity field takes the

(a)

(b)

FIG. 5: (a) Velocity-density cross-spectrum and (b) velocity
auto-spectrum for the ΛCDM model of Ref. [44] at z = 0.
Black points are their N-body simulation, and the solid (red)
line is 1-loop Standard Perturbation Theory. Properly includ-
ing all of the Aacd,bef integrals of Eq. (15) in the Time-RG
calculation leads to an improved fit (solid blue line) at low k
relative to the Time-RG results of Refs. [41, 44] (dot-dashed
green line). Adapted from Figure 8 of Ref. [44].

value ~v(z, ~x), will be assigned a redshift-space position
~xs = ~x+ x̂ ~v · x̂/H. For example, an object falling toward
the observer (~v · x̂ < 0) will appear closer (|~xs| < |~x|) in
redshift space than in real space. In the flat-sky approxi-
mation, x̂ ≈ r̂ = constant, and the Jacobian determinant
associated with the transformation from real- to redshift-
space is J = |d3x/d3xs| = (1 + ∂x~v · r/H)−1.

Since the total number of objects (or the total mass)
in a given volume does not depend on the coordinates
that we use, we can relate the redshift-space overdensity
δs to the real-space overdensity by 1 + δs = (1 + δ)J . In

Fourier space, for an irrotational velocity field ~v(~k) ∝ ~k,

this becomes δs = (δ+µ2
~k
θ)J , where µ~k = k̂ · r̂. In linear
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FIG. 6: Dimensionless power spectra ∆2(k) = k3

2π2P (k)
for a ων = 0.01 (

∑
mν = 0.94 eV) model at z = 0. The

cross-spectrum PCB×ν ≈
√
PCBPlin,ν and the neutrino auto-

spectrum Pν ≈ Plin,ν use the linear-neutrino approximation.

theory, δs ≈ (1 + fµ2
~k
)δ, implying the power spectrum

Ps,lin(k, µ~k) = (1 + fµ2
~k
)2Plin(k). (19)

This qualitatively describes line-of-sight power enhance-
ment expected due to large-scale infall towards matter
overdensities, but does not include finger-of-god effects
at smaller scales.

In order to extend such a treatment beyond linear
theory, two types of corrections have been introduced:
streaming models and higher-order corrections to the
power spectrum [40, 63]. The simplest higher-order cor-
rection is to replace Plin in Eq. (19) by the non-linear den-
sity power spectrum, while the Scoccimarro anzatz [38]
replaces all three linear power spectra with their non-
linear equivalents in order to damp the redshift-space
power spectrum:

Ps(k, µ~k) = Pδδ + 2µ2
~k
Pδθ + µ4

~k
Pθθ. (20)

All of these non-linear corrections essentially try to re-
duce the amplitude of the linear redshift space power
spectrum to mimic the effect of non-linear structure for-
mation.

Streaming models explicitly impose finger-of-god
suppression by multiplying Ps(k, µ~k) by a function
Ffog(fkσvµ~k), which typically takes a simple form:

Ffog(x) =

{
exp(−x2) (Gaussian)

(1 + x2)−1 (Lorentzian).
(21)

Here 3σ2
v is the trace of the velocity-dispersion tensor. In

practice, it is either fit to the data at each z, or approx-
imated by its linear-theory value

σ2
v,lin =

1

3

∫
d3k

(2π)3
Pvv =

f2H2

6π2

∫
dk Plin(k) (22)

where Plin is the linear matter power spectrum. The
convention in the literature is to “absorb” the f2H2 into

the σ2
v , so that typical values of σv,lin =

√∫
Plindk/(6π2)

for a ΛCDM model at z ∼ 1 are ∼ 1 Mpc/h.
The treatments above approximate the redshift-space

power spectrum in terms of the real-space power spectra.
From the form of the Jacobian it is clear that higher-
order correlation functions ought to play a role; however,
the gradient term in the denominator of J suggests that
a simple Taylor expansion will be badly-behaved when
θ ∼ 1. Instead, Ref. [38] uses spatial homogeneity to
derive an exact formula for Ps without a badly-behaved
Jacobian denominator:

Ps(~k) =

∫
d3xei

~k·~x
〈
e−i

~k·r̂∆u
[
δ(~y) + (r̂ · ~∇)u(~y)

]
×
[
δ(~y ′) + (r̂ · ~∇)u(~y ′)

]〉
(23)

where u(~y) = −~v(~y) · r̂/H, ∆u = u(~y) − u(~y′), and
~x = ~y−~y ′. Recognizing that the Kaiser “squashing” and
finger-of-god effects are coupled and cannot be treated
separately, Taruya, Nishimichi, and Saito (TNS [39]) ap-
ply a cumulant expansion to the expectation value in
Eq. (23) and find a series of corrections to Ps in terms
of higher-order correlation functions. The leading-order
corrections are obtained by neglecting all higher-order
correlation functions except for the bispectrum and the
disconnected parts of the trispectrum, precisely the ap-
proximation used in Time-RG:

Ps(k, µ) = Ffog(fσvkµ)[Pδδ(k) + 2µ2Pδθ(k) + µ4Pθθ(k)

+PB(k, µ) + PT(k, µ)] (24)

PB(k, µ)

kµ
=

∫
d3q

(2π)3

µ~q
q

[
BTNS(~q,~k − ~q,−~k)

−BTNS(~q,~k,−~k − ~q)
]

(25)

PT(k, µ)

k2µ2
=

∫
d3q

(2π)3
τTNS(~q)τTNS(~k − ~q) (26)

BTNS(~k1,~k2,~k3) = Bθδδ(~k1,~k2,~k3)− µ2
~k2
Bθθδ(~k1,~k2,~k3)

−µ2
~k3
Bθδθ(~k1,~k2,~k3)

+µ2
~k2
µ2
~k3
Bθθθ(~k1,~k2,~k3) (27)

τTNS(~k1) =
µ~k1
k1

[
Pδθ(~k1) + µ2

~k1
Pθθ(~k1)

]
(28)

Here and henceforth, µ is assumed to mean µ~k unless
otherwise labelled. A thorough study of approximations
to Ps finds this approach to be the most successful at
matching N-body calculations and at providing an unbi-
ased estimate of the growth rate f [40].

In practice, Ref. [39] computes the power spectra in
Eq. (24) using closure theory, the bispectra in Eq. (25)
using the tree-level approximation of Ref. [64], and the
power spectra in Eq. (26) using linear theory. In the next
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Section, we compute all of these terms together in Time-
RG perturbation theory, making only the standard Time-
RG approximation of neglecting the connected trispec-
trum. There are three potential advantages to this ap-
proach:

1. Time-RG is easily-generalized to multi-component
models with scale-dependent growth;

2. Time-RG is well-behaved at k . 1 h/Mpc for z & 1,
with errors . 10%; and

3. errors may be estimated by approximating the con-
nected trispectrum, as in Ref. [56].

Regarding the second of these, the most promising per-
turbative RSD treatments employ a streaming function
Ffog, a phenomenological model which is not expected to
be correct beyond the ≈ 5% level at quasi-linear scales
k & 0.1 h/Mpc. Thus percent-level accuracy in the com-
putation of the power spectra is unnecessary; much more
important is the calculation of P (k) at the 5% − 10%
level over a larger range of scales.

III. REDSHIFT-SPACE DISTORTIONS IN
TIME-RG PERTURBATION THEORY

A. PB and PT in Time-RG

Further analysis can substantially simplify the com-
putation of PB and PT. Though we defer the details
to Appendices A and B, we summarize the results here.
First, the µ-dependence of Ps(k, µ) can be separated out,
yielding a polynomial in µ2 with k-dependent coefficients:

Ps(k, µ) = Ffog(fσvkµ)[P0(k) + P2(k)µ2 + P4(k)µ4

+P6(k)µ6 + P8(k)µ8]. (29)

Both PB and PT contribute to P2, P4, and P6, while PT

also contributes to P8:

PB(k, µ) = PB,2(k)µ2 + PB,4(k)µ4 + PB,6(k)µ6 (30)

PT(k, µ) = PT,2(k)µ2 + PT,4(k)µ4

+PT,6(k)µ6 + PT,8(k)µ8. (31)

Second, rather than keeping track of the full func-
tional dependence of the bispectrum in order to integrate
Eq. (25) for the PB,j , we can break up the bispectrum

integrals into a series of terms Q
(`)
abc, with −1 ≤ ` ≤ 3,

which depend only on k and η. In the Time-RG frame-

work, the evolution equations for the Q
(`)
abc follow from

Eq. (11). Thus the Q
(`)
abc are analogous to the Iacd,bef (k)

in real-space Time-RG (13). Appendix A expresses the

PB,j as linear combinations of kQ
(`)
abc and then derives

these evolution equations, which require the computa-
tion of a two-dimensional integral analogous to Aacd,bef

100

101

102

103

104

105

 0.001  0.01  0.1  1

(-
1)

ℓ  k
 Q

(ℓ
)

ab
c(

k)
 [M

pc
3 /h

3 ]

wave number k [h/Mpc]

ΛCDM at z=0: a=0,b=0,c=0

Plin
ℓ=-1
ℓ=0
ℓ=1
ℓ=2
ℓ=3

FIG. 7: Bispectrum integrals (−1)`kQ
(`)
abc(k) with a = b =

c = δ, for ΛCDM at z = 0. Thick lines show full Time-RG,
while thin lines show its 1-loop approximation. The other
components are similar in magnitude as well as k-dependence.
The linear power spectrum is included for comparison.

at each time step. Figure 7 compares kQ
(`)
abc to the lin-

ear power spectrum, showing that non-linear contribu-
tions to redshift-space distortions are non-negligible at
the BAO scale. The figure also shows 1-loop approxima-

tions to Q
(`)
abc.

Meanwhile, computation of the PT,j is straightforward.
We describe it in Appendix B for completeness, but the
only change relative to Ref. [39] is that we carry out the
computation using the non-linear power spectra.

The full set of evolution equations for redshift-space
distortions in Time-RG perturbation theory is then
Eqs. (12,13,14,15,A7,A8). Since the bispectra are small

at early times, the Q
(`)
abc can be initialized to zero, as

with the Iacd,bef . Reference [51] finds that the resulting
error is approximately 1/zin for an initial redshift zin,
and our numerical results with zin = 200 are consistent
with this. Redshift-space Time-RG follows the 40 terms

Q
(`)
abc as well as 14 unique Iacd,bef , so we can expect a

fourfold increase in computation time relative to real-
space Time-RG. Our implementation of redshift-space
Time-RG, redTime, is available on-line at http://www.
hep.anl.gov/cosmology/pert.html. redTime uses the
GNU Scientific Library [65] to evolve the equations of
motion, and the CUBA Library [66] to compute numeri-
cally the multi-dimensional integrals in Eqs. (15,A8,B1).
The redshift-space and multipole plots in this article have
been produced using CAMB for transfer functions and
redTime for Time-RG calculations.

B. Comparison to the literature

Figures 8 and 9 compare our calculations to those of
Ref. [39] for a ΛCDM cosmology. The correction terms
PB,j and PT,j are directly compared in Fig. 8, which

http://www.hep.anl.gov/cosmology/pert.html
http://www.hep.anl.gov/cosmology/pert.html
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FIG. 8: Non-linear corrections PB,j(k) and PT,j(k) to
the redshift-space power spectrum. Time-RG calculations
are shown as thick lines, and the results of [39] are thin
lines. ΛCDM is shown at: (a) z = 3; (b) z = 1; (c) z = 0.

shows that the two sets of results agree closely at early
times and large scales. Ref. [39] predicts somewhat larger
corrections at k ≤ 0.2 h/Mpc, while Time-RG corrections
become larger in magnitude around k ∼ 1 h/Mpc.

Multipole moments of the redshift-space power spec-
trum Ps(k, µ) are found by projecting Eq. (24) onto a
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FIG. 9: Ratios of the (a) quadrupole and (b) hexadecapole to
the monopole of the redshift-space power spectrum Ps(k, µ),
shown for the model ΛCDM. Time-RG calculations are shown
as thick lines and TNS calculations as thin lines, with σv taken
from linear theory.

basis of Legendre polynomials P`(µ) for even `:

PL,`(k) =
2`+ 1

2

∫ 1

−1

dµPs(k, µ)P`(µ). (32)

Defining PL,` =
∑
j=0 M`,2jP2j , mn =

∫ 1

−1
dµµ2nFfog,

α = fkσv, and the Legendre coefficients p`i such
that P`(x) =

∑
i p`ix

2i for even `, we have M`,2j =
2`+1

2

∑
i p`,imi+j . For a Gaussian Ffog(αµ), mG

n =

γ( 2n+1
2 , α2)/α2n+1, where γ(a, x) =

∫ x
0
e−tta−1dt is the

incomplete gamma function. For a Lorentzian Ffog,
mL

0 = 2α−1 arctan(α), and for n ≥ 1 we have the re-
cursion relation α2mL

n = 2/(2n− 1)−mL
n−1.

Ratios of the quadrupole (` = 2) and hexadecapole
(` = 4) to the monopole (` = 0) are shown in Fig. 9 for
the Time-RG and TNS [39] calculations. At early times
and large scales, the quadrupole and hexadecapole ra-
tios approach their linear Einstein-de Sitter values 50/49
and 6/49, respectively. At smaller scales, Time-RG and
TNS agree at early times, while TNS predicts substan-
tially higher quadrupole-to-monopole and hexadecapole-
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FIG. 10: Logarithmic contours of the redshift-space power
spectrum Ps(k‖, k⊥) at z = 1. The equation of state parame-
ters w0 and wa are varied from their ΛCDM values w0 = −1,
wa = 0, with all other parameters held fixed.

to-monopole ratios at late times. This is due in part to
the fact that Time-RG overestimates the late-time non-
linear power spectrum Pδδ, while the closure theory cal-
culation of Ref. [39] underestimates it [44].

C. Redshift-space power spectrum

The two main aims of this article are to compute the
effects of massive neutrinos and evolving dark energy
on the redshift-space power spectrum Ps(k‖, k⊥), and to
demonstrate that our results are consistent with N-body
simulations. We are now in a position to do the first of
these.

Figure 10 shows the redshift-space power spectrum for
a range of dark energy models. As either w0 or wa is in-
creased, leading to an overall increase in w(z), the power
spectrum increases both parallel and perpendicular to the
line of sight. Effectively the perpendicular direction con-
strains the growth factor D(z) while the µ-dependence of
Ps constrains the derivative f = −d logD/d log(1 + z).

Meanwhile, Figure 11 varies the neutrino density frac-
tion in ΛCDM models while keeping the early-time power
spectrum normalization constant. The resulting varia-
tion in σ8, the late-time normalization, is the largest
contributor to the differences among the power spec-
tra in Fig. 11. Since Cosmic Microwave Background
(CMB) measurements constrain the early-time normal-
ization, neutrino constraints are strongest when CMB
and large-scale structure data are combined [3].

Aside from differences in σ8, the models in Fig. 11 dif-
fer in their redshift-space dependence to a much greater
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FIG. 11: Logarithmic contours of the redshift-space power
spectrum Ps(k‖, k⊥) at z = 1. The neutrino density pa-

rameter ων = Ων,0h
2 is varied from its ΛCDM value of

zero, with the early-time (large-scale) power spectrum nor-
malization equal for all ων , and all other parameters fixed at
their ΛCDM values. This normalization convention corre-
sponds to σ8 of 0.8, 0.754, 0.705, 0.660, 0.618, and 0.580 for
ων of 0, 0.002, 0.004, 0.006, 0.008, and 0.01, respectively.

extent than those in Fig. 10. Figure 12 presents this effect
in a different way by showing the fractional changes in
the quadrupole caused by varying ων , w0, and wa relative
to their massless-neutrino ΛCDM values. This depen-
dence arises from the small-scale suppression of growth
by massive neutrinos, which enters the linear redshift-
space power spectrum through a scale-dependence in
f(z, k) = −∂ logD(z, k)/∂ log(1 + z), a suppression of
non-linear corrections, and a greater linear-theory veloc-
ity dispersion. Thus an analysis of redshift-space distor-
tions provides one more method for distinguising between
the cosmological effects of massive neutrinos and evolving
dark energy.

IV. COMPARISON WITH SIMULATIONS

A. N-body simulations with HACC

In order to test the accuracy of our perturbative calcu-
lation, we have run a suite of N-body cosmological simu-
lations using the Hardware/Hybrid-Accelerated Cosmol-
ogy Code (HACC), described in Ref. [49]. For each model
in Table I we ran a high-resolution TreePM simulation
with 32003 particles and a box size of (2.1 Gpc)3. Ad-
ditionally, we averaged the results of 16 PM runs, each
with 5123 particles and a box size of (1.3 Gpc)3, in or-
der to reduce the simulation error at quasi-linear scales



11

(a)

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

qu
ad

ru
po

le
 ra

tio
 P

qu
ad

 / 
P

qu
ad

(Λ
C

D
M

)

wave number k [h/Mpc]

ων=0.002
ων=0.004

w0=-1.2
w0=-0.8
wa=-0.5
wa=0.5

(b)

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

qu
ad

ru
po

le
 ra

tio
 P

qu
ad

 / 
P

qu
ad

(Λ
C

D
M

)

wave number k [h/Mpc]

ων=0.002
ων=0.004

w0=-1.2
w0=-0.8
wa=-0.5
wa=0.5

FIG. 12: Sensitivity of the quadrupole to changes in ων , w0,
and wa relative to their values in model ΛCDM at (a) z = 1
and (b) z = 0. Shown for each model is the ratio of its
quadrupole to that of ΛCDM, assuming linear theory for σv.

k ∼ 0.1 h/Mpc. Redshift-space power spectra Ps(k‖, k⊥)
were computed in the distant-observer approximation.
Assuming the observer to be located far from the simu-
lation volume along one of the three coordinate axes, we
used each particle’s line-of-sight velocity to shift its po-
sition from real space to redshift space. Fourier transfor-
mation of this shifted particle distribution yields a mea-
surement of Ps, which can then be averaged over multiple
simulation runs and all three lines of sight.

Our simulations treat massive neutrinos using the lin-
ear approximation of Refs. [47, 48], as described in
Sec. II B. Particles in the simulation represent only the
baryons and cold dark matter. After their non-linear
power spectrum has been computed, the linear neu-
trino power (calculated using Boltzmann integrators such
as CAMB and CMBFAST [57–59, 67]) is added using
Eq. (18). This approximation was shown in Ref. [46] to
agree well with perturbative results, with a discrepancy
at large z and ων that can approximately be corrected by
including the scale-dependence of the linear growth fac-
tor. For an alternative approach to simulating massive
neutrino cosmologies, see, for example, [61].
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FIG. 13: Monopoles (thick lines) and quadrupoles (thin
lines) of Ps(k, µ) computed using Time-RG, TNS [39], non-
linear Kaiser, and N-body methods, for the mν = 0
model ΛCDM.

B. mν = 0 ΛCDM and σv fitting

Perturbative calculations for the massless-neutrino
model ΛCDM are compared with N-body simulations in
Figure 13. At each redshift, the velocity dispersion pa-
rameter σv in the Lorentzian streaming function is fit to
the N-body monopole and quadrupole by minimizing χ2.
The N-body error in each k bin is the quadrature sum
of the sample variance and the run-to-run standard de-
viation in the 16 simulation runs, divided by

√
16. Since

errors in the perturbative calculations in the fully non-
linear regime would bias the σv fitting, resulting in a
worse fit at low k, we restricted the fitting procedure
to the range k < kmax = 0.2 h/Mpc. Even then, at
z = 0, errors in the perturbative calculations appear to
bias σv. Time-RG in real space overestimates P (k) at
k ∼ 0.2 h/Mpc, leading to an overestimate of σv, hence
an underestimate in the quadrupole. Closure theory at
1-loop, used in the TNS calculation, has the opposite
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TABLE II: Wave number k [h/Mpc] below which each pertur-
bation theory is accurate to the given accuracy level (Acc.)
in the ΛCDM massless-neutrino model. “NL Kaiser” uses
the Time-RG real-space power spectrum in the Kaiser RSD
formula, Eq. (19).

z Acc. Time-RG TNS [39] NL Kaiser

` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2

0 1% 0.13 0.09 0.14 0.11 0.08 0.12

2% 0.13 0.09 0.15 0.11 0.08 0.13

5% 0.18 0.11 0.17 0.13 0.17 0.13

10% 0.26 0.11 0.18 0.14 0.27 0.14

0.5 1% 0.15 0.11 0.17 0.15 0.11 0.07

2% 0.19 0.11 0.17 0.15 0.12 0.07

5% 0.21 0.29 0.19 0.15 0.32 0.15

10% 0.33 0.33 0.23 0.20 1.17 0.19

1 1% 0.19 0.28 0.19 0.16 0.08 0.07

2% 0.20 0.33 0.19 0.20 0.12 0.07

5% 0.37 0.40 0.23 0.21 0.70 0.19

10% 1.07 0.47 0.28 0.32 0.92 0.20

2 1% 0.36 0.24 0.21 0.28 0.21 0.19

2% 0.43 0.30 0.23 0.29 0.26 0.19

5% 0.56 0.43 0.29 0.34 0.34 0.20

10% 0.72 0.54 0.34 0.41 0.49 0.25

3 1% 0.29 0.28 0.23 0.28 0.21 0.19

2% 0.36 0.31 0.28 0.29 0.26 0.19

5% 0.50 0.40 0.34 0.36 0.34 0.23

10% 0.66 0.51 0.41 0.43 0.49 0.29

effect. For z & 1, both perturbative calculations agree
well with the simulation. The σv fitting procedure is
discussed further in Appendix C, which shows that our
results are insensitive to the value of kmax within the
range 0.15 h/Mpc ≤ kmax ≤ 0.25 h/Mpc.

Table II uses the data from Fig. 13 to list the maximum
k up to which each perturbative calculation agrees with
simulations to a given accuracy level. The results follow
the broad patterns expected from Fig. 1: for percent-
level accuracy at z . 0.5, the closure-theory-based ap-
proach of TNS is somewhat better than Time-RG, while
for 5%-10% accuracy levels and at higher z, Time-RG is
preferred. In particular, we note that Time-RG diverges
from the N-body power spectra rather smoothly, with
no model-dependent catastrophic errors which could bias
data analyses or forecasts. Meanwhile, the non-linear
Kaiser model, which uses the Time-RG non-linear power
spectrum instead of the linear one in Eq. (19), fails to
match accurately the N-body quadrupole even at z ∼ 1.

Similar patterns can be seen in Figure 14, which shows
the two-dimensional power spectrum Ps(k‖, k⊥) for simu-
lations, Time-RG, TNS, and the non-linear Kaiser model.
The trends seen in Fig. 13 are evident here: Time-RG
overestimates the monopole, particularly at z = 0; TNS
underestimates the monopole; and the Kaiser model sub-
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FIG. 14: Logarithmic contours of the redshift-space power
spectrum Ps(k‖, k⊥) for the massless-neutrino model ΛCDM,
at (a) z = 0; (b) z = 1. Points show N-body calculations,
thick dashed (colored) lines show Time-RG, solid black lines
show TNS, and thin dashed black lines show the non-linear
Kaiser approximation.

stantially underestimates the quadrupole, even at z = 1.

C. Evolving dark energy and massive neutrinos

Finally, we apply our calculation to the last three mod-
els in Table I: an early dark energy, a massive-neutrino
ΛCDM model, and a dark energy with wa = −1.11 and
massive neutrinos. Since next-generation galaxy surveys
will go beyond the BOSS redshift [2] of z = 0.57 to z ≈ 1,
we focus here on z = 1 and 0. Evidently from Figure 15,
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FIG. 15: Monopoles (thick lines) and quadrupoles (thin lines) of the redshift-space power spectra at (left) z = 1 and
(right) z = 0 for (a) EDE, early dark energy with massless neutrinos; (b) νΛCDM, with

∑
mν = 0.094 eV; (c) νwCDM, a

rapidly-evolving dark energy with
∑
mν = 0.29 eV. In each case, points represent N-body calculations, solid (red) lines show

the Time-RG calculation, and dashed (green) lines show the non-linear Kaiser model.
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TABLE III: Wave number k [h/Mpc] below which each perturbation theory is accurate to the given accuracy level (Acc.) for
the models in Table I. “NL Kaiser” uses the Time-RG real-space power spectrum in the Kaiser RSD formula, Eq. (19).

EDE νΛCDM νwCDM

z Acc. Time-RG NL Kaiser Time-RG NL Kaiser Time-RG NL Kaiser

` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2

0 1% 0.11 0.06 0.04 0.10 0.11 0.06 0.05 0.12 0.12 0.06 0.06 0.11

2% 0.12 0.07 0.04 0.10 0.13 0.06 0.06 0.12 0.13 0.06 0.06 0.11

5% 0.16 0.07 0.12 0.10 0.16 0.06 0.16 0.13 0.15 0.08 0.15 0.11

10% 0.20 0.07 0.21 0.11 0.25 0.11 0.27 0.14 0.25 0.11 0.26 0.13

0.5 1% 0.16 0.10 0.07 0.15 0.13 0.06 0.05 0.06 0.14 0.08 0.04 0.04

2% 0.17 0.10 0.07 0.15 0.15 0.11 0.05 0.06 0.15 0.08 0.04 0.06

5% 0.22 0.10 0.22 0.16 0.21 0.12 0.32 0.14 0.21 0.11 0.35 0.06

10% 0.25 0.15 0.33 0.16 0.34 0.49 1.17 0.17 0.33 0.39 1.12 0.16

1 1% 0.18 0.10 0.07 0.09 0.19 0.17 0.06 0.06 0.15 0.13 0.06 0.06

2% 0.18 0.10 0.07 0.09 0.19 0.17 0.06 0.06 0.21 0.17 0.06 0.06

5% 0.25 0.16 0.47 0.18 0.36 0.45 0.70 0.15 0.89 0.46 0.52 0.16

10% 0.38 0.39 1.20 0.19 1.07 0.52 0.92 0.20 1.00 0.52 0.75 0.19

2 1% 0.25 0.41 0.12 0.09 0.45 0.30 0.06 0.08 0.37 0.25 0.12 0.08

2% 0.25 0.55 0.36 0.18 0.49 0.35 0.26 0.08 0.44 0.31 0.27 0.13

5% 1.06 0.83 0.53 0.19 0.62 0.47 0.36 0.20 0.54 0.37 0.35 0.21

10% 1.13 1.10 0.85 0.25 0.79 0.62 0.53 0.26 0.69 0.54 0.49 0.26

3 1% 0.62 0.39 0.26 0.19 0.36 0.34 0.26 0.20 0.37 0.37 0.23 0.13

2% 0.69 0.44 0.33 0.19 0.45 0.38 0.26 0.20 0.44 0.37 0.28 0.21

5% 0.86 0.58 0.44 0.25 0.60 0.51 0.38 0.25 0.58 0.52 0.40 0.26

10% 1.05 0.75 0.65 0.31 0.77 0.65 0.55 0.32 0.74 0.65 0.57 0.33

the Time-RG RSD calculation presented here agrees well
with N-body calculations of the monopole, quadrupole,
and two-dimensional redshift-space power spectrum for
a wide range of models at z = 1. By contrast, the Kaiser
RSD model, Eq. (19) applied to the non-linear real-
space power spectrum, substantially underpredicts the
quadrupole at quasi-linear scales. At z = 0, neither per-
turbative calculation is accurate beyond k ≈ 0.1 h/Mpc
for any of the models. Table III lists the accuracy of
both perturbative methods for all three models over the
redshift range 0 ≤ z ≤ 3.

V. CONCLUSIONS

Cosmological surveys over the next decade will mea-
sure the sum of neutrino masses, and should either de-
tect or decisively exclude order-unity variations in the
dark energy equation of state. Observations are made in
redshift space, with the redshift dependent on the line-
of-sight velocity of an object as well as its distance. Since
peculiar velocities are sourced by overdensities, redshift-
space distortions provide additional information about
the scale-dependent growth of large-scale structure. Per-
turbative techniques for calculating the redshift-space
power spectrum in models with scale-independent growth
were reviewed in Ref. [40], with the method by Taruya,

Nishimichi, and Saito [39] (TNS) proving the most effec-
tive.

In this article we have extended the TNS approach
to models with scale-dependent growth using the Time-
RG perturbation theory, in which higher-order contribu-
tions to the power spectrum are described in terms of
the bispectrum. We have decomposed the higher-order

corrections found by TNS into integrals Q
(`)
abc(k) over the

bispectrum. Using the Time-RG framework, we have de-

rived the evolution equations for the Q
(`)
abc and computed

the redshift-space power spectrum in models with mas-
sive neutrinos as well as rapidly-evolving dark energy.
Finally, we have confirmed the accuracy of our calcu-
lations by comparing them to N-body simulations con-
ducted using the HACC code. We compare our results
to TNS and simulations in Figures 13 and 14 as well as
in Table II. Figure 15 and Table III show that our results
agree closely with N-body simulations for a wide range of
models with massive neutrinos and rapidly-evolving dark
energy equations of state.

Our work is applicable in a variety of ways. Since our
results are accurate at the 10% level over a fairly large
range of wave numbers, particularly for z & 1, they can
be used to forecast constraints from large-scale structure
surveys. Forecasts based upon linear perturbation theory
are truncated at k ∼ 0.1 h/Mpc, since linear theory at
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smaller scales overestimates the amount of information
available from the BAO peak [3]. Accuracy can be im-
proved by building an emulator combining our perturba-
tive calculation at large scales with interpolated N-body
power spectra at small scales [68, 69]. Finally, perturba-
tive techniques allowing for scale-dependent growth are
applicable to modified gravity as well as to massive neu-
trinos.

Appendix A: Evolution of PB in Time-RG

Rather than computing the full functional depen-
dence of the bispectrum B(k, q, p) on three different
wave numbers, we may decompose PB(k, µ) into a set of
k-dependent bispectrum integrals whose time-evolution
may be computed within the Time-RG framework. Ex-
panding the expression (25), we have

PB

kµ
= −

∫
d3q

(2π)3

µ~q
q

[
Bδθδ(k, q, p+)

−µ2Bθθδ(k, q, p+)− µ2
~p+
Bδθθ(k, q, p+)

+µ2µ2
~p+
Bθθθ(k, q, p+)

]
− [~p+ ↔ ~p−] (A1)

where ~p± = ~k±~q implies p2
±µ

2
~p±

= k2µ2 +q2µ2
~q±2kqµµ~q.

The three-dimensional integral over ~q can be evaluated
as the integral over the magnitude q, the angle α between

~q and ~k, and the angle β of ~q − (q̂ · k̂)~k in the plane per-

pendicular to ~k. Since Babc(~k1,~k2,~k3) is invariant under

rotation in ~ki-space, the only β-dependent quantities in
the integral are factors of µ~q raised to integer powers;
thus, the integral over β can be evaluated trivially.

Define the quantities

Q
(`)
abc(k) =

∫
q2dq sin(α)dα

(2π)3

k

p2
+

( q
k

)σ`

P|`|(cosα)

×Babc(k, q, p+) + (−1)`[~p+ ↔ ~p−] (A2)

σ` =

{
sign(`) if ` is odd

0 if ` is even
(A3)

for ` = −1, 0, 1, 2, and 3, where the P are Legendre
polynomials. Then

PB,2

πk
= −2Q

(−1)
δθδ − 2Q

(1)
δθδ −

8

3
Q

(2)
δθδ −

4

3
Q

(0)
δθδ

+
4

3
Q

(2)
δθθ −

4

3
Q

(0)
δθθ +

6

5
Q

(3)
δθθ −

6

5
Q

(1)
δθθ (A4)

PB,4

πk
= −2Q

(−1)
θθδ − 2Q

(1)
θθδ −

8

3
Q

(2)
θθδ −

4

3
Q

(0)
θθδ

−2Q
(−1)
δθθ − 4Q

(2)
δθθ − 2Q

(3)
δθθ +

4

3
Q

(2)
θθθ

−4

3
Q

(0)
θθθ +

6

5
Q

(3)
θθθ −

6

5
Q

(1)
θθθ (A5)

PB,6

πk
= −2Q

(−1)
θθθ − 4Q

(2)
θθθ − 2Q

(3)
θθθ (A6)

where the PB,j and Q
(`)
abc are understood to depend on k.

Next, we study the evolution of the Q
(`)
abc in Time-RG.

Since the evolution of the Babc(k, q, p) only depends on
the other components of Babc(k, q, p), the evolution of

the Q
(`)
abc for fixed ` will only depend on the other com-

ponents of Q
(`)
abc. We can easily multiply the bispectrum

evolution equation (11) by (k/p2
±)(q/k)σ`P|`|(cosα), in-

tegrate over d3q, and pull the time derivative outside of
the integral. Therefore,

∂ηQ
(`)
abc =−ΩadQ

(`)
dbc− ΩbdQ

(`)
adc− ΩcdQ

(`)
abd + 2eηR

(`)
abc (A7)

R
(`)
abc(k) =

∫
q2dq sinαdα

(2π)3

k

p2
+

( q
k

)σ`

P|`|(cosα)

×
[
γade(k, q, p+)Pdb(q)Pec(p+)

+γbde(q, p+, k)Pdc(p+)Pea(k) (A8)

+γcde(p+, k, q)Pda(k)Peb(q)
]

+ (−1)`[~p+ ↔ ~p−]

where the Q
(`)
abc and R

(`)
abc at each η depend only on k.

Appendix B: Computation of PT

Beginning with Eq. (26), we find PT by integrating

over the angle β of ~q in the plane perpendicular to ~k.

Once again defining α as the angle between ~k and ~q, and
defining τab = Pa,θ(q)Pb,θ(p−),

PT,j

πk2
=

∫
q2dqsαdα

(2π)3p2
−

∑
ab

Sab,jτab for j = 2, 4, 6, 8 (B1)

where the Sab,j are given by:

Sδδ,2 = −s2
α (B2)

Sδθ,2 = −3s4
αq

2/(4p2
−) (B3)

Sθδ,2 = −3s6
α/4 (B4)

Sθθ,2 = −5s6
α/8 (B5)

Sδδ,4 = 2cαk/q + s2
α − 2c2α (B6)

Sδθ,4 = −3s2
α
k2

p2−
+ 9cαs

2
α
kq
p2−

+ s2
α(s2

α − 4c2α) 3q2

2p2−
(B7)

Sθδ,4 = 3cαs
2
αk/q + 3s2

α(s2
α − 4c2α)/2 (B8)

Sθθ,4 = −s4
α

9k2

4p2−
+ c2αs

4
α

45kq
4p2−

+ s4
α(s2

α − 6c2α) 15q2

8p2−
(B9)

Sδθ,6 = c3α/qp
2
− + 3(s2

α − 2c2α)kq/p2
−

+6(c2αs
2
α − c4α/3− s4

α/8)6q2/p2
− (B10)

Sθδ,6 = (2c2α − 3s2
α)k/q + 6(c2αs

2
α − c4α/3− s4

α/8) (B11)

Sθθ,6 = 3cαs
2
αk

3/(qp2
−) + 9s2

α(s2
α − 4c2α)k2/(4p2

−)

+30(c3αs
2
α − cαs4

α/4)kq/p2
−

+45s2
α(c2αs

2
α − 2c4α/3− s4

α/12)q2/(2p2
−) (B12)
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FIG. 16: Error associated with neglecting the k-dependence
of Ω10, Eq. (6), in the non-linear Time-RG corrections
Eqs. (14,A7). Differences between power spectra computed
with the maximum and minimum values of Ω10 are shown
at z = 0 for a model with ων = 0.01, corresponding to∑
mν = 0.94 eV.

Sθθ,8 = (2c3α − 3cαs
2
α) k3

qp2−
+ 18(c2αs

2
α − 1

3c
4
α − 1

8s
4
α) k

2

p2−

+6(c6α − 5c3αs
2
α + 15

8 cαs
4
α) kq

p2−

−(2c6α − 15c4αs
2
α + 45

4 c
2
αs

4
α − 5

8s
6
α) q

2

p2−
(B13)

We have used the shorthand notation sα = sin(α) and
cα = cos(α). All components of Sab,j not listed above
are zero.

Appendix C: Error bounds and σv fits

1. Scale-dependence of Ω

In the general multi-species case as well as in the lin-
ear neutrino approximation of Sec. II B, the linear evolu-
tion matrix Ω is scale-dependent. In particular, Eq. (6)
shows that the fractional change in Ω10 is of order fν
in massive neutrino models. This scale-dependence has
been neglected in real-space and redshift-space Time-RG,
Eqs. (14,A7), in which Ω has been pulled outside the in-
tegrals over wave number. Here we estimate the error
associated with this approximation and show that it is
small enough to be negligible even for neutrino masses
several times current bounds.

In order to place an upper bound on this k-dependent
Ω error, we study a model similar to νΛCDM but with
ten times the neutrino content, ων = 0.01, corresponding
to
∑
mν = 0.94 eV. The function Ω10(z, k) drops from a

maximum value at large scales, where neutrinos cluster
like cold matter, to a small-scale value that is smaller by
a fraction ≈ fν/(1− fν). Moreover, we expect the error
to be smaller at higher z, since it only affects non-linear
correction terms, which grow with time.
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FIG. 17: Best-fit velocity dispersion σv for the models in Ta-
ble I, fitting to a suite of 15 Particle-Mesh N-body simulations
at scales k ≤ kmax = 0.2 h/Mpc.

We estimate the k-dependent Ω error by computing
power spectra using either the maximum or the mini-
mum values of Ω10 in Eqs. (14,A7). Our estimate, half
the difference between the two, is shown in Fig. 16 for the
power spectrum components Pj(k) defined in Eq. 29. For
the dominant contributors to the redshift-space power
spectrum, P0, P2, and P4, the error is less than 0.5% for
k ≤ 0.15 h/Mpc and less than 0.9% for k ≤ 0.4 h/Mpc.
Errors in the smaller terms P6 and P8 are less than 1%
for k ≤ 0.25 h/Mpc. At higher z, and for more realistic
fν , we expect these errors to be several times smaller,
meaning that they are negligible compared with the er-
rors listed in Tables II and III.

2. Best-fit σv

Our results in Tables II and III are based on fitting
the velocity dispersion σv in the Lorentzian streaming
function Ffog(fσvkµ) to the N-body simulations over the
range k ≤ kmax = 0.2 h/Mpc. The resulting velocity
dispersions are shown in Fig. 17 for the models in Ta-
ble I. Velocity dispersions for models ΛCDM, νΛCDM,
and νwCDM are similar, while the early dark energy
model EDE, which enhances structure growth, has a
larger velocity dispersion. Also shown, for ΛCDM, are
the velocity dispersion in the TNS calculation and that of
linear theory, Eq. (22). For ΛCDM, both non-linear cal-
culations find σv below linear theory at high z and above
linear theory at low z. The best-fit σv values appear to
be biased by perturbation theory errors at low z. Time-
RG, which overpredicts late-time small-scale power, has
a higher σv than TNS, which underpredicts it.
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TABLE IV: Sensitivity to kmax. Wave numbers k [h/Mpc]
below which Time-RG perturbation theory is accurate to the
given accuracy level (Acc.) for model νΛCDM are shown. In
each case, the velocity dispersion σv in the streaming func-
tion Ffog(fσvkµ) was fit to the N-body power spectrum over
the range k ≤ kmax. For comparison, Tables II and III used
kmax = 0.2 h/Mpc.

z Acc. kmax
h/Mpc

= 0.1 kmax
h/Mpc

= 0.15 kmax
h/Mpc

= 0.25

` = 0 ` = 2 ` = 0 ` = 2 ` = 0 ` = 2

0 1% 0.09 0.06 0.11 0.06 0.13 0.06

2% 0.11 0.06 0.13 0.06 0.13 0.06

5% 0.14 0.11 0.15 0.11 0.19 0.06

10% 0.21 0.17 0.21 0.11 0.27 0.11

0.5 1% 0.13 0.11 0.13 0.11 0.14 0.06

2% 0.13 0.12 0.13 0.11 0.19 0.06

5% 0.19 0.17 0.21 0.17 0.26 0.11

10% 0.30 0.36 0.32 0.40 0.42 0.17

1 1% 0.16 0.17 0.17 0.17 0.19 0.14

2% 0.19 0.17 0.19 0.17 0.21 0.17

5% 0.32 0.36 0.32 0.44 0.96 0.17

10% 1.09 0.45 1.07 0.49 1.04 0.59

2 1% 0.19 0.19 0.41 0.17 0.41 0.29

2% 0.28 0.21 0.49 0.30 0.49 0.30

5% 0.78 0.86 0.60 0.38 0.61 0.38

10% 0.96 0.99 0.77 0.58 0.77 0.59

3 1% 0.19 0.18 0.36 0.34 0.35 0.34

2% 0.28 0.19 0.45 0.38 0.45 0.35

5% 1.08 0.28 0.58 0.49 0.58 0.49

10% 1.14 0.53 0.76 0.64 0.76 0.62

3. Sensitivity to kmax

In the quasi-linear regime, errors in perturbation the-
ory increase with increasing k, while uncertainties in

N-body simulations and actual data decrease due to a
greater number of modes. Thus one might worry that our
σv fitting procedure is dominated by wave numbers near
kmax, which may be at the edge of the regime of validity
of perturbation theory. Table IV tests the sensitivity of
our redshift-space Time-RG perturbative calculation to
kmax for model νΛCDM. The table shows wave numbers
up to which perturbation theory is accurate for several
accuracy thresholds, for kmax = 0.1 h/Mpc, 0.15 h/Mpc,
and 0.25 h/Mpc. Comparison to Table III shows that
kmax = 0.15 h/Mpc, 0.2 h/Mpc, and 0.25 h/Mpc are
similar. At the 1 − 2% accuracy levels and at z ≥ 2,
kmax = 0.1 h/Mpc leads to a significantly worse fit.
This is not surprising, since the N-body error bars in
Fig. 15 (b) are large for k < 0.1 h/Mpc, and since not
much non-linear information is available at such large
scales. We conclude that our results are stable over the
range 0.15 h/Mpc ≤ kmax ≤ 0.25 h/Mpc.
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