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We investigate the pre-inflationary dynamics of inflation with the Starobinsky potential, favored
by recent data from the Planck mission, using techniques developed to study cosmological perturba-
tions on quantum spacetimes in the framework of loop quantum cosmology. We find that for a large
part of the initial data, inflation compatible with observations occurs. There exists a subset of this
initial data that leads to quantum gravity signatures that are potentially observable. Interestingly,
despite the different inflationary dynamics, these quantum gravity corrections to the powerspectra
are similar to those obtained for inflation with a quadratic potential, including suppression of power
at large scales. Furthermore, for super horizon modes the tensor modes show deviations from the
standard inflationary paradigm that are unique to the Starobinsky potential and could be important
for non-Gaussian modulation and tensor fossils.

I. INTRODUCTION

The paradigm of cosmic inflation is the most accepted one that explains the origin of the anisotropy observed in
the cosmic microwave background (CMB). The inflationary phase of accelerated expansion stretches tiny primordial
quantum inhomogeneities to large scale perturbations which in turn seed the large scale structure observed today [1–7].
This is a remarkable accomplishment of cosmology. Inflation is often modeled by a scalar field with a self-interacting
potential that gives rise to a slow-roll phase during which the energy density of the matter field remains nearly
constant and the spacetime behaves like a quasi-de Sitter spacetime. However, there is no unique way of obtaining
slow-roll inflation. There are numerous inflationary models that give rise to a quasi-de Sitter phase including single
field inflation with various potentials, quasi-single field inflation, Dirac-Born-Infeld inflation and multi-field inflation.
Fortunately, recent results from the Planck mission [8] and WMAP [9] are able to rule out various scenarios and favor
a few. In particular, the data show that single field inflation with a quadratic potential is moderately disfavored and
plateau-like inflationary potentials including the Starobinksy potential are favored. This has lead to an increased
interest in studying single field inflation with a Starobinsky potential.

However, as shown by Borde, Guth and Vilenkin [10], despite its great success the standard inflationary scenario,
which is based on classical general relativity, is past incomplete due to the presence of big bang singularity. This is true
for all models of scalar field inflation including the Starobinksy potential. The problem of a big bang singularity is an
artifact of using Einstein’s equations all the way to the Planck scale. It is expected that these problems will be resolved
by a quantum theory of gravity which will depart from classical general relativity in the deep Planck regime. Several
important questions arise for such a theory: Is there a consistent extension of the inflationary scenario all the way
to the Planck scale? Will inflation occur naturally, or would one require special fine tuning on the initial conditions
to obtain a desired phase of inflation? To answer these questions the fundamental quantum gravity theory, while
modifying the Planck scale physics, must be in agreement with classical general relativity (GR) when the spacetime
curvature is well below Planck scale. The theory will have to provide a consistent framework where one can study
the evolution of scalar and tensor perturbations. Additionally, the theory should be able to provide natural initial
conditions for the quantum perturbations in the deep Planck regime. Will these initial conditions lead to the usual
Bunch-Davies state used in the standard inflationary scenario, or are they different? Can there be quantum gravity
corrections to the standard power spectra? Modern CMB observations have put strong constraints on various aspects
of the scalar and tensor power spectra. Are the predictions from the fundamental quantum gravity theory compatible
with these observational data? As was shown in [11, 12] all these questions can be answered in the framework of loop
quantum cosmology (LQC). In this paper we will study the inflationary scenario with a Starobinsky potential in the
LQC framework.

Over the past decade, LQC has emerged as a concrete framework to address these issues and study the evolution of
both the background and cosmological perturbations all the way to the Planck scale [11–14] (for other approaches to
studying cosmological perturbations within LQC, see [15–21]). Indeed, a key feature of LQC models is the resolution
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of classical big bang type singularities via a non-singular quantum bounce. Extensive analytical and numerical studies
have been carried out to understand the nature of a variety of cosmological models in the quantum gravity regime
where the spacetime curvature is Planckian. For example: the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
model which we will be focusing on in this paper [13, 14, 22–24], open and closed FLRW models [25–27], flat FLRW
model in the presence of cosmological constants [28–30], various homogeneous and anisotropic models [31–35] and
their generalizations to include inhomogeneities [36–38] (see [39] for an up-to-date review). Occurrence of the quantum
bounce is a robust prediction of LQC in all these models which remains independent of the choice of initial conditions
and energy conditions [23, 24, 40–42].

It is now natural to raise questions discussed above in the context of LQC. Extensive analytical and numerical studies
performed in [11, 12] show that the answer to most of the questions mentioned is in the affirmative for the single field
inflationary model with a quadratic potential. The Planck scale LQC correction greatly modifies the pre-inflationary
dynamics while being in harmony with the inflationary phase [44].1 The altered behavior in the background due to UV
quantum gravity corrections that resolves the singularity can leave imprints on the infrared modes of the cosmological
perturbations [12]. This seems counter-intuitive at first but, as shown in [12] and also explained in Sec. IV B, is
actually consistent. It is a remarkable feature of LQC that while alleviating the fundamental problem of a classical
singularity one can obtain further interesting phenomenological consequences that can be compared against recent
observations [48–50].

How about inflation with a Starobinsky potential, which is in fact favored by the data? A priori it is not obvious
that any of the results that are true for the quadratic potential will also hold for the Starobinsky potential. For
instance, the dynamics of both models is considerably different during inflation resulting in the different predictions
made by each model. So why would the pre-inflationary dynamics be similar? Furthermore, due to the existence of a
maximum energy density in LQC, the initial data surface for the quadratic potential is a closed surface. In contrast,
as a result of the flattening of the Starobinsky potential, in this model the initial data surface is open. Does this have
any consequences? It was found that for the quadratic potential inflation was nearly inevitable: almost all the initial
data lead to inflation compatible with observations [44, 51].2 Since the initial data surfaces are completely different
(even its topologies are dinstinct), one may wonder how likely the occurrence of inflation is for a Starobinksy potential
and whether enough e-folds are generated for any of the initial conditions? In addition, what happens to the LQC
corrections to scalar and tensor power spectra? Are there any features that can distinguish between the quadratic
and Starobinsky potential? We summarized the main findings of our analysis in a Letter [52]. In this paper, we
provide the details of the analysis and elaborate on the phenomenological investigation of the background spacetime
and quantum perturbations.

In order to study the evolution of quantum perturbations on the LQC modified background geometry we used
the framework of quantum field theory on quantum cosmological spacetime [11, 53] and follow the strategy used in
[12, 48, 49] to obtain potentially observable consequences of the quantum geometry for the Starobinky potential. First,
we focus on the dynamics of the background spacetime. Next, we study the quantum perturbations on this quantum
modified background. Surprisingly, as shown in [11], the quantum perturbations on the quantum geometry experience
a smooth, dressed geometry which encodes all the LQC quantum modifications relevant for the perturbations. Due
the non-singular nature and finite maximum curvature at the bounce long wavelength modes of the perturbations
are affected by the curvature. As a result their power spectra is different on large scales as compared to standard
inflationary power spectra. For inflation with a quadratic potential, this can lead to some of the large scale anomalies
observed in the CMB [48, 49].

The main results of our analysis are as follows. As expected, the classical big bang singularity is resolved via a
quantum bounce and the energy density is maximum there. This defines for us the space of initial conditions at the
bounce. Along the lines of the analysis of the quadratic potential, using the recent observational data, we define a
desired phase of slow roll for compatibility with observations. We find that, although the initial data surface is very
different from that in the quadratic case, all initial conditions -except for a very tiny fraction- lead to the desired
slow-roll phase in the future evolution. Interestingly, only the kinetic energy dominated bounces are compatible
with observations and none of the potential energy dominated bounces undergo inflation. This is in contrast with
the quadratic case, where all potential energy dominated cases are compatible with observations. Therefore, for
observationally interesting initial conditions details of the Starobinsky potential do not matter and the background
quantum gravity regime is practically the same as that for the quadratic case.3 This results in similar prediction
for the scalar and power spectra of the observable modes as for the quadratic case. Interestingly though, we find

1 The background dynamics in the pre-inflationary phase has also been investigated in great detail for power-law inflation [45] and non-
minimally coupled scalar field [46] in the flat FLRW model. For an inflationary scenario in the presence of anisotropies in LQC, see e.g.
[47].

2 For a detailed investigation of the initial conditions in the pre-bounce phase of this model, see [43].
3 Although for the quadratic case, all potential energy dominated initial conditions are compatible with observations, only the kinetic

energy dominated cases are extensively studied in the literature (as these are more interesting from a LQC perspective as well as for
computational limitations). Therefore, when we refer to results for the quadratic potential, we in fact only mean to compare to the
cases reported in the literature: the kinetic energy dominated bounces.
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that there exist initial conditions for which the scalar power spectrum of super horizon modes do depend on the
potential. The tensor spectrum, however, remains the same. This could lead to interesting implications for potential
dependent correction to the slow-roll consistency relation and signatures of LQC on the CMB power spectrum due to
non-Gaussian modulation of the power spectra as suggested in [49, 54].

We organize the paper as follows. We begin by reviewing the key features of LQC in Sec. II A and the framework of
quantum field on quantum background in Sec. II B. In Sec. III, we fix the mass parameter of the potential using recent
observational results from the Planck mission and describe initial data for both the background and the perturbation.
The results are described in Sec. IV. We summarize our main results and discuss future extensions of this work in
Sec. V.

Throughout this paper, we use the following conventions. The spacetime metric has signature -+++. All numerical
results will be quoted in Planck units (G, ~ and c are all equal to one). However, we often write the Planck mass
mPl := ~1/2c1/2G−1/2 (or Planck length lPl or Planck second sPl := lPl/c) explicitly to aid the reader and in equations
we will display G and ~ to highlight their physical content. The Planck energy density also plays an important role
and is given by ρPl := ~−1c7G−2. (Note that the Planck mass differs from the reduced Planck mass that is often used

in cosmology by a factor of
√

8π.)

II. THE FRAMEWORK

In this section we first pay a brief visit to the main features of LQC relevant to our study. Then, we discuss the
framework of quantum field theory on quantum spacetime that we will be using to study the evolution of cosmological
perturbations. We will be working with the flat FLRW model with R3 spatial topology.

A. Features of LQC

LQC is based on the canonical quantization framework of loop quantum gravity (LQG).4 The LQG quantization
procedure is to first write the classical Hamiltonian constraint of GR in terms of connection and triad variables.
Then, the holonomy of the connection and the flux of the triads are promoted to quantum operators (rather than the
connection and the triads themselves). This quantization scheme is diffeomorphism invariant and predicts a discrete

quantum geometry with a minimum area gap given by ∆ l2Pl = 4
√

3πγl2Pl with γ = 0.2375 the Barbero-Immirzi
parameter whose is value is fixed via black hole entropy calculation in LQG [39, 58, 59]. LQC applies the LQG
techniques to cosmological models: one first identifies the underlying symmetries of the spacetime and writes the
classical Hamiltonian constraint in terms of the symmetry reduced connection and triad variables. The quantization
procedure is then applied to these symmetry reduced variables. The resulting quantum Hamiltonian constraint in
LQC is a quantum difference equation instead of a differential equation. The discreteness in this equation is fixed by
the minimum area gap ∆. The evolution of a wavefunction of the Universe, governed by the quantum Hamiltonian
constraint turns out to be non-singular. That is, the physical wavefunction remains peaked on non-zero volumes and
the expectation values of physical observables remain finite and non-singular throughout the evolution. Moreover,
an initially sharply peaked state, which describes a macroscopic universe at late times, remains sharply peaked at
all times; even in the deep Planck regime [13, 14, 60]. Therefore, one can express the leading features of the loop
quantum geometry by tracking the “mean geometry” described by the expectation values of the physical observables
for a sharply peaked wavefunction. This leads to the so called effective description of LQC.

The effective description of LQC is based on the geometric formulation of quantum mechanics [61, 62], where via
a judicious choice of semi-classical states and by looking at the expectation values of the physical observables one
can find a faithful embedding of the classical phase space into the quantum phase space. The effective Hamiltonian
obtained via this procedure gives rise to modifications to the classical Friedmann equation [63]:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρmax

)
, (2.1)

where H is the Hubble parameter, a the scale factor appearing in the FLRW models, ρ the energy density of the
matter sources and ρ

max
is the maximum upper bound on the energy density:

ρmax =
18π

∆3 G l2Pl

≈ 0.41 ρPl. (2.2)

4 For other approaches to cosmology within the framework of canonical LQG see e.g. [55–57]
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It is important to note that ρ
max

is a universal constant whose origin is solely quantum geometric in nature, as evident
by the factor ∆ in the equation above. Similarly a modified Raychaudhuri equation can also be derived:

ä

a
= −4πG

3
ρ

(
1− 4ρ

ρ
max

)
− 4πGP

(
1− 2ρ

ρ
max

)
, (2.3)

where as usual P refers to the pressure of the matter field(s). This can also be written as:

Ḣ = −4πG (ρ+ P )

(
1− 2ρ

ρmax

)
. (2.4)

In obtaining the modified Friedmann and Raychaudhuri equation no assumptions about the matter field has been
made. Thus, the non-singular features of LQC remain to hold for all types of matter field. Furthermore, the form of
the conservation equation remains the same as in the classical theory:

ρ̇+ 3H (ρ+ P ) = 0. (2.5)

If the matter source is a scalar field φ with a standard kinetic term and a potential V (φ), the conservation equation
above is equivalent to the evolution equation of φ:

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0 (2.6)

where we used that ρ = φ̇2/2 + V (φ) and P = φ̇2/2 − V (φ). Note that the quantum geometry only influences the
dynamics of the scalar field through the Hubble rate H.

Before moving on to the next subsection let us briefly remark on the main aspects of the modified dynamics:

• In contrast to the classical Friedmann equation where H2 is directly proportional to the energy density, the
modified Friedmann equation (eq. (2.1)) contains a correction term quadratic in ρ that appears with an important
negative sign. This implies that for a matter field which satisfies the standard energy conditions, in LQC the
Hubble rate (and hence ȧ) vanishes when ρ = ρ

max
even though H in this scenario can never vanish in GR!

Moreover, eq. (2.3) dictates that the second time derivative of a is positive there, consequently a attains a
minimum. This is the point where the scale factor undergoes a bounce.

• In the limit when the spacetime curvature in very small compared to the Planckian value, the quadratic cor-
rections on the right hand side of eq. (2.1) and eq. (2.3) are negligible and one recovers the classical Friedmann
and Raychaudhuri equations. Therefore, during the backward evolution of a large classical universe, LQC and
classical evolution trajectories coincide as long as ρ� ρ

max
. In the quantum regime, when ρ becomes a few per-

cents of ρ
max

, the two theories start to deviate. If one continues the evolution further back in time, all classical
trajectories undergo a big-bang singularity and all curvature scalars diverge, while the LQC trajectories bounce
at a finite scale factor.

• It is straightforward to conclude from eq. (2.1) and (2.3) that the Hubble rate also has an upper maximum when
ρ = ρmax/2:

Hmax =

√
1

4γ2∆
= 0.93mPl. (2.7)

Unlike in the classical theory, where H monotonically approaches infinity during the approach to the big-bang
singularity, in LQC H increases to Hmax and then quickly falls to zero at the bounce. For kinetic energy
dominated bounces the duration between the bounce and H = Hmax is of the order of 0.2sPl.

• It has been explicitly shown for a flat FLRW model sourced with a perfect fluid with constant equation of state
that the upper bounds on the energy density and Hubble rate necessarily lead to an upper bound on all other
curvature scalars [24]. Hence, all strong curvature singularities are generically resolved. Similar robustness
results have also been obtained in the presence of anisotropies in the Bianchi-I spacetime [64].



5

B. Quantum field theory on quantum spacetime

In this subsection, we will briefly discuss the framework of quantum field theory on a quantum spacetime background.
For details and an application to an inflationary scenario with a quadratic potential see [11, 12, 53]. In the standard
treatment of cosmological perturbations, one treats cosmological perturbations as quantum fields on a classical FLRW
background geometry that solves Einstein’s equations. In a quantum gravity theory however, since the background
is no longer given by a classical metric, one needs a framework of quantum fields propagating on quantum spacetime.
Such a framework was developed in the context of LQC in [53]. Compared to the framework of quantum field theory in
curved background, quantum fields in quantum spacetime seems an extremely difficult problem at first: Now one has
to keep track of the evolution of the quantum geometry (described by a wavefunction Ψ(a, φ)) rather than just a few
time dependent parameters that describe the metric. To be strict, the situation is even worse: in the quantum theory
there is no notion of a metric. Nevertheless, as described in great detail in [11, 53], surprising simplifications occur if
the cosmological perturbations can be treated as test fields. That is, if quantum fields describing the perturbations
evolve without affecting the evolution of the background wavefunction or, in other words, the backreaction of these
perturbations is negligible.

In this test field approximation, the dynamics of quantum field describing cosmological perturbations on the back-
ground quantum geometry is equivalent to propagation of quantum fields on a quantum modified effective geometry
described by a dressed metric g̃ab [11, 12]:

g̃ab dx
a dxb = ã2

(
−dη̃2 + d~x2

)
, (2.8)

where ã, the dressed scale factor, and η̃, dressed conformal time, are:

ã =

(
〈Ĥ−1/2

0 â4 Ĥ
−1/2
0 〉

〈Ĥ−1
0 〉

)1/4

and dη̃ = 〈Ĥ−1/2
0 〉

(
〈Ĥ−1/2

0 â4 Ĥ
−1/2
0 〉

)1/2

dφ, (2.9)

where Ĥ0 is the background Hamiltonian and the expectation values are taken with respect to the background quantum
geometry state given by Ψ(a, φ).

It is important to note that the dressed metric does not describe the full quantum geometry, but rather the quantum
modified smooth geometry that is relevant for cosmological perturbations. Moreover, ã is not merely the expectation
value of the scale factor operator. As apparent from the expressions in the above equation, the dressed quantities know
about the background quantum geometry and hence about the quantum fluctuations in the background geometry. In
the derivation of the dressed metric approach no assumptions were made regarding the type of the background state
Ψ, therefore this framework is valid for an arbitrary physical state that solves the quantum Hamiltonian constraint of
LQC. In this paper, we will consider very sharply peaked states for which the relative volume dispersion ∆V/V � 1.
This leads to a further computational simplification, namely, the dressed scale factor can now be well approximated
by the scale factor of the effective dynamical equations (eq. (2.1)) discussed in the previous subsection.

The cosmological perturbations on this background are described by the gauge-invariant Mukhanov-Sasaki scalar
mode Q̂ and two tensor modes T̂ (1) and T̂ (2). It is simplest to work in the (comoving) momentum space, where the

mode functions satisfy a simple equation mode by mode. We decompose Q̂ as

Q̂(η̃, ~x) =

∫
d3k

(2π)3

(
â~k qk(η̃) + â†

−~k
q∗k(η̃)

)
ei
~k·~x, (2.10)

where k = |~k| and the mode functions qk(η̃) are assumed to be square-integrable. The mode functions are solutions
to

q′′k (η̃) + 2
ã′

ã
q′k(η̃) +

(
k2 + Ũ

)
qk(η̃) = 0 (2.11)

where primes denote derivatives with respect to the dressed conformal time η̃ and with

Ũ =
〈H−1/2

0 â2 Û(φ) â2H
−1/2
0 〉

〈H−1/2
0 â4H

−1/2
0 〉

and U(φ) = a2

(
fV (φ)− 2

√
f
∂V

∂φ
+
∂2V

∂φ2

)
, (2.12)

where f = 12πG
1
2 φ̇

2

1
2 φ̇

2+V (φ)
. Note that the effective potential Ũ is completely determined by the background quantities.

Furthermore, the mode functions are normalized so that their Klein-Gordon norm is i and, consequently, the creation
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and annihilation operators satisfy the standard commutation relations, [â~k, â
†
~k′

] = ~ (2π)3 δ(3)(~k − ~k′). A similar

decomposition can be done for the tensor perturbations. The main difference being that the tensor mode functions
ek(η̃) now satisfy an even simpler equation than the scalar modes:

e′′k(η̃) + 2
ã′

ã
e′k(η̃) + k2ek(η̃) = 0. (2.13)

These equations for the scalar and tensor modes, (2.11) and (2.13), will play an essential role in the discussion of
power spectra and quantum gravity effects on very long wavelength modes.

III. PARAMETERS AND INITIAL CONDITIONS

As discussed in the previous sections, here we are interested in studying the LQC extension of the inflationary
scenario where inflation is driven by a scalar field φ with a self interacting potential given by [65–67]:

V (φ) =
3M2

32πG

(
1− e−

√
16πG

3 φ
)2

, (3.1)

where M is the mass of the scalar field. The above potential is also known in the literature as the Starobinsky potential.
In this section, we use the most recent observational data from the Planck mission [68] to fix this mass parameter M .
We then determine the values of slow-roll parameters that are necessary for compatibility with observations. This
analysis is relevant for the next section where we determine the set of initial conditions for the background quantities
that is compatible with observations. Finally, we end this section with a discussion of the initial conditions for the
quantum perturbations.

A. Background initial data

Let us first recall the definition of the slow-roll parameters. There are various definitions that are useful in different
settings. Here, we will use the following two distinct set of slow-roll parameters:

• the (Hubble) slow-roll parameters, which are defined in terms of H and its derivatives. This is an infinite tower
of parameters, however, here we will only need the first two, which are given by

ε = − Ḣ

H2
and δ = − Ḧ

2ḢH
. (3.2)

• and the potential slow-roll parameters, which are defined for single field inflationary models in terms of the
potential of the inflaton field and its derivatives. The first two are

εV =
1

16πG

(
V ′

V

)2

and δV =
1

8πG

V ′′

V
. (3.3)

Within the slow-roll approximation, i.e. neglecting terms that are quadratic in the slow-roll parameters, these param-
eters are related in the following way

ε ' εV ,
δ ' δ

V
− ε

V
,

where ' is to indicate that the equality is true only within the slow-roll approximation.
The spectral index ns and the field amplitude As of the scalar perturbations at the time when the mode k∗ exits

the Hubble radius during inflation are [68]

ns = 0.9645± 0.0062,

As = (2.474± 0.116)× 10−9.

Note that here we are using k∗ = 0.002 Mpc−1 while Planck reports ns and As at k = 0.05 Mpc−1. This choice for
k∗ was made for the following two reasons: (i) the value of N∗ used in this paper is computed for 0.002 Mpc−1 [68],
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and (ii) for an easy comparison with the previous investigations of the inflationary scenario in LQC [12]. We use the
power law scalar powerspectrum with constant ns to compute As and ns at k∗ = 0.002 Mpc−1 from the Planck data.

For a quadratic potential, ns and As uniquely specify ε, δ, H, φ and φ̇ at the time t∗ when k∗ exited the horizon.
Additionally, it determines the inflaton mass m within the slow-roll approximation, which is consistent with observa-
tional error bars. However, for the Starobinsky potential δ 6= 0, unlike for the quadratic potential. Therefore, ns and
As are not enough and one needs one more piece of information to uniquely specify these parameters. We take as
additional input N∗, which is the number of e-folds from the time when k∗ exited the horizon to the end of slow-roll
inflation defined by ε = 1. We will refer to this period as the desired slow roll phase of inflation. For Starobinsky
inflation, N∗ ∈ (54, 62). Here, we will use the middle value N∗ = 58.5

Now having ns, As and N∗ at our disposal we use Einstein’s equations, the relations among As, ns, the Hubble
rate and the slow roll parameters to solve for ε, δ,H, φ and φ̇ at the time of horizon crossing as well as to fix the mass
parameter M appearing in the Starobinsky potential. This gives us the following complete system of six equations
and six unknowns:

As =
H2
∗

πε∗m2
Pl

(3.4)

ns − 1 ' −4ε∗ + 2δ∗ (3.5)

N∗ ' −1.04 +
3

4
e
√

16πG
3 φ∗ −

√
3πGφ∗ (3.6)

3Hφ̇∗ + V ′(φ∗) ' 0 (3.7)

H2 =
8πG

3

(
1

2
φ̇∗

2
+ V (φ∗)

)
(3.8)

φ̇∗
2
(ε∗ − 3) + 2ε∗V (φ∗) = 0 (3.9)

where a prime denotes the derivative with respect to φ and it is understood that all conditions are to be evaluated at
the time t∗. The first equation relates the amplitude of the scalar power spectrum As to the Hubble rate H and slow-
roll parameter ε at horizon crossing and the second one is a relation true for a standard single field inflationary model

with arbitrary potential. To obtain the third equation, we used N∗ := ln aend
a(t∗)

' −8πG
∫ φend

φ∗
V
V ′ dφ and approximated

that ε ' ε
V

at the end of inflation from which we obtain that φend = 0.187 mPl. The fourth and fifth equations

are the two independent Einstein’s equations for a homogeneous and isotropic universe, where for the first one φ̈ is
neglected which follows from the slow-roll approximations. The last equation is a rewriting of the definition for ε after
substitution of Einstein’s equations. This set of equations has a unique solution for M > 0, yielding the following
values when k∗ crosses the horizon

ε∗ = 1.98× 10−4 φ∗ = 1.080mPl

δ∗ = −1.73× 10−2 φ̇∗ = −4.80× 10−9m2
Pl (3.10)

H∗ = 1.21× 10−6mPl

and the mass parameter in the potential is

M = 2.51× 10−6mPl. (3.11)

Note that the desired phase of slow-roll requires all of the values in eq. (3.10) to be obtained at the time of horizon
crossing. The Starobinsky potential with the mass here obtained is shown in Fig. 1. It is bounded below by zero:
V (φ) ≥ 0. This has an important consequence, because the total matter density is bounded by ρmax , |φ̇| is now bounded

above by
√

2 ρ
max

. On the positive side, i.e. φ→ −∞, the potential tends to a finite value V → 3M2

32π ≈ 10−12, whereas
for φ→ −∞ the potential diverges.

Just as for FLRW models in GR, the space of initial data for the effective description of LQC is four dimensional.
It consists of the values of the scale factor a, the Hubble rate H, φ and pφ = a3φ̇ given at the initial time, which
then give a unique solution to the effective equations. The value of scale factor at the initial time has a constant
rescaling freedom which leaves the physical results unaltered. Utilizing this freedom we fix the scale factor at the
bounce aB = 1 without loss of any generality. We give our initial data at the bounce which is characterized by the

5 The number of e-folds during the desired slow-roll phase as determined by the Planck data depends on the particular model of inflation.
Thus, different inflationary models predict different N∗ given the same Planck data, for instance, N∗ ' 56 for a quadratic potential.
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Φmin = -3.470
Φend = 0.188

Φ* = 1.080

Φmin Φend Φ*

VHΦL

FIG. 1. Plot of the Starobinsky potential. The potential is bounded below by zero and for positive φ the potential is also

bounded above, V → 3M2

32πG
≈ 10−12 ρPl, while for negative φ the potential is unbounded from above. The energy density at

the bounce restricts φB to [φmin,∞). The desired slow-roll phase starts when φ = φ∗ and φ̇ < 0 and ends when φ = φend.

following two properties: (i) the Hubble rate at the bounce HB = 0 as the scale factor has a minimum there, and (ii)

the energy density ρ = ρmax =: φ̇2
B
/2 + V (φB) from eq. (2.1). The first condition fixes the Hubble rate at the bounce

and the second condition implies that specification of φB at the bounce determines φ̇B upto a sign. Hence, with aB

fixed, the value of φ
B

and the sign of φ̇
B

completely determine the initial data and thus are the only free parameters.
(Note that this is slightly different from the case with the quadratic potential, where φ

B
can be considered to be the

only free parameter, since solutions with a different sign of φ̇
B

can easily be obtained by using the symmetry of the
potential.)

The maximum of the energy density at the bounce restricts the space of initial data from the entire real line to
[φmin = −3.47mPl,∞). Note that this is different from inflation with a quadratic potential V (φ) = m2φ2/2 where

the initial data surface is compact (|φ
B
| <

√
2ρ

max
/m) because the potential grows unbounded for both negative

and positive φ. A meaningful way to divide this space of initial data is by the kinetic and potential energy in
the scalar field at the bounce. This is quantified by the polytropic index of the scalar field at the bounce wB =
(φ̇2

B
− V (φ

B
))/(φ̇2

B
+ V (φ

B
)): the bounce is considered kinetic energy dominated if |wB − 1| < 10−3 and potential

energy dominated if |wB +1| < 10−3. We will refer to the initial conditions with wB = 1 (wB = −1) as extreme kinetic
(potential) energy dominated.

Remark: In order to compute the mass parameter M , we have used observational data and assumed the standard
power-law power spectrum obtained from standard inflation where perturbations are taken to be in Bunch-Davies
state at the onset of inflation. As we will see later in this paper, however, in LQC modes are not in a Bunch-Davies
state at the onset of inflation and the power spectrum is not exactly the same as the standard one. There are
corrections for small k modes while there is agreement for large k. Due to these corrections, our computation of M
is internally inconsistent. Strictly speaking, one should use the true LQC power spectrum in order to compute the
mass parameter. This requires significant numerical work to perform analysis over the whole parameter space, which
has been recently done for the quadratic potential in [69]. They find that, while using the LQC power spectrum to
compute M is conceptually important, it leads to very small corrections in the power spectra and the main results
remain unchanged. We expect similar conclusion for the Starobinksy potential. Nevertheless, it is an important issue
and we leave it for future investigations. In this paper, we bypass this issue by choosing initial conditions for which
the reference mode corresponds to large enough k where the Bunch-Davies and LQC power spectrum differ very little.
Therefore, any correction to M , if any, would be too small to impact our results.

B. Initial states for quantum perturbations

In de Sitter spacetime one can construct a unique vacuum state for linear, cosmological perturbations that are
regular and respect the symmetries of the de Sitter background. These vacuum states are the so-called Bunch-Davies
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states. In the standard inflationary scenario the spacetime metric can be approximated by a de Sitter metric at the
onset of slow-roll. Therefore, it is a reasonable assumption that the observable modes are in the Bunch-Davies state
there. In LQC, on the other hand, the modified pre-inflationary dynamics extends all the way to the Planck scale
where the background is very different from de Sitter spacetime. Therefore, quantum perturbations can not be chosen
to be in Bunch-Davies state close to the bounce. As suggested in [11, 12, 70], one can still use the physical principles
behind the construction of Bunch-Davies states to obtain vacuum states in LQC. These principles require that the
states should be ultraviolet regular and invariant under the symmetries of the underlying spacetime, which in our
case is given by the dressed metric g̃ab (Sec. II B). This leads us to a 4th order adiabatic state at bounce. It turns
out that if the states are chosen to be 4th order adiabatic initially, they remain so throughout the evolution. Another
physical input used in the choice of states stems from the test field approximation. That is, the backreaction of the
quantum perturbations on the background spacetime in quantum gravity regime is negligible. This is essential for the
self-consistency of the dressed metric approach.

Unlike in de Sitter spacetime, however, this procedure does not single out a unique vacuum state. In this paper,
we will use four different types of states, which are based on different physical principles:

• Type I: this vacuum state is constructed such that it leads to suppression of power at large scales in the CMB
as suggested in [48];

• Type II: this vacuum state minimizes the stress energy tensor of the perturbations to zero at some initial time
(called ‘instantaneous vacuum’ in [70]);

• Type III: this vacuum state is the approximate WKB solution of the evolution equations at some initial time
(called ‘obvious vacuum’ in [12]); and

• Type IV: this vacuum state is a combination of the type II vacuum for large k and a Minkowski-like vacuum for
small k as suggested in [49].

Note that these initial states are not specified at the bounce, but slightly before the bounce (specifically, at t = −10 sPl)
for technical reasons that arise for infrared modes.

IV. RESULTS

Let us now turn to the numerical results. Recall that according to the framework of quantum field theory on quantum
spacetime, as long as the perturbations can be treated as test fields, the information about the background geometry
that is relevant for the evolution of perturbations can be encoded into a dressed effective geometry. The dressed metric
is obtained from the expectation values of only certain moments of the scale factor and field momentum with respect
to the background wavefunction Ψ(a, φ) eq. (2.9). One does not need all the details of the quantum fluctuations of
the wavefunction in order to determine the behavior of the quantum perturbations.6 Strictly speaking, given a state
Ψ in the physical Hilbert space, the dressed (denoted with tilde on top) and the effective scale factor are different
from each other. However, as shown via explicit numerical simulations in [71], the numerical differences between the
dressed metric and the effective metric is very small (less than a percent) for sharply peaked states (∆V/V � 1). In
this paper, we consider such sharply peaked states and approximate the dressed geometry with the effective geometry
discussed in Sec. II A.

The remainder of this section is divided into three subsections. In the first, we explore the evolution of the
background effective geometry for various classes of initial conditions. We find the subset of initial conditions that
leads to the desired slow-roll phase, which is necessary for compatibility with observations. As expected, the occurrence
of the quantum bounce is a generic feature of the loop quantum geometry and the desired slow-roll phase happens
for almost all of the initial conditions. In the second subsection, we describe why the pre-inflationary dynamics
matters for perturbations and how the ultraviolet quantum gravity effects can lead to particle production for infrared
modes of perturbations. Finally in the third subsection, we present the numerical evolution of the scalar and tensor
perturbations on this effective background geometry, compute their power spectra at the end of inflation, and extract
the window of initial conditions relevant for observational consequences of pre-inflationary dynamics of LQC. Evolution
of the background geometry in the quantum gravity regime, and that of the quantum perturbations, turn out to be
mostly similar to that for the quadratic potential studied in [12]. However, there is a small subset of initial conditions
for which Starobinsky potential leaves different signatures for very long wavelength modes.

6 It is worth emphasizing that the dressed metric is just a mathematical tool to study the evolution of perturbations. It does not exactly
describe the background quantum geometry which is still given by the background wavefunction that contains the all information of the
true background geometry.
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FIG. 2. Evolution of scale factor with φB = −1.45 and φ̇B > 0. The (red) solid curve and the (blue) dashed curves respectively
show the evolution of scale factors in LQC and classical GR. The bounce happens at t = 0 where the classical trajectory
goes to big bang singularity. Following the bounce, there is short phase of super-inflation which ends at t ∼ 0.19 tPl. In the
future evolution LQC and classical GR trajectory converge. The inset shows the late time evolution of the LQC scale factor
undergoing inflation which ends at t ∼ 6× 107 tPl.
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FIG. 3. The energy density of the matter field (left panel) and the evolution of the scalar field (right panel) for the same initial
conditions as in Fig. 2. The energy density in LQC has a maximum at the bounce while in classical GR it diverges. The scalar
field evolves from negative values to the positive valued slow-roll side of the potential. The insets show the late time evolution
of ρ and φ. During inflation the energy density is of the order of 10−12 ρPl and remains almost constant. At the end of inflation
there is a drop in ρ while the scalar field oscillates at the minimum of the potential around φ = 0.

A. Background evolution

Fig. 2 shows the evolution of the scale factor in LQC (solid curve) and classical GR (dashed curve) for a representative

case with φ
B

= −1.45 mPl and φ̇
B
> 0. The corresponding energy density and the scalar fields are shown in Fig. 3.

From these plots, it is immediately obvious that in the vicinity of the quantum bounce, which is well inside the
Planckian regime, there are significant deviations between classical GR and LQC: First, the scale factor bounces from
a non-zero value in LQC while in the classical theory a → 0.7 Second, the energy density is finite at the bounce for

7 As described in Sec. III A, we have chosen the parameters so that the scale factor at the bounce is aB = 1. This choice was made for
the convenience of the calculations, but carries no physically relevant information. Physical observables for both the background and
perturbations are independent of this choice.
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the LQC evolution, but diverges in classical GR. Following the quantum bounce, there is a brief phase (∼ 0.2 tPl)
of faster than exponential accelerated expansion, called super-inflation. During this phase the Hubble rate quickly
grows from zero to its maximum value. At the end of super-inflation, characterized by H = Hmax (and, consequently,

Ḣ = 0), the energy density of the scalar field is half of that at the bounce (see eq. (2.4)). This super-inflationary
phase is the most quantum gravity dominated part of the evolution. In further evolution, the Hubble rate, the energy
density and hence the spacetime curvature decrease monotonically while the scale factor grows. After approximately
a hundred Planck seconds, the spacetime curvature falls well below the Planckian value where LQC and classical GR
are in excellent agreement with each other. The desired phase of slow roll inflation begins typically when the energy
density becomes of the order of 10−12 ρPl. Recall that by slow roll, we mean the period between when k∗ exited the
horizon to when the first Hubble slow-roll parameter becomes equal to one. At the onset of this slow-roll phase φ and
φ̇ attain the values in (3.10). Note that by definition the number of e-folds during this slow-roll phase of inflation is
58 for Starobinsky potential, but the total number of e-folds during the entire inflationary epoch (when ä > 0) can
be much higher.

The right panel of Fig. 3 shows the corresponding evolution of the scalar field with the same initial conditions. The
scalar field starts from the left side of the minimum of the potential (see Fig. 1) with a positive φ̇B due to which it
rolls down the potential. As the further evolution takes place, the field crosses the minimum and start climbing up
on the slow-roll side and at some point in the evolution crosses φ∗ for the first time. But this time the field has a
positive velocity and does not have the correct slow-roll parameters. Due to the remaining kinetic energy, the field
climbs a little higher up the potential until KE=0, and that is when the field turns around and starts rolling down the
potential with φ̇ < 0. In what follows, the field crosses φ∗ once more, this time with φ̇ < 0 and the slow-roll conditions
are met. When φ becomes 0.19 mPl the slow-roll phase ends and the field continues to roll down the potential and
finally oscillates at the minimum of the potential around φ = 0 as shown in the inset of the right plot in Fig. 3. Note
that, if the field did not have enough kinetic energy to climb high enough the potential and cross φ∗ during the climb,
the slow-roll conditions would not have been obtained.

Let us now study the evolution of the background geometry in some more detail for a variety of cases by giving
the initial conditions at the bounce. We will divide the set of initial conditions into two classes: (i) positive inflaton

velocity (φ̇
B
> 0) and (ii) negative inflaton velocity (φ̇

B
< 0), and track the evolution of φ, φ̇ and a for different φ

B
.

As discussed in Sec. III, the range of φ
B

is semi-infinite: φ
B
∈ (φmin, ∞) where φmin = −3.47 mPl corresponds to

the extreme potential energy dominated bounce with zero kinetic energy and φ
B
→∞ to the extreme kinetic energy

dominated bounce with zero potential energy. As we will see in this section – irrespective of the sign of φ̇B – the
potential energy dominated bounces never give rise to the desired phase of slow-roll. This is in contrast with the
quadratic potential where the potential energy dominated cases are in fact the ones with large φB resulting into a
huge amount of slow-roll inflation.

1. Positive inflaton velocity: φ̇B > 0

Let us begin by discussing the evolution of the Ricci curvature scalar R in the quantum gravity regime. The
behavior of the Ricci scalar is critical in understanding the evolution of the quantum perturbations, as the Ricci
scalar determines the length scale at which the properties of the curved background become important and the
quantum perturbation can no longer be treated as fields propagating on a flat background. The expression for the
Ricci scalar in terms of the Hubble rate H is:

R = 6
(
Ḣ + 2H2

)
, (4.1)

where the dot represents the derivative with respect to the proper time. Now substituting the expressions of H and
its derivative in terms of the energy density of the matter field, we have:

R = −24πGρ(1 + w)

(
1− 2

ρ

ρ
max

)
+ 24πGρ

(
1− ρ

ρ
max

)
, (4.2)

where, as before, w is the polytropic index appearing in the equation of state of the matter field. It is clear from the
above equation that specifying the energy density of the matter field and its equation of state completely determines
the Ricci curvature. At the bounce, where ρ = ρmax , we have:

RB = 24πGρ
max

(1 + wB) =
432 π2

∆3 l2Pl

(1 + wB). (4.3)
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FIG. 4. Plots of the Ricci scalar and energy density near the bounce (left and right panel, respectively). For the extreme
potential energy dominated case (wB = −1), the Ricci scalar vanishes at the bounce, whereas for the extreme kinetic energy
dominated case (wB = 1), the Ricci scalar is maximum at the bounce. The energy density is maximum at the bounce for all
cases. For the intermediate case when the potential and kinetic energy are exactly equal at the bounce (wB = 0), the Ricci scalar
RB is half of the maximum value attained for wB = 1. For all conditions wB < 1, the Ricci scalar behaves non-monotonically in
the future evolution. Moreover, the bounce is time-reversal symmetric for wB = 1 and −1, while asymmetric for all other initial
conditions. It is also apparent that the energy density falls more quickly for kinetic energy dominated cases than potential
energy dominated ones. Hence, the quantum gravity regime last longer for potential energy dominated bounces.

In this way, while the maximum of the energy density at the bounce is fixed at ρmax , the value of Ricci scalar at the

bounce depends on the type of matter field under consideration. For example, for dust R(dust)
B = 432 π2

∆3 l2Pl
, for radiation

R(rad)
B = 576 π2

∆3 l2Pl
and for a stiff fluid –which is equivalent to a massless scalar field– R(stiff)

B = 864 π2

∆3 l2Pl
.

As a result, this is where one of the main distinctions between the potential and kinetic energy dominated bounces

appears. For kinetic energy dominated bounces, wB ≈ 1 and consequently R(kin)
B ≈ 864 π2

∆3 l2Pl
. On the other hand,

for potential energy dominated bounces, when the kinetic energy is close to zero, wB ≈ −1 and R(pot)
B ≈ 0. That

is, the Ricci curvature at the bounce is maximized for kinetic energy dominated bounces, but vanishes for potential
energy dominated bounces. Thus, for positive potentials, while the energy density always saturates its maximum at
the bounce, the Ricci scalar does not. As a result, the evolution of the Ricci scalar to the future of the bounce is
not necessarily monotonic, unlike the evolution of the energy density. In Fig. 4, we show the evolution of the Ricci
scalar for kinetic and potential energy dominated as well as for an intermediate case with wB = 0 at the bounce. It
is clear that for wB = −1 (extreme potential energy domination) the Ricci curvature vanishes at the bounce, then
attains a local maximum and falls in the future evolution. For wB = 1 (extreme kinetic energy domination) the Ricci
curvature is maximum at the bounce and fall monotonically in the future evolution. It is also interesting to see that
the maximum value that the Ricci scalar attains in its future evolution for wB = −1 is less than that for wB = 1.
Hence, the curvature scalars for different initial conditions are drastically different close to the bounce in the quantum
gravity regime. This is conceptually important as this implies that the modes of quantum perturbations will be excited
in qualitatively different ways depending on whether the bounce is potential or kinetic energy dominated. Furthermore,
the energy density falls of slower for potential energy dominated cases and therefore the quantum gravity regime lasts
longer. However, it turns out that this interesting conceptual difference is not relevant for observations since the
potential energy dominated bounces do not lead to enough e-folds during slow-roll and thus are not compatible with
observations.

For our numerical simulations, we used the Runge-Kutta numerical integration scheme in Mathamatica 10 and
performed over a hundred simulations. Table I shows some of the representative simulations for various φB when the
initial velocity of the inflaton is positive. We are interested in the following events during the evolution: (i) bounce,
(ii) end of super-inflation, (iii) equivalence of kinetic and potential energy (specifically, w = 0), (iii) onset of the
desired slow-roll phase and (iv) end of inflation. For each initial condition, we compute the following values at these
events: φ, w, t, H, ε and the total number of e-folds since the bounce N . The first two initial conditions in the table
correspond to an extreme potential energy dominated case (wB = −1) and an equal distribution between kinetic and
potential energy (wB = 0). The remaining three entries correspond to initial conditions for which the kinetic energy
dominates over the potential energy by a factor of 107 or more. Duration of super-inflation is largest for the first
row, slightly smaller for the second row. For the rest of the entries in the table the evolution remains almost the
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TABLE I. Dynamical evolution for various φB with φ̇B > 0. The value of φ, w, t, H, ε and the total number of e-folds since the
bounce N is shown for various events. In particular, the events considered are the bounce, end of super-inflation (SI), moment
when the kinetic energy equals the potential energy (KE=PE), onset of the desired slow-roll phase (onset) and end of slow
roll inflation (end). The zeros in the table are in fact O(εmachine), but from analytic considerations we know these values are
identically zero. The last three rows all satisfy wB − 1 < 10−7.

Event φ w t H ε N

Bounce -3.47 -1 0 0 ∞ 0

End SI -3.25 0.32 0.46 0.93 0 0.20

KE=PE -0.55 0 4.7× 104 1.5× 10−5 1.5 8.12

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce -3.39 0 0 0 ∞ 0

End SI -3.21 0.52 0.26 0.93 0 0.16

KE=PE -0.54 0 4.7× 104 1.5× 10−5 1.5 7.87

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce -1.49 1.0 0 0 ∞ 0

End SI -1.35 1.0 0.18 0.93 0 0.12

KE=PE 0.91 0 2.4× 105 1.7× 10−6 1.5 4.74

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce -1.45 1.0 0 0 ∞ 0

End SI -1.31 1.0 0.18 0.93 0 0.12

KE=PE 0.95 0 2.4× 105 1.7× 10−6 1.5 4.74

Onset 1.08 -1.0 2.7× 106 1.2× 10−6 1.9× 10−4 7.90

End 0.19 -0.67 5.2× 107 7.4× 10−7 0.50 67.14

Bounce -1.41 1.0 0 0 ∞ 0

End SI -1.27 1.0 0.18 0.93 0 0.12

KE=PE 0.99 0 2.4× 105 1.7× 10−6 1.5 4.74

Onset 1.08 -1.0 1.2× 107 1.2× 10−6 1.9× 10−4 19.35

End 0.19 -0.67 6.1× 107 7.4× 10−7 0.50 78.59

same till KE=PE. This happens because in the first two rows, potential does affect the evolution near the bounce,
while for the rest of the cases shown in the table the field behaves almost like a massless scalar and potential becomes
relevant after KE=PE. It is apparent from the table that the total number of e-folds for φ

B
∈ (φmin,−1.45), which

are potential energy dominated initial conditions, is less than 60. Hence, the desired slow-roll marked by ε∗ = 0.00019
and δ∗ = −0.017 is not obtained. On the other hand, for φ

B
≥ −1.45 (which is kinetic energy dominated) the desired

phase of slow-roll is necessarily contained in the evolution. Clearly, the potential energy dominated bounces are not
compatible with observations. The reason for this is that these potential energy dominated bounces do not have
enough initial kinetic energy to climb up the potential on the other side and reach φ∗.

2. Negative inflaton velocity: φ̇B < 0

Let us now consider initial data with negative initial inflaton velocity. Fig. 5 shows the evolution of the Ricci scalar
and the energy density for three different equations of state at the bounce: wB = 1, 0,−1. Similar to the positive φ̇

B

case, R at the bounce is zero for wB = −1, maximum for wB = 1 and half the maximum value for wB = 0. Also, the
evolution of R is time-reversal symmetric for wB = 1 and wB = −1, but asymmetry for all other initial conditions.
Interestingly, this time reversal asymmetry is the mirror image of the asymmetry for positive φ̇

B
(Fig. 4).

Similar to Table I, Table II shows some of the representative simulations for various initial conditions. The first
row correspond to wB = 0 and all other rows have wB ≈ 1. It turns out that, similarly to the positive φ̇

B
case, the

potential energy dominated initial conditions do not lead to the desired slow-roll phase. The second row corresponds
to the extreme kinetic energy dominated case with exactly zero potential energy at the bounce. Unlike in the the
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TABLE II. Dynamical evolution for various φB with φ̇B < 0. The table is structured the same way as Table I: Shown are the
value of φ, w, t, H, ε and the total number of e-folds since the bounce N for several events. In particular, the events considered
are the bounce, end of super-inflation (SI), when the kinetic energy equals the potential energy (KE=PE), at the onset of the
desired slow-roll phase (onset) and at the end of slow roll inflation (end). The first row correspond to an initial condition with
equal amounts of potential and kinetic energy, the second row has wB = 1 and the remaining four rows satisfy wB− 1 < 10−12.

Event φ w t H ε N

Bounce -3.39 0 0 0 ∞ 0

End SI -3.46 -1.0 0.22 0.93 0 0.07

KE=PE -0.55 0 4.7× 105 1.5× 10−5 1.5 8.46

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce 0 1 0 0 ∞ 0

End SI -0.14 1.0 0.18 0.93 0 0.12

KE=PE -1.43 0 6.2× 102 6.2× 10−4 1.5 2.73

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce 3.00 1.0 0 0 ∞ 0

End SI 2.86 1.0 0.18 0.93 0 0.12

KE=PE 0.59 0 2.6× 105 1.6× 10−6 1.5 4.77

Onset NA NA NA NA NA NA

End NA NA NA NA NA NA

Bounce 3.63 1.0 0 0 ∞ 0

End SI 3.49 1.0 0.18 0.93 0 0.11

KE=PE 1.23 0 2.4× 105 1.7× 10−6 1.5 4.74

Onset 1.08 -1.0 2.7× 106 1.2× 10−6 2.0× 10−4 7.84

End 0.19 -0.69 5.2× 107 7.4× 10−7 0.50 67.07

Bounce 3.67 1.0 0 0 ∞ 0

End SI 3.52 1.0 0.18 0.93 0 0.12

KE=PE 1.27 0 2.4× 105 1.7× 10−6 1.5 4.74

Onset 1.08 -1.0 1.2× 107 1.2× 10−6 1.9× 10−4 19.37

End 0.19 -0.69 6.1× 107 7.4× 10−7 0.50 78.61

Bounce 4.00 1.0 0 0 ∞ 0

End SI 3.86 1.0 0.18 0.93 0 0.12

KE=PE 1.60 0 2.3× 105 1.8× 10−6 1.5 4.74

Onset 1.08 -1.0 1.9× 108 1.2× 10−6 1.9× 10−4 239

End 0.19 -0.69 2.4× 108 7.4× 10−7 0.50 298

positive φ̇
B

case this initial condition does not contain the desired slow-roll phase in its future evolution. The reason

for this asymmetry between positive and negative φ̇B is that for negative φ̇B the inflaton initially evolves to the left
of the potential (see Fig. 1) and in fact reaches φ∗ very quickly, however, when it does so, its kinetic energy is too
large and therefore the slow-roll parameters are too large and the desired phase of slow-roll does not start. This does
not immediately imply that slow-roll will not occur at all, because when the field rolls back from the left side of the
potential it might be possible that it climbs up the potential and reach φ∗ again, now with significantly less kinetic
energy. Simulations show that this scenario not happen, because the field loses a lot of kinetic energy due to both
Hubble friction and the steepness of the potential, consequently, it does not have enough kinetic energy to climb up
the potential on the slow-roll side and reach φ∗. Thus, this means that for the desired slow-roll phase to happen with
φ̇

B
< 0, the inflaton field has to start high enough on the slow-roll side. As the table shows, φ

B
≥ 3.63 for the desired

slow-roll phase to occur in the future evolution.
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FIG. 5. These plots show the Ricci scalar (left panel) and energy density (right panel) near the bounce for φ̇B < 0. Similar
to Fig. 4, the Ricci scalar at the bounce is zero for the extreme potential energy dominated case (wB = −1) and maximum
for the extreme kinetic energy dominated case (wB = 1). Also, the energy density is maximum at the bounce for all cases.
For the intermediate case when the potential and kinetic energy are equal at the bounce (wB = 0), the maximum of the Ricci
scalar does not occur at the bounce. For all initial conditions with wB < 1, the Ricci scalar behaves non-monotonically in the
future evolution. Moreover, the bounce is time-reversal symmetric only for wB = 1 and wB = −1. It is noteworthy that for
−1 < wB < 1, the behavior of R and ρ is the mirror image of those in Fig. 4.

3. Phase portrait and the desired slow-roll

Looking at Table I and Table II, we conclude that observationally compatible initial conditions are: φ
B
≥ −1.45mPl

for positive φ̇B and φB ≥ 3.63mPl for negative φ̇
B

. Thus, in the entire parameter space of the initial conditions it is
only the kinetic energy dominated initial conditions which lead to the desired slow-roll phase in their future evolution;
there is a subset, rather small however, of the kinetic energy dominated initial conditions which do not give desired
slow-roll. Fig. 6 shows some of the representative trajectories of evolution in a (φ, φ̇) phase diagram starting from
the initial data surface (thick black curve without arrowheads). As discussed in Sec. III the initial data surface is

non-compact: while |φ̇B | < 0.91m2
Pl, φB is not restricted to a finite interval, that is, φB ∈ [−3.47mPl,∞). The blue,

dashed trajectories are the ones which do not lead to the desired slow-roll in their future evolution, while the red,
solid trajectories are the ones which do. In the same way, the dashed part of the initial data surface corresponds to
the subset of initial data that is not compatible with observations while the solid part (which continues to φ→∞) is
compatible. Clearly, the part that does not lead to the desired phase of slow-roll is negligible compared to the entire
initial data surface. In this sense, a significantly high fraction of initial data lead to the desired slow-roll and inflation
is almost inevitable.

4. Comparison with quadratic potential

There are some interesting differences and similarities between inflation with a quadratic potential and with the
Starobinsky potential. In particular, while potential energy dominated bounces lead to an enormous amount of
inflation for the quadratic potential, they do not lead to enough inflation to be compatible with observations for the
Starobinsky potential. As a result, in Starobinsky inflation, only (a large subset of) kinetic energy dominated bounces
are compatible with observations, whereas for inflation with a quadratic potential both kinetic and potential energy
dominated bounces are compatible with observations.

For kinetic energy dominated bounces, the details of the potential do not matter in the early evolution, in other
words, the evolution is driven by the kinetic energy. Consequently, the evolution of a kinetic energy dominated bounce
in Starobinsky inflation will be similar to the evolution of a kinetic energy dominated bounce with a quadratic potential.
Since the quantum gravity effects stem from exactly this period, one can expect that the quantum geometry corrections
to the standard inflationary paradigm will be similar for Starobinsky inflation and kinetic energy dominated bounces
in a quadratic potential. This expectation will indeed be borne out in the next subsections. There are, however, some
surprises for extremely long wavelength modes that are larger than the observable universe.

To see explicitly that the evolution is indeed similar, Fig. 7 shows a plot of the scale factor, which captures all the
geometric information, evolved for inflation with a scalar field in the quadratic potential and Starobinsky potential.
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FIG. 6. φ− φ̇ phase portrait of evolution trajectories for Starobinky potential in LQC. All trajectories (shown by curves with
arrowheads) start at the bounce which is given by constant density surface ρ = ρmax (shown by thick black boundary curve
without arrowheads). The bounce surface extends from φ = −3.47 mPl all the way to ∞, but here we have only shown a part
of it. The dashed (blue) curves do not lead to the desired slow-roll, while the solid (red) ones do. Since the diagram extends
all the way to φ =∞, the fraction of dashed (blue) curves is extremely small as compared to the solid ones. Therefore, it can
be concluded that the occurrence of slow-roll is almost inevitable.

In order for this comparison to be meaningful, we took wB to be the same for both models, in particular, wB =
0.9999999618. This does not completely fix φB and φ̇B : there is some freedom in overall signs left. We took the

signs to be the same for both models, specifically, φ
B

= −92.14mPl and φ̇
B
> 0 for the quadratic potential and

φ
B

= −1.45mPl and φ̇
B
> 0 for the Starobinsky potential. Note that around t ≈ 600 sPl the two geometries start to

deviate slowly. This is when w ≈ 0.6 for the quadratic potential (for the Starobinsky potential it is still very close to
its value at the bounce). By the time t = 1168 sPl, the scalar field in the quadratic potential has lost half of its initial
energy to potential energy and the two geometries start to deviate more and more. Thus, indeed the details of the
potential are irrelevant close to the bounce for kinetic energy dominated bounces as far as the background geometry
is concerned. Note that this is true for all kinetic energy dominated bounces and does not require the initial conditions
to be ‘close’ to the bottom of the potential, where the Starobinsky potential can be considered to be well approximated
by the quadratic potential. Clearly, after the kinetic energy equals the potential energy, the features of the potential
become more important. This occurs, however, well into the regime where classical GR is in excellent agreement with
the effective equations of LQC and is thus irrelevant for the quantum geometric corrections (but is very important
for the predictions within the standard inflationary paradigm!).

B. Phenomenological considerations

Before we move to the discussion of the power spectra of quantum perturbations, some phenomenological consider-
ations are in order. So far, in this paper, we have seen that the inflationary scenario with a Starobinsky potential (3.1)
fits well with the non-singular bouncing picture of LQC: The pre-inflationary dynamics of the background spacetime
is significantly modified due to the quantum geometric effects for energy scales in the regime 10−3ρ

max
< ρ < ρ

max
.

As a result, quantum perturbations in LQC experience a very different history before the onset of inflation compared
to the quantum perturbations in the standard inflationary scenario based on GR. There is a finite non-zero length
scale associated to the maximum value of the Ricci curvature scalar, kLQC := (RB/6)1/2, due to which modes of
different wavelengths interact with the curvature in a qualitatively different way. Ultraviolet modes (k � kLQC)
are too energetic to be affected by the curvature and evolve as if they are in a flat spacetime, whereas mode with
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FIG. 7. Plot of the evolution of the scale factor for two different cases: quadratic potential (blue, dashed) and the Starobinsky
potential (red, solid). The gray vertical line at t = 1168 sPl indicates when the kinetic energy becomes equal to the potential
energy for the quadratic potential (for the Starobinsky potential this occurs much later, see Table II). Both cases are kinetic
energy dominated bounces with the same value of w at the bounce, that is, wB = 0.9999999618. This determines φB and

φ̇B up to signs. We choose the same signs for the quadratic and Starobinsky potential for easier comparison. In particular,

φB = −92.14mPl and φ̇B > 0 for the φ2 potential and φB = −1.45mPl and φ̇B > 0 for the Starobinsky potential.
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FIG. 8. Evolution of two observable modes and the physical curvature length scale: in the classical theory close to singularity
(shown in the left panel) and in LQC close to the quantum bounce (shown in the right panel). It is clear that the physical
wavelengths of both modes remain smaller than the curvature length scale in the classical theory all the way to big bang.
Whereas one of the modes in LQC becomes larger than the non-zero curvature length scale at the bounce. This mode gets
excited in the future evolution.
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FIG. 9. The reference mode k∗ shown as a function of φB which controls the number of e-folds. It is apparent that k∗ increases
with increasing φB .

small wavenumber (k ∼ kLQC) do get excited by the curvature. This can be understood via Fig. 8, which shows the
evolution of two observable modes in GR (in the left panel) and LQC (in the right panel). In GR, all observable
modes remain smaller than the curvature length scale all the way to the big bang. In LQC, on the other hand, there
are some modes which are larger than the curvature length scale near the bounce. It is these infrared modes that will
be excited in their future evolution and deviate from the usual Bunch-Davies state at the onset of inflation.

CMB experiments, such as Planck and WMAP, report the value of the amplitude and the spectral index of the power
spectrum at a reference mode which is given by a comoving wavenumber k∗ whose physical wavenumber (k∗/a(t∗))
at the time of the horizon crossing is equal to the Hubble parameter at that time, i.e. k∗/a(t∗) = H∗. Since k∗ is
the comoving wavenumber, its numerical value depends on the numerical value of the scale factor which is different
for different conventions. For example, in standard cosmology and also in the phenomenology of CMB experiments
the scale factor is chosen to be unity today, whereas in our numerical simulations we have chosen the scale factor to
be unity at the bounce. Therefore the numerical value of the comoving wavenumber of the reference mode in LQC,

kLQC
∗ , will be different from the comoving wavenumber k∗ at which As and ns are reported. However, the physical

wavenumber corresponding to both kLQC
∗ and k∗ are still the same, i.e. kLQC

∗ /aLQC(t∗) = k∗/aBD(t∗). Thus in order

to make contact with the observational data we need to find the numerical value of kLQC
∗ that has the same physical

wavelength as the reference mode k∗ at the time of horizon crossing. We adopt the following strategy. We compare
the LQC power spectrum at the end of inflation with those predicted by observation and then numerically search for
k at which the LQC power spectrum has the same amplitude and Hubble parameter as reported by observations.

This k is kLQC
∗ . Naturally, the value of kLQC

∗ depends on the amount of e-folds between the onset of slow-roll and the
bounce, which can be related to the initial conditions at the bounce: φ

B
and the sign of φ̇

B
. This relation is shown

in Fig. 9.
As inflation happens, the infrared modes get stretched to super Hubble size and may no longer fall into the

observable window. Therefore not all modes of the perturbations are observable, rather, there is a finite range:

(kmin, kmax) ≈ (kLQC
∗ /8.58, 200kLQC

∗ ), where (kmin and kmax are the co-moving wavenumbers of the longest wavelength
entering the Hubble horizon today and the shortest observable modes in the CMB, respectively.8 If φB is changed, the

value of kLQC
∗ changes as shown in Fig. 9, which will shift the observational window in which LQC effects are observable.

On the one hand, if kLQC
∗ is too large then LQC corrections may not be observable at all. On the other hand, if kLQC

∗ is
too small then the deviations between the standard inflationary power spectrum and LQC power spectrum may be too

large to agree with current observations. Additionally, if kLQC
∗ is too small, numerical investigations have shown that

the test field approximation may fail. By demanding that the LQC power spectrum agrees with the standard power
spectrum for ` & 30 and the backreaction of the perturbations during quantum gravity regime is small, we can further
restrict the set of initial conditions that are both observationally interesting and self-consistent with the framework
of quantum field theory on quantum spacetime. For a type-I state whose power spectrum is shown in Fig. 10, above
requirements lead to the following observationally relevant initial conditions: −1.419 mPl < φ

B
< −1.412 mPl for

positive φ̇B and 3.661 mPl < φB < 3.668 mPl for negative φ̇B at the bounce. Note that these initial conditions might

8 kmin = ao Ho, where ao is the scale factor today and Ho = 0.000233 Mpc−1 is the Hubble constant [9]. The pivot scale is taken to be
k∗/ao = 0.002 Mpc−1. Using these relations: kmin ≈ k∗/8.58, and kmax ≈ 2000kmin ≈ 200k∗.
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FIG. 10. Scalar power spectrum (left panel) for φB = −1.419mPl for Starobinsky potential using the type I initial state. The
red, solid curve shows the binned LQC spectrum, the black, dashed curve shows the Bunch-Davies power spectrum without
LQC modifications and the blue scattered points show the un-binned LQC power spectrum. It is apparent that for large k the
LQC power spectrum agrees extremely well with the standard inflationary power spectrum. This behavior is similar to that of
a quadratic potential as shown in [12].

vary for different states that have different power spectra.

C. Perturbations

As discussed earlier in this section, depending on the initial value of the inflaton field, the bounce and its subsequent
quantum gravity regime can be potential or kinetic energy dominated. For the kinetic energy dominated bounces (with
wB ≈ 1), the background evolution in the quantum gravity regime is practically the same for all potentials, because
the scalar field behaves like a massless scalar field. For these initial conditions, the quantum gravity corrections to
the inflationary power spectrum for the Starobinsky potential turn out to be qualitatively very similar to that for
the quadratic potential. For potential energy dominated bounces, on the other hand, the quantum gravity regime is
dictated by the shape of the potential and hence one would expect potential specific features in the inflationary power
spectrum. However, as we found in the first part of this section, potential energy dominated initial conditions are not
compatible with observations for Starobinsky inflation as they do not lead to the desired slow-roll phase. Hence, given
initial conditions for a quadratic potential and Starobinsky potential that lead to the same number of e-folds from
the bounce till the end of inflation with N & 60, the LQC corrections to the observable inflationary power spectra in
the two cases are practically indistinguishable. In the following, we will discuss the scalar and tensor power spectra.
The initial conditions for perturbations are given slightly before the bounce and then evolved till the end of inflation
using eq. (2.11) and (2.13).

1. Scalar modes

Fig. 10 shows the scalar power spectrum for a representative case with φ
B

= −1.45mPl and φ̇B > 0. This corresponds
to a total of ∼ 67 e-folds from the bounce till the end of inflation. Similarly to the quadratic potential ([12]), the
true LQC power spectrum is oscillatory as shown by the blue “+” points in the figure. This oscillatory behavior of
the power spectrum can be understood by first writing the mode function of the scalar perturbations as Bogoliubov
transformation on the usual Bunch-Davies states:

qLQC(k) = α(k) qBD(k) + β∗(k) q∗BD(k). (4.4)

The LQC power spectrum then can be written as:

P(s)
LQC(k) = P(s)

BD(k)|α(k) + β∗(k)|2 = P(s)
BD(k)

(
|α(k)|2 + |β(k)|2 + 2|α(k)||β(k)| cos(θ(k))

)
, (4.5)
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FIG. 11. Comparison of tensor to scalar ratios in LQC and standard inflation for Starobinksy (with φB = −1.419mPl and

φ̇B > 0) and quadratic potential (with φB = 1.16 mPl). For the quadratic potential rLQC remains extremely close to rBD

for all k shown in the diagram while there are departures for the Starobinksy potential. These wavenumbers correspond to
modes whose wavelengths are larger than the Hubble horizon. While this effect does not fall in observable window, it can have
non-trivial implications for tensor fossils and non-Gaussian modulation of the power spectrum.

where θ is the relative phase between α(k) and β(k) and the superscript ‘(s)’ denotes scalar modes. It is the cosine
term in the above expression that is responsible for the oscillatory behavior of the power spectrum. This term
vanishes when averaged over a window of k, and only the |α(k)|2 + |β(k)|2 part remains. It turns out that these
oscillations are too rapid to be seen in the CMB as they will be averaged out by the spherical Bessel functions while
computing C` at the surface of last scattering.9 Therefore, what matters for observations is the average value of the
power spectrum: |α(k)|2 + |β(k)|2, which can also be obtained by binning the oscillatory power spectrum. Therefore,
as far as observations are concerned the LQC corrections to the standard power spectrum is simply a factor of
|α(k)|2 + |β(k)|2 = 1 + 2|β(k)|2 (shown by the red, solid curve in Fig. 10), where |β(k)|2 is the number density of the
particles produced by the pre-inflationary dynamics of LQC with respect to the standard Bunch-Davies vacuum.

The figure clearly shows that only the small k modes deviate from the standard Bunch-Davies power spectrum, while
for large k there is remarkable agreement with the standard Bunch-Davies power spectrum. As discussed before, this
behavior stems from the fact that modes with k smaller than the characteristic curvature scale (kLQC = (RB/6)1/2)
are excited in the quantum gravity regime (Sec. III) and the particle density for those modes is non-zero (|β(k)| > 0).
For larger wavenumbers, on the other hand, |β(k)| rapidly decays to zero because high k modes are too energetic to
be affected by the curvature and as a result do not get excited.

It is apparent from the discussion above that the qualitative features of the LQC corrections to the observable power
spectrum for Starobinsky potential are the same as those for quadratic potential, and hence robust under the choice
of potential. This is surprising given the dynamics of the inflationary phase is drastically different for both potentials.

2. Tensor modes

Before moving to the discussion of tensor modes for Starobinky potenial let us recall the results for the tensor
spectrum with a quadratic potential obtained in [12]. As apparent from eq. (2.11) and (2.13), the scalar mode

evolution equation involves an effective scalar potential Ũ which is absent for tensor modes. Therefore, in principle,
the particle density for scalar and tensor modes should be different from each other for k2 ≈ Ũ . However, as shown
in [12], the magnitude of Ũ for the quadratic potential is of the order of 10−10 k2

min (where, as before, kmin is smallest

9 CTT` =
∫
k(d ln(k))P(k) [j`(k)Θ(k)]2, where P is the power spectrum, j` is the spherical Bessel function, and Θ is the transfer function.
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value of k that still falls in the observational range of ks); therefore the particle density for both the tensor and scalar
modes is practically the same. Hence, a significant difference between the tensor and scalar perturbations would be
apparent only for k ∼ 10−5kmin and since the wavenumber of the observable modes are much larger, this difference
is not relevant for observations for the quadratic potentials. An immediate consequence of this for the quadratic
potential is that the tensor to scalar ratio in LQC is the same as that in standard inflation, that is, rLQC = rBD for
all k & 10−5kmin.

While this is also true for most of the initial conditions for Starobinsky inflation, there does exist a small subset
of the initial data surface (−1.45 mPl . φ

B
. −1.38 mPl) for which Ũ is of the order of 10−5k2

min. That is, for

k2 � k2
min10−5 (⇐⇒ k � kmin/300), the effect of Ũ on the scalar modes is negligible. As a result |β(k)| is the same

for scalar and tensor modes and rLQC = rBD for this range of k. On the other hand, for more infrared modes, i.e.
k . kmin/300, tensor and scalar particle densities are different and rLQC 6= rBD. Thus, for some initial conditions,

the effect of Ũ shows up in Starobinsky inflation at a different scale than in the quadratic inflationary scenario.
Fig. 11 shows rLQC/rBD for the quadratic potential and Starobinsky potential for various choices of initial vacua. It is
apparent that, for the Starobinsky potential, rLQC/rBD shows deviation from unity for infrared modes (small k), and
becomes unity for large k for all choices of initial vacua. For the quadratic potential, on the other hand, rLQC/rBD
remains extremely close to unity for all k and all choice of initial vacua. While these features are not relevant for
observational modes, they could play an important role for three point functions and tensor fossils where one considers
coupling of very long modes with observation modes. These effects could also lead to additional LQC signatures in
non-Gaussian modulation of the power spectrum due to super horizon modes as considered in [49, 54]. This opens up
new avenues to investigate various CMB anomalies from the perspective of quantum gravity.

V. DISCUSSION

Inflation is the most successful framework that generates appropriate initial conditions for the CMB which further
seeds the formation of large scale structure observed today. There are, however, numerous inflationary models [72].
Thanks to remarkable advances in CMB experiments over the past few decades many of these models have already
been ruled out. For instance, recent data from the Planck mission show that the simplest inflationary model, that is, a
single scalar field with a quadratic potential is moderately disfavored, while a scalar field with a Starobinsky potential
is the most favorable of all [68]. In the standard inflationary scenario the background spacetime is determined by
classical GR which generically admits a big bang singularity in the past for all inflationary models [10]. Hence, the
pre-inflationary dynamics of the spacetime remains elusive. For a satisfactory extension of the inflationary paradigm
all the way to the Planck scale one needs a quantum theory of gravity. Primary challenges for such a theory would
be: to resolve the classical singularity as well as admit an inflationary phase which is compatible with observations
and occurs generically without requiring any fine tuning of initial conditions. It is expected that such a fundamental
theory would then also provide a consistent framework to study the evolution of cosmological perturbations.

This ambition is indeed achieved in LQC. Here, we performed a detailed numerical analysis of the quantum back-
ground spacetime and cosmological perturbations thereon for an inflationary model with a Starobinsky potential,
which is favored by the data [68]. A similar analysis was performed for the quadratic potential. There, it was shown
that natural initial conditions exist at the bounce which give rise to a rich pre-inflationary phase–dominated by
quantum gravity–that joins an observationally compatible inflationary phase quite generically [44]. Due to quantum
modified pre-inflationary dynamics, states describing the cosmological perturbations at the onset of inflation are differ-
ent from the Bunch-Davies state and the resulting power spectra at the end of inflation acquire corrections compared
to the standard power spectra [12, 73]. As discussed in Sec. I, it is not a priori clear whether the pre-inflationary
dynamics and the LQC corrections obtained for the quadratic potential will also hold for the Starobinsky potential as
these models differ significantly during inflation. We find that while most of the results concerning LQC corrections
to the power spectra obtained for the quadratic potential are also qualitatively true for the Starobinsky potential,
there are some important differences. Our main results can be summarized as follows:

• Desired slow-roll almost inevitable: As discussed in Sec. IV, the range of initial conditions for the Starobin-
sky potential is semi-finite φ

B
∈ (−3.47,∞). Only a small fraction–mostly potential energy dominated–of the

evolutionary trajectories starting from the initial data surface fail to give the desired slow-roll phase. Therefore,
almost all initial conditions lead to inflation compatible with observation and the occurrence of the desired slow-
roll phase is nearly inevitable without requiring any fine tuning on the initial conditions. Note that although
this final conclusion is also true for the quadratic potential, where one found that the desired slow-roll phase
occurred for nearly all initial conditions as well, its initial data surface at the bounce is completely different
from the surface for the Starobinsky potential. The range of initial conditions for the quadratic potential is
finite: |φ

B
| ∈ (0, 7.47× 105 mPl). As a result of this difference, the way in which slow-roll is obtained is distinct
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for both potentials. For example, none of the potential energy dominated initial conditions lead to occurrence
of the desired slow-roll phase in the Starobinsky potential as they do not generate enough e-folds. Only kinetic
energy dominated bounces lead to the desired slow-roll phase as opposed to the quadratic potential where all
potential dominated conditions result in the desired slow-roll phase.

• Phenomenological robustness of observable LQC corrections: LQC corrections to the power spectra
of cosmological perturbations are born in the quantum gravity regime close to the bounce. Since only the
kinetic energy dominated bounces for the Starobinsky potential are compatible with observations, the scalar
field behaves like a massless scalar field (and thus the features of the potential are not important) in the quantum
gravity regime for the observationally relevant initial conditions. Interestingly, for the quadratic potential, it is
exactly (a small fraction of) the kinetic dominated bounces that give LQC corrections to the power spectra that
are in the observational window.10 Therefore, tensor modes–whose evolution equation does not depend on the
potential–acquire the same LQC corrections for all k for both potentials. The evolution equation of the scalar
modes, on the other, includes an effective potential Ũ (eq. (2.11)) that involves the scalar field potential V (φ).
Thus, despite the background evolution being similar for both potentials for kinetic dominated bounces, one
might expect differences for the tensor perturbations. Nonetheless, it turns out that the magnitude of Ũ for both
potentials is too small to leave any imprint on the tensor power spectrum in the observational window. Hence,
the observable LQC corrections to both tensor and scalar modes remains phenomenologically robust under the
change of potential from the quadratic to the Starobinsky potential. Specifically, we found that for small k
modes, the scalar and tensor power spectrum deviate from the standard Bunch-Davies ones, while for large k
modes they agree remarkably well. One can exploit the freedom in choice of initial state for the cosmological
perturbations to match the ∼ 3σ anomaly of power suppression observed in the CMB [48]. Thus, the power
suppression anomaly observed in the CMB might have a quantum gravity origin.

• Imprint on super horizon modes: Although the effect of Ũ is too small to be in the observational window
for both potentials, it can leave non-trivial imprints on the super horizon modes whose physical wavelengths
are larger than the observable universe today. As shown in Fig. 11, the effect of Ũ remains negligible for the
quadratic potential while there are non-trivial corrections for the Starobinsky potential. These features that
are unique to the Starobinksy potential, could be important to study the effects of non-Gaussian modulation
[49, 54] and tensor fossils [74] on the power spectrum, where one considers coupling between observable and
super horizon modes.

Note that the framework of cosmological perturbations on the quantum modified background used relies on the
validity of the test field approximation. We have studied only those initial conditions that respect this approximation.
This excludes, however, a very small region of the initial data surface. It is possible that a generalization of the
framework beyond the test field approximation might include potentially interesting cases which are excluded in our
analysis.

We will conclude with a few remarks and possible future extensions of the work presented here. First, LQC provides
a possible mechanism to explain the ∼ 3σ anomaly observed in the CMB for low k, where the power in the tensor
and scalar perturbations power is lower than expected. Currently, the significance of this effect is limited by cosmic
variance. However, the statistical significance of this LQC correction is expected to improve when taking into account
the cross-correlation with the polarization data, which is expected to be released in the near future. This issue is
currently being investigated and will be reported in future publications. A second closely related avenue for future
work is to address whether other anomalies observed in the CMB could be explained by the same mechanism. This
is a challenging and interesting problem.

Third, we have followed the framework of quantum fields on quantum cosmological spacetimes according to which
the dynamics of the background spacetime relevant for perturbations can be encoded in the dressed metric given in
eq. (2.8). For computational simplifications, in this paper, we assumed that the background spacetime is given by
sharply peaked wavefunctions for which the dressed metric can be well approximated by the effective description of
LQC. In other words, we have ignored the fluctuations in the background geometry. It is important to note that the
effective description of LQC has only been derived for sharply peaked Gaussian states which become semi-classical at
late times [63]. Non-trivial differences between the effective dynamics and full LQC evolution arise for widely spread
and non-Gaussian states [40, 41]. Therefore, it natural to expect some corrections to the results obtained in this paper
for states which violate the assumptions in the derivation of the effective description. There could be two leading
sources of such corrections: (i) corrections to the effective metric itself, which will require a more generalized notion

10 Potential dominated bounces in quadratic case give too much inflation and as a result the LQC corrections to the cosmological pertur-
bations do not fall in the observationally relevant window.
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of the effective LQC description as obtained in [71], and (ii) corrections due to approximating the dressed metric with
the effective metric. Both these issues have been investigated for the quadratic potential via numerical simulations in
[75]. Fortunately, these results show that considering more generalized states for the background does not add new
phenomenological parameters [75]. The effect of fluctuations in the background states is degenerate with the initial
condition for φ at the bounce. Specifically, the effect of fluctuations in the background state can be reproduced by
adjusting the parameter φB . Hence, the results are phenomenologically robust for more general background states.
We expect similar result for the Starobinsky potential, but this needs to be checked explicitly. A full treatment of
this problem requires evolution of wavefunctions, which is numerically challenging and left for future work.

Moreover, particle physics issues have not been addressed in this work. In particular, questions about the physical
origin of the scalar field and how the standard model of particle physics is created during reheating remain open.

Lastly, there is a mathematical equivalence between inflation with a Starobinsky potential and a modified theory
of gravity. Specifically, via a conformal transformation, one can write the action studied here (that is, the Einstein-
Hilbert action plus a scalar field with a Starobinsky potential) as

∫
d4x
√
−g(R+ 1

6M2R
2) [67, 76]. This mathematical

equivalence is true classically and there is no reason to believe that the quantization of each is equivalent too. For
instance, see [77] where it was shown that at first loop order the equivalence is no longer true off-shell. This paper is
the first step towards extracting quantum gravitational implications of the Starobinsky model of inflation by studying
the scalar field in a Starobsinky potential (known as ‘the Einstein frame’), where loop quantization is well understood.
A complete treatment of the problem requires loop quantization of the modified gravitational theory as well (known as
the ‘Jordan frame’). This is a difficult problem, but there are already interesting ideas to tackle this problem in LQC
[78, 79]. Further analytical and numerical work is needed to understand the evolution of cosmological perturbations
in the Jordan frame. The hope is that the main results of this paper will be similar to those derived from quantizing
the Starobinsky model in the Jordan frame.
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