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The physical origin of the dark energy that causes the accelerated expansion rate of the universe
is one of the major open questions of cosmology. One set of theories postulates the existence of a
self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory,
this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space
but is greatly suppressed in regions of terrestrial matter density. However measurements performed
under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus,
where it can be subjected to laboratory experiments. Here we report the most stringent upper
bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory
using neutron interferometric techniques. Our experiment sought the chameleon field through the
relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron
interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar
pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on
the neutron-chameleon coupling β ranging from β < 4.7× 106 for a Ratra-Peebles index of n = 1 in
the nonlinear scalar field potential to β < 2.4×107 for n = 6, one order of magnitude more sensitive
than the most recent free neutron limit for intermediate n. Similar experiments can explore the full
parameter range for chameleon dark energy in the foreseeable future.

I. INTRODUCTION

The discovery of the accelerated expansion of the uni-
verse [1, 2] in combination with other cosmological obser-
vations implies that a component of the universe called
dark energy constitutes about 70% of the energy density
of the universe. This original work has been confirmed
by more sensitive observations [3–6]. It is known that
a contribution to the vacuum energy density acts like a
negative pressure in Einstein’s field equations, and since
pressure gravitates it can cause the expansion of the uni-
verse to accelerate. There is no consensus on the na-
ture and physical origin of dark energy, and most of the
proposed research in this area consists of astronomical
observations to more precisely characterize its effects on
the universe’s expansion rate and other cosmological and
astronomical observables. However there is an interest-
ing subset of ideas for the origin of dark energy which
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can be addressed in laboratory experiments. One set of
such ideas postulate that dark energy is due to a scalar
field φ which adopts a nonzero value in the vacuum of
outer space. For this scalar field to evolve into the dark
energy seen today, one must postulate a self-interaction
and dynamical screening mechanism to explain why it
has not been observed in previous precision gravitational
measurements.

In this paper we specifically address a particular exam-
ple of such a screened scalar field called the chameleon
field [7–10]. The chameleon field has a nonlinear poten-

tial of the form V (φ) = Λ4+ Λ4+n

φn [11] with n the Ratra-

Peebles index and Λ=2.4 meV based on the acceleration
rate of the universe expansion. Additionally, it has an
extra term that couples to matter field A(φ) = β

MPL
φ,

where β is a dimensionless coupling to matter andMPL is
the reduced Planck mass. So the effective potential takes
the form Veff (φ) = V (φ)+A(φ)ρ. The appearance of the
local matter density ρ in the effective potential makes

the effective mass m2
eff ∼ n(n + 1)Λ− 4+n

1+n ( βρ
nMPL

)
n+2
n+1

of the chameleon field density-dependent, allowing the
chameleon to evade many of the existing experimental
tests of gravity. This also causes the chameleon field to
be highly suppressed in the presence of even the mod-
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estly low matter density environment present in most
terrestrial lab experiments where the effective mass is
extremely heavy, thus further escaping detection. As a
result, the chameleon field, along with a range of simi-
lar theories, has yet to be ruled out by experiment. A
very extensive review of the chameleon field within the
broader context of modified gravity theories has appeared
recently [12].

This paper presents the result of a recent experiment
using a perfect crystal neutron interferometer to place
a limit on the chameleon field’s coupling to matter β
and does so in a particularly direct, transparent manner.
We actively modulate the amplitude of the chameleon
scalar field in a gas cell in one arm of our interferome-
ter and exploit the unique ability of neutrons to coher-
ently penetrate the cell wall and access the phase shift
from the neutron-chameleon coupling. This research ac-
tivity brings together several physics subfields (gravita-
tional physics, atomic physics, condensed matter physics)
and in the neutron case employs centralized user facilities
constructed mainly for materials science studies, thereby
involving an uncommon diversity of scientific research
techniques and environments in the quest to experimen-
tally address what is perhaps the most exciting issue in
cosmology.

In the regime of small matter coupling β the best lab-
oratory constraints on chameleons over a wide range of
n come from laboratory tests of the inverse square law
of gravity with sensitivity at the 100 micron dark energy
scale [13]. Experimental tests of the gravitational inverse
square law operating over other distance regimes, such as
those designed originally to measure the Casimir inter-
action, can also constrain β. The sensitivity of a force
sensor specially designed to search for chameleons has
recently been analyzed [14].

In the regime of large β techniques which employ two
large masses start to become insensitive because both the
source and sink of the chameleon field emanate only from
a thin region of the surface of the objects due to the non-
linear chameleon self-shielding, and it is therefore prefer-
able in this regime to employ test particles whose pres-
ence does not suppress the chameleon field. Neutron and
atom interferometry can be used to search for the possi-
ble existence of chameleon and related scalar fields in this
strongly-coupled chameleon regime since these probes do
not locally suppress the chameleon field.

Slow neutrons can be used to perform sensitive
searches for dark energy scalar fields [15]. The fact that
neutron experiments are a sensitive method to probe
chameleon fields was pointed out by [16] in the context
of an analysis of measurements on the quantum states
of bouncing ultra-cold neutrons. The disturbance of the
chameleon field near the surface of the flat neutron mir-
ror employed in these measurements modifies the neu-
tron bound state energies and wave functions as well
as the relative phase of coherent superpositions of the
neutron gravitational bound states. Recent experiments
conducted in this system [17] have been used to constrain

chameleon fields, and elaborations of this method are in
principle capable of much greater sensitivity. Other neu-
tron tests involving an apparatus used to test the weak
equivalence principle for free neutrons [18] and a Lloyd’s
mirror type of neutron interferometer [19] have also been
proposed. A recent review of calculations performed to
search for dark energy of various types using neutrons,
laboratory experiments to search for Casimir forces, and
gravitational inverse square law violations has recently
appeared [20].

Calculations which showed that atoms can feel an un-
screened chameleon field [21] have encouraged experi-
ments to search for chameleons using atom interferom-
etry. The first result of an atom interferometry experi-
ment conducted to search for chameleons has appeared
very recently [22]. This experiment looked for a phase
shift in a cesium atom interferometer operated in ultra-
high vacuum near a spherical mass which can be a source
of a chameleon field. Already the constraints on the cou-
pling β from this atom interferometry experiment are
quite strong. The prospects for further improvement in
the atom interferometry experiments are very encourag-
ing [23, 24].

As the chameleon fields must couple directly to mass
to be relevant for the observed universe expansion ac-
celeration, other possible chameleon probes such as pho-
tons possess a more model-dependent coupling to these
dark energy scalar fields. Strong experimental con-
straints on chameleon-photon couplings already exist.
Examples of photon-based searches for chameleons in-
clude the CHASE (the GammeV CHameleon Afterglow
SEarch) experiment [25], the Axion Dark Matter eXperi-
ment (ADMX) [26], a search for chameleon particles cre-
ated via photon-chameleon oscillations within a magnetic
field [27], and the CAST Cern Axion Solar Telescope ex-
periment [28].

Most of the chameleon experiments performed to date
using neutrons and atoms have sought the chameleon
field by passing the probe close to a dense mass in-
side a high vacuum environment and searching for the
phase shift from the chameleon-matter coupling β in a
chameleon field gradient. The chameleon field profile
is obtained by solving the appropriate nonlinear Klein-
Gordon equation for φ(x) using the boundary conditions
set by the experimental apparatus. Previous calcula-
tions [29] have shown that φ(x) is a rapidly varying func-
tion of the density of the gas. When the gas density is
low the chameleon field φ(x) develops a nonzero ampli-
tude for distances sufficiently far from the walls of the
vacuum chamber. As the gas density is raised into a crit-
ical regime, which depends on β and the geometry of cell,
the chameleon field φ(x) is suppressed and tends toward
zero.

The work presented here is the second experiment
which has used perfect crystal neutron interferometry to
search for chameleon scalar fields. To perform this type
of search one exploits the fact that, unlike atoms, neu-
trons are able to pass through matter at densities (gas
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pressures of a few mbar suffice) for which the chameleon
field is greatly suppressed. The first experiment of this
type was recently performed at Institut Laue-Langevin
(ILL) [30]. In that experiment neutrons passed through
a vacuum chamber mounted in the perfect crystal inter-
ferometer. The effect of the chameleon field was sought
both by varying the relative separation of the neutron
paths from the vacuum cell walls by translating the cell
relative to the incident beam and also by varying the gas
pressure inside the cell. In our experiment we also varied
the gas pressure. This pressure variation periodically in-
troduces a nonzero matter density into the experimental
chamber which actively suppresses the chameleon field
in the measurement. In this case the chameleon field in
the apparatus seen by the neutrons is repeatedly “turned
off” by the addition of a small gas pressure in the appara-
tus and “turned on” by evacuation of the chamber. We
also kept the pressure difference between the two arms
of interferometer constant using feedback control. This
provides a direct measurement of any background that is
independent of gas pressure, such as neutron scattering
off the cell walls etc.

II. NEUTRON INTERFEROMETRY

The experiment was performed at the National Insti-
tute of Standards and Technology’s (NIST) Center for
Neutron Research (NCNR) located in Gaithersburg, MD.
At the NCNR free neutrons are generated using a 20 MW
research reactor which feeds over two dozen individual in-
struments that are primarily tailored for material science
applications. Here we used monochromatic 11.1 meV
neutrons and interferometric techniques similar to that
of a Mach-Zehnder interferometer for light optics [33].
The perfect crystal neutron interferometer used in this

experiment consists of three crystal blades on a common
crystal base; a schematic of which is shown in Fig. 1. The
monolithic silicon base below the blades ensures proper
arcsecond alignment between the lattice planes of each of
the three blades. The first blade serves to spatially sepa-
rate the neutron’s wave function ψe−iΦ into two coherent
paths (A and B). In order for the two paths interfere, a
central crystal blade acts as a lossy mirror and directs the
paths back together onto the third blade. Neutrons exit
the interferometer along either one of two paths labeled
traditionally as ‘O’ and ‘H’ and are detected using highly
efficient 3He-filled proportional counters. It should be
noted that there is only one neutron at a time inside the
interferometer and thus it is a elegant example of macro-
scopic self interference. Differences in phase ∆Φ between
the paths A and B modulates the intensities recorded by
the detectors as

IO = AO +B cos[ξ(δ) + ∆Φ] (1)

IH = AH −B cos[ξ(δ) + ∆Φ] (2)

In order to determine ∆Φ and the other fit parameters
(AO,H and B) one could vary the cosine term in a con-

trollable way (ξ(δ)). This is done by the adding what is
called a ‘phase flag’ inside the interferometer. The phase
flag used here is a 1.5 mm thick × 50 mm wide piece
of optically flat quartz and is illustrated in Fig. 1b. By
rotating the phase flag an angle δ a phase shift of ξ(δ)
is caused due to the effective path length difference be-
tween paths A and B. Rotating δ by ±2.5 degrees creates
an interferogram like the one shown in Fig 2.

The perfect crystal neutron interferometery technique
employed in this work has been used to conduct a num-
ber of textbook experiments in gravitation, neutron op-
tics, and quantum entanglement [31]. These experiments
include, but are not limited to, (1) the first demonstra-
tion that the gravitational field affects neutron wave func-
tions as expected in non-relativistic quantum mechanics,
(2) clear demonstrations of the fascinating minus sign
in the quantum amplitude of a spin-1/2 particle rotated
by 2π, (3) the most precise determinations of neutron-
nucleus scattering amplitudes, (4) sensitive tests of quan-
tum entanglement predictions such as the Bell inequal-
ities and the Greenberger-Horne-Zeilinger inequalities,
and (5) subtle effects in neutron optics, most recently
the successful manipulation of the orbital angular mo-
mentum quantum number of a neutron beam [32].

Our experiment searches for the neutron phase shift
between the two coherent paths of the interferome-
ter arising from the coupling of the neutron to the
chameleon field. The neutron phase shift Φcham due to
the chameleon scalar field is

Φcham = −

∫

β

MPL

m2φ(x)

h̄2k
dx (3)

wherem is the mass of the neutron, φ(x) is the chameleon
field, k is the neutron wave vector, and the integration
is performed over the neutron’s trajectory. We use the
sign convention that defines the neutron phase such that
positive potentials give negative phases. By measuring
Φcham, we can then limit β for a given Ratra-Peebles
index n.

x

y

z

FIG. 1: Left is a 3D schematic of the neutron
interferometer seen in profile with the two coherent

beam paths; right shows the top view of the
two-chamber gas cell for the experiment, which fits

around the central blade of the interferometer crystal.
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FIG. 2: A typical pair of O-beam interferograms,
normalized to the total sum of counts, corresponding to

the two run configurations in the experiment.
Uncertainties are purely statistical.

III. EXPERIMENTAL DESIGN AND SETUP

A two-chamber vacuum cell is placed in the perfect
crystal neutron interferometer (see Fig. 1b) with inter-
nal pressures controlled at different values. The overall
dimension of the vacuum cell is 189 mm × 58.5 mm ×

54 mm, with wall thickness 3 mm and each inner cham-
ber 80 mm × 40 mm × 48 mm. Both neutron beams
have a height of 8.0 mm and an increasing beam width
from roughly 4.6 mm (between first and second blade)
to 7.0 mm (between second and third blade). The max-
imum separation between two neutron paths is around
38 mm. The vacuum cell and the neutron interferometer
are both symmetric about the center walls of vacuum cell,
so those two neutron beams should feel exactly the same
chameleon field if the pressures inside are the same. How-
ever the neutron interferometer detects the difference in
phase shifts between the two neutron beams so we need
to control the pressure of the two chambers at different
levels. First (Conf. 1), the pressure in the right cham-
ber is kept low so that the chameleon field can develop
a nonzero value. Meanwhile, the left chamber is filled
with gas at a higher pressure so that the chameleon field
is highly suppressed. Then (Conf. 2), the gas pressure
in each chamber is raised by the same amount so that
the chameleon field gets suppressed in both chambers.
So the four phase shifts the neutrons develop during the
experiment are,

Φ1,A = Φcham,1A +Φcell,1A +Φgas,1A (4)

Φ1,B = Φcham,1B +Φcell,1B +Φgas,1B (5)

Φ2,A = Φcham,2A +Φcell,2A +Φgas,2A (6)

Φ2,B = Φcham,2B +Φcell,2B +Φgas,2B (7)

Ideally, the phase shift due to chameleon in Φ1,B, Φ2,A,
Φ2,B should be close to zero so we define the phase shift of
chameleon to be ∆Φcham = (Φ1,A−Φ1,B)−(Φ2,A−Φ2,B).
The helium gas pressures in the cell in either configu-

ration are low enough that the equation of state of the

helium gas is well-described by the ideal gas law. The
gas density and resulting neutron phase shift from the
neutron optical potential of the helium gas is then pro-
portional to the gas pressure. At these low gas densities
the neutron phase shift from the helium gas is a few or-
ders of magnitude smaller than the ultimate sensitivity of
our experiment to phase shifts from the chameleon field,
so in practice Φgas can be neglected. Furthermore, even
if the phase shift from the gas was larger, our active con-
trol of the pressure difference between the two sides of
the cell in the two configurations would cause this phase
shift difference (Φgas,1A − Φgas,1B) − (Φgas,2A − Φgas,2B)
to cancel to high accuracy. The phase shift difference
from the two cell walls in the two different configura-
tions, (Φcell,1A − Φcell,1B) − (Φcell,2A − Φcell,2B) is also
negligible: the only physically plausible mechanism that
might cause a difference, namely some absolute-pressure-
dependent change of the phase shift from the neutron
optical potential of the aluminum cell walls, is known to
be negligible from previous measurements at much higher
gas pressures at the NCNR of the neutron-helium optical
potential. Under these conditions, ∆Φcham is a clean and
direct measurement of the chameleon phase shift. Ta-
ble I shows the two sets of pressure configurations that
are used in the experiment. The “setpoint” in the table
refers to a low enough pressure at which the chameleon
field may produce an extra phase shift. The choice of gas
pressures used in this experiment are also low enough
that, for the chameleon coupling strengths to which we
are sensitive, the chameleon field sees the helium gas used
in the cell as a homogeneous medium based on previous
analysis of this issue [29].

In the experiment we choose to control the absolute
pressure (the low pressure side in Fig. 1) and the differ-
ential pressure across two chambers to eliminate possible
systematic effects as discussed above. The absolute pres-
sures in Conf. 2 will deviate slightly from the expected
1.33 mbar and 2.67 mbar shown in Table I because the
absolute pressure gauge used in this experiment has a
maximum measuring range of 0 - 0.133 mbar. So instead
of measuring the pressures in Conf. 2 directly, the dif-
ferential pressure gauge, which can measure up to 1.33
mbar, is used to achieve the desired pressures in Conf. 2.
We measured the associated pressure uncertainty to be
smaller than 0.01 mbar. This gives a negligible system-
atic uncertainty since the chameleon field amplitude is
close to zero at such high pressure and it is only logarith-
mically sensitive to the pressure in this regime.

Fig. 3 shows the schematic of the gas handling system
(GHS) used in this experiment. The vacuum cell is made
of aluminum alloy 7075. Two CF flanges are machined
on the two ends of the cell to accommodate aluminum
gasket seals with negligible outgassing. A wall of thick-
ness 3 mm separates the cell into two chambers which can
be filled by gas at different pressures. The GHS employs
metal seals (CF 1-1/3”) and ultra-high vacuum (UHV)
compatible components which are helium leak tight as
verified by measurements using a helium leak detector.
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All the vacuum tubes and the mechanical bellows have a
high-conductance path to the cell (tubing diameters are
greater than 2 cm) so the pressure gradient inside the
gas handling system is minimized. Two absolute pres-
sure capacitance transducers and one differential capaci-
tance transducer are placed close to the vacuum cell and
used to monitor the absolute pressure and differential
pressure across the vacuum cell. Two types of feedback
loops control the pressures inside the cells. One controls
the differential pressure across the chamber using a mo-
torized edge-welded stainless UHV bellows according to
readings from the differential pressure gauge. The other
feedback control employs an absolute pressure gauge and
a vacuum compatible sensitive mass flow controller to
control the pressure in the low pressure chamber. All
valves are controlled by air-actuated switches to reduce
possible electromagnetic or vibrational noise in the in-
terferometer environment. Both absolute pressure and
differential pressure are controlled with fractional fluc-
tuations below 1%. Fig. 5 shows the pressure stability
data.

MB

He
PV

PG

DFPG

PG

MFC

PV PV

PV

TP

HP: High Pressure chamber

LP: Low Pressure chamber

PG: Pressure Gauge

DFPG: Differential Pressure Gauge

PV: Pneumatic valve

TP: Turbomolecular Pump

MB: Motor and Bellow�

MFC: Mass Flow Controller

HP LP

FIG. 3: Schematic diagram of the gas handling system
which maintains a constant pressure in one chamber
and a controlled pressure difference between the two

chambers.

Run Cycle Configurations Pressure(High) Pressure(Low)

Run 1
Conf. 1 0.67 mbar Setpoint

Conf. 2 0.79 mbar 0.133 mbar

Run 2
Conf. 1 1.33 mbar Setpoint

Conf. 2 2.67 mbar 1.33 mbar

TABLE I: Pressure configurations used for two different
measurement runs.

IV. CALCULATION OF THE CHAMELEON

FIELD PHASE SHIFT IN THE CELL

To calculate the chameleon scalar field inside a vacuum
cell, one could solve the Klein-Gorden equation,

∆φ =
∂Veff
∂φ

=
−nΛ4

φn+1
+

βρ

MPI

(8)

Unfortunately there is no known analytical solution
to this non-linear second order partial differential equa-
tion so we had to use a finite difference method to ob-
tain a numerical solution of the 3D field profile inside
the experiential cell chamber. We built a 3D mesh with
roughly 500 × 500 × 500 nodes in total and solved the
non-linear Poisson equation iteratively using the formula
below (Eqn. 9, where i,j,k denotes the node index in
each dimension and l denotes the iteration number). To
accelerate the convergence of the calculation we further
exploited the Gauss-Seidel method shown in Eqn. 10. To
get a precise solution, the number of grid points must
be fairly large because the chameleon field grows rapidly
close to the walls. The gradient of the chameleon field is
close to infinity at such places, which inevitably causes
instability in the iteration method. To address this prob-
lem, we implemented an uneven grid with more grid
points where the field changes dramatically and fewer
grid points where the field does not change much. The
explicit formula is lengthy but is similar to Eqn. 10.

φ
(l)
i+1,j,k + φ

(l)
i−1,j,k − 2φ

(l+1)
i,j,k

∆h2x
+
φ
(l)
i,j+1,k + φ

(l)
i,j−1,k − 2φ

(l+1)
i,j,k

∆h2y
+
φ
(l)
i,j,k+1 + φ

(l)
i,j,k−1 − 2φ

(l+1)
i,j,k

∆h2z
=

−nΛ4

φ
(l)n+1
i,j,k

+
βρ

MPI

(9)

φ
(l+1)
i,j,k =

( nΛ4

φ
(l)n+1
i,j,k

−
βρ

MPI
) +

φ
(l)
i+1,j,k+φ

(l+1)
i−1,j,k

∆h2
x

+
φ
(l)
i,j+1,k+φ

(l+1)
i,j−1,k

∆h2
y

+
φ
(l)
i,j,k+1+φ

(l+1)
i,j,k−1

∆h2
z

2
∆h2

x
+ 2

∆h2
y
+ 2

∆h2
z

(10)

Having solved for the chameleon field inside vacuum cell, the extra phase shift picked up by neutrons due to
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chameleon field is computed according to Eqn. 3 by inte-
grating the chameleon field over the neutron path length.
Fig. 4 shows the calculated phase shift caused by the
chameleon field with different Ratra-Peebles model pa-
rameters n and β. This result agrees well a previous
calculation in the literature [29].
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FIG. 4: The calculated phase shift caused by chameleon
field versus gas pressure for various values of the

Ratra-Peebles index n and β.

V. DATA ACQUISITION AND ANALYSIS

Environmental factors are known to cause the phase
of a neutron interferometer to drift. To isolate the
chameleon phase from environmental phase drifts, we
switched between Conf. 1 and Conf. 2 after taking each
interferogram. The contrast (or B/AO from Eqn. 1) of
the neutron interference pattern with the cell in the inter-
ferometer was around 37% and is consistent with other
Al cells used inside the interferometer (the empty inter-
ferometer contrast is 85%). Since the chameleon field
is a function of pressure as shown in Fig. 4, we also
varied the pressure setpoint in Table I to look for any
pressure dependence of the phase shift. Two sequences
of measurements were taken during two adjacent reactor
cycles. The only difference between the two runs is in the
pressure configurations used. In the first run, nine pres-
sure setpoints were scanned in the range from 3.33×10−4

mbar to 2.67 × 10−3 mbar. In the second run, we chose
three pressure setpoints that span over a wider range,
3.33 × 10−4 mbar, 3.33 × 10−3 mbar and 2.00 × 10−2

mbar. The measured phase shift along with the pressure
and differential pressure stability is shown in Fig.5.
Systematic uncertainties in our measurement are neg-

ligible compared to the statistical uncertainty. Table II
lists the major systematic uncertainties and corrections.
The first two items could lead to a nonzero phase shift
even in the absence of a chameleon field but both are
much smaller than the statistical uncertainty (typically
0.0025 rad) in the chameleon phase. The last three fac-
tors reduce slightly the amplitude of the line integral used
to compute the chameleon phase Φcham (shown in Fig. 4)

and therefore reduces the calculated upper limit of β pro-
portionally. These scaling corrections are also negligible
compared to the uncertainty in our upper limits for β.

systematic correction uncertainty

Helium nuclear scattering 0.002 rad/bar 2.0E-6 rad

Pressure gauge accuracy 0.3% FS 1.2E-4 rad

Vacuum cell misalignment
1◦ rotation 0.0005Φcham

1 mm translation 0.02Φcham

Neutron beam divergence 1.5◦ 0.006Φcham

TABLE II: Estimates of systematic uncertainties.

Before fitting the measured phase shift to the calcu-
lated phase shift due to chameleon field, the sequence of
phase shift differences is filtered using a time-series anal-
ysis algorithm designed to remove slow zero-point drifts
in data sequences like ours which oscillate between two
states with equal measurement times [34]. To do this
one takes a weighted average from neighboring points
from the original sequence, yi =

∑p

k=0 ckui+k, where ui
is the original data sequence and yi is the combined se-
quence. A covariance matrix must be used to properly
estimate the uncertainties after the correlations induced
by the weighting algorithm. The weights ck satisfy the
equation,
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which is designed so that a zero point drift in the signal
with a polynomial time dependence up to order p will be
cancelled by combining each p+ 1 items in the sequence
while a true signal correlated with the difference in the
two configurations is kept unchanged. For comparison
we present both the filtered mean and unfiltered mean
in Fig. 6. The good agreement between the mean values
and statistical uncertainties of the filtered and unfiltered
phase shift data shows that any possible effects of inter-
ferometer phase drift are negligible in our measurement.
We use the filtered data to extract our limit.
To establish an upper limit of β at the 95% confidence

level, the square of the weighted residuals is summed over
all measurements (χ2(β))

χ2(β) =
∑

i

[ζ(β)i −∆Φi]
2

σ2
i

(12)

where ζ(β)i is the expected chameleon phase shift and
∆Φi is the measured phase shift with uncertainty σi for
the ith pressure setpoint. To estimate β, χ2(β) is then
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FIG. 5: a) and b) shows the pressure difference between
the two cells (∆P ), the Conf. 1 pressure in the low
pressure chamber (P ), and the measured chameleon
phase shift in the first and second runs (∆Φcham).

minimized with respect to β for a given Ratra-Peebles in-
dex n. However, the typical computation of a fit param-
eter confidence interval is not valid in this case, because
for our measurements this function reaches its minimum
at β = 0 for all values of n due to the constraint β > 0.
To find the 95% confidence interval, χ2(β) was solved for
the value of χ2 that gives:

∫ χ2(βlim)

0

p12(χ
2′)dχ2′ = 0.95 (13)

where p12(χ
2) is the χ2 distribution with 12 degrees of

freedom, corresponding to the 12 pressure set points. The
calculated limit is shown in Table III and the excluded
area is shown in Fig. 7 as a function of the Ratra-Peebles
index n.
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FIG. 6: a) and b) shows measured phase in two runs
compared to calculated phase with different values of β

(n=1).

n 1 2 3 4 5 6

βlimit × 106 4.7 8.2 12.7 17.9 20.4 23.8

TABLE III: The calculated upper limit on β with 95%
confidence level.

VI. CONCLUSION

We have conducted a search for chameleon dark en-
ergy fields using neutron interferometry. We realized an
experiment in which the chameleon field is periodically
varied in magnitude with no change in the experimen-
tal geometry. Our upper bound of β < 4.7 × 106 for a
Ratra-Peebles index of n = 1 to β < 2.4×107 for n = 6 is
the most sensitive direct constraint on the free neutron-
chameleon coupling in the strong coupling regime of the
theory. It is more sensitive than a recent neutron inter-
ferometer experiment at the ILL [30] by about a factor of
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FIG. 7: The excluded regions in (β, n) parameter space
compared to other experiments. From bottom to top:
torsion pendulum experiment [35]; atom interferometer
experiment [22]; this work; ILL neutron interferometer
experiment [30]. Other experimental constraints in the

regime of large β are less stringent.

5 for n = 1 to a factor of 30 at n = 4, and it cuts into part
of the projected sensitivity of a proposed experiment us-
ing an optimized force sensor [14]. The constraints from
this work on the chameleon are consistent with but less
stringent than a very recently-published atom interfer-
ometry experiment using cesium atoms [22]. Under the
assumption that chameleon dark energy obeys the grav-
itational equivalence principle and that there are no es-
sential differences between the response of a neutron and
a cesium atom to the chameleon field, the atom inter-
ferometer constraints are about two orders of magnitude
more stringent at present.
This neutron interferometer experiment can be im-

proved by (a) using an interferometer crystal with a
larger path length, (b) improving the contrast of the in-

terference signal in the interferometer, (c) optimizing fur-
ther the pressure range of the measurements, (d) operat-
ing the interferometer on a more intense monochromatic
neutron beam, and (e) varying the neutron coupling to
the chameleon both by changing the cell geometry and
also by varying the gas pressure. With these improve-
ments, the statistical sensitivity of this measurement to
the coupling β can be improved by at least two more
orders of magnitude with negligible systematic effects,
which could then surpass the existing atom interferome-
ter limits at larger n.

A experimental lower bound on β > 50 for n = 1 al-
ready exists from gravitational inverse square law tests.
By improving the atom interferometry limits by another
few orders of magnitude, laboratory experiments will ei-
ther discover chameleons or provide the first experimen-
tal refutation of a plausible dark energy theory. Scalar
field candidates for dark energy which employ other
screening methods, such as symmetrons, might also be
constrained by this and other experiments with further
analysis.
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