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We compute the normalized structure constant of three twist-2 operators in N = 4 SYM in the
leading BFKL approximation at any Nc. The result is applicable to other gauge theories including
QCD.

INTRODUCTION

The problem of high-energy behavior of amplitudes has
a long story [1, 2]. One of the most popular approaches
is to reduce the gauge theory at high energies to 2+1
effective theory which can be solved exactly or by com-
puter simulations. Unfortunately, despite the multitude
of attempts, the Lagrangian for 2+1 QCD at high ener-
gies is not written yet. In this context the idea to solve
formally the high-energy QCD or N = 4 SYM by calcu-
lation of anomalous dimensions and structure constants
in the BFKL limit seems to be very promising.

N = 4 SYM is a superconformal theory and its most
important physical properties are encoded into the OPE
characterized by the spectrum of anomalous dimensions
and by the structure constants. While the former is now
exactly and efficiently computable at large Nc due to
quantum integrability [3], the calculation of the OPE
structure constants is these days on a fast track, espe-
cially after the ground-breaking all-loop proposal of [4].

In this note we calculate the 3-point correlator of twist-
2 operators Oj(x) = trF+iD

j−2
+ F i+ +fermions+scalars

inN = 4 SYM in the BFKL limit [5] when ω = j−1→ 0,

the ’t Hooft coupling g2 ≡ Ncg
2
Y M

16π2 → 0 and g2

ω fixed, for
arbitrary Nc. The symbol ’+’ in the field-strength ten-
sor F+i means contraction with light-ray vector n+ and
the summation over index ’i’ goes over two-dimensional
space orthogonal to n+ and n−. Since the contribution
of fermions+scalars is subleading at this limit, including
the internal loops, the result is valid for the pure Yang-
Mills theory as well. The case of two-point correlator was
elaborated in our previous paper [6] where we defined
the generalized operators with complex spin as special
light-ray operators [7] (regularized as a narrow rectangu-
lar Wilson contour called ”frame”) and calculated their
correlator using OPE over Wilson lines [8] with a rapid-
ity cutoff and the BFKL evolution (see Fig. 1). Here we
use the same light-ray operators: one along n+ direction
and two along n−. In this case we should use more gen-
eral Balitsky-Kovchegov (BK) evolution [9, 10] and the
leading BFKL contribution comes from the BK vertex.

FIG. 1. Scheme of computation of 2-point correlator. In
the l.h.s., the long sides of regularizing rectangular Wilson
frames are stretched along light ray and the short sides in the
orthogonal directions. In the r.h.s. we use OPE of frames over
color dipoles and compute their correlator, see [6] for details.

LIGHT-RAY OPERATORS AND THEIR
RELATION TO LOCAL OPERATORS

The generalization of local operator Oj for the case
of complex spin j was constructed in [6]. It has a form
of light-ray operator S̆J stretched along n+ direction and
realizing the principal series representation of sl(2|4) with
conformal spin J = 1

2 +iν which is related to Lorentz spin
j as J = j + 1. The full regularized operator reads as
follows:

S̆j+1(x1⊥) = S̆j+1
gl (x1⊥) +

+
i

2
(j − 1)S̆j+1

f (x1⊥) − 1

2
(j)(j − 1)S̆j+1

sc (x1⊥), (1)

where for example, the regularized gluon operator is:

S̆j+1
gl (x1⊥) = lim

|x31⊥|→0
|x13⊥|−γjSj+1

gl (x1⊥, x3⊥),

Sj+1
gl (x1⊥, x3⊥) =

∞∫
−∞

∞∫
x1−

dx1−dx3−

xj−1
31−

trF i
+ (x1)[1, 3]

�
F+i(x3)

and x1 = (x1−, 0, x1⊥), x3 = (x3−, 0, x3⊥). The anoma-
lous dimension γj corresponds to operator S̆j+1(x1⊥).
Here we introduced the notation [1, 3]� for rectangular
Wilson contour with coordinates x1, x3 of two diagonally
opposite corners, as in Fig. 1. In the case of even inte-
ger Lorentz spin j it can be rewritten as an integral of
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local operator Oj(x) with dimension ∆(j) along a light
ray direction n+:

S̆j+1(x⊥)|j∈Even ∼
∞∫
−∞

dx−Oj(x) (2)

In this case the correlator of two light-ray operators
stretched along n+ and n− vectors, normalized as
〈n+n−〉=1, is just the double integral of two-point corre-
lator of local operators w.r.t. light-ray directions n±:

< S̆j1+1(x⊥)S̆j2+1(y⊥) >=
δ(j1 − j2)bj1

(|x− y|2⊥)∆(j1)−1
(3)

In this note, we calculate the correlator of three light-
ray operators, restricting ourselves to a particular sim-
ple kinematics: one light-ray operator is stretched along
n+ light-ray direction and two other – along n−. The
correlator of 3 light-ray operators can be obtained by in-
tegrating the correlator of 3 local operators along these
light-rays. The tensor structures of such local correla-
tors are known from general group-theoretical considera-
tions [11], up to a few structure constants depending on
the coupling and symmetry charges. The main problem
which we are addressing here is the calculation of these
non-trivial constants. Remarkably, if the coordinates of
all 3 light-rays in the transverse space are restricted to
the same line all these structures collapse into a single
one [13], with a single overall structure constant which
we are going to compute. Note that after a conformal
transformation the three points in the transverse space
take arbitrary positions.

However, the configuration with two collinear light-ray
operators is singular, so we first consider three different
light-ray directions n1, n2, n3 and then take the limit
n2 → n3. The result of integration along light-rays is
quite simple and contains only one unknown overall con-
stant

〈S̆j1+1(x⊥)S̆j2+1(y⊥)S̆j3+1(z⊥)〉 = C{ni}({∆i}, {ji})·

· < n1n2 >
[j]1,2;3< n1n3 >

[j]1,3;2< n2n3 >
[j]2,3;1

(|x− y|2⊥)[∆]1,2;3(|x− z|2⊥)[∆]1,3;2(|y − z|2⊥)[∆]2,3;1
(4)

where we used a short-hand notation [a]i,j;k ≡ 1
2 (ai +

aj − ak − 1) and {ai} ≡ {a1, a2, a3}. In what follows, we
assume the existence of a good analytic continuation for
C{ni}({∆(ji)}, {ji}) to non-integer {ji}’s. We take the
limit n1 = n+, n2 = n−, n3 → n2 with the normalization
〈n+n−〉 = 1. In BFKL regime ji = 1+ωi → 1 we obtain:

〈S̆2+ω1(x⊥)S̆2+ω2(y⊥)S̆2+ω3(z⊥)〉 =

= lim
n3→n2=n−

< n2n3 >
ω2+ω3−ω1

2

ω2 + ω3 − ω1
×

× C+−−({∆i}, {1 + ωi})
|x− y|2⊥)[∆]1,2;3(|x− z|2⊥)[∆]1,3;2(|y − z|2⊥)[∆]2,3;1

(5)

where ∆i = ∆(1 + ωi, g
2) is given by BFKL spectrum

(see below). We explicitly pulled out the denomina-
tor 1

ω2+ω3−ω1
because it will emerge in our forthcom-

ing calculation using the BK evolution. We interpret

lim
<n2n3>→0

<n2n3>
ω2+ω3−ω1

2

ω2+ω3−ω1
as a delta function δ(ω2+ω3−

ω1) reflecting the boost invariance. In addition, we keep
ωi positive through the paper.

Finally, the structure constant is normalized using the
corresponding 2-point correlators:

Cω1,ω2,ω3
=
C+−−({∆i}, {1 + ωi})√

b1+ω1
b1+ω2

b1+ω3

(6)

DECOMPOSITION OVER DIPOLES AND BK
EVOLUTION

When calculating the two-point correlator [6] we used
a point splitting regularization in orthogonal direction,
replacing light-rays by infinitely narrow Wilson frames
with inserted fields in the corners (see Fig. 1). Now, for
the sake of simplicity, we carry out our calculation for
pure Wilson frames, related to our operators with zero
R-charge in the following way:

∂x1⊥ · ∂x3⊥

∫ ∫
dx1−dx3−

(x3− − x1−)2+ω1
[x1, x3]� →

→
x13⊥→0, ω1→0

|x13⊥|γj1 c(g2
YM , Nc, ω1)S̆2+ω1(x1⊥). (7)

The coefficient c(g2
YM , Nc, ωi) (denoted below as c(ωi))

depends on the local regularization procedure and at

weak coupling it behaves as c(ωi) ∼ g2Y M

ωi
, but its explicit

form is irrelevant for us because we are going to calcu-
late the normalized structure constant where it cancels.
In general, there are a few types of leading twist-2 opera-
tors which appear in this decomposition but in the BFKL
limit a single one with the smallest anomalous dimension
survives. In addition, in the ωi → 0 limit only the term
built out of gauge fields alone does contribute [6].

Following the OPE method [8], the pure Wilson frames
can be replaced by regularized color dipoles:

[x1, x3]� → N(1−Uσ+(x1⊥, x3⊥)) (8)

where

Uσ+(x1⊥, x3⊥) = 1− 1

N
tr(Uσ+

x1⊥
Uσ+†
x3⊥

), (9)

Uσ+
x⊥

= P exp[ig
Y M

∞∫
−∞

dx+A
σ+

− (x)], (10)

Aσ+
µ (x) =

∫
d4kθ(σ+ − |k+|)eikxAµ(k) (11)

and σ+ is a longitudinal cutoff in n+ direction. Now we
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can write:

〈S2+ω1(x1⊥, x3⊥)S2+ω2(y1⊥, y3⊥)S2+ω3(z1⊥, z3⊥)〉 =

= −D⊥

∞∫
−∞

dx1−

∞∫
x1−

dx3−x
−2−ω1
31− × (12)

×
∞∫
−∞

dy1+

∞∫
y1+

dy3+y
−2−ω2
31+

∞∫
−∞

dz1+

∞∫
z1+

dz3+z
−2−ω3
31+ ×

×〈Uσ1−(x1⊥, x3⊥)Vσ2+(y1⊥, y3⊥)Wσ3+(z1⊥, z3⊥)〉,

where D⊥ =
N3(∂x1⊥ ·∂x3⊥ )(∂y1⊥ ·∂y3⊥ )(∂z1⊥ ·∂z3⊥ )

c(ω1)c(ω2)c(ω3) .

In our kinematics two dipoles V and W have zero n+

projection and in the BFKL approximation they form
a ”pancake” field configuration in the reference frame
related to U. This means that the rapidity of U serves
as the upper limit for integrations w.r.t. rapidities of
V and W in our logarithmic approximation. Now we
use the BK evolution equation [9, 10] to calculate the
quantum average in (12). It gives the evolution of the
dipole UY with respect to rapidity Y = eσ, namely

σ
d

dσ
Uσ(z1, z2) = KBK ∗Uσ(z1, z2), (13)

where KBK is an integral operator having the following
form in LO approximation:

K
LOBK

∗U(z1, z2) =
2g2

π

∫
d2z3

z2
12

z2
13z

2
23

[U(z1, z3)+

+U(z3, z2)−U(z1, z2)−U(z1, z3)U(z3, z2)] . (14)

Evolution of UY1 goes from Y1 to an intermediate Y0

w.r.t. the linear part of (13), and then the BK vertex acts
at Y0 and generates two dipoles which can be contracted
with VY2 and WY3 . Schematically, it can be written as:∫
dY0(UY1 → UY0)⊗ (BK vertex at Y0)⊗

(
〈UY0VY2〉
〈UY0WY3〉

)
The linear BFKL evolution of UY1 from Y1 to Y0 gives:

UY1(x1, x3) =

∫
dν

∫
d2x0

ν2
1

π2
Eν1(x10, x30)eℵ(ν1)Y10 ·

· 1

π2

∫
d2γd2β

|γ − β|4
E∗ν1(γ − x0, β − x0)UY0(γ, β), (15)

where we denoted Yij ≡ Yi − Yj and we introduced the

function Eν(z10, z20) = ( |z12|2
|z10|2|z20|2 )1/2+iν which projects

dipoles on the eigenstates of BFKL operator with the
eigenvalues ℵ(ν) = 4g2(2ψ(1) − ψ(1/2 + iν) − ψ(1/2 −
iν)). We take here only the sector n = 0, where n is the
discrete quantum number of SL(2, C) because it gives
the leading contribution.

The non-linear part of BK evolution (13) is described
by the following renorm group equation:

∂

∂Y
UY (γ, β)

∣∣∣∣
Y=Y0

=

−2g2

π

∫
d2α

|γ − β|2

|γ − α|2|β − α|2
UY0(γ, α)UY0(α, β) (16)

Finally, we contract the two emerging dipoles UY0(γ, α)
and UY0(α, β) with Vσ2+(y1⊥, y3⊥) and Wσ3+(z1⊥, z3⊥).
Thus for the planar contribution we get:

〈UY1(x1⊥, x3⊥)VY2(y1⊥, y3⊥)WY3(z1⊥, z3⊥)〉pl = (17)

= −2g2

π

∫
dY0

∫
dν1

∫
d2x0

ν2
1

π2
Eν1(x10, x30)eℵ(ν1)Y10×

× 1

π2

∫
d2αd2βd2γ

|γ − β|2|γ − α|2|β − α|2
E∗ν1(γ − x0, β − x0)·

·(〈UY0(γ, α)VY2(y1⊥, y3⊥)〉〈UY0(α, β)WY3(z1⊥, z3⊥)〉+
+〈UY0(γ, α)WY3(z1⊥, z3⊥)〉〈UY0(α, β)VY2(y1⊥, y3⊥)〉)

The last two terms in (17) give the same contribution so
it is enough to know the correlators of two dipoles [6]:

〈UY0(γ, α)VY2(y1⊥, y3⊥)〉 =
8g4(1−N2

c )

N4
c

∫
d2y0·

·
∫
dν2ν

2
2e
Y02ℵ(ν2)

( 1
4 + ν2

2)2
Eν2(γ − y0, α− y0)E∗ν2(y10, y30) (18)

and similarly for 〈UY0(α, β)WY3(z1⊥, z5⊥)〉. It was
argued in [6] that we can make the following iden-
tification for rapidities in dipole correlators: Y02 =
ln L0y31+

Λ2 , Y03 = ln L0z31+
Λ2 , where Λ a cutoff whose precise

value is irrelevant in LO. On the other hand, the differ-
ence of rapidities of the first dipole and of the BK vertex
Y10 = ln x31−

L0
corresponds to BFKL evolution. The inte-

gral over Y0 = ln L0

Λ goes from Y1 to max(Y2, Y3). If we
plug (17)-(18) into (12) and do the integrals over light
ray directions, i.e. over rapidities, we obtain the follow-
ing planar contribution:

〈S2+ω1(x1⊥, x3⊥)S2+ω2(y1⊥, y3⊥)S2+ω3(z1⊥, z3⊥)〉pl =

=
28g10(N2

c − 1)2

π3N8
c

δ(ω1 − ω2 − ω3)D⊥∫
dν1

ν2
1

π2

1

ω2 + ω3 − ℵ(ν1)

∫
dν2ν

2
2

( 1
4 + ν2

2)2

1

ω2 − ℵ(ν2)
·

·
∫

dν3ν
2
3

( 1
4 + ν2

3)2

1

ω3 − ℵ(ν3)

∫
d2x0d

2y0d
2z0E

∗
ν1(x10, x30)·

·E∗ν2(y10, y30)E∗ν3(z10, z30)Υpl(ν1, ν2, ν3;x0, y0, z0) (19)

The usual delta-function δ(ω1−ω2−ω3) (see e.g. [14]) is
a consequence of boost-invariance as in the formula (5).
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Υpl represents the planar contribution of BK vertex:

Υpl(ν1, ν2, ν3;x0, y0, z0) =

=

∫
d2αd2βd2γ

|γ − β|2|γ − α|2|β − α|2
Eν1(β − x0, γ − x0)·

·Eν2(α− y0, γ − y0)Eν3(α− z0, β − z0) = (20)

=
Ω(h1, h2, h3)

|x0 − y0|4[h]1,2;3+2 |x0 − z0|4[h]1,3;2+2 |y0 − z0|4[h]2,3;1+2

where h1 = 1
2 + iν1, h2 = 1

2 + iν2, h3 = 1
2 + iν3 and the

function Ω(h1, h2, h3) was presented in [15].

Remarkably, we can also take into account the non-
planar contribution [15, 16], thus providing the finite Nc
answer for the BFKL structure constant! It appears as a
single extra term Υnpl:

Υnpl(ν1, ν2, ν3;x0, y0, z0) =

∫
d2βd2γ

|γ − β|4
Eν1(β − x0,

γ − x0)Eν2(β − y0, γ − y0)Eν3(β − z0, γ − z0) = (21)

=
Λ(h1, h2, h3)

|x0 − y0|4[h]1,2;3+2 |x0 − z0|4[h]1,3;2+2 |y0 − z0|4[h]2,3;1+2

where Λ(h1, h2, h3) was also presented in [15], and the
full answer can be obtained from (19) by replacing Υpl

with Υ (see in Fig. 2):

Υ = Υpl −
2π

N2
ΥnplRe[ψ(1)+

+ψ(
1

2
+ iν1)− ψ(

1

2
+ iν2)− ψ(

1

2
+ iν3)]. (22)

The integrals over x0, y0, z0 are easily computable, e.g.∫
d2x0Eν1(β − x0, γ − x0)E∗ν1(x10, x30) =

= (τ2)
1
2 +iν1

2F1(
1

2
+ iν,

1

2
+ iν, 1 + 2iν, τ)×

×2F1(
1

2
+ iν,

1

2
+ iν, 1 + 2iν, τ̄)

( 1
4 + ν2)2

ν2
G(ν)+

+(ν ↔ −ν), (23)

G(ν) =
ν2

( 1
4 + ν2)2

πΓ2( 1
2 + iν)Γ(−2iν)

Γ2( 1
2 − iν)Γ(1 + 2iν)

, (24)

where τ = |x1−x3||β−γ|
|x1−β||x3−γ| . In the limit x1, x3 → x we can

replace |x1−x3||β−γ|
|x1−β||x3−γ| →

|x1−x3||β−γ|
|x−β||x−γ| → 0. For small τ we

close the ν1 contour in the lower (upper) half-plane for
first(second) term, respectively, both of them giving the
same contribution. Integrals over α, β, γ in (19) can be
reduced to Υpl represented in [15] in terms of hyperge-
ometric and Meijer G functions, and Υnpl in terms of
Γ-functions. Integrals over νi can be done by picking up
the BFKL poles ωi = ℵ(ν∗i ).

Combining (19),(22) and (23) we come to the final ex-

pression for 3-point correlation function:

〈S2+ω1(x1⊥, x3⊥)S2+ω2(y1⊥, y3⊥)S2+ω3(z1⊥, z3⊥)〉 =

= −ig10 δ(ω1 − ω2 − ω3)

c(ω1)c(ω2)c(ω3)
H· (25)

· Ψ(ν∗1 , ν
∗
2 , ν
∗
3 )|x13|γ1 |y13|γ2 |z13|γ3

|x− y|2+γ1+γ2−γ3 |x− z|2+γ1+γ3−γ2 |y − z|2+γ2+γ3−γ1

where H =
210(N2

c − 1)2

π2N5
c

γ2
1(2 + γ1)4(2 + γ2)2×

×(2 + γ3)2 G(ν∗1 )

ℵ′(ν∗1 )

G(ν∗2 )

ℵ′(ν∗2 )

G(ν∗3 )

ℵ′(ν∗3 )
, (26)

γi = γ(1 + ωi) - anomalous dimension and the coeffi-
cient Ψ(ν∗1 , ν

∗
2 , ν
∗
3 ) can be expressed through the func-

tions Ω(h1, h2, h3) and Λ(h1, h2, h3) defined in (20)-(21)
and calculated in [15]:

Ψ(ν∗1 , ν
∗
2 , ν
∗
3 ) = Ω(h∗1, h

∗
2, h
∗
3)− 2π

N2
c

Λ(h∗1, h
∗
2, h
∗
3)·

·Re(ψ(1)− ψ(h∗1)− ψ(h∗2)− ψ(h∗3)), (27)

where h∗i = 1
2 + iν∗i = 1 + γi

2 .
Our final result for normalized structure constant is:

Cω1,ω2,ω3
= −i1/2g4 2

π5

√
N2
c − 1

N2
c

γ2
1(2 + γ1)2·

·

√
G(ν∗1 )

ℵ′(ν∗1 )

G(ν∗2 )

ℵ′(ν∗2 )

G(ν∗3 )

ℵ′(ν∗3 )
Ψ(ν∗1 , ν

∗
2 , ν
∗
3 ) (28)

Precising the dependence on parameters { g
2

ωi
}, g2 and Nc

we can write: Cω1,ω2,ω3 = g

√
N2

c−1

N2
c

f( g
2

ω1
, g

2

ω2
, g

2

ω3
), where

f is a function which depends only on the ratios { g
2

ωi
}.

In the limit g2

ωi
→ 0 we get the asymptotics:

Ω(h∗1, h
∗
2, h
∗
3)→ − 16π3

γ2
1γ

2
2γ

2
3

· [γ2
1(γ2 + γ3) + γ2

2(γ1 + γ3)+

+γ2
3(γ1 + γ2) + γ1γ2γ3)(1 +O(g2/ωi))

Λ(h∗1, h
∗
2, h
∗
3)→ 8π2(γ1 + γ2 + γ3)

γ1γ2γ3
(1 +O(g2/ωi)) (29)

In this limit γi = − 8g2

ωi
+o( g

2

ωi
) and the main contribution

to 3-point correlator (28) comes from the planar O(g2)
term

Cω1,ω2,ω3 = −ig2

√
N2
c − 1√

2πN2
c

1

ω
5
2
1 ω

1
2
2 ω

1
2
3

(ω2
1(ω2 + ω3)+

ω2
2(ω1 + ω3) + ω2

3(ω1 + ω2) + ω1ω2ω3)(1 +O(g2)) (30)

whereas the nonplanar one is O(g6). It might seem
strange that the planar contribution does not start from
O(g4) terms given by the leading Feynman graphs, e.g.
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FIG. 2. The structure of 3-point correlator. Red circles cor-
respond to BFKL propagators (the crossed one has extra
multiplier ( 1

4
+ ν21 )2). The blue blob corresponds to the 3-

point functions of 2-dimensional BFKL CFT. The triple ”Y”-
veritces correspond to E-functions. For example vertex with
ends labeled as z1⊥, z3⊥, z0⊥ corresponds to Eν(z10⊥, z30⊥) =

( |z13⊥|2
|z10⊥|2|z30⊥|2 )1/2+iν3 . The αβγ-triangle in the first, planar,

term and βγ-link in the second, nonplanar, term correspond
to triple pomeron vertex.

with 4 gluon vertices. However, in BFKL approxima-

tion we should keep g2

ω � ω [17]. In addition, when
making the point-splitting regularization we have to keep
g2

ω | ln(x31⊥/(x − y))2| � 1. The limit |x13⊥| has to be
taken first, which makes the value g2 = 0 exceptional.
This order of limits leads to O(g2) behavior of (30).

DISCUSSION

Our result eq.(28), based on BFKL approximation is a
rare example of computation of a non-BPS structure con-
stant receiving contributions from all orders in coupling
constant, including infinitely many ”wrapping” correc-
tions. Moreover, our result is valid at any Nc. Since in
the LO BFKL the contributions of all fields but gluons
in N = 4 SYM disappear from both the definition of
operators and internal loops, the result is applicable to
pure YM theory at any Nc, including Nc = 3. It would
be interesting to apply our structure constants to the
OPE at hard scattering in real QCD and to work out
the full ”dictionary” relating them to the OPE in the
2-dimensional SL(2, C) CFT – the basis of our BFKL
computation. It is also not hopeless, though challenging,
to compute these structure constants in the NLO approx-
imation in N = 4 SYM. Our present result may serve as
an important, all-wrappings test for the future computa-
tions of similar quantities in the integrability approaches
to planar AdS5/CFT4, such as [4] and the BFKL limit
of quantum spectral curve [18].
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