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We describe basics of a new approach to transverse momentum dependence in hard exclusive
processes. We develop it in application to the transition process γ∗γ → π0 at the handbag level.
Our starting point is coordinate representation for matrix elements of operators (in the simplest
case, bilocal O(0, z)) describing a hadron with momentum p. Treated as functions of (pz) and
z2, they are parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being
Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0, we introduce
the transverse momentum distribution amplitude (TMDA) Ψ(x, k⊥), and write it in terms of VDA
Φ(x, σ). The results of covariant calculations, written in terms of Φ(x, σ) are converted into ex-
pressions involving Ψ(x, k⊥). Starting with scalar toy models, we extend the analysis onto the case
of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for
comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition
form factor. We also discuss how one can generate high-k⊥ tails from primordial soft distributions.

PACS numbers: 11.10.-z,12.38.-t,13.60.Fz

I. INTRODUCTION

Analysis of effects due to parton transverse momen-
tum is an important direction in modern studies of
hadronic structure. The main effort is to use the
transverse-momentum dependence of inclusive processes,
such as semi-inclusive deep inelastic scattering (SIDIS)
and Drell-Yan (DY) pair production, describing their
cross sections in terms of transverse momentum depen-
dent distribution (TMDs) F (x, k⊥) [1].

TMDs are generalizations of the usual “longitudinal”
parton densities f(x) that correspond to TMDs inte-
grated over k⊥ (in a perturbative context, “unintegrated
parton distributions” were used from the wake of QCD,
see, e.g. Ref. [2]). Information about the transverse
momentum structure is contained in the k2n

⊥ moments of
F (x, k⊥) for n ≥ 1. Dealing with DY and SIDIS pro-
cesses, one encounters O(〈k2n

⊥ 〉) contributions that are
not suppressed by inverse powers of Q2, the high mo-
mentum probe. Such effects are combined into one func-
tion, TMD F (x, k⊥), the use of which in these cases is
unavoidable.

However, in light-cone dominated processes, such as
deep inelastic scattering in the limit of large Q2, the
higher moments of k2

⊥ generate just power corrections of
〈k2n
⊥ 〉/Q2n type to the leading power behavior described

by the “collinear” parton distribution f(x). Still, if one
is interested in the region of moderately large Q2’s, the
transverse momentum corrections may be rather impor-
tant even for a light-cone dominated process. Then one
may want to explicitly represent them as generated from
a common TMD-type function. Effectively, this corre-
sponds to a resummation of such power corrections.

A situation when accessible Q2 are not large enough
to secure the dominance of the asymptotically leading
collinear approximation, is very common in hard exclu-
sive processes, such as pion and nucleon electromagnetic

form factors, where the overlap contributions of soft wave
functions [3] ψ(x, k⊥) are sufficient to describe exist-
ing data. These wave functions are apparent analogs
of TMDs in case of exclusive processes. In particular,
integrating ψ(x, k⊥) over k⊥ gives [4] the distribution
amplitude ϕ(x) [5], a basic object of the asymptotic per-
turbative QCD analysis for exclusive processes [4–8]. The
latter is based on the operator product expansion (OPE)
[9, 10], with xn moments of ϕ(x) related to matrix ele-
ments of the lowest-twist operators.

One may expect that higher k2n
⊥ moments of ψ(x, k⊥)

should correspond to matrix elements of higher-twist op-
erators of the OPE. However, a subtle point is that the
standard OPE [9, 10] is constructed within a covariant
4-dimensional quantum field theory (QFT) framework,
while the wave functions ψ(x, k⊥) [3] mentioned in the
context of the overlap contributions are the objects of a
3-dimensional light-front approach [11, 12].

Our goal in the present paper is to develop the basics of
a formalism (its outline was given in Ref. [13]) that starts
from a covariant 4-dimensional approach, but describes
the structure of hadrons in hard exclusive processes in
terms of functions Ψ(x, k⊥) incorporating the depen-
dence on the transverse momentum of its constituents.
Just like in the light-front formalism, the organization of
these functions has the structure of the Fock state de-
composition, i.e. each function is characterized by the
number of constituents involved.

The lowest, 2-body component is described by a func-
tion Ψ(x, k⊥) that depends on a 3-dimensional variable
x, k⊥. To emphasize the distinction, we use “transverse
momentum dependent distribution amplitude” (TMDA)
as the name for the function Ψ(x, k⊥) that appears in
our approach. By construction, Ψ(x, k⊥) has a direct
connection with the operators that appear in the OPE
of a covariant QFT. As a specific application, we choose
the hard exclusive process of γ∗γ → π0 transition that
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involves just one hadron, and thus has the simplest struc-
ture.

The paper is organized as follows. Since the basic fea-
tures of our approach are not sensitive to the spin of the
particles, we begin in Sect. II with the discussion of the
structure of the γ∗γ → π0 transition form factor at the
handbag(i.e., 2-body) level in a scalar model. With the
goal of keeping the closest contact with the OPE, we start
with a general analysis of the handbag diagram using the
coordinate representation, in which the hadron structure
is described through the z-dependence of a matrix ele-
ment 〈p|φ(0)φ(z)〉 ≡ χ̃p(z) involving two parton fields φ
(p being the hadron momentum).

By Lorentz invariance, χ̃p(z) depends on z through
two variables, (pz) and z2. A double Fourier transform
of χ̃p(z) with respect to (pz) and z2 gives the virtuality
distribution amplitude (VDA) Φ(x, σ), the basic object
of our analysis. For any contributing Feynman diagram
the support of the VDA is restricted by 0 ≤ x ≤ 1 and
0 ≤ σ ≤ ∞. The variable x has the usual meaning
of the fraction of the hadron momentum p carried by a
parton, while the variable σ being conjugate to z2 may
be interpreted as a generalized virtuality.

Projecting χ̃p(z) on the light front z+ = 0 results
in the impact parameter distribution amplitude (IDA)
ϕ(x, z⊥), whose further Fourier transform leads to the
transverse momentum dependent distribution amplitude
(TMDA) Ψ(x, k⊥). The properties of virtuality distri-
butions, TMDAs and connections between them and re-
lated functions are discussed in Sect. III. A key point
for subsequent applications is that Ψ(x, k⊥) has a simple
expression in terms of VDA Φ(x, σ). This observation
may be used to rewrite the results of covariant calcula-
tions (initially given in terms of VDA Φ(x, σ)) through
TMDA Ψ(x, k⊥), i.e., as a 3-dimensional integral over x
and k⊥. In this way we derive the expression for the
transition form factor in terms of TMDA.

To emphasize a special role of the VDA representa-
tion, in Sect. IV we analyze the structure of the hand-
bag amplitude in several other representations, namely,
coordinate light-front variables, Sudakov and IMF pa-
rameterizations for the virtual momentum integration.
We show that expressions for the form factor in all these
cases are much more complicated than the VDA form
(to which they are eventually equivalent), and one needs
to resort to approximations in order to get a compact
formula. Continuing to discuss the relation between the
VDA approach and the method of operator product ex-
pansions, in Sect. IV D we outline the application of the
VDA approach in the three-body distribution case.

Modifications that appear for spin-1/2 quarks and vec-
tor gluons are considered in Sect. V. In particular, we
observe that the basic relations between the VDA-based
distributions remain intact when matrix elements involve
spin-1/2 quarks. Using the parameterization in terms of
VDA Φ(x, σ), we calculate the handbag diagram and ex-
press the result in terms of the TMDA Ψ(x, k⊥). The
change in the form factor formula reflects a more compli-

cated structure of the spin-1/2 hard propagator. Then
we study the extension of our results onto gauge theories.

In Sect. VI, we formulate a few simple models for soft
TMDAs, i.e. those that decrease faster than any inverse
power of 1/k2

⊥ for large k2
⊥. In Sect. VI B we analyze the

results of using these models to describe the data on the
pion transition form factor.

Attaching perturbative propagators to the soft TMDA,
as shown in Sect. VII, produces factors with 1/k2

⊥ be-
havior. As a result, the quark-gluon interactions in QCD
generate a hard ∼ 1/k2

⊥ tail for TMDAs. The basic ele-
ments of generating hard tails from soft primordial TM-
DAs are illustrated in Sect. VII B. Finally, in Sect. VIII
we formulate our conclusions and discuss directions of
further applications of the VDA approach.

II. TRANSITION FORM FACTOR IN SCALAR
MODEL

A. Handbag diagram in coordinate representation

Consider a general handbag diagram for a scalar analog
of the γ∗γ → π0 amplitude, see Fig. 1, with the hadronic

p

q

q0

0

z

x̄p

xp

�̃p(z)

FIG. 1. Handbag diagram in the coordinate representation
and parton momentum assignment.

blob being a matrix element connecting parton fields with
the “pion”. In the coordinate representation we have

T (q, p) =

∫
d4z e−i(q

′z)Dc(z) 〈p|φ(0)φ(z)|0〉 , (II.1)

where Dc(z) = i/4π2z2 is the scalar massless propagator,
q′ is the momentum of the initial real “photon”, q′2 = 0
given by q′ = p − q, with p being the momentum of the
final “pion” and q is the momentum of the initial virtual
“photon” (q2 ≡ −Q2).

The pion structure is described by the matrix ele-
ment 〈p|φ(0)φ(z)|0〉 ≡ χ̃p(z) of the bilocal operator. To
parametrize it, we start with a formal Taylor expansion

φ(z) =

∞∑
n=0

1

n!
zµ1 . . . zµn ∂

µ1 . . . ∂µnφ(0) . (II.2)

Then, information about the pion is contained in ma-
trix elements 〈p|φ(0)∂µ1 . . . ∂µnφ(0)|0〉. Due to Lorentz
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invariance, they may be written as

〈p|φ(0)∂µ1 . . .∂µnφ(0)|0〉 = A(0)
n in pµ1 . . . pµn

+ terms containing gµiµj ′s . (II.3)

Utilizing the fact that the µk indices are symmetrized in
the Taylor expansion by the zµ1

. . . zµn
tensor, we may

use a more organized expression

〈p|φ(0)(z∂)nφ(0)|0〉 = in
[n/2]∑
l=0

(z2Λ2)l(pz)n−2lA(l)
n ,

(II.4)

with information about the pion structure accumulated

now in constants A
(l)
n . The momentum scale Λ was intro-

duced to secure that all A
(l)
n ’s have the same dimension.

Take the lowest, l = 0 term. To perform summation

over n, we may treat the coefficients A
(0)
n as moments of

the pion distribution amplitude [5] ϕ(x)

A(0)
n =

∫ 1

0

ϕ(x)xndx (II.5)

(we want the quark at the z vertex to carry the momen-
tum xp, see Fig.(1)). As a result,

〈p|φ(0)φ(z)|0〉 =

∫ 1

0

ϕ(x) eix(pz) dx+O(z2) . (II.6)

For the amplitude T (q, p) this gives

T (q, p) =
i

4π2

∫ 1

0

dxϕ(x)

×
∫
d4z

z2
e−i(q

′z)+ix(pz)

[
1 +O(z2)

]
. (II.7)

The term given by l = 0 part in Eq. (II.4) produces

T (0)(q, p) = −
∫ 1

0

ϕ(x)dx

(q′ − xp)2 + iε
. (II.8)

An extra z2 factor in the l = 1 term of (II.4) cancels the
1/z2 singularity of Dc(z), and results in a contribution
proportional to∫

d4z e−i(q
′z)+ix(pz) = (2π)4δ4(q′ − xp) , (II.9)

which apparently should be treated as zero, because q′ is
not proportional to p. The same applies to terms with
higher powers (z2)l, which produce integrals proportional
to �2l−2δ4(q′ − xp). If one would use just a straightfor-
ward dimensional counting, one would expect that terms
with higher powers of z2 result in contributions accom-
panied by powers of 1/(q′ − xp)2, but as we see, they
produce terms that are “invisible” in the 1/(q′ − xp)2

expansion. The actual power corrections appear when
a O[(z2)l] term in the matrix element 〈p|φ(0)φ(z)|0〉 is
accompanied by some nonzero power of ln z2.

Note also that since −(q′ − xp)2 = xQ2 + xx̄p2, the
1/(q′ − xp)2 expansion does not coincide with the 1/Q2

expansion when p2 6= 0. The things simplify when
p2 = 0. Then, for a massless propagator Dc(z), a
power correction of 1/(Q2)1+l type can be obtained from
(z2)l(ln z2)k≥1 terms only.

This simple analysis leads us to an important obser-
vation that, for a situation when p2 = 0 and the ma-
trix element 〈p|φ(0)(z∂)nφ(0)|0〉 is given by a regular
power expansion in z2 (we shall say that one deals with a
“soft” wave function in such a case), the whole amplitude
T (q, p) with a massless hard propagator Dc(z) is exactly
given by the first term T (0)(q, p) only, namely, that

T soft(q, p)|p2=0 =

∫ 1

0

ϕ(x)dx

xQ2

[
1 + no powers of 1/Q2

]
,

(II.10)

with no higher 1/Q2 corrections under the x-integral.
On the other hand, if the matrix element has a loga-

rithmic singularity (z2)l ln z2 with l ≥ 1, the amplitude
should have a power correction with (1/Q2)l behavior.

These observations may be used as a constraint (“OPE
compatibility”) that should be required to hold in
schemes that add transverse momentum dependence into
the description of the pion structure. As we will see, some
previously used approximate schemes that look natural
otherwise, are not “OPE compatible”.

B. Introducing virtuality distributions

As mentioned already, parametrizing matrix elements
of local operators resulting from the Taylor expansion

(II.2), one needs to deal with a set of parameters A
(l)
n for

each n, with l being the number of metric tensors gµiµj

on the right hand side of Eq. (II.3), or power of z2 in Eq.
(II.4). Collecting together terms with the same power of
(pz), we may write

〈p|φ(0)φ(z)|0〉 =

∞∑
l=0

1

l!

(
z2Λ2

4

)l ∞∑
N=0

iN
(pz)N

N !
B

(l)
N .

(II.11)

By analogy with Eq. (II.5) which introduces the pion

distribution amplitude ϕ(x) through the coefficients A
(0)
n ,

we define that the coefficients B
(l)
N are given by double

moments of a function of two variables Φ(x, σ), which we
call the virtuality distribution amplitude (VDA) :

B
(l)
N =(−i)l

∫ ∞
0

dσ σle−εσ/4
∫ 1

0

dxxN Φ(x, σ) . (II.12)

Substituting this definition into Eq. (II.12) gives

〈p|φ(0)φ(z)|0〉 =

∫ ∞
0

dσ

∫ 1

0

dx

× Φ(x, σ) eix(pz)−iσ(z2−iε)/4 . (II.13)



4

We have derived this VDA representation from
a formal Taylor expansion of the matrix element
〈p|φ(0)φ(z)|0〉 of the bilocal operator. Such an expansion
makes sense only if the matrix elements of local opera-
tors 〈p|φ(0)(z∂)nφ(0)|0〉 are finite. In such a case we say
that one deals with a soft wave function. However, Eq.
(II.13) looks just like a double Fourier transform in two
variables (zp) and z2. As such, it should hold for a very
wide range of functions, including the functions that are
not given by a convergent Taylor expansion in z2.

This observation suggests that the VDA representation
may be obtained under much weaker assumptions. One
may also wonder why we have imposed particular lim-
its of integration, namely, 0 ≤ x ≤ 1 and 0 ≤ σ < ∞ on
these Fourier integrals. Obviously, these limits do not ap-
pear automatically for any function of (pz) and z2. But
it can be shown (see below) that any Feynman diagram
contributing to 〈p|φ(0)φ(z)|0〉 has the VDA representa-
tion with exactly these limits of integration. Also, it
does not matter if the Feynman diagram has logarithmic
singularities in z2, the VDA representation (II.13) still
holds, even though some of the moments (II.12) diverge
in that case. It should be also noted that the logarith-
mic singularities in z2 come as ln(z2 − iε), reflecting the
causal structure of Feynman diagrams.

C. VDA and α-representation

Using the α-representation and techniques outlined in
Refs. [14–16], it can be demonstrated that the VDA rep-
resentation (II.13) holds for any Feynman diagram con-
tributing to the relevant matrix element.

1. Momentum space

Consider the momentum representation version of the
matrix element∫

d4ze−i(kz)〈p|φ(0)φ(z)|0〉 ≡ (4πi)2χp(k) , (II.14)

where k is the momentum of the quark going from the “z”
vertex, and χp(k) is the Bethe-Salpeter wave function.
Then, according to Refs. [14–16], the contribution of
any Feynman diagram D to χp(k) can be represented as

χDp (k) = il
P (c.c.)

(4πi)Ld/2

∫ ∞
0

l∏
j=1

dαj [D(α)]−d/2

× exp

{
ik2

1

A(α)

D(α)
+ ik2

2

B(α)

D(α)

}

× exp

ip2C(α)

D(α)
− i
∑
j

αj(m
2
j − iε)

 , (II.15)

where k1 = k, k2 = p − k, d is the space-time dimen-
sion, P (c.c.) is the relevant product of coupling con-
stants, L is the number of loops of the diagram, and l

is the number of its internal lines. For our purposes, the
most important property of this representation is that
A(α), B(α), C(α), D(α) are positive functions (sums of
products) of the ασ-parameters of a diagram. Thus, we
have a general representation

χp(k) =

∫ 1

0

dx

∫ ∞
0

dλ eiλx̄k
2+iλx(k−p)2−ελF (x, λ ; p2) ,

(II.16)

where

F (x,λ ; p2) =
∑

all diag

il
P (c.c.)

(4πi)Ld/2

∫ ∞
0

l∏
j=1

dαj [D(α)]−d/2

× δ
(
x− B(α)

A(α) +B(α)

)
δ

(
λ− A(α) +B(α)

D(α)

)

× exp

ip2C(α)

D(α)
− i
∑
j

αj(m
2
j − iε)

 . (II.17)

Eq. (II.16) may be also rewritten as

χp(k) =

∫ 1

0

dx

∫ ∞
0

dλ eiλ(k−xp)2+iλxx̄p2−ελF (x, λ; p2) .

(II.18)

2. Coordinate space

Making Fourier transform to the coordinate represen-
tation, we get

〈p|φ(0)φ(z)|0〉 =

∫ ∞
0

dσ

∫ 1

0

dxΦ(x, σ) eix(pz)−iσ(z2−iε)/4 .

(II.19)

The functions F and Φ are related by

eiλxx̄p
2

F (x, λ; p2) = Φ(x, 1/λ) (II.20)

(the VDA Φ also depends on p2, i.e. in principle it should
be written as Φ(x, σ; p2), but we will not indicate this
dependence explicitly, mainly because p2 is fixed for a
given matrix element).

3. Important observations

Note that the momentum p in (II.20) is the actual
momentum that appears in the matrix element. In this
sense, a parton in the VDA picture carries the fraction
xp of the total hadron momentum p, not just the frac-
tion xp+ of its “plus” component p+. In fact, all our
discussion so far was absolutely Lorentz covariant, and
there was no need to decompose momenta into any com-
ponents, to project p on its “plus” part, etc. We also
emphasize that there was no need to assume that p2 = 0.
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Another point is that the representation (II.19) has
been obtained without any assumptions about regularity
of the z2 → 0 limit. This means that one can use the
VDA representation even in cases when a formal Taylor
expansion in z2 does not exist because of singularities in
the z2 → 0 limit. In other words, the matrix element
〈p|φ(0)φ(z)|0〉 may be non-analytic for z2 = 0, and still
be given by a VDA representation.

D. Scalar handbag diagram in VDA representation

Using the VDA parametrization (II.13) we can take
the z-integral in Eq. (II.1) to obtain

T (q, p) =

∫ 1

0

dx

(q′ − xp)2 + iε

∫ ∞
0

dσΦ(x, σ)

×
{

1− ei[(q′−xp)2+iε]/σ
}
. (II.21)

The first term in the brackets does not depend on σ and
produces the integral∫ ∞

0

Φ(x, σ) dσ ≡ ϕ(x) , (II.22)

where ϕ(x) is the distribution amplitude defined by Eq.
(II.5). Indeed, taking z2 = 0 in the VDA representation
(II.13) and comparing the result with Eq. (II.6), we see
that this is formally the case.

Of course, this reasoning assumes that the integral over
σ in (II.22) converges at the upper limit, which happens
when Φ(x, σ) decreases faster than 1/σ1+ε for large σ. If
Φ(x, σ) ∼ 1/σ for large σ, then the integral (II.22) loga-
rithmically diverges, which corresponds to a ln z2 singu-
larity for the matrix element. However, the σ-integral in
Eq. (II.21) converges even in that case, because the sum
of terms in the brackets behaves like 1/σ for large σ.

As noted earlier, if the matrix element 〈p|φ(0)φ(z)|0〉
can be expanded in a Taylor series in z2, with finite co-
efficients, the higher (l ≥ 1) terms (z2)l of such an ex-
pansion cancel the singularity 1/z2 of the massless scalar
propagator D(z). As a result, these terms produce terms
proportional to �lq′ derivatives of the δ4(q′−xp) function.
Taken separately, each of these terms is invisible in the
T (q, p) amplitude, simply because q′ is not proportional
to p. Still, an infinite sum of delta-function derivatives in
our case produces a non-trivial function given by the sec-
ond term in Eq. (II.21). In other words, the “invisible”
contributions are combined in the second term which, af-
ter integration over σ, results in a nontrivial function of
(q′ − xp)2.

The pion structure is now described by the VDA
Φ(x, σ), and by just modeling its σ-shape one can study
the impact of higher l terms. However, it is very instruc-
tive to give an interpretation of these terms using the
concept of parton transverse momentum.

III. TRANSVERSE MOMENTUM
DISTRIBUTIONS

A. Introducing TMDA

To bring in the transverse momentum dependence, we
should decide, first, which directions are “transverse”.
It is natural to define that the pion momentum p has
only longitudinal components, becoming a purely “plus”
vector in the p2 = 0 limit. Projecting the matrix element
〈p|φ(0)φ(z)|0〉 on the light front z+ = 0,

〈p|φ(0)φ(z)|0〉|z+=0 =

∫ 1

0

dxϕ(x, z⊥) eix(pz−) , (III.1)

we introduce the impact parameter distribution amplitude
(IDA) ϕ(x, z⊥). It is related to VDA by

ϕ(x, z⊥) =

∫ ∞
0

dσΦ(x, σ) eiσ(z2⊥−iε)/4 . (III.2)

The next step is to treat the IDA function as a Fourier
transform

ϕ(x, z⊥) =

∫
Ψ(x, k⊥) ei(k⊥z⊥) d2k⊥ (III.3)

of the transverse momentum dependent distribution am-
plitude (TMDA) Ψ(x, k⊥). One can write the TMDA in
terms of VDA as

Ψ(x, k⊥) =
i

π

∫ ∞
0

dσ

σ
Φ(x, σ) e−i(k

2
⊥−iε)/σ . (III.4)

The moments of TMDA Ψ(x, k⊥) are formally given
by ∫

Ψ(x, k⊥) k2l
⊥ d

2k⊥ =
l!

il

∫ ∞
0

σl Φ(x, σ) dσ . (III.5)

They are proportional to the σl moments of the VDA
Φ(x, σ) and, hence, finite for a soft VDA. This means
that a “soft” TMDA Ψ(x, k⊥) should decrease faster than
any power of 1/k2

⊥ for large k⊥.

B. Scalar handbag diagram in TMDA
representation

Using the TMDA/VDA relation (III.4), one can
rewrite Eq. (II.21) in terms of TMDA as

T (q, p) =−
∫ 1

0

dx

(q′ − xp)2

∫
k2⊥≤−(q′−xp)2

d2k⊥Ψ(x, k⊥) ,

(III.6)

which converts into

T (Q2) =

∫ 1

0

dx

xQ2

∫
k2⊥≤xQ2

Ψ(x, k⊥) d2k⊥ (III.7)
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in the p2 = 0 case.
It should be emphasized that no Taylor expansions in

z2 have been used in deriving (III.7). Still, if one deals
with a soft TMDA, one can use Taylor expansion and
separate the l = 0 term in Eq. (II.21). Then, incorpo-
rating the reduction relation∫

Ψ(x, k⊥) d2k⊥ = ϕ(x) (III.8)

one can write

T (Q2) =

∫ 1

0

dx

xQ2

[
ϕ(x)−

∫
k2⊥≥xQ2

Ψ(x, k⊥) d2k⊥

]
.

(III.9)

As we have noted, a soft TMDA decreases for large k2
⊥

faster than any inverse power of k2
⊥. As a result, the sec-

ond term in Eq. (III.7) decreases for large Q2 faster than
any power of 1/Q2, i.e. there are no 1/Q2 power correc-
tions to the ϕ(x) term under the x-integral in Eq. (III.7).
This means that the VDA-based expression (III.7) in case
of a soft VDA has an OPE-compliant form of Eq. (II.10).

Alternatively, if the matrix element 〈p|φ(0)φ(z)|0〉 has
a logarithmic singularity ln z2 starting with (z2)l power,
the σ moments of Φ(x, σ) should diverge starting with σl,
and k2

⊥ moments of Ψ(x, k⊥) should diverge starting with
k2l
⊥ . This means that Ψ(x, k⊥) decreases as (1/k2

⊥)l+1 for
large k⊥, i.e., Ψ(x, k⊥) has a power-like “hard tail”. Then
the second term in Eq. (III.9) produces a O((1/Q2)l+1)
contribution to T (Q2).

Thus, we see that the VDA-based formula (III.7) is in
full compliance with the OPE approach.

C. Impact parameter representation

Substituting the expression of TMDA in terms of IDA

Ψ(x, k⊥) =

∫
d2b⊥
(2π)2

ϕ(x, b⊥) e−i(k⊥b⊥) (III.10)

into the VDA-based formula (III.7) for T (Q2) we obtain

T (Q2)=

∫ 1

0

dx√
xQ

∫ ∞
0

db J1(
√
xQb)ϕ(x, b) . (III.11)

Note that we intentionally use here the notation b⊥ for
the impact parameter variable, to emphasize that it can-
not be identified with the transverse part z⊥ of the inte-
gration variable z in the original coordinate representa-
tion integral (II.1).

Indeed, recall that our procedure has started with tak-
ing integral over d4z to obtain the result expressed by Eq.
(II.21) in terms of VDA Φ(x, σ) which was transformed
then into Eq. (III.7) written in terms of TMDA Ψ(x, k⊥).
After this starting integration, a connection of the final
result with the z⊥-integration has been completely lost.
Then we have converted the TMDA result (III.7) into the
expression (III.11) in terms of IDA ϕ(x, b⊥), in which b⊥
is a new auxiliary variable.

D. Twist decomposition

So far, we did not mention the concept of twist, since
ordering contributions by (z2)l power in Eq. (II.4)
was sufficient for our purposes. But let us discuss
now the twist expansion of the basic matrix element
〈p|φ(0)φ(z)|0〉.

1. Traceless combinations

The operators φ(0)∂µ1 . . . ∂µnφ(0) do not correspond
to an irreducible representation. They are not traceless,
and that is why their parametrization requires a set of

numbers A
(l)
n rather than just one number. To get matrix

elements corresponding to an irreducible representation
one has to write the tensor zµ1

. . . zµn
as a sum of prod-

ucts of powers of z2 and symmetric-traceless combina-
tions {. . . zµi

. . . zµj
. . .} satisfying the irreducibility con-

dition gµiµj{. . . zµi
. . . zµj

. . .} = 0. Using the notation
{z∂}n ≡ {zµ1

. . . zµn
} ∂µ1 . . . ∂µn for products of trace-

less tensors, it is possible to derive [17]

φ(z) =

∞∑
l=0

(
z2

4

)l ∞∑
N=0

N + 1

l!(N + l + 1)!
{z∂}N (∂2)lφ(0) .

(III.12)

Now, parametrizing matrix elements of traceless opera-
tors

〈p|φ(0){∂µ1 . . . ∂µN }(∂2)lφ(0)|0〉
= inC

(l)
N Λ2l{pµ1 . . . . . . pµN } (III.13)

one needs just one number C
(l)
N for each operator. A usual

way to make a projection on a traceless combination is to
multiply Eq. (III.13) by a product nµ1 . . . . . . nµN built
from an auxiliary lightlike vector n. Since n2 = 0, one
has a relation

〈p|φ(0)(n∂)N (∂2)lφ(0)|0〉 = iNC
(l)
N Λ2l(pn)N (III.14)

involving ordinary scalar products (n∂) and (np). Choos-
ing n to be in the “minus” direction, we may rewrite Eq.
(III.14) as

〈p|φ(0)∂N+ (∂2)lφ(0)|0〉 = iNC
(l)
N Λ2lpN+ , (III.15)

with clear separation of derivatives ∂+ probing the lon-
gitudinal structure of the hadron, and contracted deriva-
tives ∂2 sensitive to distribution of quarks in virtuality.
The operators containing powers of ∂2 have higher twist,
and their contribution to the light-cone expansion is ac-
companied by powers of z2.

2. Twist expansion and target mass effects

However, trying to use the twist decomposition (III.12)
for getting a closed expression for 〈p|φ(0)φ(z)|0〉 similar
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to a VDA representation, one needs to perform a sum-
mation over N

〈p|φ(0)φ(z)|0〉 =

∞∑
l=0

(
z2Λ2

4

)l ∞∑
N=0

N + 1

l!(N + l + 1)!

× iN{zp}NC(l)
N (III.16)

that involves structures {zp}N built from traceless com-
binations. It is possible to write them in simple powers,

{zp}N =
[(zp) + r]N+1 − [(zp)− r]N+1

2N+1r
, (III.17)

where r =
√

(zp)2 − z2p2 (see, e.g., Ref. [17]). Since
Eq. (III.17) expresses {zp}N in terms of powers of

[(zp)± r], treating C
(l)
N coefficients as appropriately nor-

malized xN σl moments of VDA Φ(x, σ), one can explic-
itly perform summation over N and obtain formulas in-
volving exponentials eix[(zp)±r]/2 instead of eix(zp) (see
Refs. [18, 19] for formulas including also the spin-1/2
cases). However, further integration over z is rather com-
plicated because of the square root involved in r.

Another way is to use the inverse expansion

{zp}N = (zp)N − 1

4
(N − 1) z2p2(zp)N−2 + . . . .

(III.18)

After the re-expansion of {zp}N , one would get series in
powers of (pz) and z2, in which some of (z2)l terms are
accompanied by Λ2l factors having a dynamical origin
(virtuality of quarks) and some (z2)k terms that are ac-
companied by (p2)k factors, which are purely kinematical
(they come from the re-expansion of {zp}N ) and reflect
nonzero mass of the hadron.

3. VDA representation and target mass effects

Thus it looks simpler to use Eq. (III.18), which would
give target mass corrections as a series in p2/Q2. In
fact, the most simple way is to avoid the twist decom-
position altogether. Note that the VDA representation,
first, is valid without approximations and, second, in-
volves the actual hadron momentum p. This means that
it is sufficient to merely treat p “as is”, e.g. to use
(q′ − xp)2 = −(xQ2 + xx̄p2) for the combination present
in our result (III.6) for the Compton amplitude.

Proceeding in this way, one can include, if necessary,
the kinematical hadron mass effects that are analogous
to Nachtmann [20, 21] corrections in deep inelastic scat-
tering. However, since our primary goal is to concen-
trate on dynamical effects (and also given the smallness
of the pion mass) we will simplify the things by just tak-
ing p2 = 0, in which case {zp}N = (zp)N .

Still, the discussion of the twist decomposition has
an important outcome, namely, the understanding that
higher l terms in Eq. (II.4) correspond to local operators

with increasing powers of contracted derivatives ∂2 that
probe the parton’s virtuality. It is for this reason why
Φ(x, σ) is referred to as a virtuality distribution.

4. Equal virtualities

There is a kinematics in which the summation over
spin N is not necessary and only the l-sum remains.
Consider a situation when both photons are virtual, and
moreover, have equal virtualities, q2

1 = q2
2 ≡ −Q2. For

a lightlike p, we have in this case (pq1) = (pq2) = 0.
Choosing p in the “plus” direction, we conclude that
both q1 and q2 do not have “minus” components, and
their virtualities q2

i are given by the transverse com-
ponent q⊥ only, q2

i = −q2
⊥ = −Q2. Similarly, (q1 − xp)

and (q2 − x̄p) do not have the minus component, and
(q1 − xp)2 = (q2 − x̄p)2 = −q2

⊥ = −Q2. Parametriz-
ing the bilocal matrix element, as usual, by (III.31), we
obtain

T (Q2, Q2) =
1

Q2

∫ ∞
0

dσ
{

1− e−[iQ2+ε]/σ
}

×
∫ 1

0

dxΦ(x, σ) . (III.19)

In this result, VDA Φ(x, σ) enters only through the inte-
grated distribution

Σ(σ) =

∫ 1

0

dxΦ(x, σ) , (III.20)

in terms of which we have

T (Q2, Q2) =
1

Q2

∫ ∞
0

dσ
{

1− e−[iQ2+ε]/σ
}

Σ(σ) .

(III.21)

In the OPE language, this means that operators with
nontrivial, N ≥ 1 traceless combinations {z∂}N do not
contribute, simply because their matrix elements result in
(pq)N factors that vanish. As a result, only the expansion
in φ(∂2)lφ operators is left.

Switching to TMDA, we get

T (Q2, Q2) =
1

Q2

∫
k2⊥≤Q2

d2k⊥

∫ 1

0

dxΨ(x, k⊥) . (III.22)

Again, TMDA enters integrated over x.

E. Basic relations for VDAs and TMDAs

1. Analytic continuation of TMDA

The TMDA/VDA relation (III.4) tells us that Ψ(x, k⊥)
is a function of k2

⊥. In what follows, we will also use the
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notation ψ(x, k2
⊥) ≡ πΨ(x, k⊥) emphasizing that ψ is

explicitly a function of k2
⊥. In fact, the relation

ψ(x, κ2) =i

∫ ∞
0

dσ

σ
Φ(x, σ) e−i(κ

2−iε)/σ (III.23)

defines ψ(x, κ2) not only for positive κ2, when it may be
interpreted in terms of the transverse momentum squared
k2
⊥, but also for negative values of κ2, in which case it

is understood as a formal parameter. In other words,
Eq. (III.23) provides an analytic continuation of Ψ(x, k⊥)
into the region of negative and complex k2

⊥. Formally, the
relation between ψ(x, κ2) and Φ(x, σ) may be inverted:

Φ(x, σ) =
1

2πiσ

∫ +∞−iε

−∞−iε
dκ2 eiκ

2/σ ψ(x, κ2) . (III.24)

In practice, it is Φ(x, σ) that is a primary function: it is
extracted from explicit expressions for matrix elements
(or their models), and then one obtains ψ(x, κ2) using
Eq. (III.23).

2. VDA representation for the Bethe-Salpeter function

Sometimes it is convenient to use the momentum rep-
resentation version of the matrix element∫

d4ze−i(kz)〈p|φ(0)φ(z)|0〉 ≡ (4πi)2χp(k) , (III.25)

where k is the momentum of the quark going from the “z”
vertex, and χp(k) is the Bethe-Salpeter wave function. In
the VDA representation,

χp(k) =

∫ ∞
0

dσ

σ2

∫ 1

0

dxΦ(x, σ) ei(k−xp)
2/σ−ε/σ .

(III.26)

Comparing (III.23) and (III.26) we may formally write

χp(k) =

∫ 1

0

dx

[
∂

∂k2
⊥
ψ(x, k2

⊥)

]
k2⊥=−(k−xp)2

. (III.27)

In the regions, where (k − xp)2 is positive, one should
understand ψ(x, k2

⊥) through the analytic continuation
specified by Eq. (III.23).

Thus, the function χp(k) for all k may be obtained
from the TMDA ψ(x, k2

⊥) and its analytic continuation
into the region of negative k2

⊥. We can also say that the
Bethe-Salpeter wave function in the coordinate represen-
tation

χ̃p(z) ≡ 〈p|φ(0)φ(z)|0〉 (III.28)

is determined for all z by an analytic continuation from
its values on the light-front z+=0.

There is also a reduction relation from χp(k) to
ψ(x, k2

⊥). Taking for simplicity p2 = 0 (and normaliza-
tion k2 = k+k− − k2

⊥), we have∫ ∞
−∞

dk−χp(k) = −2πi

∫ 1

0

dx δ(k+ − xp+)ψ(x, k2
⊥) .

(III.29)

3. Bilocal function

In some cases, it is convenient to use an intermedi-
ate distribution B(x, z2/4), the bilocal function defined
through

〈p|φ(0)φ(z)|0〉 ≡
∫ 1

0

dxB(x, z2/4) eix(pz) . (III.30)

Note thatB(x, z2/4) describes both positive and negative
z2, while IDA ϕ(x, z⊥) = B(x,−z2

⊥/4) corresponds to
negative z2 only.

As we have seen, for any Feynman diagram of pertur-
bation theory B(x, z2/4) is a function of z2 − iε. If the
pion is in the initial state, the matrix element

〈0|φ(0)φ(z)|p〉 =

∫ ∞
0

dσ

∫ 1

0

dx

× Φ(x, σ) e−ix(pz)−iσ(z2−iε)/4 . (III.31)

is still a function of z2 − iε. This property is essential in
the definition of VDA Φ(x, σ) through

B(x, β) =

∫ ∞
0

e−iβσΦ(x, σ) dσ (III.32)

which has a form of a Laplace-type representation. Its
formal inversion gives

Φ(x, σ) =
1

2π

∫ +∞

−∞
dβ e−iβσ B(x, β − iε) . (III.33)

In particular, combining (III.32) and (III.23) gives

B(x, z2/4) =
1

πi

∫ +∞−iε

−∞−iε
dκ2K0(

√
κ2z2)ψ(x, κ2)

(III.34)

(for imaginary arguments, K0 should be understood as

the Hankel function H
(2)
0 ).

4. Moments of TMDA

The VDA/TMDA relation (III.4) is quite general in
the sense that it holds even if the the matrix element
〈p|φ(0)φ(z)|0〉 of the bilocal operator is non-analytic in
the z2 → limit. However, if this limit is regular (which
happens for a soft VDA Φ(x, σ) that vanishes for large
σ faster than any power of 1/σ), one can connect the
σ moments of VDA Φ(x, σ) and k2

⊥ moments of TMDA
Ψ(x, k⊥),∫

Ψ(x, k⊥) k2n
⊥ d2k⊥ =

n!

in

∫ ∞
0

σn Φ(x, σ) dσ . (III.35)

This connection allows one to get the relation

B(x, β) =

∫
Ψ(x, k⊥) J0(2k⊥

√
−β) d2k⊥ . (III.36)
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For negative β = −z2
⊥/4, this formula may be also

obtained by performing the angular integration in
Eq. (III.3), which means that Eq. (III.36) is valid even if
the TMDA Ψ(x, k⊥) is not soft. When β is positive (then
we can write β = |z|2/4), one may understand Eq.(III.36)
as

B(x, |z|2/4) =

∫
Ψ(x, k⊥) I0(k⊥|z|) d2k⊥ , (III.37)

where I0 is the modified Bessel function. This inte-
gral converges, e.g., for a Gaussian TMDA Ψ(x, k⊥) ∼
e−k

2
⊥/Λ

2

, and the basic bilocal function B(x, β) may be
then expressed in terms of TMDA Ψ(x, k⊥) both for
spacelike and timelike values of β. For a TMDA with
an exponential ∼ e−Λ|k⊥| fall-off, the integral diverges
for z2 ≥ Λ2, which reflects a singularity of B(x, z2/4) for
time-like intervals with z2 = Λ2.

IV. SCALAR HANDBAG DIAGRAM IN TERMS
OF VDA AND TMDA

A. Reducing handbag to a 3-dimensional integral

Our approach to get the TMDA expression for the
scalar handbag diagram

T (q, p) =−
∫ 1

0

dx

(q′ − xp)2

∫
k2⊥≤−(q′−xp)2

d2k⊥Ψ(x, k⊥) ,

(IV.1)

by-passes the standard idea of starting with a 4-
dimensional integral (see Fig. 2)

T (q, p) =

∫
χp(k)

(q′ − k)2
d4k , (IV.2)

decomposing the integration momentum k in the light-
front components k = {k+, k−, k⊥}, with the “plus” di-
rection given by p, and then trying to integrate over
k−. An obvious difficulty of such an approach is that
the k-dependence of χp(k) is not explicit. The usual

k
q�

q

p

χp(k)

FIG. 2. Handbag diagram in momentum representation.

way out of this situation is to use some approximation

that eliminates the k−-dependence of the hard propaga-
tor 1/(q′ − k)2. After that, one deals with the function
χp(k) integrated over k−, that depends on k+ and k⊥.
Below we consider two approximations of this kind.

1. Neglecting k2 in hard propagator

Since the q′ photon is real, q′2 = 0, we deal with

T (q, p) =

∫
χp(k)

2(q′k)− k2
d4k . (IV.3)

As usual, for p2 = 0 one may choose p to define the plus
direction and introduce x through k+ = xp. Another
light-like vector q′ may be chosen to define the minus di-
rection. Then 2(q′k) = 2x(q′p) = xQ2, and if we neglect
k2 in the denominator we obtain

T (k2⇒0)(q, p)|p2=0 =

∫ 1

0

dx
ϕ(x)

xQ2
, (IV.4)

where ϕ(x) is the distribution amplitude

ϕ(x) =

∫
d4k δ(x− k+/p+)χp(k) . (IV.5)

Apparently, this formula gives the desired result (II.10)
for soft wave functions. However, since it cannot produce
any power correction in principle, it cannot be correct
for wave functions corresponding to matrix elements that
have logarithmic singularities for z2 = 0 in l ≥ 1 terms:
in such cases we should have 1/Q2 corrections.

Most importantly, neglecting virtuality k2 one also ne-
glects transverse momentum effects altogether, while we
want to keep track of them.

2. Neglecting k− in hard propagator

To this end, we write a more detailed decomposition

k = xp+ k− + k⊥ (IV.6)

which gives k2 = 2x(pk−) − k2
⊥, and the approximation

is to neglect 2x(pk−), while keeping the k2
⊥ part of k2 in

the propagator. This gives

T (k−⇒0)(q, p)|p2=0 =

∫
dx

∫
d2k⊥

Ψ(x, k⊥)

xQ2 + k2
⊥
, (IV.7)

where Ψ(x, k⊥) is the transverse momentum dependent
distribution amplitude,

Ψ(x, k⊥) =

∫
dk+dk− δ(x− k+/p+)χp(k) . (IV.8)

Now, the formula (IV.7) always generates a tower of
(k2
⊥/Q

2)n corrections, so it cannot be correct for soft
wave functions. Furthermore, since taking k− = 0 in
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the hard propagator is an approximation, it cannot be
absolutely correct for “hard” wave functions as well.

To estimate the quality of this approximation, note
that if k2 = 0, we have 2x(pk−) = k2

⊥, i.e. the term
that is neglected has the same magnitude as the one that
is kept. Assuming that k2 has some average value of
Λ2 while k2

⊥ averages to 〈k2
⊥〉, we conclude that 2x(pk−)

averages to Λ2 + 〈k2
⊥〉 which is not necessarily zero. In

other words, neglecting 2x(pk−) is equivalent to assuming
that a nonzero vrituality comes entirely from parton’s
transverse momentum, which is a dynamical question,
the answer to which is not clear a priori.

In general, the main idea of this procedure is based
on neglecting k− in the hard subprocess amplitude, and
thus it creates an impression that the description of the
hadron structure in terms of two variables x and k2

⊥ may
be only obtained as a result of some approximation.

However, deriving our result (IV.1) we did not make
any approximations. Such an outcome became possible
because we were able to perform the 4-dimensional inte-
gration over k using the VDA representation which ex-
plicitly specified the dependence of χp(k) on k. So, let
us study what happens if we use a framework that in-
volves a usual explicit decomposition of the integration
variable (4-momentum k or 4-dimensional coordinate z)
into light-front components. When necessary, we will also
incorporate the VDA representation adjusted to such a
decomposition.

B. Handbag diagram in coordinate light-front
variables

To begin with, we try a Sudakov-type decomposition
of the original coordinate space integral (II.1). Taking
p in “+” direction, and q′ in “–” direction, and using
z = {z+, z−, z⊥}, we have

T (q, p) = − i

2(2π)2

∫ 1

0

dx

∫
d2z⊥

∫ ∞
−∞

dz+

∫ ∞
−∞

dz−

× e−iq′−z++ixp+z−
B(x, z2/4)

z+z− − z2
⊥ − iε

. (IV.9)

The integrand has an explicit pole at
z+ = (z2

⊥ + iε)/z−, which corresponds to z2 = 0.
One may wish to calculate the integral over z+ by
taking residue at this location. Whether this is possible,
depends on the analyticity properties of B(x, z2/4).

1. Soft wave function

Take first a soft wave function case when B(x, z2/4) is
given by a (z2)l Taylor expansion with finite coefficients.
Now, if one treats this expansion term by term, then
one should take z2 = 0 in B(x, z2/4), which amounts to
keeping just the lowest l = 0 contribution. Since q′− > 0,
the integral is nonzero for z− < 0 only, i.e., the “0” vertex

corresponding to the virtual photon is later in the light-
cone “time” z− than the real photon vertex located at z.
The result is

T {soft}(q, p) =
1

2π

∫ 1

0

dx

∫
d2z⊥

∫ ∞
0

dz−
z−

× e−iz2⊥q′−/z−+ixp+z− B(soft)(x, 0)

= T (soft,l=0)(q, p) . (IV.10)

Taking z− integral and using that B(soft)(x, 0) = ϕ(x),
we obtain the representation

T (soft)(q, p)=

∫ 1

0

dx

∫
z⊥dz⊥K0(z⊥

√
xQ2)ϕ(x) ,

(IV.11)

in which the distribution amplitude ϕ(x) has no z⊥ de-
pendence. Then the integral over z⊥ is trivial, with the
result

T (soft)(q, p)=

∫ 1

0

dx

xQ2
ϕ(x) (IV.12)

that agrees with Eq. (II.10), as expected.
Note that the only thing that is needed from the

z⊥-dependent factor K0(
√
xz2
⊥Q

2) for this agreement is
that its integral over z2

⊥ gives 1/xQ2. In other words,
any function Z(a) of a = xz2

⊥Q
2 producing 1 after

the 0 ≤ a ≤ ∞ integration, would produce Eq. (IV.12).
Thus one has little grounds to argue that the specific

z⊥-dependence ofK0(z⊥
√
xQ2) should be present in gen-

eral case when the z⊥ dependence is added to the IDA
Note also that to get the z⊥-dependent IDA ϕ(x, z2

⊥)
one should project the bilocal function B(x, z2), onto
the light-front z+ = 0. However, for a residue taken
at z+ = (z2

⊥ + iε)/z− this is not the case when z2
⊥ 6= 0.

2. General case, preliminary steps and reproduction of
VDA result

Furthermore, one cannot take the integral (IV.9) by a
simple residue if B(x, z2/4) has singularities, like ln z2,
in the complex z2 plane. To analyze a general case, we
write B(x, z2/4)/z2 in terms of VDA,

T (q, p) =
1

2(2π)2

∫ 1

0

dx

∫
d2z⊥

∫ ∞
−∞

dz+

×
∫ ∞
−∞

dz−e
−iq′−z++ixp+z−

∫ ∞
0

σ dσ

∫ 1

0

dβ

× Φ(x, βσ) e−iσ(z+z−−z2⊥−iε)/4 . (IV.13)

Integrating over z+ produces

T (q, p) =
1

4π

∫ 1

0

dx

∫
d2z⊥

∫ ∞
0

σ dσ

∫ 1

0

dβ Φ(x, βσ)

× eiσ(z2⊥+iε)/4

∫ ∞
0

dz−e
ixp+z− δ(q′− + σz−) .

(IV.14)
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Since q′− > 0, we have z− < 0, just like when we took a
residue. Integrating over z− and changing βσ → σ gives

T (q, p) =
1

4π

∫ 1

0

dx

∫
d2z⊥

∫ ∞
0

dσΦ(x, σ)

×
∫ 1

0

dβ

β
eiσ(z2⊥+iε)/4β e−iβxQ

2/σ . (IV.15)

It is rather easy to convert this expression into the
VDA formula for T (q, p). Indeed, integrating over z⊥
results in

T (q, p) =i

∫ 1

0

dx

∫ ∞
0

dσ

σ
Φ(x, σ)

∫ 1

0

dβ e−iβxQ
2/σ ,

(IV.16)

which, after the β integration, gives

T (q, p) =

∫ 1

0

dx

xQ2

∫ ∞
0

dσΦ(x, σ)
{

1− e−ixQ2/σ
}

(IV.17)

that coincides with Eq. (II.21) in our case of p2 = 0.

3. General case, keeping z⊥ dependence

However, if we want to keep z⊥ variable, we need to
take the integrals over σ or β instead. Changing β = σρ
in (IV.15) gives

T (q, p) =
1

4π

∫ 1

0

dx

∫ ∞
0

dσΦ(x, σ)

∫
d2z⊥

×
∫ 1/σ

0

dρ

ρ
ei(z

2
⊥+iε)/4ρ e−iρxQ

2

. (IV.18)

At this stage, it is instructive to return to Eq. (IV.13)
and combine there the integrations over z+ and z− into
one 2-dimensional integration over z‖

T (q, p) =
1

2(2π)2

∫ 1

0

dx

∫ ∞
0

σ dσ

∫ 1

0

dβ Φ(x, βσ)

×
∫
d2z⊥d

2z‖ e
iq̃z‖ e−iσ(z2‖−z2⊥−iε)/4 , (IV.19)

where q̃ ≡ q′−xp has longitudinal components only. Now

it is clear that the factor e−iρxQ
2

in Eq.(IV.18) comes
from the d2z‖ integration. Using the fact that q̃ is space-

like, q̃2 = −xQ2, we can represent

e−iρxQ
2

=

∫
d2ζ⊥
4πiρ

eiζ
2
⊥/4ρ−i(κ⊥ζ⊥) , (IV.20)

where κ⊥ is a two-dimensional vector satisfying
κ2
⊥ = −q̃2 = xQ2. This gives

T (q, p) =
1

(4π)2i

∫ 1

0

dx

∫ ∞
0

dσΦ(x, σ)

∫
d2z⊥

∫
d2ζ⊥

×
∫ 1/σ

0

dρ

ρ2
ei(z

2
⊥+ζ2⊥+iε)/4ρ e−i(κ⊥ζ⊥) . (IV.21)

Integrating over ρ and then over σ to switch to IDA gives

T (q, p) =
1

(2π)2

∫ 1

0

dx

∫
d2z⊥

∫
d2ζ⊥

× ϕ(x, z2
⊥ + ζ2

⊥)

z2
⊥ + ζ2

⊥
e−i(κ⊥ζ⊥) . (IV.22)

Integrating over the angle between κ⊥ and ζ⊥ we have

T (q, p) =
1

2

∫ 1

0

dx

∫ ∞
0

dz2
⊥

∫ ∞
0

dζ2
⊥

× ϕ(x, z2
⊥ + ζ2

⊥)

z2
⊥ + ζ2

⊥
J0

(√
xQ2ζ2

⊥

)
. (IV.23)

Thus, the total impact parameter variable b2 ≡ z2
⊥ + ζ2

⊥
of the IDA ϕ(x, b2) comes from the transverse z⊥ part
of the original d4z integration, and from an additional
term ζ2

⊥ reflecting the result of the integration over the
longitudinal z‖ part of z. In other words, the additional

term ζ2
⊥ is associated with the virtuality xQ2 of the hard

quark propagator.

4. Approximate expression

Due to weighting of ζ2
⊥ by the Bessel function

J0

(√
xQ2ζ2

⊥

)
that rapidly decreases with ζ2

⊥ for large

xQ2, one may estimate ζ2
⊥ ∼ 1/xQ2 in this formula. Ne-

glecting ζ2
⊥ in the argument of IDA (but keeping it in the

1/(z2
⊥ + ζ2

⊥) factor) and using∫ ∞
0

ζ⊥dζ⊥
z2
⊥ + ζ2

⊥
J0

(√
xQ2ζ2

⊥

)
= K0

(
|z⊥|

√
xQ2
⊥

)
,

(IV.24)

we obtain the expression

T (q, p)=

∫ 1

0

dx

∫
z⊥dz⊥K0(z⊥

√
xQ2)ϕ(x, z2

⊥) + . . . .

(IV.25)

Its explicit part coincides with a conjecture

T (q, p)
?
=

∫ 1

0

dx

∫
z⊥dz⊥K0(z⊥

√
xQ2)ϕ(x, z2

⊥) ,

(IV.26)

that is used as an impact parameter representation for
the pion transition form factor in many papers (see, e.g.,
Ref. [22]). However, Eq. (IV.26) is not OPE compli-
ant for a soft wave function, since a (z2

⊥)l term from the
expansion of ϕ(x, z2

⊥) would produce an unwanted tower
of (1/xQ2)l+1 power corrections under the x-integral. As
we see now, Eq. (IV.26) may be treated as an approxi-
mation only, based on the assumption that ζ2

⊥ � z2
⊥ in

the argument of the IDA ϕ(x, z2
⊥ + ζ2

⊥).
In fact, due to a rapid decrease of the modified Bessel

function K0(y) with increasing y, the essential values of
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z2
⊥ in Eq. (IV.25) are restricted to z2

⊥ ∼ 1/xQ2, which
is of the same size as those for ζ2

⊥ that were neglected
compared to z2

⊥ in the argument of IDA. Thus, the cor-
rectness of the approximation leading to Eq. (IV.25) is
very questionable.

The momentum space equivalent of Eq. (IV.25) is the
formula (IV.7) obtained by neglecting the minus com-
ponent k− in the hard part, but keeping k2

⊥. Thus,
our coordinate space considerations suggests that the ne-
glected k− effects may be comparable in magnitude to
those caused by k2

⊥.

5. Comparison with exact result

To proceed without approximations, we change
z2
⊥ + ζ2

⊥ = b2, ζ2
⊥ = γb2 in Eq. (IV.23) to get

T (q, p) =
1

2

∫ 1

0

dx

∫ ∞
0

db2
∫ 1

0

dγ

× ϕ(x, b2)J0

(
2
√
γ xQ2b2

)
. (IV.27)

Integrating over γ gives the expression

T (q, p) =

∫ 1

0

dx√
xQ

∫ ∞
0

db ϕ(x, b2)J1

(
2
√
xQb

)
(IV.28)

that coincides with Eq. (III.11), the VDA formula writ-
ten in the impact parameter representation.

This discussion shows that the impact parameter b in
the VDA/IDA formula (IV.28) differs from the trans-
verse distance z⊥ in the original coordinate space integral
(IV.9) for T , namely, b2 = z2

⊥+ ζ2
⊥ with ζ2

⊥ = O(1/xQ2).
However, the essential z2

⊥ are also of the order of 1/xQ2.

C. Calculation in momentum representation

The VDA result (III.7) for the handbag diagram can
also be obtained using the momentum representation for
the VDA. The integral now reads

T (q, p) =

∫ 1

0

dx

∫
d4k

(q′ − k)2

×
∫ ∞

0

dα eiα(k−xp)2 Φ(x, 1/α) . (IV.29)

Integrating over k gives

T (q, p) =

∫ 1

0

dx

∫ ∞
0

dα

∫
dα1

(α+ α1)2

× eiα1αq̃
2/(α+α1) Φ(x, 1/α) . (IV.30)

Switching to σ1 = 1/α1, σ = 1/α and integrating over
σ1 gives the same VDA result as in Eq. (IV.17), which
may be converted into

T (Q2, p2) =−
∫ 1

0

dx

q̃2

∫
κ2
⊥≤−q̃2

d2κ⊥Ψ(x, κ⊥) . (IV.31)

Note that the transverse momentum variable κ⊥ here has
formally no direct connection with the momentum k of
the starting integral (IV.29).

Alternatively, one may wish to choose a particular de-
composition of k, say, the Sudakov parametrization, in
which k is split into plus, minus and transverse compo-
nents, and perform integration over the minus compo-
nent, trying to get an expression in terms of the Sudakov
transverse momentum k⊥.

1. Sudakov representation

Switching for simplicity to p2 = 0 case and using
parametrization

k = ξp+ ηq′ + k⊥ , (IV.32)

gives

T (Q2) =

∫ 1

0

dx

∫ ∞
0

dαF (x, α)

∫ ∞
0

dα1

× Q2

2

∫ ∞
−∞

dξ dη

∫
d2k⊥ e

iα(ξ−x)ηQ2

× eiα1(η−1)ξQ2

e−i(α+α1)k2⊥ . (IV.33)

The minus component of k is proportional to η. Integrat-
ing over it gives

T (q, p) =

∫ ∞
−∞

dξ

∫
d2k⊥

∫ ∞
0

dλ

∫ 1

0

dβ

∫ 1

0

dxF (x, βλ)

× e−iβ̄λξQ
2

δ(ξ − βx) e−iλk
2
⊥ . (IV.34)

Thus, the Sudakov variable ξ = βx is smaller than the
VDA variable x. Integrating over ξ results in

T (q, p) =

∫
d2k⊥

∫ ∞
0

dλ

∫ 1

0

dβ

∫ 1

0

dxF (x, βλ)

× e−iλββ̄xQ
2

e−iλk
2
⊥ . (IV.35)

Using integral over λ to introduce TMDA gives

T (Q2) = −
∫ ∞

0

dk2
⊥

∫ 1

0

dx

∫ 1

0

dβ

× ∂

∂k2
⊥
ψ

(
x,
k2
⊥
β

+ β̄xQ2

)
. (IV.36)

Our intention is to keep k⊥, but let us see first what
happens if we integrate over it. Then

T (q, p) =

∫ 1

0

dx

∫ 1

0

dβ ψ(x, β̄xQ2) , (IV.37)

which leads to the VDA result

T (q, p) =

∫ 1

0

dx

xQ2

∫ xQ2

0

dκ2 ψ(x, κ2) . (IV.38)



13

To keep the original Sudakov variable k⊥, we will try
to integrate over β in Eq. (IV.40). Using

− ∂

∂k2
⊥
ψ(x,k2

⊥/β + β̄xQ2) =
β

k2
⊥ + β2xQ2

× ∂

∂β
ψ

(
x,
k2
⊥
β

+ β̄xQ2

)
(IV.39)

we obtain a rather long and complicated expression

T (q, p) =

∫ 1

0

dx

∫ ∞
0

dk2
⊥

[
ψ(x, k2

⊥)

xQ2 + k2
⊥

+

∫ 1

0

dβ
β2xQ2 − k2

⊥
(k2
⊥ + β2xQ2)2

ψ

(
x,
k2
⊥
β

+ β̄xQ2

)]
.

(IV.40)

Only the first term here is rather simple

T (1)(q, p) =

∫ 1

0

dx

∫
dk2
⊥
ψ
(
x, k2
⊥
)

xQ2 + k2
⊥
, (IV.41)

and gives the expression used in many papers (see, e.g.
Ref. [22]) based on the Sudakov parametrization. Note,
however, that in our derivation it involves the VDA vari-
able x rather than the Sudakov variable ξ.

As we discussed in Sec. IV A, one can get such a for-
mula by neglecting the minus component of k in the hard
propagator. We have also emphasized that this expres-
sion is not “OPE compliant”. In particular, unlike the
VDA approach expression (IV.38), it generates a tower
of k2

⊥/Q
2 corrections which should be absent for soft

wave functions ψ
(
x, k2
⊥
)
. Still, it correctly reproduces in

this case the leading power term (II.10). Also, for hard
tails, when ψhard(x, k2

⊥) ∼ (ln k2
⊥)m/k2

⊥, it correctly re-
produces the leading part of the resulting (lnQ2)m+1/Q2

contribution to T (Q2). These observations justify, to
some extent, the use of Eq. (IV.41). Nevertheless, it
is just an approximation, while Eq. (IV.38) is an exact
result.

The difference between them is given by the second in-
tegral in Eq. (IV.40). As one can see, it has a rather com-
plicated form and contains TMDA in which the trans-
verse momentum argument k2

⊥ is rescaled by 1/β factor
and then shifted by a β̄ fraction of the hard virtuality
xQ2. We can restore in this term the Sudakov variable
ξ = βx to see that the first argument of TMDA here
differs from the Sudakov variable ξ by the 1/β factor.

In fact, since the β integration is present in the second
term of (IV.41), we did not reach our goal of reducing the
d4k integral to integration over just the plus momentum
fraction and transverse momentum. The only way we see
to get rid of the β integral here is to return to the VDA
result (IV.38).

2. Comparison in the impact parameter representation

The Sudakov variable k⊥ is Fourier-conjugate to the
transverse coordinate z⊥ of the virtual photon vertex in

Eq. (IV.9), so we may write

Ψ(x, k⊥) =

∫
d2z⊥
(2π)2

ϕ(x, z⊥) e−i(k⊥z⊥) , (IV.42)

and present the approximation (IV.41) in the impact pa-
rameters space as

T (1)(Q2)=

∫ 1

0

dx

∫ ∞
0

dz⊥z⊥K0(z⊥
√
xQ2)ϕ(x, z2

⊥) ,

(IV.43)

which coincides with the term explicitly written in Eq.
(IV.25). It is instructive to compare this result with the
impact parameter version (III.11) of the VDA formula,

T (Q2)=

∫ 1

0

dx√
xQ

∫ ∞
0

db J1(
√
xQb)ϕ(x, b) . (IV.44)

When ϕ(x, b) = ϕ(x) (which corresponds to the leading
approximation of keeping only the l = 0 term in Eq.
(II.4)), both formulas give the same 1/xQ2 result after
integration over the impact parameter.

However, the two formulas have a different attitude
with respect to further terms of the (b2)l expansion
of a soft ϕ(x, b). Indeed, the integrals of (b2)l with
K0(
√
xQb) converge for all powers l (producing unwanted

(1/Q2)l+1 power corrections), while J1(
√
xQb) integrals

diverge starting with l = 1. Because of oscillating nature
of the J1 Bessel function, a proper regularization would
set all these integrals to zero (or derivatives of δ(xQ2), to
be more precise), which corresponds to having no 1/Q2

corrections under the x-integral.
Another evident difference between the two expressions

is that J1(
√
xQb)/b is finite for b = 0 while K0(

√
xQb)

has a logarithmic singularity there. Moreover, if Ψ(x, k⊥)
is finite for k⊥ = 0, the exact formula (IV.1) gives a finite
value for T (Q2) in the Q2 → 0 limit, namely,

T (Q2 → 0) = π

∫ 1

0

Ψ(x, k⊥ = 0) dx . (IV.45)

On the other hand, Eq. (IV.41) produces a logarithmi-
cally divergent result even if Ψ(x, k⊥ = 0) is finite. We
now see that this well-known deficiency of Eq. (IV.41)
(see, e.g., [23]) is just the result of approximations (equiv-
alent to taking k− = 0 in the hard propagator) used in
its derivation.

3. Calculation in the IMF variables

Another possibility is to write the d4k integral in Eq.
(IV.29) using a frame where p defines the “plus” direc-
tion, but the q+ = 0. Defining the “minus” direction by
a lightlike vector n, we have

q′ = p+Q2 n− q⊥ , (IV.46)

k = ξp+ ηQ2n+ k⊥ , (IV.47)
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where n2 = 0 and 2(pn) = 1. Then k2 = ξηQ2 − k2
⊥ and

(q′ − k)2 = (1− ξ)(1− η)Q2 − (k⊥ + q⊥)2 . (IV.48)

This gives

T (q, p) =

∫ 1

0

dx

∫ ∞
0

dαF (x, α)

∫ ∞
0

dα1

× Q2

2

∫ ∞
−∞

dξ dη

∫
d2k⊥ e

iα(ξ−x)ηQ2

× eiα1(ξ−1)(η−1)Q2

e−iαk
2
⊥−iα1(k⊥+q⊥)2 . (IV.49)

Performing integration over η, i.e., the minus component
of k, and changing α+ α1 = λ, α = βλ, we obtain

T (q, p) =

∫
d2k⊥

∫ 1

0

dx

∫ ∞
0

dλ

×
∫ 1

0

dβF (x, βλ)

∫ 1

0

dξ δ[ξ̄ − βx̄]

× eiλ(ξ̄−β)β̄Q2−iλ(k⊥+β̄q⊥)2 . (IV.50)

Thus, the IMF variable ξ̄ = βx̄ is smaller than the VDA
variable x̄. i.e., ξIMF is larger than x. However, integrat-
ing over ξ and shifting integration variable k⊥ gives

T (q, p) =

∫
d2k⊥

∫ 1

0

dx

∫ ∞
0

dλF (x, βλ)

×
∫ 1

0

dβ e−iλk
2
⊥−iλββ̄xQ2

, (IV.51)

which coincides with the expression (IV.35) obtained us-
ing Sudakov variables, and further steps are the same.

4. Summary

Thus, our examination did not reveal any advantages
of using explicit decomposition of the integration mo-
mentum k in either Sudakov or IMF variables. To the
contrary, their use results in the expression (IV.40) that is
much more complicated than the VDA formula (IV.38).
Moreover, in the exact expression (IV.41) we did not
reach the goal of converting d4k into dξd2k⊥: it con-
tains an extra integration, which we managed to get rid
of only by making approximations. Furthermore, the ap-
proximate expression (IV.41) is not satisfactory since it
contains k⊥-dependent terms in hard factors that pro-
duce towers of k2

⊥/Q
2 corrections. As a result, it is not

OPE compatible for soft TMDAs.
Note that trying to keep the Sudakov or IMF trans-

verse momentum variable, we have integrated over the
plus-momentum variable ξ of these representations, thus
using the VDA variable x in further expressions. As we
have seen, ξ differs from x in both cases (though in op-
posite directions: ξSud ≤ x, while ξIMF ≥ x). If, instead,
we would try to keep the ξ variables by integrating over
x, we would get much more lengthy expressions, with

the β integration variable now entering both arguments
of TMDA, making further simplifications virtually im-
possible. This is another argument in favor of using the
VDA-based variables and formulas.

D. Three-body contributions

Using VDA we take into account the contributions of
higher twist operators of φ . . . (∂2)nφ(0) type. By equa-
tions of motion, like ∂2φ = gχφ in the case of gφ2χ inter-
action of quarks φ with gluons χ, these operators may be
converted into multi-body operators like φ . . . χn(0)φ(0).
A distinctive feature of these operators is that the gluon
field χ(0) is taken at the same point as the quark field
φ(0), so we still deal with an effectively bilocal opera-
tor. However, one may also wish to include configura-
tions with three (or more) partons participating in the
short-distance subprocess, which are described by multi-
body operators with the gluon fields taken at locations
different from those of the photon vertices.

Take a contribution with one gluon insertion (see
Fig. 3). Then

T3(q, p) =

∫
d4z e−i(qz)

∫
d4z1D

c(z − z1)Dc(z1)

× 〈p|φ(z)χ(z1)φ(0)|0〉 . (IV.52)

q

q�

p
x1p

xp

z

z1

0

FIG. 3. Scalar diagram with a gluon insertion.

The tri-local matrix element depends in general on
three intervals: z2, z2

1 , (z − z1)2 and two scalar products
(pz), (pz1). Neglecting virtuality-related dependence on
all intervals, we can parametrize

〈p|φ(z)χ(z1)φ(0)|0〉 =

∫ 1

0

dx

∫ x̄

0

dx1 f(x, x1)

× eix1(pz1)+i(x̄−x1)(pz) +O(z2
i ) . (IV.53)

In this parametrization, the “gluon” has an (outgoing)
momentum x1p, and “quark” at 0 carries momentum xp.
The quark at z has momentum (1−x−x1)p. The spectral
property x ≥ 0, x1 ≥ 0, x + x1 ≤ 1 (we will denote this
region as Ω) can be proven for any Feynman diagram
contributing to f(x, x1), see Refs. [14, 15].
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Taking z1 = z, we get an effectively bilocal opera-
tor φ(0)χ(z)φ(z). Incorporating the equation of motion
∂2φ = gχφ, we get a reduction relation

g

∫ x̄

0

f(x, x1) dx1 = Λ2ϕ1(x) (IV.54)

connecting f(x, x1) with the distribution amplitude
ϕ1(x) corresponding to φ∂2φ operators in Eq. (III.13).
This connection just states that average parton virtuality
Λ2 is proportional to the average strength of the gluonic
field χ inside the hadron.

Since these two contributions are governed by the same
scale, one may wonder if we should consider them to-
gether. However, there is an essential difference between
the two. The virtuality correction is “invisible” when
taken on its own, and contributes to a nontrivial func-
tion of Q2 only after summation through VDA with all
other “invisible” contributions. On the other hand, the
diagram with a gluon insertion is an explicit power cor-
rection to the handbag term. Its contribution is given by
the parton formula

T3(q, p) =

∫
Ω

f(x, x1)dx dx1

[q′ − xp]2[q′ − (x+ x1)p]2
+O(1/Q6)

=
1

Q4

∫
Ω

f(x, x1) dx dx1

x(x+ x1)
+O(1/Q6) (IV.55)

from which it is evident that the 3-parton term is sup-
pressed by 1/Q2 compared to the handbag diagram. This
outcome is a consequnce of the fact that the 3-parton am-
plitude is less singular∫

d4z1D
c(z − z1)Dc(z1) ∼ ln(z2) (IV.56)

on the light cone than the handbag diagram, which has
1/z2 singularity.

One may also wish to improve the precision and include
the virtuality effects by keeping χ(z1) in the above inte-
gral. Combining the denominators 1/z2

1 and 1/(z − z1)2

through Feynman parameter u and shifting the integra-
tion variable z1 → z1 + uz , we arrive at (cf. Ref. [24])∫ 1

0

du

∫
χ(uz + z1) d4z1

[z2
1 + u(1− u)z2]2

. (IV.57)

Note that χ(uz+z1) is integrated over z1 with a function
that depends on z1 through z2

1 only. Hence, if we expand
χ(uz+ z1) around the point uz using analog of Eq.(II.2),
all terms containing traceless combination {z1∂}N with
N ≥ 1 give zero after integration over z1, so we can use

χ(uz+z1) =

∞∑
l=0

(
z2

1

4

)l
(∂2)lχ(uz)

l!(l + 1)!
+ traceless {z1∂}N

≡
∫ ∞

0

dσ1χ̃(uz, σ1) e−iσ1(z21−iε)/4 + . . . .

(IV.58)

The σ1-dependence of the field χ̃(uz, σ1) takes care of the
effects due to the virtuality (off-shellness) of the scalar
gluon field χ. Thus, we end up with the integral

T3(q, p) =

∫ 1

0

du

∫
d4z e−i(qz)

×
∫ ∞

0

dσ1 〈p|φ(z) χ̃(uz, σ1)φ(0)|0〉

×
∫

d4z1

[z2
1 + u(1− u)z2]2

e−iσ1(z21−iε)/4 . (IV.59)

The d4z1 integral can be calculated in terms of incom-
plete gamma function. The result depends on the com-
bination uūz2σ1 and has a logarithmic dependence on it
for small z2. One can in principle keep this dependence,
but as the first step we may neglect the gluon virtuality
effects given by (z2

1∂
2)lφ in Eq. (IV.58), and look at the

virtuality effects due to non-zero value of z2. Then one
deals with

T3(q, p) =

∫ 1

0

du

∫
d4z e−i(qz) ln(uūz2M2)

× 〈p|φ(z)χ(uz)φ(0)|0〉 . (IV.60)

One can see that all the fields involved in the matrix
element here are located on the straight line connecting
0 and z, i.e. we deal with a “string” operator [24]. With
respect to z, the matrix element is a function of (pz) and
z2 (note that it has been never assumed that z is on the
light cone, so we can take z2 6= 0). Then we can represent
this matrix element using a VDA-type parametrization
like

〈p|φ(z) χ̃(uz)φ(0)|0〉 =

∫ ∞
0

dσ

∫
Ω

dx dx1 Φ(x, x1, σ)

× eix1u(pz)+i(x̄−x1)(pz)−iσ(z2−iε)/4 . (IV.61)

In the present paper, we will not proceed further with the
analysis of the 3-body and higher Fock components, leav-
ing it to future investigations. However, some elements
of the technique used above are helpful in the analysis of
gauge theories.

V. QCD CASE

The justification for spending time on scalar models is
that the same construction may be built in QCD.

A. Spin-1/2 quarks

A realistic case is when quarks have spin 1/2. Then
the handbag diagram for the pion transition form factor
is given by∫

d4z e−i(q
′z)〈p|ψ̄(0)γν Sc(−z) γµ ψ(z)|0〉

= iεµναβpαqβF (Q2) , (V.1)
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where Sc(z) = /z/2π2(z2)2 is the propagator for a mass-
less fermion. Writing the antisymmetric part of γν /z γµ

as izβε
µναβγ5γα we parametrize the resulting matrix el-

ement as

〈p|ψ̄(0) γ5γα ψ(z)|0〉 = i

∫ ∞
0

dσ

∫ 1

0

dx

× [pαΦ(x, σ) + zαΦ2(x, σ)] eix(pz)−iσ(z2−iε)/4 . (V.2)

Here we have two VDAs that are associated with the two
possibilities pα and zα for a vector carrying the Lorentz
index α. In fact, the term proportional to zα does not
contribute to the γ∗γ → π0 amplitude at the handbag
level, since it disappears after convolution with zβε

µναβ .
All the formulas relating VDA with TMDA and IDA

that were derived in the scalar case are valid without
changes. However, the spinor propagator has a different
functional form. Using it, we obtain

F (Q2) =

∫ ∞
0

dσ

∫ 1

0

Φ(x, σ)
dx

xQ2

×
{

1 +
iσ

xQ2

[
1− e−[ixQ2+ε]/σ

]}
. (V.3)

The first two terms are given by two lowest moments of
VDA Φ(x, σ). Assuming that they exist, we may write

F (Q2) =

∫ 1

0

dx

xQ2

{
ϕ(x)− ϕ1(x)

Λ2

xQ2

−
∫ ∞

0

dσΦ(x, σ)
iσ

xQ2
e−[ixQ2+ε]/σ

}
. (V.4)

For large Q2, Eq. (V.4) shows a correction with
a power-like Λ2/Q4 behavior that corresponds to the
twist-4 ψ̄γ5γαD

2ψ operator. Though it is accompanied
by a z2 factor, the latter does not completely cancel the
1/z4 singularity of the spinor propagator, and as a result
this contribution has a “visible” 1/Q4 behavior. The re-
maining term corresponds to contributions “invisible” in
the OPE.

Note that, taken separately, the twist-4 contribution
results in a very singular ϕ1(x)/x2 integral. If the pion
“daughter” DA ϕ1(x) does not vanish like x1+α with a
positive α in the end-point region, the purely twist-4 con-
tribution diverges. However, it is easy to check that when
the “invisible” terms are added, the x-integral in the orig-
inal Eq. (V.3) converges. Indeed, writing it in terms of
TMDA

F (Q2) =

∫ 1

0

dx

xQ2

∫ xQ2

0

dk2
⊥

xQ2

∫
k′2⊥≤k2⊥

Ψ(x, k′⊥) d2k′⊥ ,

(V.5)

and then in terms of IDA

F (Q2)=2

∫ 1

0

dx

xQ2

∫ ∞
0

db

b
J2(
√
xQb)ϕ(x, b) , (V.6)

we see that J2(
√
xQb)/x→ const for small x, so that x-

integral converges if ϕ(x, b) ∼ x−1+α with however small
positive α, i.e. ϕ(x, b) may be even singular for small x.
Taking the Q2 → 0 limit under the integral, we get

F (Q2 = 0)=
1

4

∫ 1

0

dx

∫ ∞
0

b db ϕ(x, b) , (V.7)

assuming that the b-integral is finite. This is the case if
Ψ(x, k⊥) is finite for k⊥ = 0. Then we have

F (Q2 → 0) =
π

2

∫ 1

0

Ψ(x, k⊥ = 0) dx . (V.8)

This result also follows directly from Eq. (V.5) if
Ψ(x, k⊥ = 0) is finite. It also coincides with the IMF
light-front approach result of Ref.[12].

In fact, Eq. (V.5) can be re-written in the form involv-
ing just one transverse momentum integration

F (Q2) =

∫ 1

0

dx

xQ2

∫
k⊥2≤xQ2

Ψ(x, k⊥)

[
1− k2

⊥
xQ2

]
d2k⊥

(V.9)

and explicitly showing the twist-4 correction given by the
k2
⊥ moment of TMDA Ψ(x, k⊥).

B. Adding a gluon

In gauge theories, the handbag contribution in a co-
variant gauge should be complemented by diagrams cor-
responding to operators ψ̄(z) . . . /A(zi) . . . ψ(0) containing
twist-0 gluonic field Aµi

(zi) inserted into the fermion line
between the points z and 0 (see Fig. 4).

q

q�

p

0

z

FIG. 4. Structure of the handbag contribution in QCD.

Consider an insertion of the gluon field Aα(z1) into the
quark propagator connecting z and 0 vertices. Taking the
gluon with momentum k we have∫

d4z1 S
c(z − z1)γαSc(z1)ei(kz1) (V.10)

or ∫
d4z1

∫ ∞
0

σ1 dσ1

∫ ∞
0

σ2 dσ2(/z − /z1)γα/z1

× e−iσ1(z−z1)2/4−iσ2z
2
1/4ei(kz1) (V.11)
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Integrating over z1 and changing σ1 + σ2 = σ, σ1 = tσ
gives∫ ∞

0

σdσ

∫ 1

0

dt tt̄ exp

{
−i tt̄ z

2

4
σ + it(kz) + i

k2

σ

}
× [(t̄/z − 2/k/σ) γα(t/z + 2/k/σ)− 4iγα/σ] . (V.12)

Changing further σ → σ/tt̄ produces the integral∫ ∞
0

σdσ

∫ 1

0

dt exp

{
−iz

2

4
σ + it(kz) + itt̄

k2

σ

}
× [Trace] , (V.13)

with the trace given by

[Trace] = 2zα/z − γα (z2 + 4iσ)

+ 2kβ [t̄/zγαγβ − tγβγα/z]/σ − 4tt̄/kγα/k/σ2 . (V.14)

Writing

eitt̄k
2/σ = 1 +

[
eitt̄k

2/σ − 1
]
, (V.15)

we can integrate over σ the term corresponding to “1”.
In particular,∫ ∞

0

σdσ exp

{
−iz

2

4
σ

}
= − 16

(z2)2
, (V.16)

while ∫ ∞
0

σdσ exp

{
−iz

2

4
σ

}[
z2 +

4i

σ

]
= 0 (V.17)

and ∫ ∞
0

dσ exp

{
−iz

2

4
σ

}
= − 4i

z2
. (V.18)

Thus, the leading singularity 1/(z2)2 is accompanied by
the same gamma-matrix factor /z as in the original quark
propagator. The factor zα means that the field Aα ap-
pears as (zA), while the exponential eit(kz) shows that
the field is taken at the running argument tz, with inte-
gral over t from 0 to 1. This means that it corresponds
to the linear in A part

ig

∫ 1

0

dt zαA
α(tz) (V.19)

of the gauge link

E(0, z;A) ≡ P exp

[
ig

∫ 1

0

dt zαA
α(tz)

]
. (V.20)

(Our derivation given above is inspired by that given in
Ref. [24]).

Furthermore, terms corresponding to the sub-leading
singularity 1/z2 are proportional to k, i.e. the deriva-
tive of the gluon field, which in fact combines into the
field-strength tensor Fαβ . Indeed, if one takes the α↔ β

symmetric part of the γ-matrix terms in kβγ
αγβ and

kβγ
βγα, it gives kα which results in a vanishing contri-

bution since (kA) = 0, and only terms proportional to
kβσ

αβ , i.e., kβAα − kαAβ remain, which corresponds to
the field-strength tensor Fαβ .

One can also take the σ integral in its original form:∫ ∞
0

σdσ exp

{
−iz

2

4
σ + itt̄

k2

σ

}
= −8tt̄k2

z2
K2(
√
tt̄k2z2)

= − 16

(z2)2
+

4tt̄k2

z2
+ . . . , (V.21)

while ∫ ∞
0

σdσ exp

{
−iz

2

4
σ + itt̄

k2

σ

}[
z2 +

4i

σ

]
= −8tt̄k2K0(

√
tt̄k2z2)

= O(k2 ln(k2z2)) , (V.22)

and ∫ ∞
0

dσ exp

{
−iz

2

4
σ + itt̄

k2

σ

}
= −4i

√
tt̄k2

z2
K1(
√
tt̄k2z2)

= − 4i

z2
+O(k2 ln(k2z2)) , (V.23)

which produces the results discussed above, provided
that one neglects O(k2/z2) and O(k2 ln(k2z2)) terms.

C. Quark propagator in external gluon field

To see how the E-factor (V.20) emerges to all orders
in the external field gA [7, 25], we observe that the sum
of gluon insertions is equivalent to substituting the free
propagator Sc(z1− z2) by a propagator Sc(z1, z2;A) of a
fermion in an external gluonic field A. This propagator
satisfies the Dirac equation

i

[
/∂

∂z1
− ig /A(z1)

]
Sc(z1, z2;A) = −δ4(z1 − z2) .

(V.24)

Looking for a solution of this equation in the form

Sc(z1, z2;A) = E(z1, z2;A)Sc
FS(z1, z2;A) (V.25)

involving the straight-line exponential (V.20), one can
see that the factor Sc

FS should satisfy the Dirac equation

i

[
/∂

∂z1
− ig /A(z1)

]
Sc

FS(z1, z2;A) = −δ4(z1 − z2) ,

(V.26)
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with the field [7, 25]

Aµ(z; z1) = (z − z1)ν

∫ 1

0

sGµν(z1 + s(z − z1)) ds

(V.27)

being the vector potential in the Fock-Schwinger (FS)
gauge [26, 27],

(z − z1)µA
µ(z, z1) = 0 . (V.28)

Here, z denotes an arbitrary position in space while z1

specifies the “fixed point” of the gauge and in our case
refers to an end-point in the Compton amplitude.

Since the field-strength tensor Gµν has twist equal to
(at least) 1, the insertion of this field into the free propa-
gator results in power (Λ2Q2)l corrections to the Comp-
ton amplitude. Thus, we can write

Sc(0, z;A) = E(0, z;A) {Sc(z) +O(G)} . (V.29)

1. Bilocal operator in gauge theories

Keeping the first term in Eq. (V.29) we need to deal
with the gauge-invariant bilocal operator

Oα(0, z;A) ≡ ψ̄(0) γ5γ
αE(0, z;A)ψ(z) . (V.30)

Its important property is that the Taylor expansion for
Oα(0, z;A) has the same structure as that for the original
ψ̄(0)γ5γ

αψ(z) operator, with the only change that one
should use covariant derivatives Dµ = ∂µ − igAµ instead
of the ordinary ∂µ ones:

E(0, z;A)ψ(z) =

∞∑
n=0

1

n!
(zD)nψ(0) . (V.31)

This result follows from the relation

d

dzα
E(0, z;A) = E(0, z;A)[Dα + igAα(z, 0)] (V.32)

and the property zαA
α(z, 0) = 0 of the Fock-Schwinger

field Aα(z, 0). As we have seen in Sect. II B, the Taylor
expansion for a matrix element may be written in the
form of the VDA parametrization

〈p| Oα(0, z;A)|0〉 = i

∫ ∞
0

dσ

∫ 1

0

dx
[
pαΦ(x, σ)

+ zαΦz(x, σ)
]
eix(pz)−iσ(z2−iε)/4 . (V.33)

Again, since the matrix element 〈p| Oα(0, z;A)|0〉 is
just a function of (pz) and z2, one can treat the VDA
representation as a particular case of the double Fourier
representation with specific constraints on the limits of x
and σ integration. These limits, in turn, reflect only the
positivity of the functions A,B,C,D in the exponential
of the α-representation (II.15), which are completely de-
termined by the denominators of the momentum space
propagators of the relevant Feynman diagram and are the
same in any theory. This observation justifies the use of
the VDA representation (V.33) in QCD in general case.

2. Multilocal operators

Insertions of the nonzero-twist FS field Aµ result in ma-
trix elements of ψ̄(0) . . . G(sz) . . . ψ(z) operators, which
should be parametrized in terms of trilocal, etc. VDAs.
These terms are analogous to φ(0) . . . χ(z1) . . . φ(z), etc.
operators of the scalar model. The technology of how
to work with insertions of the Fock-Schwinger field Aµ

is well-developed, see e.g. Refs. [24, 28–30]. For the
Compton amplitude, the contribution due to a single in-
sertion of Aµ was calculated by Balitsky and Braun [24]
and shown to produce a 1/Q2 correction to the leading
term.

VI. MODELS OF SOFT VDAS

A. Explicit models of soft transverse momentum
dependence

Let us now discuss some explicit models of the k⊥ de-
pendence of soft TMDAs Ψ(x, k⊥). In general, they are
functions of two independent variables x and k2

⊥. But
it makes sense to start with a simple case of factorized
models

Ψ(x, k⊥) = ϕ(x)ψ(k2
⊥) , (VI.1)

in which x-dependence and k⊥-dependence appear in sep-
arate factors. Since relations between VDAs, TMDAs
and IDAs are the same in scalar and spinor cases, we will
refer for simplicity to scalar operators.

1. Gaussian model

It is popular to assume a Gaussian dependence on k⊥,

ΨG(x, k⊥) =
ϕ(x)

πΛ2
e−k

2
⊥/Λ

2

. (VI.2)

In the impact parameter space, one gets IDA

ϕG(x, z⊥) = ϕ(x)e−z
2
⊥Λ2/4 (VI.3)

that also has a Gaussian dependence on z⊥. Writing

ϕG(x, z⊥) =
ϕ(x)

2π

∫ ∞
−∞

i dσ

σ + iΛ2
e−iz

2
⊥σ/4 , (VI.4)

we see that the integral here involves both positive and
negative σ, i.e. formally ϕG(x, z⊥) cannot be written in
the VDA representation (III.2). This is a consequence
of the fact that ψG(x, κ2

⊥), the analytic continuation of
ΨG(x, k⊥) into the time-like region of momenta, has an
exponential increase for large negative κ2.

However, the transition form factor for space-like vir-
tual photons involves only the integral over positive κ2,
i.e. it is not sensitive to the behavior of ψG(x, κ2

⊥) for
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negative κ2. One can see that the form factor formula
in terms of TMDA (V.5) shows no peculiarities in case
of the Gaussian ansatz. For this reason, we will use this
model because of its calculational simplicity.

2. Simple non-Gaussian models

One may still argue that a Gaussian fall-off for large
z⊥ is too fast. In particular, propagators Dc(z,m) of
massive particles have an exponential e−m|z| decrease for
spacelike intervals z2.

To build models for TMDAs that are more closely re-
sembling perturbative propagators, we recall that the
propagator of a scalar particle with mass m may be writ-
ten as

Dc(z,m) =
1

(4π)2

∫ ∞
0

e−iσz
2/4−i(m2−iε)/σdσ . (VI.5)

The mass term assures that the propagator falls off ex-
ponentially ∼ e−|z|m for large space-like distances. At
small intervals z2, however, the free particle propaga-
tor has 1/z2 singularity while we want the soft part of
〈p|φ(0)φ(z)|0〉 to be finite at z = 0. The simplest way
is to add a constant term (−4/Λ2) to z2 in the VDA
representation (II.19). So, we take

Φ(x, σ) =
ϕ(x)

p(Λ,m)
eiσ/Λ

2−im2/σ−εσ (VI.6)

as a model for VDA. The sign of the Λ2 term is fixed
from the requirement that (4/Λ2−z2)−1 should not have
singularities for space-like z2. The normalization factor
p(Λ,m) is given by

p(Λ,m) =

∫ ∞
0

eiσ/Λ
2−im2/σ−εσdσ

= 2imΛK1(2m/Λ) . (VI.7)

a. m = 0 model. To begin with, let us take m = 0,
i.e.

Φ(x, σ) = ϕ(x)
eiσ/Λ

2−εσ

iΛ2
. (VI.8)

The bilocal matrix element in this case is given by

〈p|φ(0)φ(z)|0〉 =
1

1− z2Λ2/4

∫ 1

0

dxϕ(x) eix(pz) ,

(VI.9)

which corresponds to

ϕ(x, z⊥) =
ϕ(x)

1 + z2
⊥Λ2/4

(VI.10)

for IDA. One can see that the z2
⊥ term of the z⊥ expan-

sion of ϕ(x, z⊥) in this model was adjusted to coincide

with that of the exponential model, so that Λ2 has the
same meaning of the scale of φ∂2φ operator. The TMDA
for this Ansatz is given by

Ψ(x, k⊥) = 2ϕ(x)
K0(2k⊥/Λ)

πΛ2
. (VI.11)

It has a logarithmic singularity for small k⊥ that reflects
a slow ∼ 1/z2

⊥ fall-off of ϕ(x, z⊥) for large z⊥. The inte-
grated TMDA that enters the form factor formula (V.5)
is given by∫
k′2⊥≤k2⊥

Ψ(x, k′⊥) d2k′⊥ = ϕ(x)

[
1− 2k⊥

Λ
K1(2k⊥/Λ)

]
.

(VI.12)

It is also possible to calculate explicitly the next k⊥ in-
tegral involved there, see Eq. (VI.24) below.

For negative k2
⊥ = −κ2 − iε, the model gives

ψ(x,k2
⊥ = −κ2 − iε) =

2ϕ(x)

Λ2
K0(−2iκ/Λ)

= π
ϕ(x)

Λ2
[−N0(2κ/Λ) + iJ0(2κ/Λ)] , (VI.13)

i.e. the analytic continuations of TMDA into the timelike
region in this case generates an imaginary part.
b. m 6= 0 model. The model with nonzero mass-like

term

Φm(x, σ) = ϕ(x)
eiσ/Λ

2−im2/σ

2imΛK1(2m/Λ)
(VI.14)

corresponds to the function

Ψm(x, k⊥) = ϕ(x)
K0

(
2
√
k2
⊥ +m2/Λ

)
πmΛK1(2m/Λ)

. (VI.15)

that is finite for k⊥ = 0 in accordance with the fact that
the impact parameter distribution amplitude in this case,

ϕm(x, z⊥) = ϕ(x)
K1

(
m
√

4/Λ2 + z2
⊥

)
K1(2m/Λ)

√
1 + Λ2z2

⊥/4
, (VI.16)

has an exponential ∼ e−m|z⊥| fall-off for large z⊥.

B. Modeling transition form factor by soft term

Let us now illustrate the impact of these models on the
modification of the 2-body contribution to the transition
form factor changed by the higher twist terms absorbed
into the 2-body TMDA Ψ(x, k⊥).

Here we want to stress that a full analysis should also
include 3-body ψ̄Gψ, etc. TMDA contributions. One
may expect that, compared to the 2-body term, the
3-body term will be suppressed for large Q2 by a fac-
tor of 1/Q2 accompanied by a scale ∼ 〈ψ̄Gψ〉/〈ψ̄ψ〉 . 1
GeV2. Thus, keeping just the 2-body TMDA is expected
to be a good approximation for Q2 & 1 GeV2, however,
for small Q2 the contribution of the many-body TMDAs
may be of the same magnitude as the 2-body one.
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1. Gaussian model

For the Gaussian model (VI.2), we have

FG(Q2) =

∫ 1

0

dx

xQ2
ϕ(x)

∫ xQ2

0

dk2
⊥

xQ2

[
1− e−k2⊥/Λ2

]
,

(VI.17)

which gives

FG(Q2) =

∫ 1

0

dx

xQ2
ϕ(x)

[
1− Λ2

xQ2

(
1− e−xQ2/Λ2

)]
.

(VI.18)

If the pion DA ϕ vanishes as any positive power xα for
x→ 0, the x-integral for the purely twist-2 contribution

converges. For large Q2, Eq. (VI.18) displays the power-
like twist-4 contribution and the term that corresponds
to contributions of “invisible” operators with twist 6 and
higher. As we discussed, inclusion of virtuality correc-
tions improves the convergence in the small-x region. In
particular, we obtain a finite value for Q2 = 0

FG(Q2 = 0) =
fπ

2Λ2
, (VI.19)

where we have used the normalization condition∫ 1

0

ϕ(x) dx = fπ . (VI.20)

Restoring the overall normalization

Fγγ∗→π0(Q2) =

√
2

3
F (Q2). (VI.21)

we find that our interpolation of the 2-body TMDA con-
tribution into small-Q2 region gives

FGγγ∗→π0(Q2 = 0) =
s0

6Λ2
Fanomaly , (VI.22)

where s0 = 4π2f2
π ≈ 0.67 GeV2, and

Fanomaly =

√
2fπ
s0

(VI.23)

is the value of Fγγ∗→π0(Q2 = 0) given by the axial
anomaly. If we take Λ2 = 0.2 GeV2, the coefficient
s0/6Λ2 is about 0.53, i.e. the remaining 47% of the form
factor magnitude for Q2 = 0 should be attributed to the
many-body contributions. Note that in the light-front
approach, as argued in Ref. [12], the 2-body q̄q contri-
bution produces precisely 1/2 of the Q2 = 0 magnitude,
the rest coming from the many-body part. It should be
emphasized, that both in the light-front approach and
in our formalism, the magnitude of Fγγ∗→π0(Q2 = 0) is
model-dependent. In other words, the value dictated by
the anomaly is treated as a constraint on the parameters
involved in the wave function or TMDA. In fact, as shown
below, the m = 0 non-Gaussian model gives a divergent
result as Q2 → 0, and in this sense, one should not even
try to extrapolate it to Q2 = 0.

2. m = 0 model

Using the non-Gaussian model with m = 0 (VI.8) gives

F (Q2) =

∫ 1

0

dx

xQ2
ϕ(x)

[
1− Λ2

xQ2
+ 2K2(2

√
xQ/Λ)

]
.

(VI.24)

Recall that the size of the twist-4 term is determined by
the magnitude of the matrix element of the ψ̄γ5γαD

2ψ
operator. The fact that the twist-4 contribution in the
expression above looks identical to that in the Gaussian
model (VI.18) means that we use definitions in which the
average parton virtuality in the two models is measured
in the same Λ units.

Extracting the Q2 → 0 limit from Eq. (VI.24), we
observe that it contains logarithmically singular ln(Λ/Q)
terms:

F (Q2) =

∫ 1

0

dx

Λ2
ϕ(x)

{
ln

(
Λ√
xQ

)
+

3

4
− γE

+O
(
xQ2

Λ2

)}
. (VI.25)

As established earlier, if the value of TMDA Ψ(x, k⊥)
at zero transverse momentum is finite, the Q2 → 0
limit of F (Q2) is given by Eq. (IV.45) that involves
Ψ(x, k⊥ = 0). In the m = 0 model, Ψ(x, k⊥) is pro-
portional to K0(2k⊥/Λ) and is logarithmically divergent
as k⊥ → 0. Hence, a formal small-Q2 expansion of
Eq. (V.6) leading to Eq. (V.7) is not applicable in this
case.

3. m 6= 0 model

Turning to the m 6= 0 model, we have

F (Q2) =

∫ 1

0

dx

xQ2
ϕ(x)

{
1− 1

xQ2

ΛmK2(2m/Λ)

K1(2m/Λ)

+
Λ(xQ2 +m2)K2(2

√
xQ2 +m2/Λ)

xQ2mK1(2m/Λ)

}
. (VI.26)

Again, the twist-4 power correction is explicitly displayed
here. Note that the average quark virtuality understood
as the scale that appears in the matrix element of the
ψ̄γ5γαD

2ψ operator now depends on the interplay of the
confinement scale Λ and mass-type scale m.

Using this expression or Ψm(x, k⊥ = 0) from Eq.
(VI.15) we obtain

Fm(Q2 = 0) = fπ
K0 (2m/Λ)

2mΛK1(2m/Λ)
. (VI.27)

Thus, we see again that the m = 0 limit is logarithmically
divergent. Writing

Fm(Q2 = 0) =
fπ
Λ2

[
ln

(
Λ

m

)
− γE +O(m2/Λ2)

]
,

(VI.28)
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we may say that the size of F (Q2 = 0) is basically set by
the confinement scale Λ, with a coefficient logarithmically
dependent on the ratio of Λ and the mass-type scale m.

C. Comparing the data with soft models

Turning to comparison with experimental data, we
note that the two most recent sets of data presented by
BaBar [31] and BELLE [32] collaborations are incon-
sistent with each other for highest Q2 values. Since our
goal now is just to illustrate the curves produced by var-
ious TMDA models, we consider these two sets of data
separately.

In QCD, the twist-2 approximation for F (Q2) in the
leading (zeroth) order in αs is

FLOpQCD(Q2) =

∫ 1

0

dx

xQ2
ϕ(x) . (VI.29)

Thus, in the asymptotic region, the value of

I(Q2) ≡ 1

fπ
Q2F (Q2)

taken from the data gives information about the shape
of the pion DA. In particular, for DAs of ϕr(x) ∼ (xx̄)r

type, one has Ir = 1 + 2/r, i.e. Ias(Q2) = 3 for the
“asymptotic” wave function ϕas(x) = 6fπxx̄.

The most recent data [31, 32] still show a Q2 variation
of I(Q2) (see Figs. 5, 6), especially in case of BaBar
data [31] which contain several points with I(Q2) val-
ues well above 3. It was argued [33, 34] that BaBar
data indicate that the pion DA is close to a flat func-
tion ϕflat(x) = fπ (a similar conclusion was made in Ref.
[35]; an earlier motivation for a flat pion DA was made
within the Nambu-Jona-Lasinio model [36]; the flat DA
was discussed, in fact, as early as in 1980 [37, 38]).

The flat DA corresponds to r = 0, and pQCD gives
Iflat =∞. As shown in Ref. [33], inclusion of transverse
momentum dependence of the pion wave function in the
light-front formula of Ref. [12] (see also [23]) eliminates
the divergence at x = 0, and one can produce a curve that
fits the BaBar data. Similar curves may be obtained
within the VDA approach described in the present paper.

In Fig. 5, we compare BaBar data with model curves
corresponding to flat DA ϕ(x) = fπ and two types of
transverse momentum distributions. First, we take the
Gaussian model of Eq. (VI.18). For large Q2, it gives
(for a flat distribution)

F flat
G (Q2) =

fπ
Q2

[
ln
Q2

Λ2
− 1 + γE +

Λ2

Q2
+ . . .

]
. (VI.30)

The logarithmic divergence of the pQCD formula con-
verts here into a logarithmic increase of the Q2F (Q2)
combination.

A curve closely following the data is obtained for a
value of Λ2 = 0.35 GeV2 which is larger than the stan-
dard estimate δ2 = 0.2 GeV2 [39] for the matrix element

I

Q2 (GeV2)
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4
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FIG. 5. BaBar data compared to model curves described in
the text.

of the ψ̄γ5γαD
2ψ operator. However, the higher-order

pQCD corrections are known [40] to shrink the z⊥ width
of the IDA ϕ(x, z⊥), effectively increasing the observed
Λ2 compared to the primordial value of Λ2. One should
also take into account the correction due to the 3-body
TMDA corresponding to ψ̄Gψ operator generated by the
insertion of the Fock-Schwinger field. Its magnitude is
governed by the same scale Λ2 that appears in the ψ̄D2ψ
operator. We plan to include this term in future studies.
Our goal now is just to show that the VDA approach
results in curves that are able to easily fit the data over
a wide range of Q2 values.

For illustration, we also take the non-Gaussian m = 0
model of Eq. (VI.24), to check what happens in case of
unrealistically slow ∼ 1/z2

⊥ decrease for large z⊥. Still, if
we take a larger value of Λ2 = 0.6 GeV2, this model pro-
duces practically the same curve as the Λ2 = 0.35 GeV2

Gaussian model. The explanation is that in this case we
have

F flat
m=0(Q2) =

fπ
Q2

[
ln
Q2

Λ2
− 1 + 2γE +

Λ2

Q2
+ . . .

]
(VI.31)

for large Q2, which, compared to Eq. (VI.30), amounts
to adding the eγE ≈ 1.8 factor in the argument of
ln(Q2/Λ2).

Data from BELLE [32] give lower values for I, sug-
gesting a non-flat DA. In Fig. 6, we show the curves
corresponding to ϕ(x) ∼ fπ(xx̄)0.4 DA. If we take the
Gaussian model (VI.18), a good eye-ball fit to data is
produced if we take Λ2 = 0.3 GeV2. Practically the same
curve is obtained in the non-Gaussianm = 0 model of Eq.
(VI.24) for Λ2 = 0.4 GeV2. Again, a VDA-based analy-
sis of the higher-order Sudakov effects [40] is needed to
extract the value of Λ in the primordial TMDA. Note
also that the curve is still well below the pQCD value
I0.4 = 4.5 for this DA.
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FIG. 6. BELLE data compared to model curves described in
the text.

VII. MODELING HARD TAIL

A. Vertex models

1. Hard vertex and two propagators

The simplest explicit example of a VDA-like object
based on Feynman diagrams is given by a toy model in
which the matrix element of the bilocal operator is given
by a graph consisting of two perturbative propagators
Dc(z1,m) and Dc(z − z1,m) (m being the relevant mass)
joined at the point z1 in which the external momentum
p enters (see Fig. 7). To derive the relevant VDA, let us

z

0

z1
p

FIG. 7. Modeling VDA by a local current source.

use the momentum representation. Then we have

χ(k, p) =
1

(k2 −m2)[(p− k)2 −m2]
(VII.1)

≡
∫ ∞

0

dλ

∫ 1

0

dxF (x, λ) eiλx̄k
2+iλx(k−p)2−iλm2−ελ ,

which gives the relation

eiλx
2p2F2(x, λ) = λeiλxp

2−iλm2

. (VII.2)

Using F (x, λ) = Φ(x, 1/λ), we find the VDA for this case

Φ(x, σ) =
1

σ
ei(xx̄p

2−m2)/σ , (VII.3)

which yields the following result

Ψ(x, k⊥) =
1

π

1

k2
⊥ +m2 − xx̄p2

(VII.4)

for the TMDA. In the large transverse momentum re-
gion, it has a “hard” power-like ∼ 1/k2

⊥ behavior. In the
impact parameter space, we have

ϕ(x, z⊥) = 2K0(mz⊥) ,

a function that has a logarithmic singularity for z⊥ = 0.
This feature explains why, formally integrating Ψ(x, k⊥)
over d2k⊥ to produce DA, one faces in this case a loga-
rithmic divergence.

2. Soft vertex and propagators

Instead of a point current, we can use a soft vertex, i.e.
consider a model (see Fig. 8a)

χ2(k, p) =
χ0(k, p)

k2(p− k)2
, (VII.5)

where, for simplicity, we took massless propagators.
Also, we will take p2 = 0 in this model. To proceed,
we write the soft vertex in the VDA representation as

χ0(k, p) =

∫ ∞
0

dα

∫ 1

0

dy F0(y, α) eiα(k−yp)2−εα .

(VII.6)

�0(p, k) �0(p, k)
p � k p p

k k

a) b)

FIG. 8. Attaching propagators to a soft vertex.

a. One perturbative propagator. Consider first the
case when just one propagator is added to the soft vertex
(see Fig. 8b),

χ1(k, p) = −χ0(k, p)

k2
. (VII.7)

Then

χ1(k, p) = i

∫ 1

0

dy

∫ ∞
0

dα

∫ ∞
0

dα1

× F0(y, α) eiα(k−yp)2+iα1k
2

= i

∫ 1

0

dy

∫ ∞
0

λdλ

∫ 1

0

dβeiλ(k−βyp)2F0(y, βλ) ,

(VII.8)
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which gives

F1(x, α) = iα

∫ 1

0

dy

∫ 1

0

dβ δ(x− βy)F0(y, βα)

(VII.9)

or

F1(x, α) = iα

∫ 1

x

dy

y
F0(y, αx/y) . (VII.10)

For the TMDA we have

ψ1(x, k2
⊥) = − ∂

∂k2
⊥

∫ 1

x

dy

y
ψ0(y, yk2

⊥/x) . (VII.11)

To illustrate the impact of adding a perturbative leg,
let us take the simplest model when the soft distribu-
tion has no x-dependence (i.e. is “flat”), ψ0(y, k2

⊥) =
ψF0 (y, k2

⊥) ≡ ψ0(k2
⊥). Despite the flatness of the soft dis-

tribution, we obtain a function

ψF1 (x, k2
⊥) =

ψ0(k2
⊥)− ψ0(k2

⊥/x)

k2
⊥

(VII.12)

with a nontrivial x-profile. For large k2
⊥, and a fast-

decreasing soft function ψ0(k2
⊥), one can use a naive ap-

proximation ψF1 (x, k2
⊥) ≈ ψ0(k2

⊥)/k2
⊥ for some range of

x-values that are not very close to 1. But eventually
ψF1 (x, k2

⊥) vanishes for x = 1, i.e. the parton correspond-
ing to the “hard” 1/k2 propagator cannot carry the whole
momentum of the hadron, even though the soft vertex al-
lowed this, and the purely soft (p − k) parton still can
carry the x̄ = 1 fraction.
b. Two perturbative propagators. Switching now to

the soft vertex model with two perturbative propagators
attached (VII.5), we obtain

F1(x, α) =− α2

∫ 1

0

dy

∫ 1

0

dβ

∫ 1−β

0

dβ2 F0(y, βα)

× δ(x− (β2 + βy))

=− α2

∫ 1

0

dy

∫ V0(x,y)

0

F0(y, βα)dβ , (VII.13)

where

V0(x, y) =
x

y
θ(x < y) +

x̄

ȳ
θ(x > y) . (VII.14)

One may recognize in this function a part of the ERBL
evolution kernel [4, 8]; we will turn to this point later.
For TMDA in this case we have

ψ2(x, k2
⊥) =

(
∂

∂k2
⊥

)2 ∫ 1

0

dy

∫ V0(x,y)

0

dβ ψ0(y, k2
⊥/β)

=− 1

k2
⊥

∂

∂k2
⊥

∫ 1

0

dy V0(x, y)ψ0(y, k2
⊥/V0(x, y)) .

(VII.15)

For illustration, taking again a flat model ψ0(y, k2
⊥) =

ψ0(k2
⊥), we obtain

ψF2 (x, k2
⊥) =

ψ0(k2
⊥)− xψ0(k2

⊥/x)− x̄ψ0(k2
⊥/x̄)

k4
⊥

.

(VII.16)

Thus, for large k2
⊥ and a fast-decreasing soft function

ψ0(k2
⊥), one can use a naive approximation ψF2 (x, k2

⊥) ≈
ψ0(k2

⊥)/k4
⊥ for some range of x-values that are not very

close to 0 or 1. However, for non-zero k2
⊥, the function

ψF1 (x, k2
⊥) vanishes both for x = 0 and x = 1, i.e. neither

parton can carry the whole momentum of the hadron.
For small k2

⊥, we have

ψF2 (x, k2
⊥ → 0) = − 1

k2
⊥
ψ
′

0(k2
⊥) + . . . , (VII.17)

i.e., the function ψF2 (x, k2
⊥) behaves like ψ

′

0(0)/k2
⊥ for

small k2
⊥, showing no dependence on x except for nar-

row regions of x close to 0 or 1.

3. Equations of motion

A situation, when one χ function differs from another
one by a perturbative propagator is encountered when
one considers equations of motion. In particular, we have
∂2φ = gχφ in the case of gφ2χ interaction of quarks φ
with gluons χ. This imposes a relation

∂2〈p|φ(0)φ(z)|0〉 = 〈p|φ(0)gχ(z)φ(z)|0〉 (VII.18)

between 2-body and 3-body matrix elements, which
should be also satisfied by their VDA representations. In
the momentum representation, the equation of motion
imposes the restriction

−k2χ(k, p) = χ1(k, p) , (VII.19)

connecting the 2-body amplitude χ(k, p) and the reduced
3-body amplitude χ1(k, p) in which the gluon field χ is
located at the same point with one of the φ fields. Hence,
χ(k, p) = −χ1(k, p)/k2, and we can use Eq. (VII.10) to
write a relation

Φ(x, σ) =
i

σ

∫ 1

x

dy

y
Φ1(y, σ y/x) (VII.20)

between the 2-body VDA Φ(x, σ) corresponding to
χ(k, p) and the reduced 3-body VDA Φ1(x, σ) corre-
sponding to χ1(k, p).

However, for the purposes of VDA model-building,
Eq. (VII.20) is not convenient since the basic 2-
body VDA Φ(x, σ) looks like generated from the 3-
body VDA Φ1(x, σ) describing the matrix element
〈p|φ(z1)gχ(z3)φ(z2)|0〉 in the z3 → z1 limit.

We would rather prefer to start with some model form
for the 2-body VDA Φ(x, σ) and then treat Eq. (VII.20)
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as a constraint on the full 3-body VDA. Thus, we need
an inverse relation in which Φ1(x, σ) is written in terms
of Φ(x, σ). To this end, let us apply ∂2 to the VDA
parametrization (II.19) of the 2-body matrix element:

∂2〈p|φ(0)φ(z)|0〉 =

∫ ∞
0

dσ

∫ 1

0

dxΦ(x, σ) eix(pz)−iσz2/4

×
[
x(pz)σ − σ2z2/4− 2iσ

]
(VII.21)

(we take p2 = 0 and z2 → z2 − iε is implied here and
below). Integrating the first term by parts over x as-
suming Φ(0, σ) = Φ(1, σ) = 0, while the second one over
σ assuming σ2Φ(x, σ)e−εσ|σ→∞ = 0, σ2Φ(x, σ)|σ=0 = 0,
we obtain

∂2〈p|φ(0)φ(z)|0〉 =i

∫ ∞
0

dσ

∫ 1

0

dx eix(pz)−iσz2/4

×
[
x
∂

∂x
+ σ

∂

∂σ

]
σΦ(x, σ) (VII.22)

Parametrizing 〈p|φ(0)gχ(z)φ(z)|0〉 by a VDA Φ1(x, σ)
gives

Φ1(x, σ) = i

[
x
∂

∂x
+ σ

∂

∂σ

]
σΦ(x, σ) . (VII.23)

As a check, using Eq. (VII.23) in the right-hand side of
Eq. (VII.20 ), one can verify that the outcome is indeed
given by Φ1(x, σ). Now, Eq. (VII.23) can be converted
into a relation

ψ1(x, k2
⊥) = k2

⊥ψ(x, k2
⊥)− x ∂

∂x

∫ ∞
k2⊥

dκ2 ψ(x, κ2)

(VII.24)

between TMDAs. As one might expect, the action of ∂2

on the 2-body function has resulted in a term containing
the k2

⊥ factor. For the distribution amplitude

ψ1(x) ≡
∫ ∞

0

dk2
⊥ψ1(x, k2

⊥) (VII.25)

this gives

ψ1(x) =

[
1− x ∂

∂x

]
ϕ(1)(x) , (VII.26)

where ϕ(1)(x) is the k2
⊥ moment of the TMDA ψ(x, k2

⊥),

ϕ(1)(x) ≡
∫ ∞

0

dk2
⊥ k

2
⊥ψ(x, k2

⊥) . (VII.27)

Note, that ψ1(x) is not necessarily x ↔ x̄ symmetric
even if ϕ1(x) is. This is natural, since the fraction x in
ψ1(x, σ) corresponds to a “glued” field gχ(z1)φ(z1), while
the fraction x̄ is associated with a single field φ(z2). To
see the implications of the x↔ x̄ symmetry on the VDA
level, we apply the equation of motion to the second field
in the matrix element 〈p|φ(z1)φ(z2)|0〉, which gives

Φ1(x̄, σ) = i

[
x̄
∂

∂x̄
+ σ

∂

∂σ

]
σΦ(x, σ) . (VII.28)

Since Φ(x, σ) = Φ(x̄, σ), this equation is consistent with
Eq. (VII.23). Still, Φ1(x, σ) 6= Φ1(x̄, σ) in general.

B. Generating hard tail from an initially soft VDA

1. Scalar fields

Our next model (see Fig. 9) involves two currents car-
rying momenta xp and (1− x)p ≡ x̄p at locations z and
0, respectively, connected by a perturbative propagator
Dc(z,m), and weighted with a function ϕ(x). Then we

xp

x̄p0

z

'(x)

FIG. 9. Modeling VDA by a two-current state.

have

t1(z, p) = g2

∫ 1

0

dx eix(pz)Dc(z,m)ϕ(x) (VII.29)

where g is the coupling constant. Using

Dc(z,m) =
1

(4π)2

∫ ∞
0

e−iσz
2/4−im2/σdσ (VII.30)

we obtain

Φ(x, σ) =
ϕ(x)

(4π)2
e−im

2/σ . (VII.31)

However, the integral for TMDA,

Ψ(x, k⊥) =
ϕ(x)

(4π)2

∫ ∞
0

dσ

σ
e−i(k

2
⊥+m2)/σ , (VII.32)

in this case diverges at large σ. So, let us take a nontrivial
primordial VDA Φ0(x, σ0) instead of the above model
corresponding to ϕ(x)δ(σ0). Then

t1(z, p) =g2Dc(z,m)

∫ 1

0

dx eix(pz)

×
∫ ∞

0

dσ0e
−iσ0z

2/4Φ0(x, σ0) (VII.33)

and

Φ1(x, σ) =
g2

(4π)2
σ

∫ 1

0

dβe−im
2/β̄σΦ0(x, βσ) , (VII.34)

which gives

ψ1(x, k2
⊥) =

g2

(4π)2

∫ ∞
k2⊥

dκ2

∫ 1

0

dβ ψ0(x, β(κ2 +m2))

(VII.35)
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or

ψ1(x, k2
⊥) =

g2

(4π)2

∫ ∞
k2⊥

dκ2

κ2 +m2

∫ κ2+m2

0

dκ′
2
ψ0(x, κ′

2
) .

(VII.36)

The next step is to take a model with two perturbative
propagators attached. In other words, consider a model
with vertices at locations z1 and z2 connected by a per-
turbative propagator Dc(z1−z2,m) and two perturbative
propagators connecting these points with points 0 and z
(see Fig. 10).

p
z

0 z1

z2

yp

ȳp

FIG. 10. Getting hard tail from a soft initial distribution.

Then we can use the formula (VII.15)

ψ2(x, k2
⊥) =− 1

k2
⊥ +m2

∂

∂k2
⊥

∫ 1

0

dy

× ψ1(y, (k2
⊥ +m2)/V0(x, y)) (VII.37)

with ψ1 given by Eq. (VII.35). This gives

ψ2(x, k⊥) =
g2

16π2

1

(k2
⊥ +m2)2

∫ 1

0

dy V0(x, y)

×
[∫ (k2⊥+m2)/V0(x,y)

0

ψ0(y, k′⊥
2
) dk′⊥

2

]
. (VII.38)

The part in square brackets may be written as[
· · ·
]

= ϕ0(y)−
∫ ∞

(k2⊥+m2)/V0(x,y)

ψ0(y, k′⊥
2
) dk′⊥

2
,

(VII.39)

where ϕ0(y) is the primordial distribution Ψ0(y, k′⊥) inte-
grated over all the transverse momentum plane. Hence,
for large k⊥, the leading 1/k4

⊥ term is determined by the
DA ϕ0(y) only. A particular shape of the k⊥-dependence
of the soft TMDA Ψ0(y, k⊥) affects only the sublead-
ing ∼ [V ⊗ ψ0](x, k2

⊥)/k2
⊥ term. The form of k⊥ depen-

dence of Ψ0(y, k⊥) is also essential for the behavior of
ΨB0(x, k⊥) term at small k⊥. In particular, we have[

· · ·
]
k⊥=0

= ψ0(y, k2
⊥ = 0) , (VII.40)

which gives, e.g., ϕ0(y)/Λ2 in the Gaussian model (VI.2).

2. Spin-1/2 quarks and scalar gluons

In case of spin-1/2 quarks interacting via a
(pseudo)scalar or vector gluon field (in Feynman gauge),
the factor coming from k and p− k legs is given by

Tr{γα/k/p(/p− /k)}
k2(p− k)2

. (VII.41)

Using /p = (/p− /k) + /k, we arrive at

Tr{γα/k}
k2

+
Tr{γα(/p− /k)}

(p− k)2
. (VII.42)

Representing /k = x/p+(/k−x/p) and noticing that (/k−x/p)
results in /z in coordinate representation, we may treat
the equation above as(

x

k2
+

1− x
(p− k)2

)
Tr{γα/p}+ “O(/z)” . (VII.43)

Now, for the first term we need to find ΦB0
1 (x, 1/α) sat-

isfying∫ ∞
0

dα

∫ 1

0

dx
1

x
ΦB0

1 (x, 1/α) eiα(k−xp)2 (VII.44)

=
π2g2

k2

∫ ∞
0

dα2

α2

∫ 1

0

dy

∫ 1

0

dξΦ0(y, ξ/α2) eiα2(k−yp)2 .

This gives (switching 1/α = σ)

ΦB0
1 (x, σ) =αg

∫ 1

x

dy

∫ 1

0

dξΦ0

(
y,

ξσ

V1(x, y)

)
,

(VII.45)

where V1(x, y) = (x/y) θ(x ≤ y) and αg = g2/(16π2).
The second term in Eq. (VII.43) gives a similar contri-
bution, with V1(x, y) → V2(x, y) ≡ (x̄/ȳ)θ(y ≤ x). As a
result, the total contribution for hard TMDA generated
in case of spinor quarks is given by

ΨB0

1/2(x, k⊥) =
αg
π

∫ 1

0

dy

∫ 1

0

dξ ψ0

(
y,

ξk2
⊥

V0(x, y)

)
.

(VII.46)

It differs from the scalar expression (VII.38) just by the
absence of the overall 1/k2

⊥ factor. One may also write

ΨB0

1/2(x, k⊥) =
αg
πk2
⊥

∫ 1

0

dy V0(x, y)

×
∫ k2⊥/V0(x,y)

0

ψ0(y, k′⊥
2
) dk′⊥

2
(VII.47)

which corresponds to 1/(k2
⊥+m2) dependence in the cor-

rection (VII.38) to the TMDA. It produces a logarithmi-
cally divergent term for DA, corresponding to a logarith-
mic evolution of DA’s in such models.
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For a soft TMDA ψ0(x, k2
⊥), the integral over all k2

⊥
produces the initial distribution amplitude ϕ0(x), so we
have

ΨB0

1/2(x, k⊥) =
αg
πk2
⊥

∫ 1

0

dy V0(x, y) [ϕ0(y)− δϕ]

(VII.48)

where the correction term

δϕ =

∫ ∞
k2⊥/V0(x,y)

ψ0(y, k′⊥
2
) dk′⊥

2
, (VII.49)

quickly vanishes for large k2
⊥. For an illustra-

tion, take a factorized Ansatz for the initial TMDA,
ψ0(x, k2

⊥) = ϕ0(x)K(k2
⊥). Then we have

δϕ = ϕ0(y)

∫ ∞
k2⊥/V0(x,y)

K(k′⊥
2
) dk′⊥

2
, (VII.50)

which gives

δϕ = ϕ0(y) e−k
2
⊥/V0(x,y)Λ2

(VII.51)

for a Gaussian form K(k2
⊥) = e−k

2
⊥/Λ

2

/Λ2, and

δϕ = ϕ0(y)
2k⊥K1(2k⊥/Λ

√
V0(x, y))

Λ
√
V0(x, y)

(VII.52)

for the m = 0 model when K(k2
⊥) = 2K0(2k⊥/Λ)/Λ2.

3. Evolution in the impact parameter space

For initially collinear quarks, we have ϕconv(x, z⊥) ∼
K0(mz⊥) δϕ(x) in the impact parameter space. The log-
arithmic divergence for z⊥ = 0 of this outcome corre-
sponds to evolution of the DA. In the B0 model, we have
(switching to ϕ(x, z⊥) → ϕ(x, z2

⊥) in our notations be-
low)

ϕB0

Y (x, z2
⊥) =αg

∫ 1

0

dy V0(x, y)

×
∫ ∞

1

dν

ν
ϕ0

(
y, ν z2

⊥ V0(x, y)
)
. (VII.53)

Substituting formally ϕ0(y, z2
⊥) by ϕ0(y) in the z2

⊥ → 0
limit, we get a logarithmically divergent integral over ν.
However, for a function ϕ0(y, z2

⊥) that rapidly decreases
when z2

⊥ & 1/Λ2, one gets ln(z2
⊥Λ2) as a factor accompa-

nying the convolution of V0(x, y) and ϕ0(y). Hence, the
pion size cut-off contained in the primordial distribution
provides the scale in log(z2

⊥), and we may keep the hard
quark propagators massless.

For scalar gluons, this cut-off also results in a finite
value of ΨB0

Y in the formal k⊥ → 0 limit:

ΨB0

Y (x, k⊥ = 0) =αg

∫ 1

0

dyΨ0 (y, k⊥ = 0) . (VII.54)

Thus, the Ψconv
Y (x, k⊥) ∼ 1/k2

⊥ singularity of the
“collinear model” Ψ0(y, k⊥) = ϕ0(y) δ(k2

⊥)/π converts
into a constant ∼ 1/Λ2 in the Gaussian model. Note
also that the overall factor in Eq. (VII.54) then contains
the x-independent integral of ϕ0(y), i.e. fπ, rather than
the convolution δϕ(x) as in Eq. (VII.38).

It should be emphasized that the VDA approach pro-
vides an unambiguous prescription of generating hard-
tail terms like ΨB0(x, k⊥) from a soft primordial distri-
bution Ψ0(y, k⊥).

4. Particular choices of the soft B0

Assuming a factorized Ansatz for the initial IDA
ϕ0(y, z2

⊥) = ϕ0(y)Z0(z2
⊥Λ2), we have

ϕB0

Y (x, z2
⊥) =αg

∫ 1

0

dy V0(x, y)ϕ0(y)Z1[ζ2 V0(x, y)]

(VII.55)

where

Z1(ζ2) ≡
∫ ∞

1

dν

ν
Z0(νζ2) , (VII.56)

and we can study the sensitivity of ϕB0(x, z2
⊥) to a par-

ticular choice of the soft factor Z0(ζ2). In particular, in

a Gaussian model, Zexp
0 (ζ2) = e−ζ

2

, we have

Zexp
1 (ζ2) = Γ[0, ζ2] = − ln(ζ2)− γE +O(ζ2) , (VII.57)

where we have explicitly displayed the small-ζ2 behavior
to extract the ∼ ln z2

⊥ evolution term, which gives

ϕB0
exp(x, z2

⊥) = αg

[
ln

(
e−γE

z2
⊥Λ2

exp

)∫ 1

0

dy V0(x, y)ϕ0(y)

+

∫ 1

0

dy V0(x, y) ln(V0(x, y))ϕ0(y)

]
+O(z2

⊥Λ2
exp) .

(VII.58)

In Fig. 11 we show the z⊥-dependence of the the function
ϕB0

Y (x, z2
⊥) for particular value x = 1/2. For comparison,

we also show the original soft function ϕ0(x = 1/2, z2
⊥)

and the purely logarithmic part of ϕB0

Y (x = 1/2, z2
⊥)

given by (ln 2) ln(4/z2
⊥Λ2).

In Fig. 12, assuming the value αg = 0.2 and using the
same model, we illustrate the effect of adding the hard
part to the initially soft TMDA.

Similarly, for a slow-decrease Ansatz
Zslow(ζ2) = 1/(1 + ζ2), we have

Zslow
1 (ζ2) = ln(1/ζ2 + 1) = − ln ζ2 +O(ζ2) , (VII.59)

so that the major change for small z2
⊥ is the absence of

the γE term, which amounts to a change of the evolution
scale. The evolution terms of the two Ansätze coincide
when Λ2

slow = eγEΛ2
exp.
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FIG. 11. z2
⊥-dependence of the hard part (red online)

for the Gaussian model with flat initial DA ϕ0(x, z⊥) =
exp[−z2

⊥Λ2/4] (black online), in comparison with purely log-
arithmic part of the hard part (red online).
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FIG. 12. Effect of adding the hard part to initially soft TMDA
ϕ0(x, z⊥) = exp[−z2

⊥Λ2/4].

In fact, the approximate ln z2
⊥Λ2 form for the evolu-

tion factor is inconvenient, because it changes sign for
z⊥ = 1/Λ and tends to infinity for large z2

⊥, while the
original expressions for Z1(ζ2) are positive-definite and
vanish in the ζ → ∞ limit. To avoid this artifact of the
small-ζ2 expansion for Z1(ζ2), one may represent, e.g.,

Z1[ζ2V0(x, y)] = Z1(ζ2) + [Z1(ζ2V0(x, y))− Z1(ζ2)] .

Then Z1(ζ2) gives a positive-definite evolution factor
with a correct − ln(ζ2) behavior for small ζ2 and van-
ishes for large ζ2. The remainder is finite for ζ2 = 0 and
also vanishes for large ζ2. Since the logarithmic ln(ζ2)
part of all Z1(ζ2)’s is universal, while the rest depends
on the shape of Z0(ζ2), it make sense to declare one of
Z1(ζ2)’s to be a standard one, i.e. to represent

Z1[ζ2V0(x, y)] = Zstand
1 (ζ2)+[Z1(ζ2V0(x, y))−Zstand

1 (ζ2)] ,

thus making the evolution part universal. Possible

choices for Zstand
1 (ζ2) are Zexp

1 (ζ2) = Γ[0, ζ2], and
Zslow

1 (ζ2) = ln[1/ζ2 + 1].

5. Ultraviolet-related addition to hard tail

Since the axial current is conserved, the full evolution
kernel for the pion DA should have a plus-prescription
form with respect to x: V0(x, y) → [V0(x, y)]+. In fact,
calculating the γ∗γ → π0 amplitude at αg order, we
should include the one-loop vertex and self-energy cor-
rections to the hard quark propagator Sc(z). They pro-
duce, in particular, a factor of ln(z2) multiplying Sc(z).
We may treat it as a multiplicative modification of VDA
convoluted with the original propagator Sc(z). This cor-
responds to adding the ∼ αg ln(z2

⊥)ϕ0(x, z2
⊥) term to

ϕB0

Y (x, z2
⊥) as another O(αg) correction to IDA.

Since this term comes from an ultraviolet divergent
contribution, we need to decide which UV renormaliza-
tion prescription to use. While the ∼ ln(z2

⊥) behavior
for small z⊥ is not affected by the choice, the large z⊥
behavior depends on it and may be adjusted. It is con-
venient to take the Bessel function form K0(z⊥µ). Then
the correction vanishes for large z⊥, and never changes
sign. Furthermore, its Fourier transform has a simple
1/(k2

⊥+µ2) form that is finite for k⊥ = 0. Incorporating
these considerations we fix the UV-related correction for
IDA to be given by

ϕB0,UV
Y (x, z2

⊥) =− αgK0(z⊥µ)ϕ0(x, z2
⊥) . (VII.60)

For TMDA, this term gives

ΨB0,UV(x, k⊥;µ) =− αg
2π

∫
d2k′⊥

Ψ0(x, k′⊥)

(k⊥ − k′⊥)2 + µ2
.

(VII.61)

In actual calculations, it is convenient to use the formula

ψB0,UV(x, k2
⊥;µ) = −αg

2

∫ 1

0

dξ

1− ξ
× ψ0

(
x, ξ(k2

⊥ + µ2/(1− ξ))
)
. (VII.62)

The leading large-k⊥ term then comes from the ξ ∼ 1/k2
⊥

region of integration.
Adding (VII.53) and self-energy part (with µ = Λ/2

and Bessel form for log singularity) gives

δϕY (x, z2
⊥) = αg

[∫ 1

0

dy V0(x, y)

∫ ∞
1

dν

ν
(VII.63)

× ϕ0

(
y, ν z2

⊥ V0(x, y)
)
−K0(z⊥Λ/2)ϕ0(x, z2

⊥)

]
.

In Fig. 13 we show total IDA ϕ(x, z2
⊥) = ϕ0(x, z2

⊥) +
δϕY (x, z2

⊥) taking for the soft IDA a Gaussian model for
the z⊥-dependence and flat DA ϕ0(x) = 1. One can see
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FIG. 13. z2
⊥-evolution of the IDA shape in a Gaussian model

with initially flat DA ϕ0(x, z2
⊥) = e−z2⊥/4Λ2

and αg = 0.2.

the change of the x-profile from a flat form for large z⊥
to asymptotic ∼ xx̄ for small z⊥.

If the function Ψ0(x, k′⊥) rapidly decreases with grow-

ing k′2⊥, then the leading contribution for large k2
⊥ is

obtained from the region of small k′⊥ which gives

ψB0,UV(x, k⊥;µ) =− αg
2

ϕ0(x)

k2
⊥

+ . . . (VII.64)

for large k2
⊥. In the formal k⊥ → 0 limit, we have a finite

result

ψB0,UV(x, k2
⊥ = 0;µ) =− αg

2

∫ ∞
0

ψ0(x, k′2⊥)

k′2⊥ + µ2
d(k′

2
⊥) .

(VII.65)

6. Hard tail contribution to the transition amplitude

The integral giving the transition form factor

F (Q2) =

∫ 1

0

dx

xQ2

∫
k⊥2≤xQ2

Ψ(x, k⊥)

[
1− k2

⊥
xQ2

]
d2k⊥

(VII.66)

in case of the hard exchange contribution may be written
as

FB0(Q2) =αg

∫ 1

0

dx

xQ2

∫ 1

0

dy

∫ xQ2

0

dk2
⊥

[
1− k2

⊥
xQ2

]
×
∫ 1

0

dξ ψ0

(
y,

ξk2
⊥

V0(x, y)

)
(VII.67)

or

FB0(Q2) =αg

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

(1− κ) dκ

×
∫ 1

0

dξψ0

(
y,

ξκxQ2

V0(x, y)

)
. (VII.68)

Denoting ξκ ≡ λ, we have

FB0(Q2) =αg

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dλ [ln(1/λ)− 1 + λ]

× ψ0

(
y,

λxQ2

V0(x, y)

)
. (VII.69)

For large Q2, one can separate here the terms with a
power-like behavior of ln(Q2)/Q2, 1/Q2 and Λ2/Q4 type,
and those which have (for a soft ψ0) a faster than an
inverse power decrease with the increase of Q2.

C. Hard tail in QCD

1. Yukava-type contributions

In quantum chromodynamics, working in Feynman
gauge, the only change in the box diagram and
ultraviolet-divergent terms is in the overall factor,
namely, one should take αg = CFαs/(2π) in Eq.
(VII.63), with CF being the color factor. In particu-
lar the 1/k2

⊥ hard tail generated by these “Yukawa-type”
contributions is accompanied by the

VY (x, y) =
αs
2π
CF

[
x

y
θ(x < y) +

x̄

ȳ
θ(x > y)− 1

2
δ(x− y)

]
=
αs
2π
CF [V0(x, y)]+ (VII.70)

part of the ERBL evolution kernel, with “+” denoting
the plus-prescription with respect to x:

[V0(x, y)]+ = V0(x, y)− δ(x− y)

∫ 1

0

dz V0(z, y) .

(VII.71)

For vector gluons, one should also take into account con-
tributions coming from the gauge link E(0, z;A), which
generate the remaining part of the QCD ERBL evolution
kernel.

2. Link contributions in case of collinear initial quarks

Let us start with a collinear intial state, i.e. take
Φcoll

0 (y, σ) = ϕ0(y) δ(σ). There are two possibilities:
gluon may be connected to yp (Fig. 14a) or (1 − y)p
(Fig. 14b) quark leg. Insertion into the yp leg produces
the term

tL(z, p, y) =ig2 CF e
iȳ(pz)

∫ 1

0

dt

∫
d4z1 e

iy(pz1)

× Sc(z1)/zDc(z1 − tz) (VII.72)

If the gluon is inserted into the ȳp line, we start with

tR(z, p, y) =ig2 CF

∫ 1

0

dt

∫
d4z1 e

iȳ(pz1)

× /zSc(z − z1)Dc(z1 − tz) . (VII.73)
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FIG. 14. Insertions of gluons coming out of the gauge link.

Shifting z1 → z1 + z, changing z1 → −z1, t→ 1− t and
using that Dc(z) is an even function gives

tR(z, p, y) =ig2 CF e
iȳ(pz)

∫ 1

0

dt

∫
d4z1 e

−iȳ(pz1)

× /zSc(z1)Dc(z1 − tz) . (VII.74)

Thus, these two cases are related by symmetry, and it is
sufficient to analyze just the first of them, Eq. (VII.72).
Integrating there over z1 gives

tL(z, p, y) =i
g2

16π2
CF e

iȳ(pz)

∫ 1

0

dt

∫ ∞
0

σ1
dσ1dσ2

(σ1 + σ2)3

× ei(yt(pz)σ2−σ1σ2t
2z2/4)/(σ1+σ2)

×
(
y/p/z + tσ2

z2

2

)
. (VII.75)

Switching to αi = 1/σi, introducing common
λ = α1 + α2, and then relabelling λ = 1/σ, we obtain

tL(z, p, y) = i
g2

16π2
CF e

iȳ(pz)

∫ 1

0

dt

∫ ∞
0

dσ

σ

×
∫ 1

0

dβ eiytβ(pz)e−iσt
2z2/4

(
yβ̄/p/z + tσ

z2

2

)
(VII.76)

Representing /p/z = (pz) + [/p, /z]/2 and using this re-
sult in the expression for transition amplitude we end
up with the operator ∼ εµαβνpαzβψ̄(0)γν . . . ψ(z) whose
〈p| . . . |0〉 matrix element vanishes.

The second term in Eq. (VII.76) does not contribute
to the hard tail since it lacks z2-dependence after σ-
integration. Thus, only the (pz)-part of the first term
contributes to the hard tail, which in the coordinate rep-
resentation is reflected by a logarithmic ln z2 singularity
resulting from the σ integration. As discussed earlier,
ln z2 reflects the DA evolution.

First, we are going to get rid of the integration over t
specific for the vector gluons. Its calculation is compli-

cated by the e−iσt
2z2/4 factor. Let us represent

e−iσt
2z2/4 = e−iσz

2/4 +
[
e−iσt

2z2/4 − e−iσz2/4
]
.

(VII.77)

The bracketed term here formally vanishes for z2 = 0,
which means a suppression for small z2. As a result,
it does not contain ln z2 terms and hence does not con-
tribute to the hard tail. Integrating over t in the part
corresponding to the first term, we get

t(1)(z, p, y) =γµ αg e
iȳ(pz)

∫ ∞
0

dσ

σ
e−iσz

2/4

×
∫ 1

0

dβ
β̄

β

[
eiyβ(pz) − 1

]
, (VII.78)

where αg = CFαs/(2π). This contribution generates the
evolution corresponding to the x ≤ y part of the QCD
ERBL kernel:

t(1)(z, p, y) =γµαg ln(z2)

∫ 1

0

dx eix̄(pz)V1(x, y) ,

(VII.79)

where

V1(x, y) =

∫ 1

0

dβ δ(x− y + βy)

(
β̄

β

)
+

=

(
x

y

θ(x ≤ y)

y − x

)
+

. (VII.80)

Similarly, attaching the gluon to the ȳp quark line, we
get the x ≥ y part

V2(x, y) =

∫ 1

0

dβ δ(x− y − βȳ)

(
β̄

β

)
+

=

(
x̄

ȳ

θ(x ≥ y)

x− y

)
+

(VII.81)

of the ERBL evolution kernel. Thus, in the convolution
model we have an evolution contribution

δϕ(1)(x, z2) =αg ln(z2)

∫ 1

0

dy V (x, y)ϕ0(y) , (VII.82)

with the ERBL kernel in its correct “plus prescription”
form.

3. Noncollinear initial quarks

Let us now consider the case when we have an initiall
soft distribution described by a VDA Φ0(y, σ0). Again, it
is sufficient to consider the diagram corresponding to the
gluon insertion into the yp leg. The contribution of the
ȳp diagram can be added at the end using the symmetry
considerations. .
a. Derivation of a general formula for VDA. The

result of integration over z1 has the structure similar to
that obtained in the collinear quarks case (VII.75). Keep-
ing again the ∼ (pz) term only, and representing the z2-
dependent factor as a sum of its t = 1 value and the rest
(which formally vanishes for z2 = 0, and thus does not
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contribute to the hard tail), and integrating over t in this
(“hard”) part, we get

t(h)(z, p) = g2

∫ 1

0

dy eiȳ(pz)

∫ ∞
0

dσ e−iσz
2/4

∫ 1

0

dξ

ξ̄

×
∫ 1

0

dβ

β

(
eiyβ(pz) − eiyξβ(pz)

)
Φ0(y, ξσ/β̄) . (VII.83)

In terms of VDA, we have

Φ(h)(x, σ) = αg

∫ 1

0

dy

∫ 1

0

dξ

ξ̄

∫ 1

0

dβ

β
Φ0(y, ξσ/β̄)

× [δ(x− y + yβ)− δ(x− y + yξβ)] . (VII.84)

One can see that ∫ 1

0

dxΦh(x, σ) = 0 , (VII.85)

i.e. the hard addition Φh(x, σ) does not change the x-
integral of Φ(x, σ).

b. Structure of hard TMDA. The integrand in Eq.
(VII.84) contains 1/β and 1/ξ̄ factors resulting in poten-
tial singularities for β = 0 and ξ = 1. However, the two
δ-functions in Eq. (VII.84) coincide in these limits, and
as a result there are no divergencies. Still, the most nat-
ural way to proceed with integrations in Eq. (VII.84) is
to use the δ-functions to eliminate the integral over β.
Then the common 1/β factor in both terms results in
contributions proportional to the factor 1/(y − x) singu-
lar for y = x. Of course, the singularity cancels because
it is accompanied by a difference of two VDAs coincid-
ing for y = x. However, each term produces a divergent
contribution. To be able to keep these terms separately,
we choose to regularize the original 1/β singularity. To
this end, we impose a cut-off for the lower limit of the β-
integral at some finite ε > 0 value. Converting the result
of β-integration into an expression for TMDA, we obtain

ψh(x,k2
⊥) = g2

∫ 1

0

dy

y − x

∫ 1

0

dξ

ξ̄

{
θ
(
y(1− ε) ≥ x

)
×
[
ψ0

(
y,
ξk2
⊥

x/y

)
− ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
θ
(
ξ̄ ≤ x

y

)]
− θ
(
y(1− ε) ≤ x

)
ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
× θ
(

1− x

y
≤ ξ ≤ (1− x

y
)/ε
)}

. (VII.86)

Consider first the y ≤ x/(1− ε) part:

ψh
<(x, k2

⊥) =− αg
∫ x/(1−ε)

x

dy

y − x

×
∫ 1

0

dξ

ξ̄
ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
× θ
(

1− x

y
≤ ξ ≤ 1

ε
(1− x

y
)
)
. (VII.87)

Note that the interval of integration over y shrinks to
zero when ε → 0. Nevertheless, the integral itself has a
finite value in this limit.

Since the region of integration is specified by
0 ≤ 1− x/y ≤ ε, we write 1− x/y = εz with a new vari-
able z satisfying 0 ≤ z ≤ 1. Furthermore, the limits on
ξ correspond to ξ = (1− x/y) ζ with 1 ≤ ζ ≤ 1/ε. Thus,
we denote ξ = νz with ε ≤ ν ≤ 1 to get

ψh
<

(
x, k2
⊥
)

=− αg
∫ 1

0

dz

1− εz

∫ 1

ε

dν

1− zν

× ψ0

(
x

1− εz ,
ν2

ν − εzk
2
⊥

)
. (VII.88)

Taking the ε→ 0 limit and introducing τ = νz, we obtain

ψh
<(x, k2

⊥) = αg

∫ 1

0

dτ
ln τ

1− τ ψ0

(
x, τk2

⊥
)
. (VII.89)

There is no change in the longitudinal momentum frac-
tion x in this term, i.e. this contribution may be written
as a δ(y − x) term under the y-integral. Note also that
this contribution is finite for k⊥ = 0 if the initial TMDA
ψ(x, k2

⊥) is finite for k⊥ = 0. Namely,

ψh
<(x, k2

⊥ = 0) =αg

∫ 1

0

dτ
ln τ

1− τ ψ0

(
x, k2
⊥ = 0

)
= −αg

π2

6
ψ0

(
x, k2
⊥ = 0

)
. (VII.90)

Sudakov logarithm. In the opposite limit of large
k2
⊥, the τ -integral for ψh

<(x, k2
⊥) is dominated by small

values τ ∼ Λ2/k2
⊥, where Λ2 is the scale characterizing

the decrease of TMDA with k2
⊥. Approximating the τ -

integral as

∫ Λ2/k2⊥

0

dτ ln τ ψ0

(
x, τk2

⊥
)

=
1

k2
⊥

∫ Λ2

0

dκ2 ln
κ2

k2
⊥
ψ0

(
x, κ2

)
= − 1

k2
⊥

ln

(
k2
⊥

Λ2

)∫ ∞
0

dκ2 ψ0

(
x, κ2

)
+ . . .

= − 1

k2
⊥
ϕ0(x) ln

(
k2
⊥

Λ2

)
+ . . . . (VII.91)

we see that the term ψh
<(x, k2

⊥) behaves like −(ln k2
⊥)/k2

⊥,
i.e., has an extra ln k2

⊥ on top of expected 1/k2
⊥ hard tail

factor. After integration over k2
⊥ till xQ2 in the transi-

tion amplitude, such a term produces a negative doubly-
logarithmic contribution ∼ − ln2(xQ2/Λ2), i.e. a Su-
dakov logarithm. However, it is known that there should
be no such logarithms in the total result for transition
form factor.
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So, let us consider the y(1− ε) ≥ x part:

ψh
>(x, k2

⊥) = αg

∫ 1

x/(1−ε)

dy

y − x

∫ 1

0

dξ

ξ̄

[
ψ0

(
y,
ξk2
⊥

x/y

)
−ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
θ
(
ξ̄ ≤ x

y

)]
. (VII.92)

Since the two terms in the square brackets coincide when
y = x, the integral over y converges even if we take ε = 0.
Another potential divergence is due to the 1/ξ̄ factor in
the ξ-integral. Again, the two terms in the square brack-
ets coincide when ξ = 1, thus we can safely put ε = 0.

In particular, for small k2
⊥, assuming that ψ(y, k2

⊥ = 0)
is finite, we get

ψh
>(x, k2

⊥ = 0) = αg

∫ 1

x

dy

y − x ln
(y
x

)
ψ0

(
y, k2
⊥ = 0

)
.

(VII.93)

However, we also need to see that the y(1−ε) ≥ x part
contains a term that cancels the Sudakov contribution
that we obtained for the y(1− ε) ≥ x part.

For large k2
⊥, the leading ∼ 1/k2

⊥ behavior is obtained
from integration over the regions where the second argu-
ment of ψ0 vanishes, i.e. ξ → 0 for both terms in Eq.
(VII.93). In this limit, the singularity of the integrand
for ξ = 1 is irrelevant, so to avoid formal complications
related to this singularity, we write 1/ξ̄ = 1 + ξ/ξ̄ and
observe that the ξ/ξ̄ factor produces a suppression in the
ξ → 0 region resulting in extra powers of 1/k2

⊥ for large
k2
⊥, i.e. the terms accompanied by it do not contribute

to the leading behavior. Thus we have

ψh
>(x, k2

⊥) = αg

∫ 1

x/(1−ε)

dy

y − x

∫ 1

0

dξ

[
ψ0

(
y,
ξk2
⊥

x/y

)
−ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
θ
(
ξ ≥ 1− x

y

)]
+ . . . . (VII.94)

We keep finite ε here because we want again to treat
separately the two terms of this expression. The first
term looks similar to what we had in the nongauge case,
and can be written as

ψh,1
> (x, k2

⊥) =
αg
k2
⊥

∫ 1

x/(1−ε)

dy

y − x V0(x, y)

×
∫ k2⊥/V0(x,y)

0

dκ2 ψ0

(
y, κ2

)
. (VII.95)

At large k2
⊥, this term gives

ψh,1
> (x, k2

⊥) =
αg
k2
⊥

∫ 1

x/(1−ε)

dy

y − x V0(x, y)ϕ0 (y) + . . . ,

(VII.96)

involving the expected part of the ERBL evolution ker-
nel. The y-integral is singular at the lower limit produc-

ing ln(1/ε) term, namely

ψh,1
> (x, k2

⊥) =
αg
k2
⊥

ln
1

ε

∫ k2⊥

0

dκ2 ψ0

(
y, κ2

)
+ regular part . (VII.97)

This term should be compensated by the second term in
Eq. (VII.94). Introducing t ≡ (1 − x/y), the latter may
be written as

ψh,2
> (x, k2

⊥) = −αg
∫ 1−x

ε

dt

t(1− t)

×
∫ 1

t

dξ ψ0

(
x

1− t ,
ξk2
⊥

1− t/ξ

)
. (VII.98)

Its singular part comes from the t → 0 region of inte-
gration of the t-integral. Getting it, we can take t = 0
in the ξ-integral. The resulting singular part is evidently
opposite to that in Eq. (VII.97). To get a more accurate
estimate, let us neglect t only when it stays in 1− t com-
bination, but keep it in other places. Namely, consider

ψh,2,approx
> (x, k2

⊥) = −αg
∫ 1−x

ε

dt

t

×
∫ 1

t

dξ ψ0

(
x,

ξk2
⊥

1− t/ξ

)
. (VII.99)

Representing ξ = t(1 + u) we can write

ψh,2,approx
> (x, k2

⊥) = −αg
∫ 1−x

ε

dt

∫ 1/t−1

0

du

× ψ0

(
x , t k2

⊥
(1 + u)2

u

)
. (VII.100)

Note that (1+u)2/u is always larger than 4, which means
the leading large large-k2

⊥ power behavior comes from
integration over small t ∼ Λ2/k2

⊥, where Λ2 is a scale
characterizing the fall-off of TMDA. Thus we can sub-
stitute the upper limit of integration over u by infinity
without changing the leading large-k2

⊥ power behavior of
the integral and write

ψh,2,approx
> (x, k2

⊥) = −αg
∫ Λ2/k2⊥

ε

dt

∫ ∞
0

du

× ψ0

(
x, t k2

⊥
(1 + u)2

u

)
+ . . . . (VII.101)

For large u, we can approximate (1 + u)2/u by u to get

ψh,2,approx
> (x, k2

⊥) = −αg
k2
⊥

∫ Λ2/k2⊥

ε

dt

t

×
∫ ∞

0

dκ2 ψ0

(
x, κ2

)
+ . . .

= −αg
k2
⊥
ϕ0(x)

[
ln

1

ε
− ln

(
k2
⊥

Λ2

)]
+ . . . . (VII.102)
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Thus, we conclude that the ψh,2
> (x, k2

⊥) part con-
tains the ln 1/ε term canceling the singularity of the

ψh,1
> (x, k2

⊥) part. In other words, it supplies the sub-
traction term

ψh,subtr(x, k2
⊥) = −αg

k2
⊥
ϕ0(x)

[
ln

1

ε

]
(VII.103)

generating the plus prescription for the part of the ERBL
kernel displayed in Eq. (VII.96).

The ψh,2
> (x, k2

⊥) part also contains the
(
ln k2
⊥/Λ

2
)
/k2
⊥

contribution that cancels a similar logarithm contained
in the ψh

<(x, k2
⊥) term, thus guaranteeing that in αg order

there will be no ln2Q2 Sudakov double logarithms in the
transition form factor.

Summarizing, after properly taking the β-integral
in the original hard contribution (VII.84), the resulting
hard addition to the TMDA is given by a sum of the
ψh
<(x, k2

⊥) term (VII.89) and the ψh
>(x, k2

⊥) term (VII.93)
in which one can safely take ε = 0. Furthermore, the
“unwanted”

(
ln k2
⊥/Λ

2
)
/k2
⊥ Sudakov logarithms present

in both terms cancel, while the remaining ∼ 1/k2
⊥ terms

generate evolution governed by the relevant part of the
ERBL kernel with a correct plus-prescription.

Full result for the link contribution. Finally, we
should add the contribution of the diagram with the in-
sertion into the ȳp leg (which is obtained by changing
y → ȳ and x → x̄) to get hard contribution due to glu-
ons coming from the gauge link

ψh,total
link (x, k2

⊥) = αg

∫ 1

x

dy

y − x

∫ 1

0

dξ

ξ̄

×
[
ψ0

(
y,
ξk2
⊥

x/y

)
− ψ0

(
y,

ξ2k2
⊥

x/y − ξ̄

)
θ
(
ξ̄ ≤ x

y

)]
+ αg

∫ 1

0

dτ
ln τ

1− τ ψ0

(
x, τk2

⊥
)

+

{
y → ȳ , x→ x̄

}
. (VII.104)

We can also transform this result into the impact pa-
rameter space

ϕh,total
link (x, z2

⊥) = αg

∫ ∞
1

dν

ν − 1

{
−ϕ0

(
x, ν z2

⊥
)

ln ν

+

∫ 1

x

dy

y − x
x

y

[
ϕ0

(
y, ν z2

⊥
x

y

)
− θ
(
y ≤ x ν

ν − 1

)
× ϕ0

(
y, (νx/y − ν + 1)νz2

⊥
)]}

+ αg

∫ ∞
1

dν

∫ 1

x

dy

y
θ
(
y ≤ x ν

ν − 1

)
× ϕ0

(
y, (νx/y − ν + 1)νz2

⊥
)

+
{
y → ȳ , x→ x̄

}
.
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Large k2
⊥. As we have seen, for large k2

⊥ this expres-
sion contains all the relevant terms of the ∼ 1/k2

⊥ hard
tail. It also contains contributions that have a large-k2

⊥
behavior similar to that of the soft TMDA ψ0(x, k2

⊥).
For a Gaussian Ansatz with a flat profile, ψF

0

(
y, k2
⊥
)

=

e−k
2
⊥/Λ

2

/Λ2, Fig. 15 illustrates the k⊥-dependence of

the hard addition ψh,total
link (x, k2

⊥) for x = 0.5 and x = 0.1.

One can see that the product k2
⊥ψ

h flattens for k2
⊥ & 4Λ2,

2 4 6 8 10

�0.4

�0.2

0.2

k2
⊥ψ

h(x, k2
⊥)/αg x = 0.5

x = 0.1

k2
⊥/Λ2

FIG. 15. k⊥-dependence of the hard tail for a Gaussian model
with flat DA for x = 0.1 (solid line, red online) and x = 0.5
(dashed line, blue online).

clearly demonstrating the presence of a ∼ 1/k2
⊥ contri-

bution in this case.
For sufficiently large k2

⊥, the hard correction is positive
for the middle point x = 0.5 and negative for x = 0.1.

In Fig. 16 we show the x-dependence of ψh,total
link (x, k2

⊥)
for a particular value k2

⊥ = 5Λ2 and initially flat x-
distribution. Clearly, the hard correction tends to make
the combined distribution narrower.

0.2 0.4 0.6 0.8 1.0

�1.5

�1.0

�0.5

0.5

x

k2
⊥ψ

h(x, k2
⊥ = 5Λ2)/αg

FIG. 16. x-dependence of the hard tail for a Gaussian model
with flat DA for k2

⊥ = 5Λ2.

The situation changes when one takes an initially

asymptotic profile, e.g. ψas
0

(
y, k2
⊥
)

= 6yȳe−k
2
⊥/Λ

2

/Λ2.
As one can see from Fig.17, instead of flattening to a
nonzero value, the product k2

⊥ψ
h continues to decrease

to zero for large k2
⊥ thus demonstrating the absence of

the ∼ 1/k2
⊥ hard tail in this case, because the convolution

of the ERBL kernel with the asymptotic profile vanishes.
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x = 0.1
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FIG. 17. k⊥-dependence of the hard tail for a Gaussian model
with asymptotic DA for x = 0.1 (solid line, red online) and
x = 0.5 (dashed line, blue online).

Small k⊥. For k2
⊥ → 0, Eq. (VII.104) has a finite

limit, namely

ψh,total
link (x, k2

⊥ = 0) = αg

∫ 1

0

dy

{[
θ(y > x)

y − x ln
(y
x

)]
+

+

[
θ(y < x)

x− y ln

(
1− y
1− x

)]
+

}
ψ0

(
y, k2
⊥ = 0

)
.
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For a Gaussian Ansatz with a flat profile,
ψF

0

(
y, k2
⊥ = 0

)
= 1/Λ2, this gives

ψh,total,F
link (x, k2

⊥ = 0) =
αg
2Λ2

[
ln2 x̄

x
− π2

3

]
. (VII.107)

Similarly, for a Gaussian Ansatz with asymptotic profile,
ψas

0

(
y, k2
⊥ = 0

)
= 6x(1− x)/Λ2, we have

ψh,total,as
link (x, k2

⊥ = 0) =
3αg
Λ2

[
−3

2
+ 5xx̄+ (x̄− x) ln

x̄

x

+xx̄

[
ln2 x̄

x
− π2

3

]]
. (VII.108)

In both cases, the correction decreases TMDA in the mid-
dle of the x-interval, and enhances it at the ends. One
can check that the integral of ψh,total(x, k2

⊥ = 0) over x
in these two cases gives zero. In fact, as follows from Eq.

(VII.85), integrating ψh,total
link (x, k2

⊥) over x gives zero for

any initial ψ0

(
x, k2
⊥
)

and for all k⊥.
One may ask if it makes sense to consider a pertur-

batively obtained hard term in the small k⊥ region. To
this end, we remind that we already use a model soft
TMDA in this region, to which our hard term gives just
a small correction. So, using the “soft+hard” combina-
tion is simply another model for the small-k⊥ region. We
think that an approach in which the hard term is nat-
urally finite for small k⊥ has advantages compared to a
usual practice when the explosion of the 1/k2

⊥ hard term
for small k⊥ is stopped by an arbitrarily chosen cut-off.

VIII. SUMMARY AND OUTLOOK

In the present paper, we outlined a new approach to
transverse momentum dependence in hard processes. Its
starting point, just like in the OPE formalism, is the
use of coordinate representation. At handbag level, the
structure of a hadron with momentum p is described by
a matrix element of the bilocal operator O(0, z), treated
as a function of (pz) and z2. It is parametrized through a
virtuality distribution Φ(x, σ), in which the variable x is
Fourier-conjugate to (pz), and has the usual meaning of
a parton momentum fraction. Another parameter, σ, is
conjugate to z2 through an analog of Laplace transform.

Projecting O(0, z) onto a spacelike interval with
z+ = 0, we introduce transverse momentum distributions
Ψ(x, k⊥) and show that they can be written in terms of
virtuality distributions Φ(x, σ). This fact opens the pos-
sibility to convert the results of covariant calculations,
written in terms of Φ(x, σ), into expressions involving
Ψ(x, k⊥). This procedure being a crucial feature of our
approach, is illustrated in the present paper by its appli-
cation to hard exclusive transition process γ∗γ → π0 at
the handbag level (which is analogous to the 2-body Fock
state approximation). Starting with scalar toy models,
we then extend the analysis onto the case of spin-1/2
quarks and vector gluons.

We studied a few simple models for soft
VDAs/TMDAs, and then used them for compari-
son of VDA results with experimental (BaBar and
BELLE) data on the pion transition form factor.

A natural next step is going beyond the handbag ap-
proximation. In QCD, an important feature is that
quark-gluon interactions generate a hard ∼ 1/k2

⊥ tail for
TMDAs. To demonstrate the capabilities of the VDA ap-
proach in this direction, we describe the basic elements
of generating hard tails from soft primordial TMDAs.

Another direction is to include the contribution due to
a 3-body quark-gluon TMDA. In the OPE it starts with
a q̄Gq operator related to q̄D2

⊥q operator that appears in
our treatment of the handbag contribution as an explicit
k2
⊥/Q

2 correction to the leading term.
Among other possible directions for future studies is

the use of the VDA approach for a systematic study of
quark virtuality corrections to the one-gluon contribution
for the pion electromagnetic form factor Fπ(Q2). As we
have seen, for the transition form factor such corrections
strongly reduce its magnitude in the region of moderately
large Q2. In case of Fπ(Q2), one should expect even more
drastic reduction, since two TMDAs are involved.

One more direction, also suggested by the pion form
factor analysis, is a study of TMDAs corresponding to
pseudoscalar ψ̄γ5ψ and tensor ψ̄σµνψ bilocal operators.
It was argued [41, 42] that such chiral-odd projections
may play an important role in understanding JLab data
on the deeply virtual electroproduction of pions [43]. It
should be empasized that “purely collinear” pQCD for-
mulas in these cases are known to produce diverging
integrals like ϕ(x)/x2. Within the TMDA formalism,
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transverse momentum effects are expected to regulate
such singularities, which necessitates the extension of the
TMDA approach onto distributions related to chiral-odd
bilocal operators.
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