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We complete the study of a class of string-motivated effective supergravity theories in which
modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so
as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected
mirage mediation (DMM), where contributions from gauge mediation are added to those arising
from gravity mediation and anomaly mediation. We update previous work that surveyed the rich
parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and
recent dark matter detection experiments. Constraints arising from LHC superpartner searches at√
s = 8 TeV are considered, and discovery prospects at

√
s = 14 TeV are evaluated. We find that

deflected mirage mediation generally allows for SU(3)-charged superpartners of significantly lower
mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for
the ‘pure’ mirage mediation models of Kachru et al. [1]. Consequently, discovery prospects are en-
hanced for many combinations of matter multiplet modular weights. We examine the experimental
challenges that will arise due to the prospect of highly compressed spectra in DMM, and the cor-
relation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark
matter detectors.

I. INTRODUCTION

With the resumption of data-taking at the CERN Large Hadron Collider (LHC), time is running short for the
theoretical community to examine the impact that searches for superpartners has had on well-motivated models of
supersymmetry breaking. Of the models with some theoretical support, one of the most well-studied is the so-called
mirage model [2, 3]. In this scenario, the dynamical supersymmetry breaking triggered by strong coupling in a hidden
sector is connected to the observable sector in a manner that is suppressed, thus allowing loop-induced Weyl anomaly
contributions to soft supersymmetry breaking to be of comparable size to tree-level contributions. Surprisingly, this
is a common outcome of many well-motivated string constructions [4–6]. The phenomenology of these models, in
terms of LHC observables, has been recently described in [7] for heterotic models, and in [8] for Type IIB orientifold
models. In this paper we generalize these results to the case of “deflected mirage mediation” [9, 10]. In this paradigm,
a direct connection between a hidden sector, in which supersymmetry is broken, and the observable MSSM sector
is contemplated, in which gauge-mediated contributions to soft supersymmetry breaking are of the same magnitude
as those from gravity-induced terms. As such, deflected mirage mediation (DMM) is a natural generalization of the
simple mirage models, and produces a theory space with the greatest possible richness for exploring current and future
LHC supersymmetry searches.

The
√
s = 7 TeV and

√
s = 8 TeV runs of the LHC resulted in the triumphant discovery of the Higgs boson.

However, as the LHC paused to upgrade to higher energies and luminosities, the various searches for TeV-scale
supersymmetry have thus far been fruitless. Previous research in the area of mirage models has suggested the
following broad observations. Kähler-stabilized heterotic models involve very few free parameters, and thus robust
predictions are possible. If the hidden sector gaugino condensate involves E6 or smaller-rank gauge groups, then
the gluino is generally well below 3 TeV in mass. As such, much of the parameter space that remains after the√
s = 8 TeV searches will be quickly probed in the first year or two after the LHC resumes operations [7]. In contrast,

the Type IIB orientifold models, of the type contemplated first by Kachru et al. (KKLT) [1] have a much more
constrained parameter space. Achieving the observed CP-even Higgs mass of mh ' 126 GeV tends to require far more
massive gluinos and squarks. As such, much of the nominally allowed parameter space resides in areas in which no
superpartners are accessible at the early runs at the LHC – and in many cases it is doubtful that superpartners would
ever be accessible at the LHC [8].

Given the above statements, it is of interest to ask whether the inclusion of some amount of gauge mediation can
affect these conclusions. Gross properties of the DMM model were studied in [11, 12], with LHC implications and
dark matter detection studied in [13] and [14], respectively. All of these studies, however, were performed prior to
the supersymmetry searches at the LHC at

√
s = 8 TeV and dark matter searches at the O(100 kg) target level. At

that time, the primary conclusion was that the LSP is likely to be heavy (O(1 TeV)) and that gluinos were likely to
be much lighter than that predicted in the KKLT model without gauge mediation. It is of singular importance to
revisit these early conclusions in light of the Higgs mass determination, and refine the predictions for the next run of
the LHC, and larger dark matter detection experiments.
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We begin our discussion in Section II with an overview of the theoretical structure that supports both mirage
mediation and its deflected variant. We then exhibit the soft supersymmetry breaking terms, and identify the
parameter space that defines the DMM model, in Section III. This parameter space is quite a bit larger than that
of the mirage/KKLT model, and we proceed to identify general features of this space, and correlations with physical
observables, in Section IV. This will allow us to identify representative benchmark examples to study in greater detail
in Section V, where we focus on supersymmetry searches at the LHC. This is followed by a discussion of dark matter
direct detection at current and future experiments in Section VI. We will find that the DMM paradigm spans cases
that resemble the so-called ‘simplified models’, as well as compressed-spectrum models often motivated from appeals
to ‘naturalness’ [15]. We estimate the reach of the LHC at both

√
s = 8 TeV and 14 TeV and suggest cases in which

the current search strategies can be approved to address the specific challenges of the DMM model framework.

II. THEORETICAL FRAMEWORK

A. KKLT and Kähler Modulus Stabilization

In what follows we review Kähler modulus stabilization in minimal N = 1 supergravity, where we have in mind
Type IIB string theory compactified on a Calabi-Yau (CY) manifold in the presence of background fluxes. At the level
of effective field theory, the precise origin of the various components of the effective Lagrangian is often irrelevant,
so we will work in a simplified limit considered in [1], in which a single Kähler modulus T parameterizes the overall
size of the compact space. It will be the non-vanishing vacuum expectation value

〈
FT
〉

that will set the scale of
soft supersymmetry breaking in the absence of gauge mediation. The Kähler potential for the modulus T is taken to
be K(T, T ) = −3 ln(T + T ). For gauge theories with group Ga, living on D7 branes which wrap four-cycles in the
CY manifold, the gauge coupling is determined by the Kähler modulus T via the (universal) gauge kinetic function
fa = T . Note that, with these assumptions,

< Re t > = 1/g2
str, (1)

where t = T |θ=0 is the lowest component of the superfield T , and gstr is the universal gauge coupling at the string
scale.

In the effective supergravity theory just below the string compactification scale, the presence of the three-form fluxes
is represented by a constant w0 in the effective superpotential. It is presumed that these fluxes fix the value of the
dilaton and the complex structure moduli, leaving only the Kähler moduli in the low-energy four-dimensional effective
theory [16]. Combined with the effect of gaugino condensation in the hidden sector the total effective superpotential
is then

W0 = w0 +Ae−aT , (2)

where there is a single gaugino condensate, for simplicity, and the constant a is related to the beta-function coefficient
of the hidden sector gauge group, with a normalization such that a = 8π2/N for the group SU(N).

In N = 1 supergravity theories the scalar potential is determined by the auxiliary fields FN , associated with the
chiral supermultiplet ZN , and the auxiliary field M of the supergravity multiplet. The equations of motion for these
auxiliary fields are given by

FM = −eK/2KMN
(
WN +KNW

)
, M = −3eK/2W (3)

with WN = ∂W/∂Z
N

, KN = ∂K/∂Z
N

and KMN being the inverse of the Kähler metric KMN = ∂2K/∂ZM∂Z
N

.
Note that the gravitino mass is determined via the vacuum relation

〈M〉 = −3
〈
eK/2W

〉
= −3m3/2 . (4)

Restoring the explicit Planck mass MP , the scalar potential is then given by

V = KMNF
MF

N − 3m2
3/2M

2
P , (5)

where repeated indices are summed.
Minimizing the resulting scalar potential V (t, t̄) generates a non-vanishing value for 〈t+ t̄〉 at which the auxiliary

field FT vanishes and the vacuum has an energy density given by 〈V 〉 = −3m2
3/2M

2
P . The size of the VEV for Re t,
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as well as the size of the gravitino mass m3/2, are determined by the size of the constant term w0 in (2), which must

be tuned to a value w0 ∼ O(10−13) in Planck units to obtain an acceptable phenomenology. In particular one has [2]

〈aRe t〉 ' ln(A/w0)

m3/2 ' MP
w0

(2 〈Re t〉)3/2
. (6)

Combining these relations in (6) produces

〈aRe t〉 ' ln(MP /m3/2) . (7)

Much of the phenomenology that has come to be known as “mirage mediation” is dependent only on the emergence of
the parameteric relation in (7), and not on the particulars of any constants that may appear in the non-perturbative
stabilizing superpotential, such as the one in (2).

To discuss supersymmetry-breaking, it is necessary to first address the vacuum energy problem, by adding some ad-
ditional ‘uplift’ sector which generates supersymmetry breaking in the observable sector while producing a Minkowski
vacuum. Many such suggestions exist in the literature [17–21], and the precise choice will not affect our results pro-
vided that (a) the Kähler modulus dependence of the added terms in the Lagrangian is dictated solely by consistency
of supergravity under Kähler U(1) transformations, and (b) the vacuum expectation value 〈Re t〉 is not perturbed
greatly by the addition of the uplift sector [22]. If these conditions are satisfied, then the auxiliary field for the Kähler
modulus no longer vanishes in the ‘lifted’ vaccum, but instead satisfies the approximate solution

M0 ≡
〈
FT

t+ t̄

〉
' 2m3/2

a 〈t+ t̄〉 . (8)

This quantity M0 then serves as an order parameter of supersymmetry breaking in the observable sector.
The derivation of these soft supersymmetry terms is made considerably more transparent if one employs the chiral

compensator technique for generating anomaly-mediated contributions to supersymmetry breaking. If C represents
the conformal compensator of the supergravity multiplet, and FC is its corresponding auxiliary component, then〈
FC/C

〉
' m3/2 and there is 〈

FT

t+ t̄

〉
'
〈

1

aRe t

FC

C

〉
. (9)

When working out soft terms, it is convenient to write the above expression as an equality by introducing the parameter
αm [22] via

αm ≡
m3/2

M0 ln
(
MP /m3/2

) , (10)

and thus 〈
FC

C

〉
= αm ln

(
MP

m3/2

)〈
FT

T + T̄

〉
, (11)

where we have used the vacuum condition in (7).

B. The Additional Singlets

In many string motivated models, additional pairs of fields Ψ, Ψ with SM gauge quantum number are not uncommon.
Such vector-like pairs often have superpotential interactions with one or more SM singlets (here denoted by X) which
can potentially serve as supersymmetric mass terms. Here the KKLT formalism is extended to include these fields
acting as messengers, and show that they couple to a moduli field that gets a vev at the right scale to produce
potentially large gauge mediation-like deflection.

The superpotential is assumed to be of the form

W = W0 +W1(X) + λXΨΨ +WMSSM(Φ), (12)

in which W0 is given by (2), W1(X) denotes the singlet self-interaction superpotential terms, and WMSSM(Φ) is the
standard MSSM superpotential, involving the observable sector fields Φi. The fields Ψi and Ψi are here after taken
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to be one or more pairs of SU(5) 5 and 5̄ multiplets. Different forms of the singlet self-interaction W1(X), correspond
to different ways of stabilizing the modulus X. The Kähler potential will be taken to be

K = −3 ln(T + T ) + ZX(T, T )XX + Zi(T, T )ΦiΦi +O
(
(|Φ|4, |X|4)

)
, (13)

in which ZX and Zi are the Kähler metrics of X and Φi, respectively. The Kähler metric for the messenger states
Ψi and Ψi will not be relevant for our discussion, but can be taken to be of the same form as the observable sector
states. The Kähler metrics ZX(T, T ) and Zi(T, T ) will be assumed to be of the standard form

ZX =
1

(T + T )nX
, Zi =

1

(T + T )ni
, (14)

in which nX and ni are the modular weights of X and Φi, respectively.
Successful gauge mediation will require the dynamical generation of a vacuum expectation value (vev) for both the

lowest component 〈X〉 6= 0 and the highest component
〈
FX
〉
6= 0 of the singlet chiral superfield. The simplest case is

to have W1(X) = 0 and assume that the coupling between X and Ψ,Ψ generates 〈X〉 6= 0 at low energies, as in the
electroweak sector of the Standard Model. In this case an F-term vev of approximately the right size is automatically
generated [23]

FX ' −eK0/2KXX̄DX̄W ' −eK0/2KXX̄KX̄W0 ' −m3/2X, (15)

such that

FX

X
= −F

C

C
≈ −m3/2. (16)

Alternatively, one can consider a very simple form for W1 in Eq. (12), such as

W1 = λn
Xn

Λn−3
, (17)

in which Λ is some cutoff scale. In principle, the exponent n can have positive or negative values; a negative exponent
would indicate that this term originates from nonperturbative dynamics. In the case where n > 3 (stabilization by
higher order terms), and the case where n < 0 (stabilziation by nonperturbative dynamics), the resulting non-vanishing
F-term vev is of the form [10]

FX

X
= − 2

n− 1

FC

C
. (18)

Since the modulus and anomaly contributions are already comparable, this result indicates that all three contributions
should be roughly equal for a very general class of superpotentials.1

III. SOFT SUPERSYMMETRY BREAKING

To derive the observable sector soft terms, it is convenient to use the spurion technique, in which the couplings of
the effective supergravity Lagrangian are regarded as functions in superspace, with the θ-dependent parts of these
couplings generated by the F-term vevs of the theory (for a review, see [24]). The MSSM soft supersymmetry-breaking
Lagrangian includes terms of the form

Lsoft = −m2
i |Φi|2 −

[
1

2
Maλ

aλa +AijkyijkΦiΦjΦk + h.c.

]
, (19)

in which m2
i are the soft scalar mass-squared parameters, Ma are the gaugino masses, and Aijk are trilinear scalar

interaction parameters. These terms are defined in the field basis in which the kinetic terms are canonically normalized.

1 This result is the same as that obtained in the case of deflected anomaly mediation [27]. Further details of the calculation, and the case
of renormalizable W1(X), can be found in [10].



5

The expressions for the soft supersymmetry-breaking terms take the standard supergravity form

Ma = FA∂A log(Re fa), (20)

Aijk = −FA∂A log

(
y0
ijk

YiYjYk

)
,

m2
i = −FAFB∂A∂B log Yi , (21)

where fa is the field-dependent, gauge kinetic function for the gauge group Ga, y0
ijk is the bare Yukawa coupling

appearing in the superpotential, and the function Yi is defined by

Yi =
1

(T + T̄ )ni−1
. (22)

From here, one merely needs to specify the dependence of the relevant quantities on the fields X and T , as well as the
spurious conformal compensator, C. The latter follows standard computations familiar from the study of anomaly
mediation [25–28]. For the gauge kinetic function we take

fa(MG) = T `a (23)

where MG is the boundary condition scale (taken as the energy scale at which g2
1(MG) = g2

2(MG)), and la = 0, 1
depending on the type of D branes from which the gauge groups originate. Since we wish to maintain gauge coupling
unification at the GUT scale, we assume that la = 1 for each of the SM gauge group factors. For the unnormalized
Yukawa couplings y0

ijk, there is no C dependence due to the supersymmetric nonrenormalization theorem. Since y0
ijk

is also assumed to be independent of T and X, the expression for trilinear terms (21) can be reduced to

Aijk = Ai +Aj +Ak , (24)

in which

Ai = FA∂A log Yi , (25)

and Yi is given by (22).
Let Mmess be the mass of the messenger fields, with Mmess ≡ λ 〈X〉. Recalling that above the mass scale of the

messengers the beta functions depend on not only the MSSM fields, but also on the messenger pairs, the soft terms
at the GUT scale MG and the messenger threshold effects at Mmess are as follows:

Gaugino Masses. The gaugino mass parameters are given by

Ma(µ = MG) =
FT

T + T
+

g2
0

16π2
b′a
FC

C
(26)

Ma(µ = M−mess) = Ma(µ = M+
mess) + ∆Ma, (27)

in which the threshold corrections are

∆Ma = −N g2
a(Mmess)

16π2

(
FC

C
+
FX

X

)
. (28)

Here g0 is the unified gauge coupling at MG, M±mess represents an energy scale just above (just below) the
messenger mass scale, and the beta functions b′a are related to their MSSM counterparts by b′a = ba + N , with
(b3, b2, b1) = (−3, 1, 33

5 ) (in our conventions, ba < 0 for asymptotically free theories), and N the number of messenger

fields Ψi, Ψi, where i = 1, . . . , N .

Trilinear terms. The trilinear terms are Aijk = Ai +Aj +Ak, with

Ai(µ = MG) = (1− ni)
FT

T + T
− γi

16π2

FC

C
, (29)

where γi is the anomalous dimension of Φi.
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Soft scalar masses. The scalar mass-squared parameters are given by

m2
i (µ = MG) = (1− ni)

∣∣∣∣ FT

T + T

∣∣∣∣2 − θ′i
32π2

(
FT

T + T

FC

C
+ h.c.

)
− γ̇′i

(16π2)2

∣∣∣∣FCC
∣∣∣∣2 ,

m2
i (µ = M−mess) = m2

i (µ = M+
mess) + ∆m2

i , (30)

where the threshold corrections are

∆m2
i =

∑
a

2caN
g4
a(Mmess)

(16π2)2

(∣∣∣∣FXX
∣∣∣∣2 +

∣∣∣∣FCC
∣∣∣∣2 +

FX

X

FC

C
+ h.c.

)
. (31)

In the above, ca is the quadratic Casimir, and γi, γ̇i, θi (γ′i, γ̇
′
i, θ
′
i) are listed in Appendix A.

We now replace the F terms with the parameterization given in [9, 10], as follows:

FC

C
= αm ln

MP

m3/2

FT

T + T
= αm ln

MP

m3/2
M0 (32)

FX

X
= αg

FC

C
= αgαm ln

MP

m3/2
M0, (33)

in which M0 ≡ FT /(T+T ) sets the overall scale of the soft terms. The dimensionless parameter αm is the α parameter
of mirage mediation: it denotes the relative importance of anomaly mediation with respect to gravity mediation. In
the specific scenario considered by KKLT, αm = 1. The dimensionless parameter αg denotes the relative importance
of the gauge-mediated terms with respect to the anomaly-mediated terms. The values of αg depend on the details of
the stabilization of X, as described in Section II B.

With the parametrization given in Eqs. (32)–(33), the soft terms at MG take the form

Ma(µ = MG) = M0

[
1 +

g2
0

16π2
b′aαm ln

MP

m3/2

]
, (34)

Ai(µ = MG) = M0

[
(1− ni)−

γi
16π2

αm ln
MP

m3/2

]
, (35)

m2
i (µ = MG) = M2

0

[
(1− ni)−

θ′i
16π2

αm ln
MP

m3/2
− γ̇′i

(16π2)2

(
αm ln

MP

m3/2

)2
]
, (36)

where the anomalous dimensions are given in Appendix A, and the threshold terms are given by

∆Ma(µ = Mmess) = −M0N
g2
a(Mmess)

16π2
αm (1 + αg) ln

MP

m3/2
, (37)

∆m2
i (µ = Mmess) = M2

0

∑
a

2caN
g4
a(Mmess)

(16π2)2

[
αm(1 + αg) ln

MP

m3/2

]2

. (38)

The parameters of the model are the mass scales M0 and Mmess, as well as the dimensionless quantities αm, αg, the
number of SU(5) messenger pairs N , the modular weights ni, tanβ, and sign µ (the model-dependent µ and Bµ
parameters are replaced as usual by the Z boson mass, tanβ, and the sign of µ).

In the mirage mediation scenario, one of the most distinctive features of the soft terms is the unification of the
gaugino masses at the mirage unification scale Mmirage:

Mmirage = MG

(
m3/2

MP

)αm
2

. (39)

In deflected mirage mediation, one finds a similar mirage unification phenomenon for the gaugino masses. From the
form of the soft terms of Eq. (34) and Eq. (37), the new mirage unification scale for the gauginos (see also [9]) is

Mmirage = MG

(
m3/2

MP

)αmρ
2

, (40)
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in which ρ is given by

ρ =
1 +

2Ng20
16π2 ln MG

Mmess

1− αmαgNg20
16π2 ln MP

m3/2

. (41)

The mirage unification scale of the gauginos is thus deflected from the mirage mediation result. The size of the
deflection is dependent on αg, N , and Mmess, which govern the size of the messenger thresholds.

For the A terms and the soft scalar mass-squares, the mirage unification behavior no longer happens in general in
the presence of the messengers. The exception is when the messenger scale is below the scale of mirage unification
which would occur in the absence of the messenger thresholds, since the theory is then effectively the same as mirage
mediation below Mmess. In Eqs. (40)–(41), the mirage mediation result of Eq. (39) is obtained only if N = 0. This
demonstrates that the mirage mediation limit is not reached when gauge mediation is switched off (αg → 0); it only
occurs when the messengers are removed from the theory at all scales (N = 0). The reason is that the messengers
affect the MSSM beta functions above the messenger scale, which in turn affects the boundary conditions for the
anomaly-mediated terms.

IV. CONSTRAINTS ON DMM PARAMETER SPACE

In deflected mirage mediation there are two distinct contributions to soft supersymmetry breaking, a KKLT-like
contribution at the GUT or string scale, followed by a deflection at some messenger scale Mmess. For the first
contribution, there are two independent mass scales, given by the (normalized) gravitino mass m3/2 and the modulus
contribution M0. Alternatively, one can work with either of the mass scales and the derived parameter αm. We use
the latter, and will use M0 as the independent mass scale. The value of m3/2 is computed by fitting to the expression
in (10), and the calculated value will then be input into the high scale soft term expressions in (34), (35) and (36).

In addition, one must specify the modular weights for the chiral supermultiplets that make up the MSSM field
content. In this work we will allow only a limited amount of non-universality in assigning these weights. In particular,
we will always assume that all matter multiplets arise from the same sector of the theory, so that they carry a universal
modular weight nM , while the two Higgs doublets may carry an independent modular weight which we will denote
nH . We let both take half integer values between zero and one. Under these assumptions there are then nine possible
combinations of modular weights to consider, which we can represent by the pair of weights (nM , nH). A theory
defined solely by the choice of modular weights, tanβ, αm, and M0, represents a general mirage mediation model.
Nevertheless, we will often refer to it (somewhat inappropriately) as a “KKLT model”, to distinguish it more clearly
from a deflected mirage mediation model.

In DMM, there is an additional mass scale Mmess, where N SU(5) 5 5̄ messengers integrate out with a strength given
by a derived parameter αg. The quantities αg, N , and the KKLT parameters are input to the deflected contributions
given by (37) and (38), which may be sizeable. Thus, the parameter space we will consider consists of a discrete choice
of modular weights and three continuous parameters: M0, αm and tanβ. These quantities define a KKLT-like ‘base
point’. The deflection from this base point will be characterized by the three parameters αg, Mmess, and N . These
DMM parameters can be set by considering an explicit model, but here we choose to let them vary continuously.

To fully explore the entirety of this parameter space would require a scan over the five continuous parameters M0,
Mmess, αm, αg and tanβ and the three discrete parameters nM , nH , and N . A comprehensive scan would quickly
become unrealistically computationally expensive, as the parameter space is large. Because the DMM framework is
an extension of the KKLT framework, we approach our scan in the same fashion. For each set of modular weights
we will randomly select the three continuous parameters of the KKLT framework in the ranges M0 ∈ [1, 5] TeV,
tanβ ∈ [5, 50] and αm ∈ [0, 2]. We then build a three-dimensional scan in the DMM parameter space around each
base point, scanning αg ∈ [−1, 1] in steps of 0.05, log10 [Mmess/GeV] ∈ [5, 14] in unit steps, and N ∈ [1, 5] in unit
steps.

The range in αg is chosen as in [13] to reflect a range of possible moduli stabilization mechanisms. The UV cutoff
on the range in the messenger scale is chosen to avoid possible GUT threshold contributions, while the lower bound
is meant to avoid large contributions to flavor-changing neutral current processes. The number of messengers, N , is
chosen between 0 (where the model is identical to KKLT), and 5, which is the maximum number of messengers before
couplings tend to run to nonperturbative values with an O(TeV) messenger scale. We note that for the N = 3 case,
the strong coupling does not run between the GUT and messenger scales at one loop order.

For each choice of KKLT input parameters (nM , nH ,M0, αm, tanβ), the soft terms are computed from (34), (35)
and (36). The renormalization group (RG) equations are solved from the boundary condition scale to the elec-
troweak scale using a version of the package SOFTSUSY 3.3.9 [29] that has been modified to account for the gauge
mediation contributions [9, 10]. The modification introduces an intermediate messenger scale where the threshold
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FIG. 1: Distribution of gluino masses (left) and LSP masses (right), in units of GeV, for all modular weights in DMM and for
the KKLT base points. The blue histogram represents all DMM points with an acceptable minimum and a neutralino LSP.
Points in the green histogram also have an acceptable Higgs mass and neutralino relic density taken from the blue. The red
and orange outlines represent the distributions for the KKLT base points where the red has an acceptable minimum and a
neutralino LSP, and the orange has an acceptable Higgs mass and relic density, with the scale on the right side.

corrections (37) and (38), determined by the DMM parameters (N,αg,Mmess), are added to the running masses. The
software uses a modified set of renormalization group equations to include the effect of messengers above the scale
determined by Mmess, at the two loop level.

At the electroweak scale, a combination of input parameters will be excluded from the data set if the soft super-
symmetry breaking scalar mass-squared parameter is negative for one or more of the matter fields. At this stage, the
radiatively-corrected Higgs potential is minimized and physical masses are calculated. We again eliminate a combi-
nation of input parameters if no solution to the conditions for electroweak symmetry breaking can be found, or if the
solution fails to converge adequately. Finally, we then ask that the lightest supersymmetric particle (LSP) for each
model point be a neutralino, though stau, gluino and stop LSPs are all possible in various regions of parameter space.
In total, 6.1 million points were generated from 2700 KKLT base points, evenly distributed across the nine modular
weight combinations. After application of all phenomenological constraints, slightly less than 390,000 DMM points
survive, originating from just over 2500 KKLT base points.

Having passed the minimal phenomenological requirements, the electroweak scale spectrum is then passed to Mi-
crOMEGAs 2.2 [30] where the thermal relic abundance Ωχh

2 is computed for the stable neutralino. In addressing
the issue of cold dark matter, we take a conservative approach and impose only an upper bound on the neutralino
relic density. We use a cut on a three-sigma upper bound on the calculation from MicrOMEGAs of Ωχh

2 ≤ 0.128
taken from [31]. We further require the mass of the lightest chargino to exceed the LEP bound (mχ±

1
≥ 103.5 GeV)

and that the value of Br(Bs → µ+µ−) to be within 3σ of the LHCb measurement [32, 33]. Finally, we take into
account the recent measurements of the Higgs scalar mass [34–36] by requiring 123 GeV ≤ mh ≤ 127 GeV, which
represents a rather generous mass range for this parameter, given ongoing efforts to improve the reliability of Higgs
mass calculations [37–39].

We display the results of our scan in two subsections. In the first subsection, we comment on some generic features
of the DMM parameter space, using all of the data generated by our scan. In the following subsection, we focus
on specific KKLT base points with reasonable low-energy phenomenology, and discuss modifications to the spectra
arising from the introduction of gauge-charged messenger fields.

A. Generic Properties

In Figure 1, we see the effect of our constraints on the parameter space. The left panel represents the distributions
in the gluino mass, while the right panel gives the distributions in the LSP mass. In both panels, the blue histogram
represents all points with an acceptable minimum and a neutralino LSP. Points in the green histogram also have an
acceptable Higgs mass and neutralino relic density. The red and orange outlines are the equivalent distributions for
the KKLT basepoints. Although statistics are low for both KKLT distributions, we can see that the gluino masses of
the base points are shifted to the right in relation to the solid DMM distributions. For the base points the minimum
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mass is roughly 1.5 TeV, with a peak roughly around 3 TeV, whereas for DMM, we have a peak closer to 2 TeV, with
the possibility of very low-mass gluinos. Many, but not all, of these low mass points would have given a detectable
signal at the past LHC run at

√
s = 8 TeV. The overall shift in these distributions means that more of the parameter

space for DMM will be probed in the current LHC run, but there remains a long tail that extends beyond the expected
reach of the LHC, even after 3000 fb−1 of data-taking. For the mass of the lightest neutralino, the distribution of
KKLT base points and DMM points are not significantly different. When the current limits on the neutralino relic
density and Higgs mass are taken into account, we expect that the entirety of the neutralino and gluino mass ranges
should be accessible at a future 100 TeV collider [40, 41].

FIG. 2: Distribution of gluino mass (in GeV), broken down by modular weight combinations. The left plot is broken down by
nM and the right is by nH . All points have an acceptable EW vacuum, Higgs mass, and neutralino relic density.

Figure 2 breaks down the allowed region (green histogram) in the left panel of Figure 1 by modular weight. In the
left (right) panel, data is aggregated over various nH (nM ) values, for particular nM (nH) values held constant. The
typical value of the gluino mass correlates strongly with the matter modular weight, with the distribution moving to
larger values with increasing nM . The origin of this behavior lies in the high scale boundary condition for the soft
masses of the matter fields (36), which decreases with increasing nM . The relatively large Higgs mass mh ' 125 GeV
requires a relatively heavy stop mass, and thus larger values of nM require a larger value of M0 to compensate. The
effect is enhanced by the fact that larger modular weights nM reduce the size of the trilinear A-terms (35), thereby
reducing the left-right mixing in the stop sector. Conversely, as the values of nH only affect the boundary conditions
of the Higgs scalar masses, we do not expect the overall mass scale to be dependent on this parameter, and indeed the
three distributions in the right panel of Figure 2 are qualitatively similar. A desire for a lighter, and hopefully LHC
accessible, spectrum motivates model-building efforts in which MSSM fields are localized on stacks of D7 branes for
which ni = 0.

Figure 3 further studies the influence of the messenger sector on the predicted gluino mass. The left panel of
Figure 3 breaks down the distribution by number of messengers, while the right panel addresses the messenger scale.
Points with lighter gluino masses tend to have two or more messengers and low messenger scales. For these points, the
deflection contribution is comparable in size to the running mass itself, allowing for a cancellation to occur, while the
small messenger scale prevents large corrections from RG effects. In contrast, for large gluino masses, the messenger
scale tends to be on the high end, with αg ∼ −1, so that the gluino experiences the largest possible mass increase
through RG evolution.

In the right half of Figure 1, we see that the majority of possible LSP masses are O(1 TeV) and likely accessible at
the LHC. The sharp cutoff at 100 GeV is the result of the LEP limit on the chargino mass. The KKLT distributions
for the LSP mass mirror those for DMM. Figure 4 breaks this plot down by modular weight combination, similar
to Figure 2. There is a weak dependence on nH , with smaller nH preferring smaller values of the LSP mass, but
a strong dependence on nM . Larger values of nM push us towards smaller LSP masses, where the neutralino is
almost exclusively Higgsino-like. For nM = 1, the up-type Higgs soft mass is generally large at the GUT scale, and
it must run to a negative value to achieve proper EWSB; in this parameter range, m2

Hu
achieves a small negative

value, and the µ term needs to be small enough to satisfy the Z-mass constraint. For nM = 0 or 1
2 there are points

where the LSP has a bino or wino-like wave-function. The wino-like points tend to come from the negative gauge
contribution (37) pushing the value of M2 below zero, where |M2| < |M1|, |µ|. We will come back to these wino-like
points in subsequent sections.
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FIG. 3: Distribution of gluino mass (in GeV), broken down by N (left) and log10(Mmess/GeV) (right). All points have an
acceptable EW vacuum, Higgs mass, and neutralino relic density.

FIG. 4: Distribution of the LSP mass (in GeV), broken down by modular weights. The left plot is broken down by nM and
the right is by nH . All points have an acceptable EW vacuum, Higgs mass, and neutralino relic density.

The distribution of relic density as a function of LSP mass, Figure 5, shows that wino-like LSPs generally fail to
saturate the Planck-preferred value of Ωχh

2 ' 0.12, with a proper relic density coming from Higgsino and bino-like
points. The distribution of LSP masses, in the right panel of Figure 5, shows that the majority of possible LSPs are
Higgsino-like with an average mass of approximately 800 GeV. Higgsino annihilation in the early universe becomes
too inefficient to achieve Ωχh

2 <∼ 0.12 when the mass exceeds about 1 TeV, as is clear from the sharp cutoff in the
distribution. Meanwhile, most bino-like points with an acceptable relic density arise from co-annihilation, primarily
with stops, but also occasionally with gluinos. Low mass wino-like cases involve co-annihilation with other low-mass
gauginos [42, 43], while higher-mass winos involve standard thermal freeze-out. Compared to KKLT, there is a relative
paucity, about 5% of the the sample, of bino-like LSPs in Figure 5. As messengers are introduced, the values of the
GUT scale coupling and beta function coefficients increase, leading to heavier Majorana masses at the GUT scale. At
the messenger scale, the bino will experience the smallest deflection, so a point with a bino-like LSP needs some sort
of conspiracy in the RG-flow to get the bino lighter than the wino and Higgsino.

The wino-like points, though relatively few in number, are worth exploring further as such an outcome does not
occur in the KKLT scenario [8]. Wino-like points tend to have large values for the parameter αg, which controls the
size of the correction in (37). When αg ' 1, the wino mass M2 is pushed to values which are below that for M1

and M3. There is some correlation with the modular weights as well. These wino-like points are common at small
nM , admitting the entire range in αg, and vanish when nM = 1, as the one-loop Higgs mass corrections are not large
enough. These points tend to have larger values of nH , though this is a weaker effect, likely the result of needing
a lighter Higgs soft mass to get electroweak symmetry breaking to occur properly. There are points that yield an
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FIG. 5: Distribution of the neutralino relic density Ωχh
2, left panel, and LSP mass (in GeV), right panel, aggregated for all

modular weights. Both histograms are broken down by wave-function composition of the LSP. All points have an acceptable
EW vacuum, Higgs mass, and neutralino relic density.

acceptable low-energy spectrum for the entire range in Mmess, and for αm > 0.5. This relative lack of points for small
αm is seen globally in the DMM parameter space, because small or vanishing αm corresponds to the limit where the
model looks like minimal supergravity with a single mass parameter.

FIG. 6: Distribution of the mirage scale, Mmirage, defined by equation (40). All points have an acceptable EW vacuum, Higgs
mass, and neutralino relic density. The red distribution represents all cases with nM = 1, the green those cases with nM = 1/2,
and the blue those cases with nM = 0. Not shown is a long tail of cases with nM = 0, 1/2, extending to very small mirage
scales (Mmirage ∼ 10−30 GeV). Note that these histograms overlap, with the darker shaded green and red colors indicating the
presence of cases with nM = 0 and nM = 1/2, respectively.

Finally, Figure 6 gives the distribution in the mirage scale, Mmirage, from equation (40), broken down by the value of
the matter field modular weight nM . Though the mirage scale is not itself directly measurable, it can be inferred from
a successful extraction of the gaugino mass hierarchy via measurements at the LHC [44], followed by RG evolution
to discover the scale of unification [45, 46]. It is intriguing to note that such an exercise provides some information
on the matter modulus weight; for instance, points with large mirage scales are more often points with nM = 1. If
instead one were to find that gaugino masses would unify at scales below a TeV, then the matter modular weight is
more likely nM = 0 or nM = 1/2.
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KKLT Parameters Key Masses [GeV]

Point nM nH M0 αM tanβ mh mχ̃0
1

mχ̃0
2

m
χ̃±
1

mA mτ̃1 mg̃ mt̃1 Ωχh
2

1 0 0 1900 1.05 9 125.1 1406 1715 1715 2966 1910 2873 1434 0.062

2 0 0 2900 1.80 9 123.8 1547 1553 1550 3224 2821 3084 1554 0.077

3 0 0.5 1950 1.65 27 125.2 1415 1429 1420 1647 1749 2264 1500 0.124

4 0 1 1350 0.63 29 123.5 837 1177 1177 1680 1217 2417 1685 0.114

5 0.5 0 2000 1.25 28 125.5 676 683 679 1825 1219 2727 1461 0.055

6 0.5 0.5 1800 0.70 9 123.3 1150 1554 1554 2327 1360 3055 1978 0.069

7 0.5 0.5 3200 1.45 7 123.9 974 978 976 2628 2286 3924 2478 0.106

8 0.5 1 4100 1.85 9 123.4 1090 1093 1092 855 2806 4072 2878 0.124

9 1 0 4000 0.65 6 124.1 667 669 668 4596 1181 6517 3683 0.048

10 1 0.5 3600 0.80 20 125.1 763 766 765 2987 891 5578 3473 0.063

TABLE I: KKLT Benchmark Points. These cases with N = 0 will serve as reference points for our exploration of the much
richer DMM parameter space.

Ranges [GeV]

mχ̃0
1

mχ̃0
2
−mχ̃0

1
m
χ̃±
1
−mχ̃0

1
mg̃ mτ̃1 mt̃1

Ωh2

Point Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 234 1485 4.8 442 0.2 358 526 3162 1400 1910 514 1844 0.001 0.122

2 116 1638 4.6 1241 0.2 2.9 439 4094 1830 2824 982 4859 0.001 0.127

3 968 1422 7.9 33 3.3 5.9 1074 2672 1217 1753 989 1661 0.014 0.123

4 437 839 3.0 340 0.2 340 448 2421 1157 1217 1074 1687 0.006 0.128

5 64 1101 5.2 100 1.6 4.8 440 3398 879 1241 668 2387 0.001 0.127

6 654 1272 4.8 498 0.7 498 713 3560 1154 1385 1098 2334 0.019 0.128

7 74 1453 3.0 7.9 1.6 2.7 1228 4956 1640 2313 1366 3126 0.001 0.128

8 318 1111 2.5 1876 0.2 1.4 3767 5642 1779 2806 2700 7035 0.003 0.128

9 86 1083 2.7 6.3 1.4 2.7 3029 6843 898 1214 2537 3929 0.001 0.127

10 79 885 2.9 5.5 1.6 2.6 2169 5682 543 895 2707 3549 0.001 0.116

TABLE II: Ranges for the superpartner masses in DMM for the KKLT Benchmark Points presented in Table I. The minimum
and maximum values give the observed range in each quantity over the three-dimensional scan in (N,αg,Mmess).

B. DMM Perturbations on KKLT Base Points

The previous subsection identified one particular qualitative difference between the pure mirage mediation/KKLT
framework, and the allowed possibilities for deflected mirage mediation: the possibility of wino-like dark matter. In
this section we will pursue other qualitative distinctions that arise from the addition of gauge-charged messenger
fields. Previous work [8] performed an exhaustive search in the KKLT framework, from which we will make our
departures from KKLT into DMM. This work scanned M0, αm, and tanβ for each combination of modular weights
(nM , nH). From these results, we can choose a small number of benchmarks of the most phenomenologically relevant
points in this framework. The benchmark points chosen are listed in Table I, and are representative of the most
phenomenologically interesting points within the KKLT framework across a span of modular weight combinations.
We can then use these particular combinations of M0, αm, tanβ, and the modular weights, then scan over αg, Mmess,
and N .

For a given KKLT point, deflection can lead to large changes in the spectrum. Table I gives the values for our
benchmark KKLT points, and Table II shows the effect of scanning over the DMM extension of the parameter space
for these points. That is, Table II gives the maximum and minimum value of each quantity, over the three-dimensional
scan in (N,αg,Mmess) described above. Consider, for example, point 1 in Table I. The KKLT parameter set predicts
a 1400 GeV LSP neutralino. However, the range of lightest neutralino masses for point 1 in Table II indicates that
the deflection can reduce the neutralino mass down to ∼ 250 GeV, or (alternatively) push other superpartner masses
to very low values. For all ten benchmarks the minimum LSP mass found is generally quite lower than that predicted
by the KKLT base point.
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FIG. 7: Low energy mass ranges for point 1 (left) and point 2 (right) for the quantities in Table II. The dots represent the
values for the corresponding KKLT base point with zero messengers, from Table I.
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FIG. 8: Low energy mass ranges for point 5 (left) and point 8 (right) for the quantities in Table II. The dots represent the
values for the corresponding KKLT base point with zero messengers, from Table I.

The LSP for KKLT base point 1 is 99.8% bino-like. The neutralino relic density is acceptable as the result of
co-annihilation between this bino-like state and the nearly degenerate stop. From Table 2 we see that over the range
of DMM variants of this point, there is a transition from bino-like to wino-like and Higgsino-like LSPs. This is
evidenced by the minimum values obtained in the mass differences mχ̃0

2
−mχ̃0

1
and mχ̃±

1
−mχ̃0

1
. As a consequence,

co-annihilation with light gauginos can produce a greatly reduced neutralino relic density. The LSP for KKLT base
point 2 is 99.7% Higgsino-like, and again very close in mass to the lightest top squark. Much of the DMM parameter
space based on this point also yields a Higgsino-like LSP, but the possibility of getting large mχ̃0

2
−mχ̃0

1
for certain N

and αg combinations suggests that wino-like LSPs are also possible. In such cases, the stop mass can be quite a bit
larger than for the KKLT point. Similar behavior is seen with base point 5 in Tables I and II.

We can visualize the content of these two tables by looking at Figure 7, which depicts the minimum and maximum
values of Table II for point 1 (left panel), and point 2 (right panel), both involving the modular weight set (nM , nH) =
(0, 0). The heavy dot represents the KKLT base point from Table I. The magnitude of the DMM corrections (37)
and (38) increase as αg moves from negative to positive values. In both cases we see the striking effects that the
gauge messenger fields can have on the resulting low-energy spectrum. Notable is the great reduction in gluino mass
that is possible, relative to the KKLT base point. This typically comes in conjunction with a great compression of
the spectrum, with the mass difference mg̃ −mχ̃0

1
often approaching zero in the extreme DMM limit.

As a general rule, addition of deflected mirage mediation results in a more compressed superpartner spectrum,
though there are variations depending on the KKLT base point. Figure 8 depicts the minimum and maximum values
of Table II for point 5 (left panel), and point 8 (right panel). Consider first the DMM ensemble based on point 5.
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FIG. 9: Allowed parameter space for DMM perturbations on point 2 of Table I. In both cases we assume (nM , nH) = (0, 0),
tanβ = 9, and fix either M0 = 2900 GeV (left panel) or αm = 1.8 (right panel), as is the case for the KKLT base point 2 in
Table I. The allowed region in the (αm, αg) plane (left) and (M0, αg) planes are displayed for N = 3.

Here we see a degenerate system of electroweak gauginos which is not significantly affected by the DMM deformation.
For the base point in Table I, the other superpartners (particularly those carrying color) are not close to the LSP in
mass. The addition of gauge messengers, for positive αg, has the potential to drive these masses down signficantly,
potentially yielding a rich diversity of particles at, or just around, the TeV scale. Similar behavior is seen with the
DMM ensemble based on points 3, 4 and 7. Yet for base point 8, the KKLT point is already near the low end of the
ranges for gluino and stop masses. The DMM addition can only increase these masses (and decrease the LSP mass),
meaning that here the gauge messengers generally reduce the compression in the spectrum. Naturally, these effects
have profound implications for superpartner searches at the LHC [47, 48], which will be our focus in Section V.

Before proceeding to the LHC implications of deflected mirage mediation, it is instructive to consider how the
inclusion of gauge messengers can affect the space of viable KKLT base points themselves. We focus here on the
particular case of base point 2 from Table I. Figure 9 shows the effect of adding N = 3 messenger multiplets, over all
messenger mass scales, to this point. In the left panel, αm is allowed to vary away from the original value of αm = 1.8,
while keeping M0 = 2900 GeV fixed. In the right panel, M0 is allowed to vary while αm is held fixed. Our KKLT base
point is clearly part of the αg = 0 line in the left panel, but the inclusion of αg 6= 0 allows other αm values, including
the possibility of very light gluinos for αg → 1 near the KKLT limit of αm = 1.

In the left panel of Figure 9 we see three distinct regions, two points where αm ∼ 0.5 and αg ∼ −1, an area with
αm ∼ 1.8 and αg < −0.5, and finally a large region with αm > 1 and αg > −0.5. The first region comes about
due to points with a bino-like LSP and an intermediate messenger scale Mmess ∼ 109 GeV, driving the gluino mass
down and softening the running of the stop so that the Higgs mass for these points is boosted by a highly mixed, and
light, stop. The other region, below αg < −0.5, are points with light Higgsino LSPs and mixed stops as well. The
gap around αg ' −0.5 consists of points where the stop is either very light or the LSP. Here the anomaly mediated
contributions are large, leading to a light stop mass in the UV, while the messenger-scale corrections are too small
to drive the neutralino mass below that of the stop. The upper region consists of points with either a wino LSP or
Higgsino LSP and heavy stops. As αg decreases, αm needs to increase to compensate to make the stop heavy and
thereby obtain the correct Higgs mass.

In the right panel of Figure 9, we see that varying αg allows for a large range of overall mass scales 1 TeV ≤
M0 ≤ 5 TeV. However, the resulting mass of the superpartners is not simply correlated with this quantity, once the
phenomenological constraints are imposed on the parameter space. This is evidenced by the color in the right panel
of Figure 9, which gives the LSP mass in GeV. Larger values of M0 tend to require a smaller value of the messenger
scale, and larger values of αg, to get the correct Higgs mass. Thus, for a fixed value of αg, the points in the figure
at different M0 values tend to have differing messenger mass scales. For positive αg, the largest messenger scales are
at the far right of the plot (large M0). For negative αg this relationship is inverted. Above αg = 0.5, the LSP is
exclusively wino-like, as the deflection is now large enough to push the wino mass to small values. This is significant,
as wino-like LSPs were not found in the pure KKLT scenario studied in [7].
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Point 1 Point 2 Point 3 Point 5 Point 6 Point 7

Quantity 1.0 1.1 2.0 2.1 2.2 2.3 2.4 3.0 3.1 3.2 5.0 5.1 6.0 6.1 6.2 7.0 7.1

(nM , nH) (0, 0) (0, 0) (0, 0.5) (0.5, 0) (0.5, 0.5) (0.5, 0.5)

M0 1900 2900 1950 2000 1800 3200

αm 1.05 1.80 1.65 1.25 0.7 1.45

tanβ 9 9 27 28 9 7

αg 0 0.55 0 0.35 0.10 0.2 0.1 0 0.15 −0.90 0 0.2 0 0.3 0.1 0 −0.35

Mmess – 105 – 1014 105 106 1012 – 1014 106 – 109 – 105 105 – 105

N 0 2 0 3 3 3 4 0 5 3 0 3 0 3 3 0 3

mg̃ 2873 1002 3084 1448 1061 1010 1065 2264 1074 1901 2727 1013 3055 713 902 3924 1228

mt̃1
1434 1265 1554 1061 2582 2536 1008 1500 1062 1109 1461 668 1978 1227 1171 2478 1630

mχ̃0
1

1406 986 1547 836 147 942 727 1415 1042 1101 676 661 1150 654 696 974 1067

B% 99.8% 0.4% 0.1% 0.1% 0.0% 0.1% 0.1% 0.9% 0.5% 0.3% 0.1% 0.4% 99.6% 5.6% 98.7% 0.0% 0.1%

H% 0.2% 0.4% 99.7% 99.5% 99.7% 97.6% 99.7% 97.3% 96.5% 98.8% 99.6% 98.2% 0.38% 72.6% 0.3% 99.9% 99.3%

Ωh2 0.062 0.028 0.077 0.070 0.003 0.091 0.057 0.124 0.044 0.041 0.055 0.018 0.069 0.019 0.113 0.106 0.107

TABLE III: Benchmarks for LHC study of DMM parameter space. A subset of the KKLT base points in Table I is here
reproduced, together with one or more perturbations that involve gauge-charged messengers. The collection represents a
variety of input parameters, LSP type, thermal relic densities, and mass scales. These example parameter points will be the
focus of our detailed study of LHC phenomenology to follow.

V. LHC IMPLICATIONS OF DEFLECTED MIRAGE MEDIATION

The discovery of the Higgs boson at the LHC in 2012 and ever-improving bounds on the dark matter relic density
from the PLANCK experiment have placed considerable constraints on the form that any new model of physics might
take. As the LHC begins running at 13 TeV, and later 14 TeV, these constraints are expected to further tighten.
As we enter into this new era, we are particularly interested in how DMM will fare in the coming years. For pure
mirage mediation, embedded in the KKLT framework for Type IIB string theory, previous work [8] demonstrated
that the heavy mass spectra left KKLT undiscoverable at

√
s = 8 TeV, with rather dim discovery prospects at√

s = 14 TeV. Further, direct detection of dark matter was left nearly impossible. However, with DMM we have seen
that the addition of a small, fixed number of vector-like messengers can affect the running of these masses at some
scale between the electroweak and the Planck. As was shown in the previous section, this ultimately results in lighter
superpartners which could be within the reach of the LHC for detection in the near future. In the following section
we will determine those portions of the parameter space which have been ruled out by direct searches at

√
s = 8 TeV,

and evaluate the extent to which DMM modifications can enhance accessibility at
√
s = 14 TeV.

A. Benchmark Points

The DMM framework leaves us with a large number of possible input parameters consistent with the constraints
we have placed. While we are interested in the detection prospects of the entirety of the remaining parameter space,
we can gain a sense of the reach that an experiment would have by considering the extrema of the parameter space,
and using these benchmarks to evaluate whether or not a given subsection of the parameter space would be accessible
for a given experiment. In [8] it was found that for the KKLT framework, roughly a dozen benchmark points could
be chosen to give a sense of the discoverability of the parameter space at large. Here too we will consider a small
number of benchmark points that are representative of the DMM framework.

We will consider each of the benchmark points discussed in Table I, around which we performed a scan in the DMM
parameter space. For each grid of DMM points, we consider the following: the point with the lightest LSP, the point
with the lightest gluino, and the point with the lightest stop t̃1. We further isolate only the points where N = 3,
and again choose the same trio of points. We do not impose a lower bound on the gluino mass in this exercise, and
will often find cases with gluino masses below the often-quoted bound of about 1200 GeV. In fact, as we shall see
below, many of these cases would indeed have been discovered at the previous LHC run, while still others would have
escaped detection due to compression between the gluino mass and that of the LSP.

The points that we have chosen to present in detail represent a subset of the entirety of the DMM parameter space,
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and are collected in Table III. We choose this set to gain a fuller understanding of the amount of DMM parameter
space that the LHC can probe, while exhibiting a large range in the input parameters, LSP type, mass spectra, and
mass scales we consider. For example, point 1.1 in Table III represents a case described in the previous section,
near the lower range of the vertical bars in the left panel of Figure 7. The KKLT base point (1.0) has a primarily
bino-like LSP, while the DMM perturbation produces a primarily wino-like LSP, with a significantly smaller mass. All
superpartner masses are reduced by the gauge mediation in this case, with a highly-compressed spectrum emerging.

The four perturbations on KKLT base point 2.0 all involve a relatively small and positive αg, and at least three
messenger fields, thus reducing the masses of the gauginos (the LSP mass and gluino mass are given explicitly in
Table III). Yet the effect on the stop mass depends crucially on the messenger mass scale, Mmess. Larger messenger
scales means fewer decades in energy for the messenger-corrected renormalization group equations to operate, and
consequently lighter stops. This is the complement to the discussion in the previous section regarding the right panel
of Figure 9. As we will see in the following section, the discovery prospects for points 2.1 - 2.4 are quite different,
despite the roughly similar key masses.

The two perturbations on KKLT base point 3.0 show two very different types of compressed spectra that can emerge
at opposite ends of the αg parameter space. Cases with large numbers of messengers, positive αg, and high messenger
scale tend to exhibit the largest amount of compression, while negative αg has less impact on the gluino mass, while
still compressing the stop and LSP masses. The stop mass mt̃1

and LSP mass mχ̃0
1

are roughly similar for points 3.1

and 3.2, yet we will see that the former point will be discovered within the first 40 fb−1 at
√
s = 14 TeV, while the

latter will require as much as 240 fb−1 for discovery.
We round out our benchmarks with a perturbation each on KKLT base points 5.0 and 7.0, and two for base point 6.0.

This latter case is particularly interesting, in that the KKLT base point is in the region identified in [8] as giving
purely bino-like LSP neutralinos. Indeed, case 6.2 is such a point, with roughly the correct thermal relic density. But
the pertrubation in 6.1, with only slightly larger αg, and identical Mmess and Nmess, gives a mixed wavefunction LSP
and much lighter gluino. As we will discuss in the next section, both points 6.1 and 6.2 would have escaped detection
at the previous LHC run, but both are prime candidates for discovery in the first 5 fb−1 in the upcoming run.

B. Relevant LHC Searches

In addressing, more specifically, the issue of detection at the LHC, we hope to identify some commonalities among
these points, and the larger set of 60 benchmarks from which they are chosen, that will guide our search strategies.
In order to simulate the LHC signature for each of these benchmark points, we take the electroweak-scale SLHA file
generated by SoftSUSY (as discussed previously), then generate the full decay table with SUSY-HIT [49]. For several
of the benchmark points, the mass spectrum features a neutralino LSP with a stop NLSP only slightly heavier. For
these points, the decay t̃1 → tχ̃0

1 is highly suppressed, as is the decay t̃1 → bWχ̃0
1, which are the dominant decay

channels when ∆m(t̃1, χ̃
0
1) > mt and ∆m(t̃1, χ̃

0
1) > mW + mb, respectively. With such a small mass gap, the only

decay processes allowed are t̃1 → cχ̃0
1 and t̃1 → bf f̄ χ̃0

1. These processes require additional calculations separate from
the main SUSY-HIT routines [50]. Once these decay tables are generated, we use MadGraph5 aMC@NLO 2.2.2 [51]

to simulate production of all pp → X̃X̃ processes, where X̃ represents any supersymmetric particle. We then use
MadEvent to generate 10,000 events for each parameter point, followed by PYTHIA 6.4 to perform the showering
and hadronization. Detector simulation is performed in Delphes-3.1.2 using the default ATLAS detector card [52]. In
total, we generated events for 60 parameter points, including those of Table III.

When considering the LHC implications of DMM, we consider the results published by the ATLAS and CMS
collaborations. Both have conducted many searches for possible SUSY signatures in the

√
s = 8 TeV data they

have collected. To date, however, no signal above background expectations has been found by either of the two
collaborations. For the sake of simplicity, we will consider only the ATLAS search results; the searches conducted by
ATLAS tend to utilize geometric cuts in their signal region definitions, which are better suited to simple computer
simulation. To date, ATLAS has published 32 searches using the full

√
s = 8 TeV data set, as well as a number of

summary documents. By considering the properties of the 60 DMM points generated, we can focus on a small number
of these searches to target the event topologies most likely to be produced.

For example, of the 60 benchmark points for which we performed simulations at
√
s = 8 TeV, we find that lepton

production is generally rare for the DMM points, though it can be substantial for the associated KKLT base points.
Before considering lepton pT and angular distribution, we find that across the benchmarks, events with leptons
generally make up less than 10% of the total number of events; events with two leptons or more are even rarer,
typically making up no more than 5% of the total number of events. Conversely, 51 of the 60 benchmark points have
zero reconstructed leptons for at least 80% of the events. At

√
s = 14 TeV, this property persists. Only in two cases

do signatures with leptons become the predominant topology, and in only two others does it surpass 33% of the total
event count. At

√
s = 14 TeV, these points have a total SUSY production cross section of O(10−4) fb and O(10−2) fb,
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Benchmark σ8 TeV (fb) σ14 TeV (fb) % Lepton Peak Njets % B-Jets

1.0 5.1× 10−3 0.67 3.6% 3 27.8%

1.1 10.1 2.6× 102 0% 3 4.6%

2.0 1.8× 10−3 0.31 0% 2 23.0%

2.1 0.3 22.9 21.1% 8 85.3%

2.2 6.0 1.7× 102 21.9% 8 87.5%

2.3 9.9 2.4× 102 0.3% 4 5.1%

2.4 5.6 1.8× 102 10.5% 6 53.6%

3.0 1.3× 10−2 3.9 18.6% 6 54.5%

3.1 7.7 2.8× 102 0.4% 4 6.2%

3.2 0.7 35.8 6.7% 4 31.7%

4.0 3.8× 10−3 2.1 14.9% 5 43.1%

5.0 6.7× 10−3 1.8 27.0% 5 42.5%

5.1 20.0 4.6× 102 0% 6 57.7%

6.0 1.2× 10−4 0.32 12.8% 4 32.1%

6.1 2.0× 102 2.6× 103 0% 4 19.1%

6.2 26.9 5.9× 102 4.1% 5 36.3%

7.0 7.7× 10−7 3.1× 10−2 41.3% 4 30.6%

7.1 1.4 86.1 0.1% 4 7.9%

8.0 3.5× 10−6 7.8× 10−2 0.1% 3 9.7%

9.0 7.5× 10−15 4.9× 10−6 26.6% 4 58.0%

10.0 2.4× 10−12 1.9× 10−4 76.7% 4 17.2%

TABLE IV: This table contains the SUSY production cross sections at
√
s = 8 TeV and

√
s = 14 TeV, as well as the percentage

of events containing at least one high-pT lepton, the peak in the jet multiplicity distribution, and the percentage of events
containing at least one b-tagged jet. Note that this is simply the number of jets whose pT > 20 GeV, and does not include
other quality requirements placed on jets. Note that the higest lepton multiplicities occur for the KKLT base points, whose
cross-sections are well below the femptobarn scale.

respectively. These cross sections are sufficiently low that, despite their high lepton production rates, they will not
result in a significant number of leptons produced at the LHC during the 14 TeV run. With this in mind, we can
safely consider only searches that contain a lepton veto.

Jet multiplicities tend to be relatively low for these 60 benchmarks, with two-thirds of the cases studied having
a peak jet multiplicity of Njet ≤ 5. A small subset of the remainder have a broad distribution of jet multiplicities,
peaking at Njet = 7 − 8, with long tails that extend to very large multiplicities. But the vast majority of our cases
will be visible first in the low jet-multiplicity channels. As most of the cases that are accessible at the 8 TeV run
involve light stops, it is not surprising that a large fraction of the events we simulated have one or more b-tagged jets.
Across the 60 cases studied, just under 40% of events contain at least one b-tagged jet, with several of the benchmarks
exhibiting twice that fraction of events with b-tagged jets.

We summarize the gross LHC phenomenology of some of our benchmark points in Table IV, which includes all
ten KKLT base points from Table I, as well as the perturbations listed in Table III. Displayed are the overall
SUSY production cross sections at both

√
s = 8 TeV and

√
s = 14 TeV, the percentage of events containing at

least one high-pT lepton, the peak in the jet multiplicity distribution, and the percentage of events containing at
least one b-tagged jet. Given the broad features of the benchmarks, we have chosen to pursue the general-purpose
ATLAS SUSY searches which involve low jet and lepton multiplicity. More specifically, we will consider the general
(low-multiplicity) jets plus missing transverse energy (/ET ) search [53], the so-called ‘monojet’ signatures of the stop
search [54] for small ∆m(t̃1, χ̃

0
1), and the dedicated stop searches of [55] and [56], which require b-tagged jets, for large

∆m(t̃1, χ̃
0
1). Though we expect leptonic signatures to be sub-dominant, we nevertheless also simulate the signatures

of the one-lepton search of [56], which requires at least three b-tagged jets in the final state, as well as the single hard
lepton plus multijets searches of [57].

Each of the search strategies utilized by ATLAS divides the search into two parts: object reconstruction and event
selection. The object reconstruction sets requirements for each object in an event, typically the jets, leptons, photons,
and missing energy. For the ATLAS searches conducted at 8 TeV, jets are reconstructed using the anti-kT algorithm

with a radius parameter of 0.4. Jets are required to be isolated from leptons by calculating ∆R ≡
√

∆η2 + ∆φ2,
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and demanding ∆R > 0.2. If ∆R < 0.2 between any jet candidate and any electron, the jet is discarded. For any
surviving jet candidates, if ∆R < 0.4 between a jet candidate and any leptons, the lepton is discarded. For remaining
jet and lepton candidates, further requirements are placed on |η| and pT that vary from one search to another. Further
isolation requirements are placed on each of the jet and lepton candidates. Finally, the missing transverse energy, /ET ,
is calculated to be the negative of the vector sum of the pT of all reconstructed objects with |η| < 4.9, not belonging
to other reconstructed objects.

1. Low multiplicity jets plus missing transverse energy

Requirement
Signal Region

2jl 2jm 2jt 3j 4jl- 4jl 4jm 4jt 5j 6jl 6jm 6jt 6jt+

/ET /
√
HT [GeV1/2] 8 15 – 10 –

/ET /meff(N) – 0.3 – 0.4 0.25 0.2 0.25 0.15

meff(incl.) [TeV] 0.8 1.2 1.6 2.2 0.7 1.0 1.3 2.2 1.2 0.9 1.2 1.5 1.7

Observed Events 12315 715 33 7 2169 608 24 0 121 121 39 5 6

Sobs
95 1200 90 38 8.2 270 91 10 3.1 35 39 25 6.6 7.9

TABLE V: Signal region definitions, observed number of events, and Sobs
95 for the low-multiplicity jets plus /ET search of [53].

The numbers in the first three rows represent the minimum value for the kinematic quantity in the first column. Further
description of the signal characteristics is given in the text. All data corresponds to 20.3 fb−1 of integrated luminosity.

The ATLAS low-multiplicity jets plus missing transverse energy search contains a number of signal regions, each
requiring between 2 and 6 jets. This is typical in events with production of q̃q̃, q̃g̃ and g̃g̃, where the decay g̃ → qq̄χ̃0

1

produces two jets, and the decay q̃ → qχ̃0
1 produces a single jet. It thus represents a very general search that fits the

gross phenomenology of a wide range of SUSY models.
The most recent iteration of this search was published in May of 2014 [53], and extends the reach of possible SUSY

production beyond previous searches. This search defines 15 signal regions, 13 of which were studied in this work and
are defined in Table V.2 For each signal region, /ET > 150 GeV is required, as is at least one jet with pT > 130 GeV.
A lepton veto is placed on all events containing a single electron or muon with pT > 10 GeV. Between two and six jets
are required for these signal regions, with each additional jet requiring pT > 60 GeV. The first three jets are required
to be separated from the reconstructed /ET direction with a minimum ∆φ(Jet, /ET ) > 0.4, while any additional jets
must be separated by ∆φ(Jet, /ET ) > 0.2. Signal regions are then defined using the ratio /ET /

√
HT , /ET /meff(N),

and /ET /meff(incl.) where HT is the sum of the pT of all jets with pT > 40 GeV, meff(N) the scalar sum of /ET and
the N hardest jets, and meff(incl.) is the scalar sum of /ET and all jets with pT > 40 GeV. The signal regions are
named by the number of jets, and a criterion ‘loose’, ‘medium’, or ‘tight’, depending on the values of each of these
discriminants.

2 Two of the signal regions involved attempting to identify hadronically-decaying W -bosons via a particular jet-pairing algorithm, and
will not be included in our study.
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2. Monojet signatures for light stops

Requirement
Signal Region

M1 M2 M3

pT (Jet, 1) [GeV] 280 340 450

/ET [GeV] 220 340 450

Observed Events 33054 8606 1776

Sobs
95 1951 575 195

TABLE VI: Signal region definitions, observed number of events, and Sobs
95 for the the three monojet-like searches of [54]. The

numbers in the first three rows represent the minimum value for the kinematic quantity in the first column. Further description
of the signal characteristics is given in the text. All data corresponds to 20.3 fb−1 of integrated luminosity.

For some SUSY spectra, particularly those with small mass gaps between SU(3)-charged superpartners and the
LSP, production in association with a single hard jet is of particular interest. The most recent relevant search for
such “monojet” topologies was published by ATLAS in July of 2014 [54] with an integrated luminosity of 20.3 fb−1.
This search was designed to target direct stop production via the two-body decay t̃ → cχ̃0

1, as well as the 4-body
decay t̃→ bf f̄ χ̃0

1 for compressed spectra.3 This is of particular interest for points which feature a heavy LSP, a stop
NSLP, and the remaining superpartners sufficiently heavy as to be effectively integrated out. Each event is required
to have a reconstructed primary vertex with at least 5 associated tracks. Further, each event is required to have
/ET > 150 GeV, and at least one jet with pT > 150 GeV and |η| < 2.8. To eliminate multiple jets, a maximum of 2
additional jets are permitted with pT > 30 GeV; events with additional hard jets are rejected. Each of these jets must
have a minimum ∆Φ(Jet, /ET ) > 0.4. Events with reconstructed electrons or muons are also rejected. Three signal
regions are then defined by additional requirements on the pT of the hardest jet and the /ET . Signal M1 is defined
to have pT (Jet, 1) > 280 GeV and /ET > 220 GeV; M2 is defined to have pT (Jet, 1) > 340 GeV and /ET > 340 GeV;
and M3 is defined to have pT (Jet, 1) > 450 GeV and /ET > 450 GeV. The number of observed events for each signal
region is listed in TableVI.

3. B-tagged jets and missing transverse energy with a lepton veto

Requirement
Signal Region

SRA1 SRA2 SRA3 SRA4 SRC1 SRC2 SRC3

m0
bjj [GeV] < 225 [50, 250] – – –

m1
bjj [GeV] < 225 [50, 400] – – –

min[mT (Jeti, /ET )] [GeV] – > 50 – – –

mb,min
T [GeV] > 175 > 185 > 200

mb,max
T [GeV] – > 205 > 290 > 325

/ET [GeV] > 150 > 250 > 300 > 350 > 160 > 210

Observed Events 11 4 5 4 59 30 15

Sobs
95 6.6 5.7 6.7 6.5 15.7 12.4 8.0

TABLE VII: Signal region definitions, observed number of events, and Sobs
95 for the two classes of b-tagged jets plus /ET searches

of [55]. The numbers in the first six rows represent the minimum, maximum, or allowed range of values for the kinematic
quantity in the first column. Further description of the signal characteristics is given in the text. All data corresponds to
20.1 fb−1 of integrated luminosity.

3 Additionally, there are two signal regions that require charm-tagged jets; we will not be considering these, as Delphes does not incorporate
charm-tagging.



20

In this category we will discuss two separate ATLAS publications, each representing a stop search via b-tagged jets.
The first analysis focuses on stop production where the stop decays via t̃1 → tχ̃0

1 or t̃1 → bχ̃±1 → bW (∗)χ̃0
1, where the

W is assumed to decay hadronically [55]. In either case, the result will be an LSP, a b-tagged jet and 2 non-b-tagged
jets per t̃ produced. For all signal regions, a minimum of /ET > 150 GeV is required, a minimum of six jets, two
of which must be b-tagged, and no reconstructed leptons (electrons or muons). The two highest pT jets must have
an energy of at least 80 GeV, with remaining jets satisfying pT > 35 GeV, and the three highest pT jets must be
separated from the missing energy by at least ∆φ > π/5. A further requirement is placed on the b-tagged jet closest
in angle to the missing energy. The transverse mass, defined as

mb,min
T =

√
2pbT /ET

[
1− cos ∆φ(pbT , /ET )

]
(42)

must have a minimum of mb,min
T > 175 GeV.

The search is then divided into three subsections. We will consider only the first (SRA) and third (SRC). For the
first (SRA), the two jets with the highest b-tag weight are selected, then of the remaining jets, the two closest in
the η − φ plane are combined to form a W candidate, which is then combined with the first b-tagged jet to form
a top candidate with mass m0

bjj . A second W candidate is formed by repeating the procedure with the remaining

jets. Lastly, the value min[mT (Jeti, /ET )] is calculated as the minimum mT of each of the signal jets and the missing
energy. With all of these quantities, the signal regions are defined as in the first four columns of Table VII.

The second subsection that we consider (SRC) focuses on the specific case when one of the stops decays via
t̃1 → bχ̃±1 ; χ̃±1 → W (∗)χ̃0

1. Only five jets are now required, and a minimum of ∆φ > 0.2π between the two hardest

b-tagged jets is required. The mT is further constrained: for SRC1, mb,min
T > 185 GeV while for SRC2 and SRC3,

mb,min
T > 200 GeV. A further quantity, mb,max

T , is computed similarly to mb,min
T in (42), but now with the b-tagged

jet being that with the largest ∆φ from /ET . For SRC1, mb,max
T > 205 GeV; for SRC2, mb,max

T > 290 GeV; and for

SRC3, mb,max
T > 325 GeV. These values are collected in the final three columns of Table VII.

Requirement
Signal Region

SR-4jA SR-4jB SR-4jC SR-7jA SR-7jB SR-7jC

∆φ4j
min 0.5

/ET /m
4j
eff 0.2

m4j
eff [GeV] 1300 1100 1000 – – –

/ET /
√
H4j
T [GeV1/2] – – 16 – – –

mincl
eff [GeV] – – – 1000 1000 1500

/ET [GeV] 250 350 400 200 350 250

Observed Events 2 3 1 21 3 1

Sobs
95 5.2 6.5 3.9 13.9 6.1 4.2

TABLE VIII: Signal region definitions, observed number of events, and Sobs
95 for the two classes of b-tagged jets plus /ET searches

of [56]. The numbers in the first six rows represent the minimum value for the kinematic quantity in the first column. Further
description of the signal characteristics is given in the text. All data corresponds to 20.1 fb−1 of integrated luminosity.

The second analysis we include is a more general search that targets third generation squark production and/or
gluino production. Like the previous analysis, it relies heavily on the presence of b-tagged jets and requires large /ET .
For this study we will focus on the channels which impose a veto on electrons with pT > 20 GeV and muons with
pT > 10 GeV. Events are separated into two categories. The first category (4jA,B,C) requires at least four jets, all
four of which having a minimum jet pT > 50 GeV. The second category (7jA,B,C) requires at least seven jets, all seven
of which having a minimum jet pT > 30 GeV. All channels require the leading jet to satisfy pT (Jet, 1) ≥ 90 GeV, and
require the presence of at least three b-tagged jets, all with pT > 30 GeV.

Additional global cuts for all signal regions are given in terms of H4j
T , defined as the scalar sum of the pT of the

four hardest jets in the event, m4j
eff , defined as the scalar sum of /ET and the pT of the four hardest jets in the event,

∆φ4j
min, defined as the minimum azimuthal separation between any of the four leading jets and the direction of the

missing transverse energy, and mincl
eff defined as the scalar sum of /ET and the sum of the pT of all jets in the event

with pT > 30 GeV. These cuts are given in Table VIII, along with the observed number of events, and Sobs
95 for the

six signal regions.
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C. Results and Case Studies

We begin this section by considering the reach of the already completed searches at
√
s = 8 TeV, described in the

previous subsection, on the parameter space of the DMM framework. We then investigate a number of case studies
motivated by the points in Table III, which are representative of the LHC phenomenology of the model space as a
whole.

As stated previously, none of the parameter combinations in Tables III and IV would have given a significant excess
over background at the previous LHC run. This is despite some relatively large cross-sections at

√
s = 8 TeV (see

Table IV). In general, we can determine the likelihood that a given parameter point would have produced a detectable
signal above background by comparing the simulated number of signal events at

√
s = 8 TeV versus the reported

Sobs
95 value, which gives the 95% confidence-level upper bound on the number of signal events compatible with the

ATLAS observations. Thus, for example, our simulation of point 6.1 (the benchmark point with the largest production
cross-section) suggests an overall production of 4060 events in all channels after 20.3 fb−1 of data-taking, but the
compression between the gluino mass and LSP mass translates into only 282 events in the 2jl channel, 34 events in
the 2jt channel, and 39 events in the 4jl channel, all of which are below the reported Sobs

95 values of 1200, 38 and 91
events, respectively (see Table V). We estimate the greatest excess would have been in the 2jt channel, but the signal
significance would be only 0.7σ in this channel.

We find that while none of the KKLT base points would have been discovered thus far, a fair fraction of the DMM
parameter space involving stop or gluinos with masses at or below 1 TeV would now be ruled out. In general, we
find the best channels at

√
s = 8 TeV are in the low-multiplicity jets plus /ET search, with a reach of mg̃

<∼ 600 GeV
for small mass gaps between the gluino and the LSP ∆m(g̃, χ̃0

1) <∼ 50 GeV, and mg̃
<∼ 900 GeV for mass gaps of

greater than 50-100 GeV. We find the reach in the lightest stop mass to be about 100 GeV less for the two different
mass gaps between the stop and the LSP. However, DMM corrections tend to move the masses of SU(3)-charged
objects in a correlated way, tending to compress both the gluino and the stop toward the lightest neutralino mass. In
extreme cases, a nearly degenerate trio of masses (mχ̃0

1
, mt̃1

, mg̃) would have escaped detection, even at a mass scale

of 500-600 GeV. Such outcomes are rare in the DMM landscape, but not impossible (see point 3.1 of Table III, to be
discussed in more detail below). In terms of theoretical parameters, the modular weight combinations most likely to
produce spectra detectable at

√
s = 8 TeV are the (nM , nH) = (0, 0), (0, 0.5) and (0.5, 0) cases, with low messenger

scale and αg > 0.
To discuss detection in the near future, we will use the signal definitions at

√
s = 8 TeV described above as a

first approximation to what will be done at 14 TeV. Signal significance is estimated by calculating the background
counts using the pre-generated Snowmass 2013 published backgrounds at

√
s = 14 TeV [58], which were generated

in a manner identical to that in which our signal files were produced. In general, we find that the loosest possible
cuts tends to preferentially populate the signal relative to background, as most of the parameter space within reach
at the LHC will feature a compressed spectrum allowing less phase space for hard jets and leptons. We thus do not
attempt to optimize beyond the

√
s = 8 TeV criteria by tightening the requirements on various distributions, though

we will consider a modified monojet, or ‘lopsided jet’, signature in what follows.
A summary of the results of our simulations at

√
s = 14 TeV is given in Table IX for the DMM perturbations shown

in Table III. We show results for the quantity Lmin, defined as the minimum amount of integrated luminosity needed
to achieve a 5σ (S/

√
B = 5) signal significance in that particular channel. The most effective discovery channels

are uniformly found to be from the low-multiplicity jets plus /ET search. The first two columns give the best signal
region from Table V with the corresponding Lmin value. The next two columns give the corresponding Lmin from the
best signal region of the monojet search in Table VI, as well as a monojet-oriented perturbation on the 2jl channel
introduced in [59] and to be discussed below. Finally, the last three columns indicate the Lmin value for the best
signal regions involving multiple b-tagged jets. If a 5σ excess is not expected within 3000 fb−1 the entry is left empty.
Note that none of the KKLT base points (X.0) will yield a 5σ excess after 3000 fb−1 of integrated luminosity. We
will now discuss the details behind many of the numbers in Table IX via a sequence of case studies.

1. Case Study 1: Signatures involving b-tagged jets; Points 2.2, 6.1 and 6.2

Let us begin our study of comparative LHC signatures of DMM parameter points by considering the case of point 2.2
versus 6.1. These two points share common gauge mediation parameters: N = 3, Λmess = 105 GeV and αg positive,
but relatively small. Point 2.2 has a relatively large large mirage parameter, αm = 1.8, while that of point 6.1 has
αm = 0.7. Both involve universal scalar masses (to leading order) at the unification scale, with modular weights
(nm, nH) equal to (0, 0) and (1/2, 1/2), respectively.

Point 2.2, with vanishing modular weights, produces a heavier stop mass than that of point 6.1 as indicated in
Table III: mt̃1

= 2582 GeV versus 1227 GeV. More relevant to LHC phenomenology is the differences in the gaugino
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Monojet Lmin B-tagged jet Lmin

Benchmark Overall Lmin Best Channel 2jl (opt) monojet M2 B-tag SRA2 B-tag 4jB B-tag 7jC

1.1 80 2jt 159 303 – – –

2.1 94 6jt+ – – – 249 133

2.2 1.9 6jt+ 64 – 123 4 2

2.3 141 2jl 185 2909 – – –

2.4 22 5j 46 – 216 97 100

3.1 22 2jm 29 96 – – –

3.2 240 2jt 574 – – – –

5.1 2.9 5j 11 2466 55 5 7

6.1 1.7 3j 2.3 32 90 – 929

6.2 4.6 4jl 12 – 69 70 53

7.1 65 4jl 168 – – – –

TABLE IX: Minimum integrated luminosity Lmin (in fb−1) to achieve a 5σ signal significance in a given channel, at
√
s = 14 TeV.

In all cases, the strongest signal will be in the low-multiplicity jets plus /ET search. The overall Lmin therefore reflects the
strongest of the 13 channels in Table V, given in the third column. The value of Lmin to achieve the same signal significance
in certain sub-dominant channels is also given, for reference. Columns 4 and 5 represent monojet-like channels, while the final
three columns represent various signatures that involve b-tagged jets. Signal region descriptions are given in the text. Note
that none of the KKLT base points (X.0) will yield a 5σ excess after 3000 fb−1 of integrated luminosity.

FIG. 10: Effective mass and total jet multiplicity for points 2.2 and 6.1. Left panel gives the effective mass distribution meff for
points 2.2 and 6.1, while the right panel gives the total jet multiplicity Njets for the same two points. Both plots are normalized
to 20 fb−1 at

√
s = 14 TeV, but with the distributions for point 2.2 multiplied by a factor of ten to allow for greater readability.

sector. Point 2.2 has a gluino mass of mg̃ = 1061 GeV and LSP mass of mχ̃0
1

= 147 GeV, while point 6.1 has a

gluino mass of 713 GeV and LSP mass of 654 GeV. As a consequence, at
√
s = 14 TeV, the cross-section for overall

superpartner production for point 6.1 is 2.6 pb, versus 169 fb for point 2.2. The difference is entirely accounted for
by the gluino mass, as gluino pair production represents over 94% of the total production cross-section in both cases.
Despite the huge disparity in total production cross-sections, the two points have nearly identical values of the overall
Lmin value needed for discovery (just under 2 fb−1).

It is not difficult to understand why this is. Despite the light gluino, point 6.1 has a mass difference between the
gluino and the LSP of roughly 60 GeV, while point 2.2 has a spectrum not dramatically different from the so-called
“simplified” models that are often used as benchmarks in the interpretation of LHC search results. Indeed, in the
left panel of Figure 10 we see the effective mass distribution at

√
s = 14 TeV. Despite the much larger signal size for

point 6.1 (note that distributions for point 2.2 are multiplied by a factor of ten for readability), the small mass gap
between the gluino and the LSP translates into an effective mass distribution heavily weighted towards those bins
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below the cut value of 700-800 GeV which defines the 2jl and 4jl signal regions. Table IX indicates that within the
first 2 fb−1 at

√
s = 14 TeV both models would be “discovered” at the LHC, in the six-jet channel for point 2.2, and

in the three-jet channel for point 6.1. The large mass gap between the gluino and LSP in the case of point 2.2 allows
more phase space to generate jets with pT > 40 GeV, as indicated by the jet multiplicity distributions shown in the
right panel of Figure 10.

FIG. 11: Multiplicity of b-tagged jets and fourth jet pT for points 2.2 and 6.1. Left panel gives the number of events with one
or more b-tagged jets. The right panel gives the pT (Jet, 4) of the fourth hardest jet in the event, a key discriminant in the
b-tagged searches described in Table VIII. Both distributions are generated prior to the imposition of any other signal region
cuts, and are normalized to 20 fb−1 of data. The signal distribution for point 2.2 is multiplied by a factor of ten to allow for
greater readability.

It is instructive to consider sub-dominant channels, as these signals will provide corroboration of new physics and
a powerful descriminant between potential models of this new physics. In the case of points 2.2 and 6.1 all of the
signal regions in the general class of jets plus missing transverse energy will show signals in the first 30-40 fb−1. Thus
we consider those signal regions that are defined as having one or more b-tagged jets. Here we find the corroborating
signals will arise nearly immediately for point 2.2, while requiring approximately 100 fb−1 for point 6.1, despite
the much larger overall production cross-section. The precise values of Lmin for the particular signatures SRA2 of
Table VII, and 4jB and 7jC of Table VIII, are given in the last three columns of Table IX.

As mentioned previously, both points are dominated by gluino pair production. For point 2.2, the gluino decays to
χ̃0

1,2tt̄ 40% of the time, and χ̃±1 bt 54% of the time, thus assuring at least four genuine b-jets in the vast majority of

signal events, with up to four leptons possible from the W± bosons produced in the top decays. The high probability
of b-tagged jets and leptons in the final state is reflected in Table IV. The smaller mass gap in the case of point 6.1
eliminates the possibility of top pairs from the gluino decay, all but eliminating the prospect of high-pT leptons in the
final state.4 Furthermore, the gluino decays into χ̃0

1,2bb̄ only 14% of the time, decaying to lighter flavors for the vast
majority of events. Thus we expect, on average, fewer b-tagged jets per event for point 6.1, which is only partially
mitigated by the much higher cross-section for this point relative to point 2.2. This is displayed in the left panel of
Figure 11, where the multiplicity of b-tagged jets is given for both points. Of the b-jet searches in Table VII, the
signal region SRA2 tends to be the most promising of the cases that require only two b-tagged jets. Here we find
comparable values of Lmin ' O(100 fb−1) in this channel, despite the great disparity in production cross-sections.

This outcome is somewhat disappointing, given that point 6.1 still produces ample events with at least one b-tagged
jet. The signatures of Table VII have the advantage of only requiring two b-jets, but they simultaneously require a
minimum of six jets overall, a property satisfied by less than a quarter of the event sample for point 6.1. Given the low
overall jet multiplicity, we might have hoped that the four-jet channels of Table VII would be particularly effective,
but note that the signal region definition calls for pT (Jet, 4) ≥ 50 GeV, while the small mass difference ∆m(g̃, χ̃0

1)
implies that such sub-leading jets will generally have very low pT , often only slightly above the threshold pT to be

4 Thus we expect no signal in the most promising single-lepton channel for point 6.1, even after 3000 fb−1 of integrated luminosity.
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classified as a jet in the initial event reconstruction (see the right panel of Figure 11). Furthermore, only a negligible
fraction of the events for point 6.1 have three b-tagged jets – a fraction roughly consistent with the mis-tagging rate
for assigning a b-tag to a light quark jet in Delphes. By contrast, point 2.2, with its substantial mass differences
between the gluino and the light electroweak gauginos, seems ideally suited to these general-purpose b-jet searches,
and should produce signals in the 4j and 7j channels of Table VIII roughly simultaneous with the initial discovery in
the 6jt+ channel.

Let us now extend this discussion to include point 6.2 from Table III. Point 6.2 shares all KKLT base point
parameters with point 6.1, and differs in the gauge mediation sector only in the value of αg, which is slightly smaller.
The spectrum of point 6.2 therefore is, not surprisingly, rather similar to that of point 6.1, though the gaugino sector
is slightly different. Note that the LSP of point 6.2 is almost entirely bino-like, with a thermal relic density consistent
with WMAP/PLANCK, while that of point 6.1 is a mixed state that is mostly Higgsino-like with a relic density
that is smaller by an order of magnitude. The gluino mass for point 6.2 is mg̃ = 902 GeV, and the cross-section
for superpartner production is therefore intermediate between points 2.5 and 6.1 (though now gluino pair production
constitutes only 84% of the total production cross-section, with associated production of a gluino with a light-flavor
squark representing 15% of the total). Gluinos decay via various three-body decays involving top and bottom quarks,
suggesting relatively high jet multiplicity with many b-tagged jets in the final state.

We might, therefore, expect that this point would have an Lmin in the low-multiplicity jets plus /ET channel that is
similar to the other two points. And indeed, Table IX shows that the best discovery channel is 4jl for this point, with
Lmin = 4.6 fb−1. It is noteworthy that this point has the lowest Lmin of the trio in the sub-dominant b-jet channel
SRA2 and the monojet channel M2. The branching fractions of the gluino and lightest stop are nearly identical for
points 6.1 and 6.2, but the increased signal in the three b-jet channels of Table IX is entirely due to the large mass gaps
between the gluino and the light electroweak gauginos. We note that all b-jet channels studied are equally effective
in this case.

2. Case Study 2: ‘Optimized’ monojet signatures; Points 3.1, 3.2 and 5.1

Of the previous trio of points, we might note a curious fact about the data presented in Table IX: point 6.1 is
the only one of the three that yields a 5σ excess in the most advantageous ‘monojet’ channel, signal region M2
from Table VI. In fact, it yields a signal in this channel well before the corroborating b-jet channels studied in
the previous subsection. This is particularly odd, in that gluino pair-production dominates the signal, with gluinos
decaying universally via three-body decays involving two quarks and an electroweak gaugino. In short, there is no
reason to anticipate this particular model would be a natural candidate for a monojet signal at all. Clearly, then,
these signatures are not adequately addressing the topologies they were designed to attack (at least within our model
framework). This begs an obvious question – just how ‘monojet-like’ are the events captured by the so-called monojet
signature M2? As it happens, this signal region is not really a monojet search at all, but rather a skewed two- and
three-jet search in which stringent demands are placed on the leading jet; see the conditions outlined in Table VI.
Thus, point 6.1 produces a signal in this channel primarily because it produces no leptons, has a long tail in the
pT distribution of the hardest jet, and (crucially) has a jet multiplicity skewed towards small numbers of jets. In
other words, the monojet channel here simply captures the same sorts of events that appear in the two and three-jet
channels of Table V.

To get a clearer picture of this phenomenon, let us now consider points 3.1, 3.2 and 5.1 from Table III. Point 3.1 is
the most compressed model in Table III. The heaviest squarks in this case have masses of roughly 1760 GeV, while
the gluino and lightest stop are nearly degenerate with the LSP at just above 1 TeV. Thus, the entire spectrum is
compressed and all cascade decays will involve soft outgoing particles. We might therefore expect this point to be one
for which the monojet-like search strategies would be most effective.

Production is roughly evenly split between gluino pair production and (light-flavored) squark production in asso-
ciation with a gluino. These light-flavored squarks decay back to a light quark and a gluino 95-99% of the time,
while the gluino decays 100% of the time to a gluon and an LSP. So we can expect a small number of very soft jets,
with the potential that one jet will have larger pT from the decay of a light squark (or from initial state radiation).
Indeed, the peak in the jet multiplicity distribution for point 3.1 is at four jets (see Figure 12), with less than 1% of all
events containing a high-pT , isolated lepton. But the best discovery channel for this point is the two-jet channel with
relatively mild kinematic requirements (2jm), with an associated Lmin of 22 fb−1. In contrast, the best monojet-based
search is M2, with a comparatively large Lmin = 96 fb−1. The failure of the monojet signal to be competitive is mostly
due to the veto placed on events with a fourth jet satisfying pT (Jet, 4) > 30 GeV, which effectively vetos all events
with Njets > 3. This is a sizeable fraction of the total event sample, as Figure 12 indicates.

It would seem, therefore, that there is potential for improvement in the choice of cuts for monojet-like signatures,
just as there were for b-jet searches in the previous case study. Here we consider an ‘optimized’ two-jet signature,
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FIG. 12: Total jet multiplicity for points 3.1, 3.2 and 5.1. Distributions give the total number of reconstructed jets, prior to
any event selection cuts, normalized to 20 fb−1 of data. Red (dotted) distribution is for point 3.1, green (solid) distribution is
for point 3.2, and blue (dot-dashed) distribution is for point 5.1. The signal distribution for point 3.2 is multiplied by a factor
of ten to allow for greater readability.

FIG. 13: Transverse momentum of leading jet (left) and missing transverse energy (right) for points 3.1, 3.2 and 5.1. Distri-
butions are constructed prior to any event selection cuts and normalized to 20 fb−1 of data. Red (dotted) distributions are
for point 3.1, green (solid) distributions are for point 3.2, and blue (dot-dashed) distributions are for point 5.1. The signal
distributions for point 3.2 are multiplied by a factor of ten to allow for greater readability.

originally introduced in the recent work by the authors [59] in the context of searching for light stops in minimal
supergravity models. This signature is a simple modification of the 2jl signature of Table V, in which the separation
cuts between the direction of the /ET and that of the two hardest jets are significantly increased from ∆φ(Jet, /ET ) > 0.4
to ∆φ(Jet1, /ET ) > π/2 and ∆φ(Jet2, /ET ) > 1 for the hardest and second-hardest jet, respectively. This preferentially
selects signal events with a highly ‘lopsided’ nature, more in keeping with the notion of soft cascade decay products
recoiling against a single hard jet from initial state radiation. For point 3.1 we find that this optimized 2jl signature
far out-performs the traditional monojet signature M2, becoming comparable in effectiveness to the discovery channel
itself. A comparison of the distribution for pT (Jet, 1) with that of the /ET for this point (Figure 13) shows that a
large portion of events will indeed be characterized by pT (Jet, 1) ' /ET , but that these events are in the lowest pT
bins, often below the cutoff of 340 GeV imposed on both quantities by signature M2.

These sorts of gains in Lmin depend on the details of the SUSY model, so generalizations are difficult to state
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unequivocally. For example, consider point 3.2, which might appear to be an ideal candidate for the optimized, or
‘lopsided’, two jet signature. The work in [59] was motivated by the decay t̃1 → χ̃0

1c, and in the case of point 3.2
we have only an 8 GeV mass difference between the lightest stop and the LSP. Here the gluino mass is heavier
(mg̃ = 1901 GeV) and thus gluino pair production accounts for a minuscule fraction of the total signal, which is
instead composed primarily of light-flavored squark pairs (51%) and (light-flavored) squark production in association
with a gluino (32%). Stop pairs account for only 9% of the total SUSY production cross-section. Thus, the 2jl-
optimized search is, in fact, optimal for only a small sub-component of the total production cross-section. The Lmin

value of 574 fb−1 for 2jl(opt) is actually slightly worse than the original 2jl signature, for which Lmin = 500 fb−1.
Again, this is because 91% of the events for point 3.2 are not monojet like in nature at all. This is despite the fact
that a large proportion of these events have pT (Jet, 1) ' /ET , as can be seen from the distributions in Figure 13.
We note that these tend to be the events in the lowest pT bins, where the cuts of 340 GeV on both quantities from
signature M2 would eliminate most of the monojet-like sub-component of the signal.

FIG. 14: Separation in azimuthal angle between leading jets and /ET for point 5.1. The separation ∆Φ between the hardest
jet (red, dotted), and second-hardest jet (green, solid), in all events is shown. Both distributions are generated prior to the
imposition of any other signal region cuts, and are normalized to 20 fb−1 of data.

The improvement from ‘standard’ monojet to ‘optimal’ monojet is most dramatic for point 5.1, where the Lmin for
the monojet signal reduces by two orders of magnitude, making this channel extremely competitive with the five-jet
‘discovery’ channel. Again, the Njet ≤ 3 requirement effectively eliminates the ‘standard’ monojet signal, even though
a high proportion of these events really do have a lopsided kinematic profile. Conversely, the requirements on inclusive
effective mass and /ET listed in Table V are relatively easy to satisfy (see the distributions in Figure 13). The greatest
impact is on the more restrictive separation requirements, ∆φ(Jet1, /ET ) > π/2 and ∆φ(Jet2, /ET ) > 1, which greatly
enhance signal-to-background. We plot these quantities for point 5.1 in Figure 14, where the concentration of events
near ∆φ(Jet1, /ET )→ π is apparent.

Table IX summarizes the effectiveness of the traditional monojet channel M2 as well as the lopsided two-jet channel
we call 2jl(opt). The lopsided two-jet channel is always superior in these cases, mostly due to the relaxation of the
strict Njet ≤ 3 requirement, and (to a lesser extent) the replacement of specific requirements on pT (Jet, 1) with a strict
requirement on ∆φ(Jet1, /ET ) and ∆φ(Jet2, /ET ). In cases where the spectrum is indeed highly compressed, where
the hardest jet arises from a prompt decay of a squark on one side of the event, or from ISR, the 2jl(opt) signature
outperforms other two-jet signatures from Table V. When the model in question is not particularly monojet-like in
the first case, this signature is slightly less effective than those in Table V.

3. Case Study 3: Stop-gluino orderings; 2.1 vs. 7.1

Our final case study is a comparison of points 2.1 and 7.1, in which we will study the impact of the gluino-stop
mass hierarchy on detection prospects at the upcoming run of the LHC. Both points involve a certain degree of
universality among the scalar masses, with point 2.1 having modular weights (nM , nH) = (0, 0) and M0 = 3200 GeV,
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while point 7.1 has modular weights (nM , nH) = (1/2, 1/2) and M0 = 2900 GeV. The values of αm are 1.45 and 1.85,
respectively. In pure mirage mediation, these values would imply a smaller mass gap between the gluino and neutralino
LSP for point 7.1, but the introduction of gauge messengers inverts this. Both points involve three generations of
messenger fields, with equal and opposite values of αg (αg = 0.35 for point 2.1, and αg = −0.35 for point 7.1).
Consequently, point 2.1 features the mass hierarchy mt̃1

< mg̃, with ∆m(t̃1,mχ̃0
1
) = 225 GeV, while point 7.1 exhibits

mg̃ < mt̃1
with mass separation ∆m(g̃,mχ̃0

1
) = 161 GeV.

Despite the different mass orderings of the lightest SU(3)-charged states, the overall mass scales between the two
points are roughly the same. This allows us to address questions like the ultimate ‘reach’ of the LHC at

√
s = 14 TeV

for this class of models. The overall production cross-section for supersymmetry is correlated to the gluino mass, and
thus we find σ2.1

susy = 22.9 fb while σ7.1
susy = 86.1 fb, despite the heavier LSP and stop. For both points, approximately

55% of the total cross-section for superpartners is gluino pair production. For point 7.1 an additional 40% of the
total production cross-section involves associated production of a gluino with a light-flavored squark, while the light
stop of point 2.1 reduces gluino/light squark production to 26% of total events, with 17% associated with stop pair
production.

For point 2.1, with the more massive gluino, there is a universal decay g̃ → t̃1t, with the subsequent decay of the
stop to χ̃±1 b 62% of the time, and χ̃0

1,2t for the remainder. As the three states χ̃±1 and χ̃0
1,2 are highly degenerate,

all three effectively represent missing transverse energy. For these gluino pair-production events, we therefore expect
four bona fide b-jets and as many as four leptons in the final state from leptonic decays of W -bosons. Alternatively,
we can expect up to four b-tagged jets and up to eight additional jets. If, instead, we consider associated production
of a gluino and a light squark, the fact that the light-flavored squarks decay universally into a corresponding light
quark and a gluino means the above analysis applies in this production channel as well, with perhaps one additional
high-pT jet in the final state. Indeed, Table IV confirms this reasoning, with the percentage of events with at least
one lepton for point 2.1 being 21.1%, the percentage with at least one b-tagged jet being 85.3%, and the peak in the
jet multiplicity distribution being Njet = 8. It is therefore not surprising that the most effective discovery channel
for this point is the six-jet (6jt+) channel, with an eventual confirmation in the single-lepton channel occuring much
later in the lifetime of the LHC. Specifically, we find that the first leptonic signal will arise in the six-jets plus muon
channel of [57] after 1100 fb−1 of integrated luminosity.

Point 2.1 would appear to be a prime candidate for searches involving b-tagged jets. Given the high overall jet
multiplicity for this point, it is not surprising that the strongest signal (or lowest Lmin) occurs for the seven-jet
channels of Table VIII, as demonstrated in Table IX. What is, perhaps, surprising is that there is no signal expected,
even after 3000 fb−1, for signature SRA2 involving at least six jets, two of which carry b-tags. Here is a case of
signatures that are very effectively tailored to certain exclusive event categories – that is to say, signatures that do
their respective jobs very well. The b-jet based signatures of Table VIII are based on gluino pair production, which is
the dominant component of the production cross-section for point 2.1. The SRA signatures of Table VII target stop
pair production, followed by the decay t̃1 → tχ̃0

1. Stop pair production is only 17% of the total, and the lightest stop
decays to tχ̃0

1 only 38% of the time, decaying to bχ̃±1 the remaining 62% of the time. Thus signature SRA2 captures
only about 2.5% of the total events. We note that the SRC channels on Table VII, which are designed to target the
bχ̃±1 decays of the stop, do give a signal significance roughly twice that for the SRA channels, with SRC3 providing a

five sigma excess in Lmin = 1650 fb−1 of integrated luminosity.
The situation for point 7.1 is nearly identical with regard to light squark decays, only now gluinos decay over-

whelmingly into a gluon and one of the two lightest neutralinos, which are highly degenerate in mass. As g̃g̃ and g̃q̃
processes represent 94% of the total SUSY production cross-section, we now expect zero leptons or b-tagged jets in
the events, and at most three high pT jets, with others arising from soft decay products of χ̃0

2 and/or initial and final
state radiation. This is borne out by Table IV where we find zero events with a high-pT , isolated lepton and very
few with a b-tagged jet (consistent with the mis-tagging rate built into the Delphes detector simulator). We find that
the strongest signal for this point is in the four-jet (4jl) channel, with an Lmin of 65 fb−1, though the dijet channel
(2jt) is competitive with an Lmin of 88 fb−1. In this case, the generic two-jet search performs much better than our
monojet-motivated ‘unbalanced’ two-jet signature (2jl-opt), which requires almost twice as much integrated luminos-
ity to reach a five-sigma excess. While these two signatures are very similar, the relative efficacy can be understood in
terms of competing cuts on meff versus the jet separation variable ∆φ(Jet1, /ET ), and their comparative effects on the
signal versus the background sample. To improve signal-to-background, the 2jt signal makes a cut on the inclusive
effective mass of meff > 1600 GeV, versus 800 GeV for the ‘unbalanced’ two-jet signature (2jl-opt). Alternatively, the
latter makes a cut on ∆φ(Jet1, /ET ) > π/2, versus 0.4 for the signatures in Table VI. These two quantities are plotted
in the left and right panels, respectively, of Figure 15. The signal distribution (red, solid line) is shown prior to any
event selection cuts, while the background distribution (blue, dashed line) has a pre-cut of /ET > 150 GeV applied.
Background distributions represent the square root of the total counts in each bin, with the total data set normalized
to 20 fb−1. The signal has been augmented by a factor of 10 for the left panel, and a factor of 100 for the right panel,
to allow for an easier comparison of the relative shapes of the distributions. Clearly, both the meff cut and the ∆φ
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FIG. 15: Inclusive effective mass (left) and ∆φ(Jet1, /ET ) distribution (right) for point 7.1 versus combined Standard Model
background. Distributions are for the signal (red, solid) prior to any event selection cuts, while the background distributions
(blue, dashed) have a pre-cut of /ET > 150 GeV applied. Background distributions represents the square root of the total counts
in each bin, with the total data set normalized to 20 fb−1. The signal has been augmented by a factor of 10 for the left panel,
and a factor of 100 for the right panel, to allow for an easier comparison of the relative shapes of the distributions.

cut prefer the signal distribution, but the stringent effective mass cut does so much more powerfully than the angular
separation cut – at least when considered in isolation. Thus, when the superpartner spectrum provides enough phase
space to use large meff and or /ET cuts to reduce the background, the classic multijet channels will be preferred. The
angular separation cut can be a useful tool for those cases in which aggregate quantities such as meff are low, as in
cases with a compressed superpartner spectrum.

Many pairs such as points 2.1 and 7.1 were generated in the course of our analysis, in which the relative masses of
the gluino and light squarks are inverted, but with the overall superpartner scale roughly the same. The aggregation
of such pairs allows us to make a very crude estimate of the reach (in the sense of a five sigma excess of signal over
background in at least one search channel) in terms of the gluino mass and general squark mass for a broad array of
DMM parameter sets. For the case mg̃ > mt̃1

we estimate a reach to be approximately mg̃
<∼ 1800 GeV in 100 fb−1

of data, while for the case mt̃1
> mg̃ we estimate the reach to be mt̃1

<∼ 1270 GeV in 100 fb−1 of data.

VI. DARK MATTER DETECTION IN DEFLECTED MIRAGE MEDIATION

Even with the discovery of the Higgs, and increasingly stringent measurements of the dark matter relic density,
model points with bino-like, wino-like and/or Higgsino-like LSPs remain from every combination of modular weights.
One may now ask if any of these points, not yet excluded by searches for superpartners at the LHC, could be detected in
the near future in dark matter direct detection experiments. We focus on direct detection here, as indirect detection
signals (gamma rays, positrons, anti-protons, neutrino fluxes, etc.) tend to be well below estimated astrophysical
backgrounds once the signal is scaled by the predicted thermal relic density. That is, wino-like and Higgsino-like LSPs
in the DMM scenario tend to have thermal relic densities below that preferred by measurements of the CMB. Once
any non-thermal mechanism for populating these LSPs is posited, the constraints from indirect detection become
highly constraining [61–64].

To date, discovery prospects for neutralino dark matter (100 GeV ≤ mχ ≤ 1000 GeV) have been dominated by
the liquid xenon direct detection experiments: the Xenon100 Dark Matter Project in Gran Sasso, Italy [65], and the
South Dakota-based LUX experiment [66]. The former released data in 2012 for 224.6 live days of exposure on a 34 kg
target [67]. In 2013, the LUX experiment released a preliminary result from 85.3 live days of exposure on a 118 kg
target [68]. In the near future, LUX will release data from approximately 300 days of exposure, while the extension
of Xenon100 to the one ton level, Xenon1T, will follow soon thereafter [69]. We can therefore discuss the discovery
prospects for dark matter in two stages. First we determine what, if any, parameter space is already in conflict with
existing results from Xenon100 and LUX. We then project what part of the parameter space might yield a signal in
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FIG. 16: The left plot shows the distribution in neutralino-nucleon scattering cross-sections versus neutralino mass for the bino-
like segment of the DMM parameter space. The lines represents the current and future limits set by the recent results from
Xenon100 and LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density is saturated.
The predicted thermal relic density is indicated by the color code. The right plot gives the rate of nuclear recoils, rescaled by
the relic density, and integrated over the recoil energy range of 5-25 keV, after one ton-year of exposure. Current limits from
Xenon100 and current/future limits from LUX are represented as straight lines where 10 events would be observed. The color
in the right figure indicates the gluino mass in GeV. Both plots aggregate all the cases with a bino-like LSP for all modular
weight combinations.

future results from LUX, Xenon1T, or LZ, the next generation of the LUX experiment [70].5 In what follows we will
consider a subset of 258,225 DMM points, all of which satisfy mg̃ ≥ 1 TeV, which can reasonably be expected to have
passed the LHC supersymmetry searches at

√
s = 8 TeV.

A. Bino-like LSPs

A nearly bino-like LSP can be found for nearly all modular weight combinations. For the purposes of discussing
dark matter phenomenology, it is convenient to aggregate these modular weight combinations and consider the bulk
properties of all bino-like neutralino cases as one phenomenologically similar region. For this combined region, the LSP
is heavy, ranging from 590-2570 GeV. The left plot in Figure 16 shows the familiar neutralino-nucleon cross-section
versus LSP mass for all of the targeted scan regions with bino-like LSPs. The lines represent the results from various
dark matter direct detection experiments under the assumption that the relic density constraints are saturated. The
color scheme in the left panel gives the predicted thermal relic density for each point. Clearly, many of these points
would need to rely on some non-thermal production mechanism for this figure to be valid.

More realistic, perhaps, is the right panel in Figure 16, which gives the number of expected events for an exposure
of 300 days for 1000 kg of liquid Xenon (i.e. one ton-year), within the recoil energy range of 5-25 keV. In this case,
we have renormalized the count rate to the expectation for the predicted relic density. That is, we have scaled the
prediction by the ratio (Ωh2)pred/0.12. In this panel, current limits from Xenon100 and current/future limits from
LUX are represented as straight lines where 10 events would be observed.

The 2013 LUX data for LSPs in the appropriate mass range, corresponding to a fiducial volume of 118 kg and
an exposure of 85 days [68] has already begun to cut into the bino-like parameter space, but only marginally so.
While there are a handful of points with very large cross sections, the bulk of the bino-like parameter space in the
DMM scenario is currently outside the reach of these experiments. The 2015 run of LUX, Xenon1T and LZ expect

5 We focus exclusively on those experiments which are sensitive to the spin-independent part of the scattering cross-section, as our
investigations indicate that experiments sensitive to spin-dependent cross-sections, such as the PICO-2L experiment [71], and its future
upgrades, are always less sensitive to any given parameter point than the large-scale spin-independent measurements.
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FIG. 17: The left plot shows the distribution in neutralino-nucleon scattering cross-sections versus neutralino mass for the
wino-like segment of the DMM parameter space. The lines represents the current and future limits set by the recent results
from Xenon100 and LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density is
saturated. The predicted thermal relic density is indicated by the color code. The right plot gives the rate of nuclear recoils,
rescaled by the relic density, and integrated over the recoil energy range of 5-25 keV, after one ton-year of exposure. The color
in the right figure indicates the gluino mass in GeV. Both plots aggregate all the cases with a wino-like LSP for all modular
weight combinations.

to improve the limiting cross-section on WIMP-nucleon scattering by orders of magnitude. For many of these points,
more than O(1) events per ton-year are expected, which could lead to significant signals in future direct detection
experiments. Note that upcoming LUX data should begin to eliminate models with characteristic gluino masses up
to O(3 TeV) (see color key in right panel of Figure 16).

However, for bino-like LSPs in the DMM paradigm, that improvement is likely to leave a significant portion of the
parameter space unexplored, including many of the points with a Planck-preferred relic density of Ωχh

2 ' 0.12. This
data set also includes points below the cross section for coherent neutrino scattering [72], the blue line on Figure 16.
For all of the points below the neutrino floor, the LSP is nearly degenerate with either the stop or the gluino giving
us significant coanihillation effect in the early universe. Many of these points should still be accessible at the LHC or
a future 100 TeV collider.

B. Wino-like and Higgsino-like LSPs

In contrast to pure mirage mediation, as in KKLT, a wino-like LSP can be found for many modular weight
combinations in DMM. As was done in the previous subsection, we combine our analysis for all modular weights. The
left plot in Figure 17 shows the neutralino-nucleon cross-section versus LSP mass for all of the targeted scan regions
with wino-like LSPs, analogously to Figure 16. The lines again represent the results from various dark matter direct
detection experiments under the assumption that the relic density constraints are saturated. The right panel gives
the number of expected events for an exposure of 300 days for 1000 kg of liquid Xenon (i.e. one ton-year), within the
recoil energy range of 5-25 keV, scaled by the ratio (Ωh2)pred/0.12. The wino-like region extends from roughly the
LEP chargino limit of 103.5 GeV, to 2.5 TeV, spanning much of the region from 10−44 cm2 to 10−48 cm2. Note that
the predicted thermal relic density is a strong function of the LSP mass, saturating the Planck limit at approximately
2 TeV.

In the alternative case for which the neutralino is almost purely Higgsino-like, we again aggregate all eight combi-
nations of modular weights that admit a Higgsino-like LSP into a single region. For this combination, the LSP can
be as heavy as 2.4 TeV, which is slightly lighter than the maximum value in the bino- or wino-like case. However,
LSPs as light as 100 GeV are also present. The neutralino-nucleon scattering cross section is similarly spread over a
wide range of values. The entirety of the parameter space has a cross section of between 10−46 cm2 and 10−43 cm2.

As with the previous two figures, the left plot in Figure 18 shows the neutralino-nucleon cross-section versus
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FIG. 18: The left plot shows the distribution in neutralino-nucleon scattering cross-sections versus neutralino mass for the
Higgsino-like segment of the DMM parameter space. The lines represents the current and future limits set by the recent
results from Xenon100 and LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density
is saturated. The predicted thermal relic density is indicated by the color code. The right plot gives the rate of nuclear recoils,
rescaled by the relic density, and integrated over the recoil energy range of 5-25 keV, after one ton-year of exposure. The color
in the right figure indicates the gluino mass in GeV. Both plots aggregate all the cases with a Higgsino-like LSP for all modular
weight combinations.

LSP mass for all of the targeted scan regions with Higgsino-like LSPs, analogously to Figure 16. The lines again
represent the results from various dark matter direct detection experiments under the assumption that the relic
density constraints are saturated. The right panel gives the number of expected events for an exposure of 300 days
for 1000 kg of liquid Xenon (i.e. one ton-year), within the recoil energy range of 5-25 keV, scaled by the ratio
(Ωh2)pred/0.12.

While more of the wino-like and Higgsino-like parameter space is being contrained by current experiments than in
the bino-like case, the bulk of the viable points lie outside the reach of Xenon100 and LUX, (see the right panels of
Figures 17 and 18). The anticipated release of new LUX data will begin to probe models with relatively light gluinos
in the Higgsino-like LSP regime, thus largely overlapping with anticipated early LHC results. In the more limited
wino-like regime, however, some model points within reach of LUX correspond to gluino masses of 3 - 4 TeV, likely
outside of the LHC reach even after 3000 fb−1. LUX claims a future background expectation of approximately 1 event
per ton-year at these recoil energies [66]. It is therefore plausible to expect an even larger fraction of spectra with a
Higgsino-like LSP may be within reach in the near future. Note that all of the DMM parameter space with a wino-like
or Higgsino-like LSP should give signals well-above the background signal from coherent neutrino scattering. In fact,
it is conceivable that the entire parameter space with Higgsino-like LSPs in the DMM model will be definitely probed
by the LZ experiment in future years.

VII. CONCLUSIONS

If there is any single paradigm for supersymmetry breaking that could claim to be considered a consensus within
the string phenomenology community, as of this writing, it would undoubtedly be the mirage mediation scenario
popularized in the period following the celebrated paper detailing moduli-stabilization in certain Type IIB flux com-
pactifications by Kachru et al. (KKLT) in 2003 [1]. The pattern of soft terms, which was soon referred to as mixed
modulus-anomaly mediation [22], or more simply “mirage mediation” [73], is not unique to Type IIB constructions. In
fact, the so-called mirage pattern of gaugino masses were first identified in heterotic string constructions that achieved
acceptable moduli phenomenology using the technique of Kähler stabilization [28, 74–76]. In the years following the
KKLT publication, ever more manifestations of the mirage pattern of guagino masses were motivated, culminating in
the original papers describing deflected mirage mediation [9, 10].

Given the ubiquity of the mirage mediation paradigm, and its general acceptance as a realistic outcome of moduli
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stabilization and supersymmetry breaking in a variety of string theoretic contexts, it is absolutely natural to begin an
in-depth study of the implications of LHC data on string-motivated models on this subset of theories. The first two
papers on this series were conducted in the heterotic [7] and original Type IIB contexts [8], so a natural completion
to this study is the present work.

Deflected mirage mediation models offer the broadest possible paradigm for investigating supersymmetry breaking
of any ultraviolet-complete theory, in that they allow for similar-sized contributions form gravity mediation, anomaly
mediation and gauge mediation. The present work expands upon earlier treatments of the parameter space of DMM
models [12–14] by updating the constraints implied by collider-based superpartner searches, dark matter search
constraints and, critically, the measurement of the Higgs boson mass. The latter has profound implications for all
supersymmetric theories, and this is particularly acute for the models of the KKLT/fluxed Type IIB paradigm.

In the previous work [8], which studied the simplest mirage mediation models motivated by flux compactifications of
Type IIB string theory, it was found that the relatively large CP-even Higgs mass of mh ' 125 GeV puts very strong
constraints on the allowed parameter space. Some combinations of modular weights for the matter and Higgs sectors
are very hard to reconcile with all current experimental constraints, while other can persist only for very special ranges
of parameters like αm, M0 and tanβ. Overall, points in the parameter space that would give a sufficient Higgs boson
mass would tend to imply superpartners that are so massive as to avoid detection at the LHC, even after 3000 fb−1 of
integrated luminosity. This is also in evidence in the current work, in the form of the KKLT ‘base points’ of Table I,
none of which are estimated to generate a discovery at the LHC.

Yet the inclusion of a sector which mediates supersymmetry breaking via gauge interactions radically alters this
prediction, allowing for much lower superpartner masses – particularly for the gluinos and quarks – while still satisfying
the requirement that mh ' 125 GeV. In fact, it is possible to achieve gluino and squark masses so low that a discovery
would have been made in the previous LHC runs at

√
s = 8 TeV. Roughly speaking, we find a reach of mg̃

<∼ 600 GeV
for ∆m(g̃, χ̃0

1) <∼ 50 GeV, and mg̃
<∼ 900 GeV for more sizeable mass gaps. Moreover, DMM corrections tend to

alter the masses of SU(3)-charged objects in a correlated way, tending to compress both the gluino and the stop
toward the lightest neutralino mass. The modular weight combinations most likely to produce spectra detectable at√
s = 8 TeV are the (nM , nH) = (0, 0), (0, 0.5) and (0.5, 0) cases, with low messenger scale and αg > 0 – precisely

the most interesting cases from the point of view of string model building. This gives hope that the next round of
LHC data-taking will probe deeply into this rich parameter space.

At the end of 2015, ATLAS released a handful of studies searching for supersymmetry in 3.2 fb−1 of data at
center-of-mass energies of

√
s = 13 TeV [77–83]. Of these searches, the cases with low multiplicity jets plus missing

transverse energy, both with a lepton veto [77] and with a single lepton [80], are the most sensitive to low-mass points
such as those presented in Table IX. Based on the reported limits, translated into the mg̃-mχ̃0

1
plane, we estimate

that point 2.2 from Table IX would have been discovered in both of these channels. Other potential early discovery
cases, such as points 5.1, 6.1 and 6.2, would lie within the one-sigma band about the reported observed limit. As
our simulations suppose a center-of-mass energy at 14 TeV, a direct comparison with the reported observations is not
possible.

We have estimated the reach of the LHC at
√
s = 14 TeV center-of-mass energies within the DMM parameter space

by sampling parameter combinations that give the lowest possible values of key superpartner masses. For the case
mg̃ > mt̃1

we estimate a reach to be approximately mg̃
<∼ 1800 GeV in 100 fb−1 of data, while for the case mt̃1

> mg̃

we estimate the reach to be mt̃1
<∼ 1270 GeV in 100 fb−1 of data. Much of the αg > 0 parameter space will be probed,

including those regions around the theoretically motivated area of αm ' 1. The most likely discovery channel will
be in the low-multiplicity jets plus missing transverse energy channel, with lepton vetoes, but corroborating signals
should be expected in various channels utilizing b-tagged jets, or those channels which emphasize a ‘lopsided’ two
or three-jet event, which will resemble the classic ‘monojet’ signature. In fact, the presence of these corroborating
signals will be precisely the indication that a compressed spectrum is present.

The search strategies we employ were defined for applicability at
√
s = 8 TeV. Surely, the kinematic cuts can be

adjusted to more fully optimize the signal-to-background. Some suggestions were identified in the course of discussing
the strengths and weakness of various b-jet based signatures, and various monojet-like signatures, through various
case studies involving the DMM points of Table III. One can undoubtedly do even better, and we encourage our
experimental and theoretical colleagues to consider such top-down motivated models for honing signal definitions in
the forthcoming LHC run. There has been much interest of late in two opposite extremes: the study of so-called
‘simplified models’, which posit a very simple superpartner spectrum with large mass gaps generating energetic decay
products, and compressed-spectrum models which are motivated from the bottom-up in terms of some abstract sense
of ‘naturalness’. The former are popular with the experimental community, while the latter seem to be enjoying
popularity with model-builders. The DMM paradigm allows a unified, ultraviolet-complete and string-motivated
framework that spans both extremes. We therefore hope that studies such as this one will serve as motivation to
continue to refine search strategies to maximize the impact of the coming LHC data.
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Appendix A: Anomalous dimensions

At one loop, the anomalous dimensions are given by

γi = 2
∑
a

g2
aca(Φi)−

1

2

∑
lm

|yilm|2, (A1)

in which ca is the quadratic Casimir, and yilm are the normalized Yukawa couplings. Here we will consider only the
Yukawa couplings of the third generation yt, yb, and yτ . For the MSSM fields Q, U c, Dc, L, Ec, Hu and Hd, the
anomalous dimensions are

γQ,i =
8

3
g2

3 +
3

2
g2

2 +
1

30
g2

1 − (y2
t + y2

b )δi3

γU,i =
8

3
g2

3 +
8

15
g2

1 − 2y2
t δi3, γD,i =

8

3
g2

3 +
2

15
g2

1 − 2y2
bδi3,

γL,i =
3

2
g2

2 +
3

10
g2

1 − y2
τδi3, γE,i =

6

5
g2

1 − 2y2
τδi3,

γHu =
3

2
g2

2 +
3

10
g2

1 − 3y2
t , γHd =

3

2
g2

2 +
3

10
g2

1 − 3y2
b − y2

τ , (A2)

respectively. Above Mmess, the beta function of the gauge couplings changes because of the messenger fields. However,
γi does not change according to Eq. (A1), and hence γ′i = γi. The γ̇i’s are given by the expression

γ̇i = 2
∑
a

g4
abaca(Φi)−

∑
lm

|yilm|2byilm , (A3)

in which byilm is the beta function for the Yukawa coupling yilm. The γ̇i’s are given by

γ̇Q,i =
8

3
b3g

4
3 +

3

2
b2g

4
2 +

1

30
b1g

4
1 − (y2

t bt + y2
b bb)δi3

γ̇U,i =
8

3
b3g

4
3 +

8

15
b1g

4
1 − 2y2

t btδi3, γ̇D,i =
8

3
b3g

4
3 +

2

15
b1g

4
1 − 2y2

b bbδi3

γ̇L,i =
3

2
b2g

4
2 +

3

10
b1g

4
1 − y2

τ bτδi3, γ̇E,i =
6

5
b1g

4
1 − 2y2

τ bτδi3

γ̇Hu =
3

2
b2g

4
2 +

3

10
b1g

4
1 − 3y2

t bt, γ̇Hd =
3

2
b2g

4
2 +

3

10
b1g

4
1 − 3y2

b bb − y2
τ bτ , (A4)

where bt = 6y2
t + y2

b − 16
3 g

2
3 − 3g2

2 − 13
15g

2
1 , bb = y2

t + 6y2
b + y2

τ − 16
3 g

2
3 − 3g2

2 − 7
15g

2
1 and bτ = 3y2

b + 4y2
τ − 3g2

2 − 9
5g

2
1 . γ̇′i

is obtained by replacing ba with b′a = ba +N in Eq. (A4).
Finally, θi, which appears in the mixed modulus-anomaly term in the soft scalar mass-squared parameters, is given

by

θi = 4
∑
a

g2
aca(Qi)−

∑
i,j,k

|yijk|2(3− ni − nj − nk). (A5)
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For the MSSM fields, they take the form

θQ,i =
16

3
g2

3 + 3g2
2 +

1

15
g2

1 − 2(y2
t (3− nHu − nQ − nU ) + y2

b (3− nHd − nQ − nD))δi3,

θU,i =
16

3
g2

3 +
16

15
g2

1 − 4y2
t (3− nHu − nQ − nU )δi3

θD,i =
16
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g2

1 − 4y2
b (3− nHd − nQ − nD)δi3,

θL,i = 3g2
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3

5
g2

1 − 2y2
τ (3− nHd − nL − nE)δi3

θE,i =
12

5
g2

1 − 4y2
τ (3− nHd − nL − nE)δi3,

θHu = 3g2
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3

5
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θHd = 3g2
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5
g2
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As in the case of γi, θ
′
i is the same as θi.
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