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Abstract

We present a comprehensive analysis of the Higgs boson spectra in several versions of

the supersymmetric left–right model based on the gauge symmetry SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L. A variety of symmetry breaking sectors are studied, with a focus on

the constraints placed on model parameters by the lightest neutral CP even Higgs boson

mass Mh. The breaking of SU(2)R symmetry is achieved by Higgs fields transforming either

as triplets or doublets, and the electroweak symmetry breaking is triggered by either bi–

doublets or doublets. The Higgs potential is analyzed with or without a gauge singlet Higgs

field present. Seesaw models of Type I and Type II, inverse seesaw models, universal seesaw

models and an E6 inspired alternate left–right model are included in our analysis. Several of

these models lead to the tree–level relation Mh ≤
√

2mW (rather than Mh ≤ mZ that arises

in the MSSM), realized when the SU(2)R symmetry breaking scale is of order TeV. With

such an enhanced upper limit, it becomes possible to accommodate a Higgs boson of mass

126 GeV with relatively light stops that mix negligibly. In models with Higgs triplets, a

doubly charged scalar remains light below a TeV with its mass arising entirely from radiative

corrections. We carry out the complete one–loop calculation for its mass induced by the

Majorana Yukawa couplings and show the consistency of the framework. We argue that

these models prefer a low SU(2)R breaking scale. Other theoretical and phenomenological

implications of these models are briefly discussed.
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1 Introduction

Models based on the left–right symmetric gauge group G3221 ≡ SU(3)c × SU(2)L × SU(2)R ×
U(1)B−L [1] are attractive extensions of the Standard Model (SM) with several interesting

features. At the fundamental level Parity is a good symmetry in these models. The observed

Parity violation in weak interactions is explained by the spontaneous breaking of SU(2)R ×
U(1)B−L down to U(1)Y of the SM at a scale vR well above the masses of the W and Z bosons.

The gauge structure requires the existence of the right–handed neutrino, and thus leads naturally

to small neutrino masses via the seesaw mechanism. In fact, with the right–handed neutrino

included, G3221 is the maximal flavor–blind gauge symmetry that can be realized at a scale

of order TeV, relevant to the ongoing LHC experiments.1 Because of Parity invariance these

models can potentially solve the strong CP problem [3] without introducing a global Peccei–

Quinn symmetry and the resulting axion.

Supersymmetric versions of left–right gauge models, denoted here as SUSYLR models, pre-

serve the merits of G3221 noted above, and in addition, can solve the gauge hierarchy problem.

These models can have a natural dark matter candidate in the lightest supersymmetric parti-

cle, with an unbroken R-parity emerging from the U(1)B−L gauge symmetry2 [5]. It has been

noted that the puzzle of small phases in the SUSY breaking sector (arising from electric dipole

moment constraints) has a natural explanation in SUSY left–right models, by virtue of Parity

symmetry [6]. Several versions of the SUSYLR models have been proposed and studied in the

literature, with differing Higgs boson sectors used for symmetry breaking [7–13]. Here we under-

take a systematic study of the Higgs potential in various realizations of these models, focusing

on the lightest neutral Higgs boson mass Mh. In many cases we find that the tree–level con-

straint Mh ≤ mZ of the MSSM is modified to the less stringent constraint Mh ≤
√

2mW [7, 9].

In some models this limit is relaxed even further. This difference in the upper limit arises from

the non-decoupling D–terms of SU(2)R×U(1)B−L, which occurs when the symmetry breaking

scale vR and the SUSY breaking scale are of the same order. Thus, these models would predict

additional W±R and ZR gauge bosons within reach of LHC experiments, in addition to SUSY

particles in the parameter regime where the upper limit on Mh is relaxed. In the MSSM heavy

stops (mt̃ > 2 TeV) with large mixing are typically needed in order to accommodate the Higgs

boson of mass 126 GeV discovered recently at LHC. Such a large mass of the stop puts the gauge

hierarchy problem in a different perspective, since some amount of tuning would be required.

With the increased tree–level mass of Mh, SUSYLR models would allow for the stops to be

much lighter and less mixed, and thus would alleviate the tuning problem.

Our analysis focuses on two basic classes of SUSYLR models which have been developed in

1There is a natural embedding of G3221 into the Pati–Salam symmetry G422 ≡ SU(4)c×SU(2)L×SU(2)R [2],
however, the scale of G422 symmetry breaking must be of order 105 GeV or above, from KL → µe decay
constraints. Embedding G3221 (or G422) into the unified symmetry group of SO(10) is very natural, but that
symmetry breaking scale must be of order 1015 GeV, from constraints on nucleon decay and gauge coupling
unification.

2It has been shown in Ref. [4] that R-parity remains unbroken even after spontaneous symmetry breaking.
Realization of such a minimum is equally important for the stability of dark matter.
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the literature. In one class Higgs triplets are introduced for SU(2)R symmetry breaking along

with SU(2)L × SU(2)R bi-doublets which break the electroweak symmetry [10–13]. Fermion

mass generation is via direct Yukawa couplings in this class of models, including the Majorana

mass of the right-handed neutrino. In a second class, Higgs doublets are used to break SU(2)R

symmetry, with SU(2)L doublets and/or SU(2)L×SU(2)R bi-doublets breaking the electroweak

symmetry. Additional fermions are necessary in this class for fermion mass generation, at least

in the neutrino sector. A specific example studied incorporates the inverse seesaw mechanism

for neutrino masses with the inclusion of gauge singlet fermions. Another example, termed

alternate left–right model [7, 8], has an E6 inspired particle spectrum. A third example uses a

universal seesaw mechanism for quarks and leptons by introducing vector–like SU(2)L×SU(2)R

gauge singlet quarks and leptons [14, 15]. In each of the cases listed above, we also allow for

the presence of a Higgs singlet scalar, which would admit the possibility of SU(2)R × U(1)B−L

symmetry breaking down to U(1)Y in the SUSY limit. In the absence of such a gauge singlet

Higgs field this symmetry breaking scale would be of the same order as the supersymmetry

breaking scale, which is shown to be consistent with experimental limits. In certain cases with

Higgs singlets we present approximate analytic expressions for the limit on Mh that interpolate

between the limit Mh ≤ mZ of the MSSM if the SU(2)R breaking scale is much higher than

the SUSY breaking scale, and the limit Mh ≤
√

2mW which arises if this scale is comparable

to the SUSY breaking scale.

Non–decoupling D–term effects on the lightest Higgs boson mass in extensions of the MSSM

have been studied by various authors. In Ref. [7] symmetry breaking in SUSYLR models with an

E6 inspired particle spectrum was studied and a relation Mh ≤
√

2mW was derived. In Ref. [13]

symmetry breaking of SUSYLR models with Higgs triplets was studied and an enhancement of

Mh compared to the MSSM result was observed. Ref. [16] has studied extended gauge sectors,

including an extra SU(2) added to the SM gauge symmetry. In some cases there is an unknown

gauge coupling, which was chosen so that it remains perturbative all the way to a GUT scale,

and significant increase in Mh was observed. In Ref. [17] non–decoupling effects of an additional

U(1) gauge symmetry was studied, which also showed a modest increase in Mh. Our aim in

this paper is to systematically study the Higgs boson sectors of various realizations of SUSYLR

models, which has some overlap with some of the earlier studies. In one case we reproduce and

generalize the results of Ref. [7]. In another case studied, where we provide an analytic formula

for the upper limit on Mh that interpolates between the decoupling and non–decoupling limits

of left–right symmetry, our results agree roughly with the numerical results of Ref. [13]. We

provide complete listings of the Higgs spectra for each case studied. Many of the examples,

such as the inverse seesaw model and the universal seesaw model, are analyzed in the SUSYLR

framework for the first time here.

When gauge singlets that couple to the MSSM Higgs fields are present in the theory, addi-

tional F–term contributions to Mh arise. In several cases this contribution is non–decoupling,

a well-known case being the next to minimal supersymmetric standard model (NMSSM) [18].

Modest increase in Mh can arise from this contribution, although we find the non–decoupling
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D–term to be somewhat more significant in the SUSYLR models.

There are direct and indirect limits on the mass of the W±R gauge boson of left–right sym-

metric models with or without supersymmetry. CMS collaboration has obtained a lower limit on

MWR
that ranges from 1.8 TeV to 3 TeV, depending on the mass of the right–handed neutrino,

if the gauge coupling of WR is the same as that of the Standard Model W boson [19]. This limit

is obtained with 19.6 fb−1 data collected at 8 TeV by looking for an excess in the eejj and µµjj

channels in pp collision [20]. For a discussion of limits on the WR mass in the minimal left-right

symmetric model see Ref. [21]. Indirect limits on WR mass arise from box diagram contributions

to K0 − K0 mixing which is found in the minimal model to be mWR
> 1.8 TeV [22]. These

limits are all compatible with the scale of left–right symmetry breaking comparable to that of

SUSY breaking.

In minimal SUSYLR models with Higgs triplets used for SU(2)R symmetry breaking, a

doubly charged scalar remains light with its mass below a TeV. This state acquires its mass

entirely through radiative corrections. The consistency of such a framework was shown in

Ref. [12]. In this paper we carry out a complete one–loop calculation of the doubly charged

Higgs boson mass in these models arising from the Majorana Yukawa couplings. We demonstrate

the finiteness of the mass, and show that if the right–handed symmetry breaking scale is taken

to be much above the SUSY breaking scale, the squared mass of this field would be negative.

Minimal models with Higgs triplets would be suggestive of low energy SU(2)R breaking.

The remainder of the paper is organized as follows. In Sec. II we introduce the various

versions of SUSY left-right model. Here we list the Higgs content and explain how realistic

fermion masses, including neutrino masses, are generated. In Sec. III we analyze the Higgs

potentials of SUSYLR models with triplet scalars breaking the SU(2)R × U(1)B−L symmetry.

Various scenarios are discussed here. For electroweak symmetry breaking we allow for one or

two bi-doublets. We also allow for a gauge singlet that facilitates LR symmetry breaking in

the SUSY limit. We focus on the lightest neutral Higgs boson mass and derive the tree–level

constraint Mh ≤
√

2mW in one case. In Sec. IV we analyze inverse seesaw models which utilize

Higgs doublets and bidoublets. Sec. V has our results on the universal seesaw models which

contain only Higgs doublet fields. In Sec. VI, an E6 inspired SUSYLR model is studied in detail.

In Sec. VII we look at the allowed parameter space and the Higgs boson mass fine-tuning in

some of the models discussed in the previous sections and compare them to MSSM. Sec. VIII is

devoted to the calculation of one-loop radiative corrections to the doubly charged Higgs boson

mass in SUSYLR models with triplet Higgs. This particle is predicted to be light, below a TeV,

regardless of the scale of SU(2)R breaking. Sec. IX have our conclusions and some discussions.

We collect several results relevant for the symmetry breaking analyses in the Appendix.

2 Variety of Supersymmetric Left–Right Models

In this section we introduce various realizations of the SUSY left–right model. All these realiza-

tions have an extended gauge symmetry which is SU(3)c × SU(2)L × SU(2)R × U(1)B−L. We
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develop and analyze different Higgs boson sectors that break this symmetry down to the SM

symmetry and then to U(1)em. The right-handed SU(2)R symmetry breaking can be achieved

either by Higgs triplets or by Higgs doublets, while the electroweak symmetry may be broken

by Higgs bidoublets or by SU(2)L doublets. In each case we allow for the possibility of a gauge

singlet scalar field as well, which would enable the breaking of SU(2)R × U(1)B−L down to

U(1)Y in the supersymmetric limit. If such a gauge singlet Higgs scalar is not present, which

is also studied, then the scale of SU(2)R symmetry breaking should be comparable to the scale

of SUSY breaking. We also investigate the Higgs boson spectrum of an alternate left–right

symmetric model motivated by E6 unification.

Each of these models has a common chiral fermion sector consisting of three families of

quark and lepton superfields given as3

Q =

(
u

d

)
∼
(

3, 2, 1,
1

3

)
, Qc=

(
dc

−uc

)
∼
(

3∗, 1, 2,−1

3

)
,

L =

(
ν

e

)
∼ (1, 2, 1,−1) , Lc =

(
ec

−νc

)
∼ (1, 1, 2, 1) , (1)

where the quantum numbers under SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge group are

listed.

We require that each of the models studied must meet four basic criteria. First, a mechanism

for SU(2)R breaking consistent with the experimental limits on the W±R and ZR gauge boson

masses must be present. Second, the model must be able to generate realistic quark and lepton

masses. Third, there must be a mechanism to generate small neutrino masses. This could be

Type I or Type II seesaw, inverse seesaw or a universal seesaw mechanism. Fourth, there should

be an unbroken R-parity that provides a dark matter candidate. In models with Higgs triplets,

this last requirement turns out to be automatic, but with Higgs doublets fields, an additional

Z2 symmetry will be assumed that distinguishes lepton doublets from the Higgs doublets, as is

usually done within the MSSM framework.

We now describe briefly each of these models, with a more extended discussion on the Higgs

boson spectrum delegated to subsequent sections.

2.1 Models with Higgs triplets and bidoublets

This scenario satisfies our requirements for a consistent model in the most straightforward way.

An SU(2)R triplet Higgs field ∆c(1, 1, 3,−2) is introduced, which breaks the gauge symmetry

once its neutral component acquires a nonzero vacuum expectation value (VEV). It also cou-

ples to the right-handed neutrinos and generates Majorana masses for them. Two bidoublet

fields Φa(1, 2, 2, 0) are introduced which can have Yukawa couplings with the quarks and lep-

tons, generating their (Dirac) masses and CKM mixing angles. (With only one bidoublet, the

CKM mixing angles would all vanish. We shall also study the simpler case of having only one

3The identification of normal quarks and leptons will be slightly different in the E6 motivated SUSYLR model.
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bidoublet in the theory, which would ascribe the CKM mixings to soft SUSY breaking [23].)

Being a supersymmetric theory the right-handed ∆c(1, 1, 3,−2) field must be accompanied by

another SU(2)R triplet field ∆
c
(1, 1, 3,+2) for anomaly cancellation and for achieving symme-

try breaking consistently. In a left-right symmetric model, the right-handed triplets must also

be accompanied by left-handed triplet partners ∆(1, 3, 1, 2) and ∆(1, 3, 1,−2) for parity con-

servation. We allow for cases with and without an extra gauge singlet scalar field S(1, 1, 1, 0).

In the absence of the field S, it is not possible to break the SU(2)R symmetry in the super-

symmetric limit. This is a viable possibility, as we shall see. The presence of the singlet field

S would enable decoupling the two symmetry breaking scales, allowing the SU(2)R symmetry

to be broken at a much higher scale than SUSY breaking. Thus, the Higgs boson fields in this

model are given as

∆(1, 3, 1, 2) =

(
δ+
√

2
δ++

δ0 − δ+
√

2

)
, ∆(1, 3, 1,−2) =




δ
−
√

2
δ

0

δ
−− − δ

−
√

2


 ,

∆c(1, 1, 3,−2) =




δc
−
√

2
δc

0

δc
−− − δc

−
√

2


 , ∆

c
(1, 1, 3, 2) =



δ
c+

√
2

δ
c++

δ
c0 − δ

c+

√
2


 ,

Φi(1, 2, 2, 0) =

(
φ+

1 φ0
2

φ0
1 φ−2

)

i

(i = 1, 2), S(1, 1, 1, 0). (2)

The nonzero VEVs of various component fields are denoted as

〈
δc

0
〉

= vR,
〈
δ
c0
〉

= vR,
〈
φ0

1i

〉
= vui ,

〈
φ0

2i

〉
= vdi . (3)

None of the other fields acquire vacuum expectation value. In particular, 〈δ0〉 = 0 in this model,

so that there is no type II seesaw contribution to the neutrino masses. We shall take the limit

where vR, vR >> vu, vd.

The Yukawa couplings in the model are given by the superpotential

WY =
2∑

j=1

(
Y (j)
q QT τ2Φjτ2Q

c + Y
(j)
l LT τ2Φjτ2L

c
)

+ i
f

2
LT τ2∆L+ i

f c

2
LcT τ2∆cLc, (4)

where Y j
q and Y j

l are the quark and lepton Yukawa coupling matrices and f is the Majo-

rana Yukawa coupling matrix which generates large Majorana masses for right-handed neutri-

nos. This superpotential is invariant under parity transformation under which Φ → Φ†,∆ →
∆c∗ ,∆ → ∆

c∗
, S → S∗, Q → Qc

∗
, L → Lc

∗
, θ → θ, along with W±L → W±∗R . Parity invariance

requires the Yukawa coupling matrices Y j
q and Y j

l to be hermitian and f c = f . Once the vari-

ous fields acquire VEVs as shown in Eq. (3), the following mass matrices for fermions will be

induced:

Mu = Y (1)
q vu1 + Y (2)

q vu2 , Md = Y (1)
q vd1 + Y (2)

q vd2 ,

6



MD
ν = Y

(1)
l vu1 + Y

(2)
l vu2 , M` = Y

(1)
l vd1 + Y

(2)
l vd2 ,

MR = fvR (5)

for the up quarks, down quarks, neutrino Dirac, charged lepton and right-handed Majorana

neutrino sectors. Note that with only a single bidoublet scalar, the up and down quark mass

matrices would become proportional, resulting in vanishing CKM angles.

Left–right symmetric models predict the existence of new gauge bosons, one charged W±R
and one neutral ZR. In the limit where the right-handed symmetry breaking VEVs are much

bigger than the electroweak symmetry breaking VEVs, we can neglect the mixing between the

left-handed and the right-handed gauge bosons and obtain relations for the masses of the heavier

W±R and ZR bosons. They are given by

M2
W±R
' 1

2
g2
R(2v2

R + 2v2
R + v2

ui + v2
di

), (6)

and

M2
ZR
' g2

R

2 cos2 θW cos 2θW

[
4(v2

R + v2
R) cos4 θW + (v2

ui + v2
di

) cos2 2θW
]
, (7)

where gR is the SU(2)R gauge coupling, θW is the weak mixing angle, and the index i is summed

over the number of bidoublets in the model. Since the gauge boson masses must be consistent

with the experimental limits, these expressions will be relevant in setting lower limits on the

right-handed symmetry breaking scale vR, vR.

2.2 Inverse seesaw model

SU(2)R gauge symmetry can be broken by Higgs doublet fields, instead of Higgs triplets of the

previous subsection. This would simplify the analysis of the Higgs boson sector considerably.

Two bidoublet fields are assumed to be present in the Higgs spectrum as before, which can

generate quark and charged lepton masses and CKM mixings. Unlike the Higgs triplet field

of the previous subsection, the Higgs doublet fields do not directly couple to fermions, and

so right-handed neutrinos would not receive heavy Majorana masses needed for the seesaw

mechanism. This situation is remedied by slightly complicating the fermion sector with the

introduction of gauge singlet neutral fermions Ni (i = 1 − 3), one for each generation, along

with the chiral matter fields that are given in Eq. (1). The N ’s can have gauge invariant

Majorana masses which in turn will generate small masses for the ordinary neutrinos via an

inverse seesaw mechanism [24]. The Higgs sector of this model consists of the following fields:

HL(1, 2, 1,−1) =

(
H0
L

H−L

)
, HL(1, 2, 1, 1) =

(
H

+
L

H
0
L

)
, HR(1, 1, 2, 1) =

(
H+
R

H0
R

)
,

HR(1, 1, 2,−1) =

(
H

0
R

H
−
R

)
,Φa(1, 2, 2, 0) =

(
φ+

1 φ0
2

φ0
1 φ−2

)

a

(a = 1, 2). (8)
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Here the SU(2)R doublet HR(1, 1, 2, 1) is accompanied by HR(1, 1, 2,−1) for anomaly cancel-

lation, while HL(1, 2, 1, 1) +HL(1, 2, 1,−1) are their parity partners. The VEVs of the neutral

components of these fields are parametrized as

〈
H0
L

〉
= vL,

〈
H

0
L

〉
= vL,

〈
H0
R

〉
= vR,

〈
H

0
R

〉
= vR,

〈
φ0

1i

〉
= vui ,

〈
φ0

2i

〉
= vdi . (9)

As noted earlier, in this model, a Z2 symmetry is assumed that distinguishes the HL field and

the lepton doublet L (and similarly HR and Lc fields). Under this Z2, the lepton fields are odd,

while the Higgs doublet fields are all even.

The superpotential relevant for quark and lepton mass generation in this case is given as

WY =

2∑

j=1

(
Y (j)
q QT τ2Φjτ2Q

c + Y
(j)
l LT τ2Φjτ2L

c
)

+ ifLT τ2HLN + if cLcT τ2HRN +
1

2
µNNN (10)

where Y
(j)
q and Y

(j)
l are the quark and lepton Yukawa coupling matrices, f and f c are the

analogs of Dirac Yukawa couplings matrices with the singlet neutrino and µN is the lepton

number violating Majorana mass term for N . Under parity symmetry N transforms as N → N∗.

From parity invariance we see that Y
(j)
q and Y

(j)
l are hermitian, f c = f and µN is real. The

3Ng × 3Ng neutrino mass matrix is given as (with Ng being the number of generations)

Mν =




0 Y
(i)
l vui fvL

Y
(i)T
l vui 0 fvR

fT vL fT vR µN


 . (11)

This is the left–right symmetric realization of the inverse seesaw mechanism [24, 25]. In the

limit of small vL and µN , the light neutrino masses would vanish. Thus, the smallness of

these two parameters would provide an understanding of small neutrino masses. Note that

the condition vL being small for explaining small neutrino masses is something specific to the

left–right symmetric realization of the inverse seesaw mechanism.

The heavy gauge boson masses in this model are given as:

M2
W±R
' 1

2
g2
R(v2

R + v2
R + v2

ui + v2
di

), (12)

and

M2
ZR
' g2

R

2 cos2 θW cos 2θW

[
(v2
R + v2

R) cos4 θW + (v2
ui + v2

di
) cos2 2θW + (v2

L + v2
L) sin4 θW

]
,

(13)

where gR is the SU(2)R gauge coupling, θW is the weak mixing angle, the index i is summed

over the number of bidoublets in the model and the VEVs are given in Eq. (9). Comparing

these expressions for the masses with the experimental limit on the heavy gauge bosons we will

be able to set lower limits on vR and vR.
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2.3 Universal seesaw model

One can choose an even simpler Higgs boson sector compared to the Higgs sector of the inverse

seesaw model in order to achieve the desired symmetry breaking. A doublet field HR(1, 1, 2, 1) is

sufficient to break the SU(2)R symmetry and analogously a doublet field HL(1, 2, 1,−1) suffices

for SU(2)L symmetry breaking. Anomaly cancellation, needed in Higgs sectors of supersym-

metric models, would require the addition of a HR(1, 1, 2,−1) and HL(1, 2, 1, 1) fields. This

Higgs boson sector, without any bidoublet fields, will not be able to generate quark and lepton

masses. Additional vectorlike quarks and leptons which are SU(2)L × SU(2)R singlets are in-

troduced for this purpose [14, 15]. This scenario is termed “universal seesaw”, since all quarks

and leptons would acquire masses via a generalized seesaw involving mixing with the heavy

fermions. The chiral matter sector in this case would consist of the quarks and leptons listed in

Eq. (1) along with a set of heavy singlet quarks and lepton fields, one per generation, denoted as

P (3, 1, 1, 4
3), N(3, 1, 1,−2

3) and E(1, 1, 1,−2) and their conjugates P c(3, 1, 1,−4
3), N c(3, 1, 1, 2

3)

and Ec(1, 1, 1, 2). There can also be a neutral singlet lepton denoted as R(1, 1, 1, 0) for gener-

ating small neutrino masses via the seesaw mechanism, however, this is not essential as tiny

Dirac masses for the neutrinos can be generated at the two-loop level arising through the mixed

exchange of from WL and WR gauge bosons without breaking lepton number [26]. The Higgs

sector of the universal seesaw model is given by

HL(1, 2, 1,−1) =

(
H0
L

H−L

)
, HL(1, 2, 1, 1) =

(
H

+
L

H
0
L

)
,

HR(1, 1, 2, 1) =

(
H+
R

H0
R

)
, HR(1, 1, 2,−1) =

(
H

0
R

H
−
R

)
. (14)

The absence of bidoublet fields prevents any direct Yukawa coupling between the left-handed

and the right-handed fermion fields of Eq. (1). The Higgs doublet fields can couple quarks with

the vectorlike quarks and leptons with the vectorlike leptons. The Yukawa superpotential of

the model is given by

WY = yuQHLP
c − ydQHLN

c − ylLHLE
c + yνLHLR

+ ycuQ
cHRP − ycdQcHRN − yclLcHRE + ycνL

cHRR

+ muPP
c +mdNN

c +mlEE
c +

1

2
mRRR (15)

where yi and yci stand for 3×3 Yukawa coupling matrices and mi are the heavy singlet fermions

Majorana mass matrices. Under parity symmetry, P → P c∗, N → N c∗ and E → Ec∗. Parity

invariance then requires yci = y∗i and mi to be real. The fermion mass matrix for the up–quark,

down–quark and charged lepton sectors are given by

Mu =

(
0 yuvL

y†uvR mu

)
; Md =

(
0 ydvL

y†dvR md

)
; Ml =

(
0 ylvL

y†l vR ml

)
. (16)
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Here mu is multiplied by (u, P ) from the left and (uc, P c) from the right, and so on. The

vacuum expectation values are defined as 〈H0
L〉 = vL, 〈H0

L〉 = vL, 〈H0
R〉 = vR, 〈H0

R〉 = vR. The

light fermion mass can be obtained as mdown ∼ |yd|2vLvR/md, etc. Note that the determinant

of the quark mass matrices are real, by virtue of parity symmetry, provided that the VEVs are

real. CP violation will occur via CKM mixings, since the Yukawa couplings themselves are not

real. This feature of the model has been used to explain the strong CP problem without the

use of axions [12].

The heavy gauge boson masses can be obtained from Eq. (12) and Eq. (13) by setting

vui = vdi = 0.

We investigate two variations of this model with and without a singlet Higgs boson. The

upper limit on the mass of the lightest CP-even Higgs boson will be quite different in the two

cases as we show later.

2.4 E6 motivated left-right supersymmetric model

This model is motivated by the low energy manifestation of heterotic superstring theory where

the matter supermultiplets belong to the 27 representation of E6 group. The particle content

of this representation under the subgroup SU(3)c × SU(2)L × SU(2)R × U(1) is given as:

Q = (u, d) : (3, 2, 1,
1

3
), dc : (3, 1, 1,

2

3
), Qc = (hc, uc) : (3, 1, 2,−1

3
),

Lc = (ec, n) : (1, 1, 2, 1), F =

(
νe Ec

e N c
E

)
: (1, 2, 2, 0), h : (3, 1, 1− 2

3
),

ψ = (νE , E) : (1, 2, 1,−1), N : (1, 1, 1, 0). (17)

We can define an R-parity in this case under which the {u, d, νe, e} fields are even while the

{h,E, νE , N c
E , n} fields are odd. The W±R gauge boson is also odd under this R-parity. The

superpartners of these fields have opposite R-parity. The fermions and the gauge bosons have

odd and even R-parity respectively, except for the W±R gauge boson which is odd as it links

particles of opposite R-parity.

The Higgs fields of this model can be identified as:

HL(1, 2, 1,−1) =

(
H0
L

H−L

)
=

(
ν̃E

Ẽ

)
, HR(1, 1, 2, 1) =

(
H+
R

H0
R

)
=

(
ẽc

ñ

)
,

Φ(1, 2, 2, 0) =

(
φ+

1 φ0
2

φ0
1 φ−2

)
=

(
Ẽc Ñ c

E

ν̃e ẽ

)
. (18)

The Yukawa interaction terms in the superpotential are given as

WY = λ1Qd
cψ + λ2QQ

cF + λ3hQ
cLc + λ4FL

cψ + λ5FNF + λ6hd
cN. (19)

This generates masses for quarks and leptons as well as CKM mixings. A small neutrino mass
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can be generated by the mixing of the n, νE and the N c
E fields with νe and N fields. The

neutrino mass matrix in the basis (νe, N, νE , N
c
E , n) takes the form

mν =




0 λ5

〈
Ñ c
E

〉
0 0 λ5

〈
Ñ
〉

λ5

〈
Ñ c
E

〉
0 0 0 λ5 〈ν̃e〉

0 0 0 λ4 〈ñ〉 λ4

〈
Ñ c
E

〉

0 0 λ4 〈ñ〉 0 λ4 〈ν̃E〉
λ5

〈
Ñ
〉

λ5 〈ν̃e〉 λ4

〈
Ñ c
E

〉
λ4 〈ν̃E〉 0




. (20)

In the limit of vanishing λ5, νe form an almost Dirac neutrino with N . The VEV 〈N〉 can

be small, since only the λ5 coupling can induce its VEV, which should be small for neutrino

masses. In our symmetry breaking analysis we shall keep 〈N〉 = 0.

The heavy gauge boson masses can be obtained from Eq. (12) and Eq. (13) by setting vR

and vL to be zero.

3 Symmetry Breaking with Higgs Triplet fields

In this section we analyze the Higgs sectors of a class of models which use Higgs triplets for

Su(2)R symmetry breaking. Here we construct the relevant superpotential for symmetry break-

ing, compute the Higgs potential and from it the Higgs boson spectrum. The mixing of Higgsinos

with the gauginos is also analyzed. We concentrate on the lightest neutral CP even Higgs boson

mass Mh and study how it gets modified and its effect on the parameter space of each model.

Four models are studied under this class. The first case has a pair of Higgs triplets, one

bidoublet and a gauge singlet in the spectrum. In the second case, we integrate out the singlet

field of case one, but keep its effective non-renormalizable interactions. The third case has no

singlet field at all. Case four has two triplets and two bidoublets, which is fully realistic for

fermion mass generation, including CKM mixing angles. The cases with only one bidoublet field

should be thought of as being special cases of this case, with or without an additional singlet.

3.1 Case with a pair of triplets, a bidoublet and a gauge singlet

We first analyze the case with the triplet Higgs fields ∆,∆,∆c,∆
c
, one bidoublet Higgs field Φ

and a singlet Higgs field S. The quantum numbers and compositions of these fields are shown in

Eq. (2). For a fully realistic model we need two bidoublet fields to generate the quark mixings,

but for simplicity we will only use a single bidoublet in our calculations in this section. This

does not significantly affect the Higgs boson masses as will be shown in a later section. The

most general superpotential terms involving only the Higgs boson fields in this case is given as:

W = S

[
Tr(λ∆∆) + Tr(λc∆c∆

c
) +

λ′

2
Tr(ΦT τ2Φτ2)−M2

]

+ Tr
[
µ1∆∆ + µ2∆c∆

c
+
µ

2

(
ΦT τ2Φτ2

)]
+
µS
2
S2 +

κ

3
S3, (21)
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where λc = λ∗, µ1 = µ∗2 and λ′,M2, µ and µS are real from parity invariance.

The Higgs potential consists of the F -terms, D-terms and soft supersymmetry-breaking

terms,

VHiggs = VF + VD + VSoft. (22)

In this case, the relevant terms in the Higgs potential are given by:

VF =

∣∣∣∣Tr(λ∆∆) + Tr(λ∗∆c∆
c
) +

λ′

2
Tr(ΦT τ2Φτ2)−M2 + µSS + κS2

∣∣∣∣
2

+ Tr
[
|µ1∆ + λS∆|2 +

∣∣µ1∆ + λS∆
∣∣2 + |µ∗1∆c + λ∗S∆c|2

+
∣∣µ∗1∆

c
+ λ∗S∆

c∣∣2
]

+ Tr
∣∣µΦ + λ′SΦ

∣∣2 , (23)

VD =
g2
L

8

3∑

a=1

∣∣∣Tr(2∆†τa∆ + 2∆
†
τa∆ + Φ†τaΦ)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣Tr(2∆c†τa∆
c + 2∆c†τa∆

c
+ Φ∗τaΦ

T )
∣∣∣
2

+
g2
V

2

∣∣∣Tr(∆†∆−∆
†
∆−∆c†∆c + ∆

c†
∆
c
)
∣∣∣
2
, (24)

VSoft = m2
1Tr(∆c†∆c) +m2

2Tr(∆
c†

∆
c
) +m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
S |S|2 +m2

5Tr(Φ†Φ) +
[
λAλSTr(∆∆ + ∆c∆

c
) + h.c.

]

+ [λ′Aλ′STr(ΦT τ2Φτ2) + h.c.] + (λCλM
2S + h.c.) +

(
µSBSS

2 + h.c.
)

+
[
µ1B1Tr

(
∆∆

)
+ µ∗1B2Tr

(
∆c∆

c)
+ µBTr

(
ΦT τ2Φτ2

)
+ κAκS

3 + h.c.
]
. (25)

The soft mass terms m2
1 and m2

3 (and similarly m2
2 and m2

4) should be equal with exact

parity symmetry, but we shall allow for soft breaking of parity in these dimension two terms.

With exact parity, consistent symmetry breaking cannot be achieved in this model, as there

would be unwanted massless modes if parity is forced to be broken spontaneously. We use this

potential to calculate the Higgs boson mass-squared matrices for the charged, neutral CP-even

and neutral CP-odd Higgs bosons. For simplicity we will assume all the parameters in the

potential to be real. The vacuum structure that we choose is given by:

〈∆c〉 =

(
0 vR

0 0

)
,
〈
∆
c〉

=

(
0 0

vRe
iφR 0

)
, 〈Φ〉 =

(
0 v2

v1e
iφ1 0

)
, 〈S〉 = vSe

iφS . (26)

while the neutral components of ∆ and ∆ fields do not get any vacuum expectation value. In

the absence of the singlet field S, parity conservation dictated that all the soft supersymmetry

breaking parameters must be real. The presence of the singlet does result in a nonzero phase

but for simplicity we assume this to be zero. If all parameters in the Higgs potential are real,

there should be a minimum that preserves CP invariance. We focus on this minimum. So for

the present case φR = 0, φ1 = 0 and φS = 0. This choice of phases negates the mixing between
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the scalar and the pseudo-scalar Higgs bosons but does not significantly affect the mass of the

lightest CP-even Higgs boson. The values of vR and vR are of the order of the right-handed

W±R mass, while v1 and v2 are of electroweak scale and hence vR, vR >> v1, v2.

We first look at the CP-even Higgs boson which is the main focus of this section. To easily

identify the field corresponding to the lightest eigenvalue, we take a linear combination of the

Higgs fields so that only two of the newly defined fields get non-zero vacuum expectation values

– one at the high right-handed symmetry breaking scale and the other at the lower electroweak

symmetry breaking scale. The field redefinition that we use is given as:

ρ1 =
v1φ

0
1 + v2φ

0
2√

v2
1 + v2

2

, ρ2 =
v2φ

0
1 − v1φ

0
2√

v2
1 + v2

2

, ρ3 =
vRδ

c0 + vRδ
c0

√
v2
R + v2

R

, ρ4 =
vRδ

c0 − vRδc
0

√
v2
R + v2

R

. (27)

In this rotated basis we calculate the mass matrix subject to the following minimization condi-

tions:

0 =v1[4m2
5 + g2

L(v2
1 − v2

2) + g2
R(v2

1 − v2
2 + 2v2

R − 2v2
R)]− 8λ′Aλ′v2vS − 8µBv2

+ 4λ′v2(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S) + 4v1(µ+ λ′vS)2,

0 =v2[4m2
5 + g2

L(v2
2 − v2

1) + g2
R(v2

2 − v2
1 − 2v2

R + 2v2
R)]− 8λ′Aλ′v1vS − 8µBv1

+ 4λ′v1(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S) + 4v2(µ+ λ′vS)2,

0 =2m2
1vR + g2

RvR(v2
1 − v2

2 + 2v2
R − 2v2

R) + 2
[
g2
V vR(v2

R − v2
R) + λAλvRvS + µ1B2vR

+vR (λvS + µ1)2 + λvR(−M2 + λvRvR − λ′v1v2 + µSvS + κv2
S)
]
,

0 =2m2
2vR + g2

RvR(−v2
1 + v2

2 − 2v2
R + 2v2

R) + 2
[
g2
V vR(−v2

R + v2
R) + λAλvRvS + µ1B2vR

+ vR (λvS + µ1)2 + λvR(−M2 + λvRvR − λ′v1v2 + µSvS + κv2
S)
]
,

0 =m2
SvS − 2λ′Aλ′v1v2 + λAλvRvR + λ′

2
(v2

1 + v2
2)vS + λ2(v2

R + v2
R)vS + µλ′(v2

1 + v2
2)

+ (µS + 2κvS)
(
−M2 + λvRvR − λ′v1v2 + µSvS + κv2

S

)
+ λCλM

2

+ λµ1(v2
R + v2

R) + 2µSBSvS + 3κAκv
2
S (28)

We first look at the CP even scalar Higgs boson masses. We get a 5×5 mass-squared matrix

in the basis (Reρ1,Reρ2,Reρ3,Reρ4,ReS) where one of the eigenvalues would remain light. The

relevant terms in this 5× 5 mass-squared matrix are given as:

M11 =
g2
L(v2

1 − v2
2)2 + g2

R(v2
1 − v2

2)2 + 8λ′2v2
1v

2
2

2(v2
1 + v2

2)
,

M12 =
v1v2(v2

1 − v2
2)(g2

L + g2
R − 2λ′2)

(v2
1 + v2

2)
,

M13 =
g2
R(v2

1 − v2
2)(v2

R − v2
R)− 4λλ′v1v2vRvR√

(v2
1 + v2

2)(v2
R + v2

R)
,

13



M14 =
2[g2

R(v2
1 − v2

2)vRvR − λλ′v1v2(v2
R − v2

R)]√
(v2

1 + v2
2)(v2

R + v2
R)

,

M15 =
2λ′[−2Aλ′v1v2 + (v2

1 + v2
2)(vSλ

′ + µ)− (µS + 2κvS)v1v2]√
v2

1 + v2
2

,

M22 =
[
(2g2

L + 2g2
R)v2

1v
2
2 + 2m2

5(v2
1 + v2

2) + λ′
2
(v2

1 − v2
2)2 + 2λ′

2
v2
S(v2

1 + v2
2)

+ 4λ′µvS(v2
1 + v2

2) + 2µ2(v2
1 + v2

2)
]
/(v2

1 + v2
2),

M23 =
2
[
g2
Rv1v2(v2

R − v2
R) + λλ′(v2

1 − v2
2)vRvR

]
√

(v2
1 + v2

2)(v2
R + v2

R)
,

M24 =
4g2
Rv1v2vRvR − λλ′(v2

1 − v2
2)(v2

R − v2
R)√

(v2
1 + v2

2)(v2
R + v2

R)
,

M25 =
λ′(v2

1 − v2
2)(2Aλ′ + µS + 2κvS)√

v2
1 + v2

2

,

M33 =
2
[(
g2
R + g2

V

)
(v2
R − v2

R)2 + 2λ2v2
Rv

2
R

]

v2
R + v2

R

,

M34 =
2vRvR(v2

R − v2
R)2

(
2g2
R + 2g2

V − λ2
)

v2
R + v2

R

,

M35 =
2λ
[
AλvRvR + (λvS + µ1)(v2

R + v2
R) + vRvR(µS + 2κvS)

]
√
v2
R + v2

R

,

M44 =
[
2(g2

R + g2
V )(v2

R + v2
R) +m2

1 +m2
2 + λ2(v2

R + v2
R + 2v2

S) + 2µ1(2λvS + µ1)
]
,

M45 = −λ(v2
R − v2

R)(Aλ + µS + 2κvS)√
v2
R + v2

R

,

M55 = m2
S + λ′

2
(v2

1 + v2
2) + λ2(v2

R + v2
R) + µ2

S + 2µSBS

+ 2κ
[
−M2 + λvRvR − λ′v1v2 + 3(Aκ + µS + κvs)vS

]
. (29)

From our choice of basis, we can guess that the M11 element of the mass-matrix, along with

the corrections from the off-diagonal elements, would approximately be the lightest eigenvalue

for this matrix. We calculate the corrections to lightest eigenvalue coming from the off-diagonal

M12,M13,M14 and M15 elements. It can be seen that the M12 element is proportional to the

square of the lighter VEVs that break electroweak symmetry while the diagonal M22 element

comes out to be proportional to the square of the heavy VEV vR. Hence the M12 term gives a

negligible correction to the lightest eigenvalue, of order v4/v2
R, which is negligible. Noting that

the off-diagonal corrections to the lightest eigenvalue are negative definite, in order to derive

an upper limit on the lightest eigenvalue we choose parameters λ, Aλ′ and Aλ such that they

make M13, M15 and M35 zero respectively. There is no longer any freedom left to make M14

also vanish. However, parametrically we can choose the soft mass parameter m1 to be much

bigger than vR, vR, in which case the off-diagonal corrections from M14 would be suppressed.
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Thus we see that he upper limit on the lightest eigenvalue is simply M11.4 This gives us the

largest allowed value of M2
h to be

M2
htree = 2M2

W cos2 2β + λ′
2
v2 sin2 2β, (30)

where tanβ = v1
v2

, v2 = v2
1 + v2

2 and we have assumed that the SU(2)R gauge coupling (gR)

is equal to the SU(2)L gauge coupling gL. Choosing a larger or smaller value of gR will lead

to a larger or smaller value of the tree level Higgs boson mass respectively. For example, for

g2
R = 2g2

L we get M2
htree

= 3M2
W cos2 2β + λ′2v2 sin2 2β, while for g2

R =
g2
L
2 we get M2

htree
=

3
2M

2
W cos2 2β + λ′2v2 sin2 2β. Note that the second term in Eq. (30) has the same origin as in

NMSSM due to the presence of a gauge singlet scalar in the model.

Including the leading radiative corrections from the top and stop sector, the upper limit on

the lightest CP even Higgs boson mass is:

M2
h = (2M2

W cos2 2β + λ′
2
v2 sin2 2β)∆1 + ∆2 (31)

where

∆1 =

(
1− 3

8π2

m2
t

v2
t

)
,

∆2 =
3

4π2

m4
t

v2

[
1

2
X̃t + t+

1

16π2

(
3

2

m2
t

v2
− 32πα3

)(
X̃tt+ t2

)]
, (32)

and mt is the running top quark mass, v =
√
v2

1 + v2
2 ≈ 174 GeV, α3 is the running QCD

coupling, X̃t is the left–right stop squark mixing parameter, and t = log
M2
S

M2
t

with Mt being the

top quark pole mass and MS being the geometric mean of the two stop squark masses.

The upper limit of the Higgs boson mass in this case is plotted in Fig. 1(a) as a function of

tanβ. The red region in the figure represents the band where the mass is between 124 GeV and

126 GeV. Anything below this has not been included as that will be ruled out by experiments.

Any point above this can always be lowered by choosing a different set of parameters, as one must

remember that we have chosen our parameter space so as to maximize the lightest Higgs boson

mass. The light green region represents the area where the stop squark mixing is minimum,

i.e., Xt = 0 while the blue upper region is for maximal mixing where Xt = 6. The red shaded

region is for all values of Higgs mass greater than 126 GeV and it is overlapped by the blue

and the green regions. Fig. 1(b) represents the upper limit of the Higgs mass and as a function

MS in Fig. 1(b). Again the red band is where the Higgs boson mass is between 124 GeV and

126 GeV, green region is for Xt = 0, blue region represents Xt = 6 and shaded red region is for

all values of Higgs mass greater than 126 GeV which is overlapped by the green and the blue

regions. The black solid line in each case represents the MSSM upper limit for the Higgs mass.

We can see that a Higgs mass of 124 GeV can be very easily achieved in this case for a very

4If we choose µS to be much greater than all the other mass scales in the model, we get back the familiar
result where the upper limit of the neutral Higgs mass is bound by MZ .
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Figure 1: (a) Variation of Higgs boson mass with tanβ, (b) Higgs boson mass as a function of
MS for the case with Higgs triplets, one bidoublet and a singlet. The red region represents the
band where 124 GeV < Mh < 126 GeV. The light green region corresponds to Xt = 0 while the
blue upper region is for Xt = 6. The red shaded region is for all values of Higgs mass greater
than 126 GeV and it is overlapped by the blue and the green regions. The black solid line
represents the MSSM upper limit for the Higgs mass.

small mass of stop squark and even for minimal mixing between them.

The 2×2 mass-squared matrix corresponding to the neutral left-handed triplet scalar Higgs

fields in the original basis is given as

[
m2

3 +
g2
L
2 (v2

1 − v2
2) + g2

V (−v2
R + v2

R) + (λvS + µ1)2 −λ(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S) + λAλvS + µ1B1

−λ(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S) + λAλvS + µ1B1 m2

4 −
g2
L
2 (v2

1 − v2
2) + g2

V (v2
R − v2

R) + (λvS + µ1)2

]

(33)

We now look at the pseudo-scalar Higgs boson masses in this model. The structure of

this sector is very similar to the scalar Higgs boson in the sense that the left-handed triplet

fields decouple to form a 2× 2 matrix which is exactly the same as given in Eq. (33) while the

imaginary components of the other neutral Higgs bosons form a 5×5 matrix. We choose a basis

given as

g1 =
v1φ

0
1 − v2φ

0
2√

v2
1 + v2

2

, g2 =
vRδ

c0 − vRδc
0

√
v2
R + v2

R

, h1 =
v2φ

0
1 + v1φ

0
2√

v2
1 + v2

2

, h2 =
vRδ

c0 + vRδ
c0

√
v2
R + v2

R

. (34)

The Im(g1) and Im(g2) fields can be identified as the Goldstone bosons which are absorbed by

the ZR-boson and the Z-boson to make them massive. Integrating out these Goldstone states,

the resulting 3× 3 matrix in the basis (Im(h2), Im(h1), Im(S)) is given as

M11 = m2
1 +m2

2 + λ2(v2
R + v2

R + 2v2
S) + 2µ1(2λvs + µ1),
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M12 = −λλ′
√

(v2
1 + v2

2)(v2
R + v2

R),

M13 = λ(µS + 2κvS −Aλ)
√
v2
R + v2

R,

M22 = 2m2
5 + λ′

2
(v2

1 + v2
2 + 2v2

S) + 2µ(2λ′vS + µ),

M23 = λ′(2Aλ′ − µS − 2κvS)
√
v2

1 + v2
2,

M33 = m2
S + λ2(v2

R + v2
R) + λ′

2
(v2

1 + v2
2)− µS(2BS − µS)

+ 2κ(M2 − λvRvR + λ′v1v2 + µSvS + κv2
S − 3AκvS). (35)

The charged Higgs boson sector has six singly-charged fields in this model. Their mass-

squared matrix can be split into two block diagonal matrices. There is a 2 × 2 matrix corre-

sponding to the δ+ and δ
−

fields which in its original basis is given as

(
g2
V (v2

R − v2
R) +m2

3 + (µ1 + λvS)2 −λ(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S −AλvS) + µ1B1

−λ(M2 − λvRvR + λ′v1v2 − µSvS − κv2
S −AλvS) + µ1B1 g2

V (v2
R − v2

R) +m2
4 + (µ1 + λvS)2

)
.

(36)

The other 4×4 block has two Goldstone bosons which are absorbed by WR and W gauge bosons

to get mass. We choose a basis given as:

σ+
1 =

v1φ
+
1 − v2φ

−∗
2√

v2
1 + v2

2

, σ+
2 =

v2φ
+
1 + v1φ

−∗
2√

v2
1 + v2

2

, σ+
3 =

vRδ
c+ − vRδc

−∗

√
v2
R + v2

R

, σ+
4 =

vRδ
c+

+ vRδ
c−
∗

√
v2
R + v2

R

,

(37)

where the Goldstone eigenstates can be identified as

g+
1 = σ+

1 , g+
2 =

√
2(v2

1 + v2
2)(v2

R + v2
R)σ+

4 + (v2
2 − v2

1)σ+
2√

(v2
2 − v2

1)2 + 2(v2
1 + v2

2)(v2
R + v2

R)
. (38)

This gives us the actual basis for the physical singly-charged Higgs bosons to be

h+
1 = σ+

3 , h+
2 =

(v2
2 − v2

1)σ+
4 −

√
2(v2

1 + v2
2)(v2

R + v2
R)σ+

2√
(v2

2 − v2
1)2 + 2(v2

1 + v2
2)(v2

R + v2
R)

, (39)

and the 2× 2 singly-charged Higgs boson mass-squared matrix elements are given as

M11 =
g2
R

{
(v2

1 − v2
2)(v2

R − v2
R) + 2(v2

R + v2
R)2
}

(v2
R + v2

R)

− 2(v2
R + v2

R)
{
λ(−M2 +AλvS + λvRvR − λ′v1v2 + µSvS + κv2

S) +B2µ1

}

vRvR
,

M12 =
2g2
RvRvR

√
v4

1 + 2v2
1(−v2

2 + v2
R + v2

R) + v2
2[v2

2 + 2(v2
R + v2

R)]

v2
R + v2

R

,
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M22 = −g
2
R(v2

R − v2
R)
[
v4

1 + 2v2
1(−v2

2 + v2
R + v2

R) + v4
2 + 2v2

2(v2
R + v2

R)
]

(v2
1 − v2

2)(v2
R + v2

R)
. (40)

Using the minimization conditions given in Eq. (28), we eliminate B2, m2, m5, B and Cλ in

terms of the other parameters and numerically calculate the Higgs boson mass spectrum. We

choose the parameters such that the lightest neutral scalar Higgs boson mass is 125 GeV after

the radiative corrections and with a stop squark mass of 570 GeV and a stop squark mixing

parameter Xt = 4, as an example. The soft quadratic mass terms for the left-handed and right-

handed triplets were chosen to be different since otherwise it leads to unphysical states with

some negative eigenvalues for the Higgs boson mass-squared matrices. The numerical values of

the chosen parameters and the masses obtained are given in Table 1. It is easy to identify the

left-handed triplet Higgs boson eigenvalues since they decouple in each case as discussed earlier.

In the table, MH∆
1

and MH∆
2

denote the mass-squared values for the left-handed triplet scalar

Higgs bosons. Similarly MA∆
1

, MA∆
2

and M∆+
1

, M∆+
2

are the squared masses for the pseudo-

scalar and the single-charged left-handed triplet Higgs bosons respectively. This numerical

result shows the self-consistency of the model.

Chargino and Neutralino masses

The particle spectrum of this model is much richer compared to the Minimal Supersymmet-

ric Standard Model and hence the study of the chargino and neutralino masses is crucial for

determining the lightest supersymmetric particle, a candidate for dark matter in the universe.

The higgsinos and the gauginos mix to form charginos and neutralinos. The chargino mass

matrix in this case is written as

Lch = −1

2

(
δ̃c
−

δ̃
−

φ̃−2 W̃−R W̃−L

)




µ1 + λ∗vS 0 0 −
√

2gRvR 0

0 µ1 + λvS 0 0 0

0 0 µ+ λ′vS gRv2 gLv2√
2gRvR 0 gRv1 MR 0

0 0 gLv1 0 ML







δ̃
c+

δ̃+

φ̃+
1

W̃+
R

W̃+
L



.

(41)

where the gaugino soft mass terms are given as

LG = −1

2

(
M3g̃g̃ +MRW̃RW̃R +MLW̃LW̃L +M1B̃B̃ + h.c.

)
(42)

The neutralino mass matrix splits into two matrices with the left-handed triplet Higgsino fields

δ̃0 and δ̃
0

decoupling to form a 2× 2 matrix given as

(
0 µ1 + λvS

µ1 + λvS 0

)
. (43)

The mass matrix for the other neutral fields in the basis
(
δ̃c

0
δ̃
c0

φ̃0
1 φ̃0

2 B̃ W̃R3 W̃L3 S̃

)
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is given as




0 µ1 + λ∗vS 0 0 −
√

2gV vR
√

2gRvR 0 λ∗vR

µ1 + λ∗vS 0 0 0
√

2gV vR −
√

2gRvR 0 λ∗vR

0 0 0 −µ− λ′vS 0 −gRv1√
2

−gLv1√
2
−λ′v2

0 0 −µ− λ′vS 0 0 gRv2√
2

gLv2√
2

−λ′v1

−
√

2gV vR
√

2gV vR 0 0 M1 0 0 0√
2gRvR −

√
2gRvR −gRv1√

2

gRv2√
2

0 MR 0 0

0 0 −gLv1√
2

gLv2√
2

0 0 ML 0

λ∗vR λ∗vR −λ′v2 −λ′v1 0 0 0 µS




,

(44)

where MR,ML and M1 are defined above. Parity invariance further demands ML = M∗R and

M1 and M3 are real.

The chargino and neutralino masses for this models are given in Table 1. Here again the

states ∆̃+
1 and ∆̃0

1,2 refer to the chargino and neutralino states corresponding to the left-handed

triplet Higgsinos.

Scalar Higgs
boson masses

Pseudo-scalar
Higgs boson

masses

Single charged
Higgs boson

masses

Chargino
masses

Neutralino
masses

MH1=6.26 TeV,
MH2=2.59 TeV,
MH3=1.21 TeV,
MH4=468 GeV,
MH∆

1
=4.51 TeV,

MH∆
2

=1.92 TeV

MA1=4.53 TeV,
MA2=3.34 TeV,
MA3=514 GeV,
MA∆

1
=4.51 TeV,

MA∆
2

=1.92 TeV

MH+
1

=4.77 TeV,

MH+
2

=513 GeV,

M∆+
1

=4.51 TeV,

M∆+
2

=1.92 TeV

M
∆̃+

1
= 2.65 TeV,

Mχ̃+
1

= 4.23 TeV,

Mχ̃+
2

= 2.38 TeV,

Mχ̃+
3

= 809 GeV,

Mχ̃+
4

= 348 GeV

M
∆̃0

1,2
= 2.65 TeV,

Mχ̃0
1
= 5.98 TeV,

Mχ̃0
2
= 4.85 TeV,

Mχ̃0
3
= 3.09 TeV,

Mχ̃0
4
= 2.00 TeV,

Mχ̃0
5
= 1.15 TeV,

Mχ̃0
6
= 885 GeV,

Mχ̃0
7
= 352 GeV,

Mχ̃0
8
= 346 GeV

Table 1: Higgs boson, chargino and neutralino masses for a sample point for case with triplets
using the parameters given as: λ′=0.7, λ=-0.3, v1=173.14 GeV, v2=17.3 GeV, vR=3 TeV,
vR=3.1 TeV, µ1=3.1 TeV, µ2=3.1 TeV, µ=-1.4 TeV, µS=-700 GeV, m2

S=9 TeV2, vS=1.5 TeV,
BS=2 TeV, m2

1 = m2
3=1 TeV2, κ=0.1, Aκ=1 TeV, m2

4=9 TeV2, Aλ=-4 TeV, Aλ′=-1 TeV,
MR=800 GeV, ML=800 GeV, M1=400 GeV and B1 is chosen to be equal to B2 which was
fixed using the minimization conditions.

The doubly charged Higgs boson sector of the model is discussed in more detail in Sec. 8

where we also carry out the one-loop radiative corrections to its mass and show the consistency

of the framework.
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3.2 Symmetry breaking with a pair of Higgs triplets, a bidoublet and a heavy

singlet

We now look at the case where the single Higgs S is heavy and can be integrated out from the

low energy sector of the model to give the following superpotential:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) + εTr

[
∆c∆

c]2
+

1

2
µTr(ΦT τ2Φτ2). (45)

Here ε is proportional to 1/MS with MS being the scale at which the singlet is integrated out.

Note that ε is a relevant operator which is kept in our analysis, although the field S has been

integrated out. Since ε is very small, we only kept the εTr(∆c∆
c
)2 term in the superpotential

as other terms will have no significant effect to the lightest CP-even Higgs boson mass.

The D-term of the Higgs potential is exactly same as in Eq. (24) but there will be different

contributions to the F -term and the soft supersymmetry breaking terms. They are given by:

VF = |µ1|2Tr(∆†∆ + ∆
†
∆) + Tr

[∣∣µ2∆c + 2ε∆c∆
c
∆c
∣∣2 +

∣∣µ2∆
c

+ 2ε∆
c
∆c∆

c∣∣2
]

+ |µ|2Tr(Φ†Φ), (46)

VSoft = m2
1Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]
+m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
5Tr(∆c†∆c) +m2

6Tr(∆
c†

∆
c
) + Tr(B1µ1∆∆ + h.c.)

+ Tr(B2µ2∆c∆
c

+ h.c.) +
[
εDεTr(∆c∆

c
)2 + h.c.

]
. (47)

We use the same basis field redefinition as in Eq. (27) for the bidoublet fields while the

right-handed triplet fields are in their original basis. The minimization conditions are given as:

0 = −4Bµv2 + v1

(
4m1

2 + gL
2(v1

2 − v2
2) + gR

2
(
v1

2 − v2
2 + 2vR

2 − 2v2
R

)
+ 4µ2

)
,

0 = −4Bµv1 + v2

(
4m1

2 + gL
2
(
−v1

2 + v2
2
)

+ gR
2
(
−v1

2 + v2
2 − 2vR

2 + 2v2
R

)
+ 4µ2

)
,

0 = 2B2µ2vR +
[
2m5

2 + 2µ2
2 + gR

2
(
v1

2 − v2
2
)]
vR + 2

(
gR

2 + gV
2
)
vR
(
−vR2 + v2

R

)

+ 4εvR
[
DεvRvR + µ2(3v2

R + v2
R) + 2εvRvR(2v2

R + v2
R)
]
,

0 = 2B2µ2vR +
[
2m6

2 + 2µ2
2 + gR

2
(
−v1

2 + v2
2
)]
vR + 2

(
gR

2 + gV
2
)
vR
(
−vR2 + v2

R

)

+ 4εvR
[
DεvRvR + µ2(v2

R + 3v2
R) + 2εvRvR(v2

R + 2v2
R)
]
. (48)

Calculating the neutral CP-even Higgs boson mass-squared matrix subject to these min-

imization conditions, the matrix elements can be obtained from Eq. (29) by putting all the

triplet and bidoublet couplings to the singlet Higgs to be zero with some extra terms in the

M33,M34,M44 elements. The relevant terms in the mass-squared matrix are:

M11 =
(g2
L + g2

R)(v2
1 − v2

2)2

2(v2
1 + v2

2)
,

M13 =
g2
RvR(v2

1 − v2
2)√

(v2
1 + v2

2)
,
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M14 = −g
2
RvR(v2

1 − v2
2)√

(v2
1 + v2

2)
, (49)

M33 =
2(g2

R + g2
V )v3

R −B2µ2vR − 2εvR
[
µ2(v2

R − 3v2
R)− 8εv3

RvR
]

vR
,

M34 = B2µ2 − 2(g2
R + g2

V )vRvR + 2ε
[
3µ2(v2

R + v2
R) + 2vRvR(Dε + 4ε(v2

R + v2
R)
]
,

M44 =
2(g2

R + g2
V )v3

R −B2µ2vR + 2εvR
[
µ2(3v2

R − v2
R) + 8εv3

RvR
]

vR
. (50)

We calculate the contribution of the off-diagonal (M13,M14) entries in the mass-squared matrix

to the lightest eigenvalue using the seesaw formula. For simplicity we take the approximation

Dε = 0 and we get the following result:

M2
htree = 2M2

W cos2 2β


1− g2

Rx

2
(

g4
Rx

g2
R−g′

2 + y
)


 (51)

where

x = B2µ2(v2
R − v2

R)2 + 2ε(v2
R + v2

R)
[
µ2(v4

R − 10v2
Rv

2
R + v4

R)− 24εv3
Rv

3
R

]
,

y = 8vRvRε(B2µ
2
2(v2

R + v2
R) + µ2

2[3v4
R + 2v2

Rv
2
R + 3v4

R)ε+ 2µ2vR(7v5
R + 6v3

Rv
2
R + 7vRv

4
R)ε2

+ vRvRε(3m
2
8(v2

R + v2
R) + 16vRvR(v4

R + v2
Rv

2
R + v4

R)ε2],

tanβ = v1
v2

and gR = gL. This result shows that the lightest CP-even Higgs boson mass has an

upper limit of
√

2MW in this case which can be realized if x = 0. If we consider v2
R−v2

R ∼M2
SUSY

and vR, vR >> MSUSY , we get an upper limit of MZ for the lightest scalar Higgs boson mass.

Eq. (51) interpolates between the two interesting cases of vR ∼ MSUSY and vR � MSUSY .

Taking the least constraining of the limits we have for the largest allowed Mh at tree level,

M2
htree = 2M2

W cos2 2β. (52)

Including the one and two loop corrections from the top quark and stop squark, we get:

M2
hmax = (2M2

W cos2 2β)∆1 + ∆2, (53)

where ∆1 and ∆2 are defined in Eq. (32).

The Higgs boson mass is plotted in Fig 2(a) as a function of tanβ. The red region in the

figure represents the band where the mass is between 124 GeV and 126 GeV. The light green

region represents the area where the stop squark mixing is minimum i.e. Xt = 0 while the

blue upper region is for maximal mixing where Xt = 6. The red shaded region is for all values

of Higgs mass greater than 126 GeV and it is overlapped by the blue and the green regions.

Fig. 2(b) represents the upper limit of the Higgs mass and as a function MS . Again the red band

is where the Higgs boson mass is between 124 GeV and 126 GeV, green region is for Xt = 0,
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Figure 2: (a) Variation of Higgs boson mass with tanβ, (b) Higgs boson mass as a function of
MS for the case with Higgs triplets, one bidoublet and a heavy singlet. Notation here is the
same as in Fig. 1.

blue region represents Xt = 6 and shaded red region is for all values of Higgs mass greater than

126 GeV which is overlapped by the green and the blue regions. The black solid line in each

case represents the MSSM upper limit for the Higgs mass.

The pseudo-scalar mass-squared matrix is again two 2× 2 blocks which can be obtained by

putting all the singlet couplings to zero in Eq. (33) and Eq. (35).

The charged Higgs boson mass-squared matrix is exactly the same as in Eq. (36) and Eq. (40)

with all the singlet couplings set to zero and in the limit where we take Dε → 0.

Chargino and Neutralino masses

We now look at the chargino and neutralino sector in this case. The chargino basis is exactly

the same as in the case discussed in section 3.1. The chargino mass matrix in this case is written

as

Mch =




µ2 + εvRvR 0 0 −
√

2gRvR 0

0 µ1 0 0 0

0 0 µ gRv2 gLv2√
2gRvR 0 gRv1 MR 0

0 0 gLv1 0 ML



. (54)

The neutralino mass matrix again splits into two matrices. The matrix in the basis
(
δ̃0 δ̃

0
)

is

given as

(
0 µ1

µ1 0

)
, (55)
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while the mass matrix in the basis
(
δ̃c

0
δ̃
c0

φ̃0
1 φ̃0

2 B̃ W̃R3 W̃L3

)
is given as




εv2
R µ2 + εvRvR 0 0 −

√
2gV vR

√
2gRvR 0

µ2 + εvRvR εv2
R 0 0

√
2gV vR −

√
2gRvR 0

0 0 0 −µ 0 −gRv1√
2

−gLv1√
2

0 0 −µ 0 0 gRv2√
2

gLv2√
2

−
√

2gV vR
√

2gV vR 0 0 M1 0 0√
2gRvR −

√
2gRvR −gRv1√

2

gRv2√
2

0 MR 0

0 0 −gLv1√
2

gLv2√
2

0 0 ML




. (56)

3.3 Case with a pair of triplets and a bidoublet

This is a special case of the one discussed in Section 3.1. We do not have the singlet Higgs and

as a result it will be seen that the lightest Higgs boson mass upper limit becomes the same as

MSSM. We also show explicitly the self-consistency of this model which requires vR and MSUSY

to be of the same order.

The most general superpotential relevant to our calculation is given by:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) +

1

2
µTr(ΦT τ2Φτ2). (57)

The D-term in the Higgs potential is exactly the same as given in Eq. (24), the F -term can

be obtained from Eq. (23) by putting all the singlet couplings to zero. The soft supersymmetry

breaking terms are given by:

VSoft = m2
1Tr(∆c†∆c) +m2

2Tr(∆
c†

∆
c
) +m2

3Tr(∆†∆) +m2
4Tr(∆

†
∆)

+ m2
5Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]

+
[
B1µ1Tr(∆∆) + h.c.

]
+
[
B2µ2Tr(∆c∆

c
) + h.c.

]
. (58)

We use this potential to calculate the Higgs boson mass-squared matrices for the charged,

neutral CP-even and neutral CP-odd Higgs bosons. To easily identify the field corresponding to

the lightest eigenvalue, we redefine the Higgs fields. This redefinition is the same as in Eq. (27).

The minimization conditions and the Higgs mass-squared in this case can again be obtained

by putting all the singlet couplings to zero in the model of Section 3.1.

Calculating the lightest eigenvalue for the CP-even Higgs boson mass-squared matrix we

get:

M2
htree =

g4
L(g′2 + g2

R)(v2
1 − v2

2)2

2[g2
Lg

2
R + g′2(g2

L − g2
R)](v2

1 + v2
2)
. (59)

If we assume that the SU(2)R gauge coupling (gR) is equal to the SU(2)L gauge coupling (gL),
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tanβ = v1
v2

and v2 = v2
1 + v2

2, then

M2
htree =

(g2
L + g′2)

2
v2 cos2 2β. (60)

The mass of the Z boson in this model is

√
g2
L+g′2

2 v. So we see that the tree-level lightest

CP-even Higgs mass has an upper limit of MZ . This is same as the case of MSSM.

The charged mass-squared matrix is the same as in Eq. (40) while the pseudo-scalar mass-

squared matrix is composed of two 2×2 block which can be obtained from Eq. (33) and Eq. (35)

by putting all the singlet couplings to zero.

The chargino mass matrix in this case is a special limit of Section 3.1 obtained by neglecting

all the singlet couplings while the neutralino mass matrix is obtained from Eq. (56) by putting

ε = 0.

3.4 Case with a pair of triplets and two bidoublets

This case is a realistic model where, unlike previous cases, we can generate the CKM matrices for

quarks directly. The calculation of the Higgs mass, though shows that the result for the upper

limit on Mh is exactly the same as the case with only one bidoublet. Due to the complexity

of the calculations, we only discuss the neutral CP-even Higgs boson mass in this case and see

that the largest Mh is the same as with one bidoublet. The particle content of the Higgs sector

will be exactly as in Eq. (2) except in this case a = 1, 2.

The superpotential of the model is given as:

W = µ1Tr(∆∆) + µ2Tr(∆c∆
c
) +

1

2
µabTr(ΦT

a τ2Φbτ2). (61)

The relevant terms in the Higgs potential is given by:

VF = |µ1|2Tr(∆†∆ + ∆
†
∆) + |µ2|2Tr(∆c†∆c + ∆

c†
∆
c
)

+

2∑

a=1

Tr|(µa1Φ1 + µa2Φ2)|2, (62)

VD =
g2
L

8

3∑

a=1

∣∣∣Tr(2∆†τa∆ + 2∆
†
τa∆ + (Φ†1τaΦ1) + (Φ†2τaΦ2)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣Tr(2∆c†τa∆
c + 2∆c†τa∆

c
+ (Φ∗1τaΦ

T
1 ) + (Φ∗2τaΦ

T
2 )
∣∣∣
2

+
g2
V

2

∣∣∣Tr(∆†∆−∆
†
∆−∆c†∆c + ∆c†∆

c
)
∣∣∣
2
, (63)

VSoft = m2
abTr(Φ†aΦb) +

2∑

a,b=1

[
BabµabTr(ΦT

a τ2Φbτ2) + h.c.
]

+m2
3Tr(∆†∆) +m2

4Tr(∆
†
∆)

+ m2
5Tr(∆c†∆c) +m2

6Tr(∆
c†

∆
c
) + [B1µ1Tr(∆∆) + h.c.] + [B2µ2Tr(∆c∆

c
) + h.c.]. (64)
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We use this Higgs potential for this variation of the LRSUSY model and calculate the mass-

squared matrix for the neutral CP-even Higgs boson. The vacuum structure for this model is

given by:

〈∆c〉 =

(
0 vR

0 0

)
,
〈
∆
c〉

=

(
0 0

vR 0

)
, 〈Φ1〉 =

(
0 vd1

vu1 0

)
, 〈Φ〉 =

(
0 vd2

vu2 0

)
. (65)

The left-handed triplet fields ∆ and ∆ do not get any VEV. We do a field redefinition with

the φ0
11, φ

0
21, φ

0
12, φ

0
22 fields so that only one of the new fields get a non-zero vacuum expectation

value. The transformation we use is given by:

ρ1 =
vu1φ

0
11 + vd1φ

0
21 + vu2φ

0
12 + vd2φ

0
22√

v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

, ρ2 =
vd1φ

0
11 − vu1φ

0
21√

v2
u1

+ v2
d1

, ρ3 =
vd2φ

0
21 − vu2φ

0
22√

v2
u2

+ v2
d2

,

ρ4 =
vu1(v2

u2
+ v2

d2
)φ0

11 + vd1(v2
u2

+ v2
d2

)φ0
21 − vu2(v2

u1
+ v2

d1
)φ0

12 − vd2(v2
u1

+ v2
d1

)φ0
22√

(v2
u1

+ v2
d1

)(v2
u2

+ v2
d2

)(v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

)
.

The ρ1 field gets a VEV of
√
v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

, the other fields do not get any VEV. The ∆

and ∆ fields decouple and we get a 6×6 mass-square matrix in the basis (Reρ1,Reρ2,Reρ3,Reρ4,Reδc0,Reδ
c0

).

The minimization conditions for this case are given in the Appendix. The matrix elements for

this case are not quoted here as they are lengthy and this case is not very interesting in terms

of the final result which comes out to be exactly as section 3.3.

Using the minimization conditions and the assumption that the right-handed symmetry

breaking scale is much above the electroweak scale, we get the lightest eigenvalue to be:

M2
htree =

(
g2
L + g′

)
(v2
u2
− v2

d2
+ v2

u1
− v2

d1
)2

2(v2
u2

+ v2
d2

+ v2
u1

+ v2
d1

)
= M2

Z cos2 2β (66)

where tanβ =

√
(v2
u1

+v2
u2

)√
(v2
d1

+v2
d2

)
and v2 =

√
v2
u1

+ v2
d1

+ v2
u2

+ v2
d2

. We have made the assumption

that gR = gL.

This result is the same as the previous case with one bidoublet and gives an upper-limit for

the tree-level mass of lightest CP-even neutral Higgs boson to be MZ .

4 Inverse seesaw model

The Higgs spectrum of this model is given in Eq. (8). The most general superpotential terms

needed for calculation of the Higgs boson mass are given as:

W = iµ1H
T
L τ2HL + iµ1H

T
Rτ2HR + λHT

L τ2Φτ2HR + λH
T
Lτ2Φτ2HR + µTr

[
Φτ2ΦT τ2

]
. (67)
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The relevant Higgs potential in this case is given as:

VF = Tr
[∣∣iµ1τ2HL + λτ2Φτ2HR

∣∣2 +
∣∣iµ1τ2HR + λτ2ΦT τ2HL

∣∣2

+
∣∣−iµ1τ2HL + λτ2Φτ2HR

∣∣2 +
∣∣−iµ1τ2HR + λτ2ΦT τ2HL

∣∣2

+
∣∣∣λHRH

T
L + λHRH

T
L + 2µφT

∣∣∣
2
]
, (68)

VD =
g2
L

8

3∑

a=1

∣∣∣H†LτaHL +H
†
LτaHL + Tr(Φ†τaΦ)

∣∣∣
2

+
g2
R

8

3∑

a=1

∣∣∣H†RτaHR +H
†
RτaHR + Tr(Φ∗τaΦ

T )
∣∣∣
2

+
g2
V

8

∣∣∣H†RHR −H†RHR −H†LHL +H
†
LHL

∣∣∣
2
, (69)

VSoft = Tr
[
m2

1H
†
LHL +m2

2H
†
RHR +m2

3H
†
LHL +m2

4H
†
RHR +m2

5Φ†Φ

+
(
λAλH

T
L τ2Φτ2HR + λAλH

T
Lτ2Φτ2HR + h.c.

)
+
(
BµΦT τ2Φτ2 + h.c.

)

+
(
iB1µ1H

T
L τ2HL + iB1µ1H

T
Rτ2HR + h.c

)]
. (70)

Parity conservation would require m2
1 = m2

2 and m2
3 = m2

4 but as in the previous case, we allow

for soft breaking of parity by the bilinear terms and choose these parameters to be different.

The vacuum expectation values of the Higgs fields are given as:

〈HL〉 =

(
vL

0

)
, 〈HR〉 =

(
0

vR

)
,
〈
HL

〉
=

(
0

vL

)
,

〈
HR

〉
=

(
vR

0

)
, 〈Φ〉 =

(
0 v2

v1 0

)
. (71)

We again choose a rotated basis given as

ρ1 =
vLH

0
L + vLH

0
L + v1φ

0
1 + v2φ

0
2√

v2
L + v2

L + v2
1 + v2

2

, ρ2 =
vLH

0
L − vLH

0
L√

v2
L + v2

L

,

ρ3 =
v1vLH

0
L + v1vLH

0
L − (v2

L + v2
L)φ0

1√
(v2
L + v2

L + v2
1)(v2

L + v2
L)

,

ρ4 =
v2vLH

0
L + v2vLH

0
L + v1v2φ

0
1 − (v2

1 + v2
L + v2

L)φ0
2√

(v2
L + v2

L + v2
1 + v2

2)(v2
L + v2

L + v2
1)

, (72)

such that only ρ1 gets a non-zero vacuum expectation value at the electroweak symmetry break-

ing scale. The right-handed doublets get VEVs of order the right-handed symmetry breaking

scale. The minimization conditions in this case are given as:

0 =2m2
5v1 +

v1

2

[
g2
L

(
v2

1 − v2
2 − v2

L + v2
L

)
+ g2

R

(
v2

1 − v2
2 − v2

R + v2
R

)
+ 4λ2

(
v2
L + v2

R

)]
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− 2λAλvLvR + 2λµ1 (vLvR − vRvL) + 4µ (λvLvR −Bv2 + 2µv1) ,

0 =2m2
5v2 +

v2

2

[
g2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)
− g2

R

(
−v2

1 + v2
2 + v2

R − v2
R

)
+ 4λ2

(
v2
L + v2

R

)]

− 2λAλvLvR − 2λµ1 (vLvR − vRvL) + 4µ (λvLvR −Bv1 + 2µv2) ,

0 =2m2
1vL +

vL
2

[
g2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)
+ g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

1 + v2
R

)]

− 2λAλv1vR + 2λµ1vR (v1 − v2) + 2µ2
1vL + 2B1µ1vL + 4µλv2vR,

0 =2m2
2vR +

vR
2

[
g2
R

(
−v2

1 + v2
2 + v2

R − v2
R

)
+ g2

V

(
−v2

L + v2
L + v2

R − v2
R

)
+ 4λ2

(
v2

1 + v2
L

)]

− 2λAλv1vL − 2λµ1vL (v1 − v2) + 2µ2
1vR − 2B1µ1vR + 4µλv2vL,

0 =2m2
3vL +

vL
2

[
g2
L

(
v2

1 − v2
2 − v2

L + v2
L

)
− g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

2 + v2
R

)]

− 2λAλv2vR − 2λµ1vR (v1 − v2) + 2µ2
1vL + 2B1µ1vL + 4µλv1vR,

0 =2m2
4vR +

vR
2

[
g2
R

(
v2

1 − v2
2 − v2

R + v2
R

)
+ g2

V

(
v2
L − v2

L − v2
R + v2

R

)
+ 4λ2

(
v2

2 + v2
L

)]

− 2λAλv2vL + 2λµ1vL (v1 − v2) + 2µ2
1vR − 2B1µ1vR + 4µλv1vL. (73)

The relevant mass-matrix elements in this case are given as:

M11 =
g2
R

(
v2

1 − v2
2

)2
+ g2

V

(
v2
L − v2

L

)2
+ g2

L

(
v2

1 − v2
2 − v2

L + v2
L

)2
+ 8λ2

(
v2

1v
2
L + v2

2v
2
L

)

2
(
v2

1 + v2
2 + v2

L + v2
L

) ,

M12 =
vLvL

(
g2
V

(
v2
L − v2

L

)
+ g2

L

(
−v2

1 + v2
2 + v2

L − v2
L

)
+ 2

(
v2

1 − v2
2

)
λ2
)

√
v2
L + v2

L

√
v2

1 + v2
2 + v2

L + v2
L

,

M13 =
[
v1

{
g2
V (v2

L − v2
L)2 + 2g2

Lv
2
L

(
−v2

1 + v2
2 + v2

L − v2
L

)

− g2
R

(
v2

1 − v2
2

) (
v2
L + v2

L

)
+ 4λ2(v2

1v
2
L − v4

L + v2
2v

2
L − v2

Lv
2
L)
}]
/(

2
√(

v2
L + v2

L

) (
v2

1 + v2
L + v2

L

)√
v2

1 + v2
2 + v2

L + v2
L

)
,

M14 =
[
v2

{
g2
V (v2

L − v2
L)2 + 2g2

L(v2
1 + v2

L)
(
v2

1 − v2
2 − v2

L + v2
L

)

+ g2
R

(
v2

1 − v2
2

) (
2v2

1 + v2
L + v2

L

)
+ 4λ2

(
2v2

1v
2
L − v2

1v
2
L + v2

2v
2
L − v2

Lv
2
L − v4

L

)}]
/(

2(v2
1 + v2

2 + v2
L + v2

L)
√(

v2
1 + v2

L + v2
L

))
,

M15 =
[
g2
R

(
−v2

1 + v2
2

)
vR + g2

V

(
−v2

L + v2
L

)
vR + 4λ {−Aλv1vL + µ1(−v1 + v2)vL

+ λv2
1vR + λv2

LvR + 2µv2vL
}]
/

(
2
√
v2

1 + v2
2 + v2

L + v2
L

)
,

M16 =
[
g2
R

(
v2

1 − v2
2

)
vR + g2

V

(
v2
L − v2

L

)
vR + 4λ

{
µ1(v1 − v2)vL −Aλv2vL + λv2

2vR

+ λv2
LvR + 2µv1vL

}]
/

(
2
√
v2

1 + v2
2 + v2

L + v2
L

)
,

M55 = µ2
1 +m2

2 −
1

4

[
g2
R(v2

1 − v2
2 − 3v2

R + v2
R) + g2

V (v2
L − v2

L − 3v2
R + v2

R)
]

+ λ2(v2
1 + v2

L),

M56 = −(g2
R + g2

V )vRvR + 2B1µ1

2
,

M66 = µ2
1 +m2

4 +
1

4

[
g2
R(v2

1 − v2
2 − v2

R + 3v2
R) + g2

V (v2
L − v2

L − v2
R + 3v2

R)
]

+ λ2(v2
2 + v2

L). (74)
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All the other elements in the mass matrix are of order SUSY breaking scale squared or the
right-handed symmetry breaking scale squared. The only matrix elements that can provide
significant contributions to the lightest eigenvalue comes from M15 and M16. We focus on the
3× 3 sector formed by M11,M15,M16,M55,M56,M66. We choose some of the parameters such
that the M15 and M16 terms become zero and check that we have enough freedom to consistently
keep the other eigenvalues of the matrix to be positive. The smallest eigenvalue in this case for
the lightest CP-even Higgs boson is given by:

M2
htree

=
g2
R

(
v2

1 − v2
2

)2
+ g2

V

(
v2
L − v2

L

)2
+ g2

L

(
v2

1 − v2
2 − v2

L + v2
L

)2
+ 8λ2

(
v2

1v
2
L + v2

2v
2
L

)
2 (v2

1 + v2
2 + v2

L + v2
L)

. (75)

We define v1 = v sinβ cosφ, v2 = v cosβ sinψ, vL = v cosβ cosψ, vL = v sinβ sinφ and gR = gL.

Maximizing this expression with respect to φ and ψ gives the Higgs boson mass including the

one and two loop corrections from the top and stop sector as:

M2
hmax =

(
2M2

W sin4 β +
M4
W

2M2
W −M2

Z

cos4 β − M2
W

2
sin2 2β + λ2v2 sin2 2β

)
∆1

+ ∆2, (76)

where ∆1 and ∆2 are defined in Eq. (32). The coefficient of the ∆1 term is the tree-level lightest

Higgs boson mass.

Figure 3: (a) Variation of Higgs boson mass with tanβ, (b) Higgs boson mass as a function of
MS in the inverse seesaw model. Notation same as in Fig. 1

The Higgs boson mass is plotted in Fig 3(a) as a function of tanβ. The red region in the

figure represents the band where the mass is between 124 GeV and 126 GeV. The light green

region represents the area where the stop squark mixing is minimum, i.e., Xt = 0 while the

blue upper region is for maximal mixing where Xt = 6. The red shaded region is for all values

of Higgs mass greater than 126 GeV and it is overlapped by the blue and the green regions.

Fig. 3(b) represents the upper limit of the Higgs mass and as a function MS . Again the red band
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is where the Higgs boson mass is between 124 GeV and 126 GeV, green region is for Xt = 0,

blue region represents Xt = 6 and shaded red region is for all values of Higgs mass greater than

126 GeV which is overlapped by the green and the blue regions. The black solid line in each

case represents the MSSM upper limit for the Higgs mass.

The pseudo-scalar mass-squared matrix in this case is a 4 × 4 matrix after eliminating the

two Goldstone states which are absorbed by the ZR and Z bosons to get mass. We choose a

transformation given as

ρ1 =
vLH

0
L + vLH

0
L√

v2
L + v2

L

, ρ2 =
vRH

0
R + vRH

0
R√

v2
R + v2

R

, ρ3 =
v1vLH

0
R + v1vRH

0
L + vLvRφ

0
1√

v2
1v

2
L + v2

1v
2
R + v2

Lv
2
R

,

ρ4 =
v2vLH

0
R + v2vRH

0
L + vLvRφ

0
2√

v2
2v

2
L + v2

2v
2
R + v2

Lv
2
R

. (77)

The matrix elements in the basis (Imρ1, Imρ2, Imρ3, Imρ4) are given as:

M11 = −(v2
L + v2

L) [B1µ1vLvL − µ1(v1vLvR + v2vLvR)λ+ 2µ(λv2vLvR + λv1vLvR −Bv1v2)]

v2
Lv

2
L

,

M12 = −
2µ (−Bv1v2 + λv2vLvR + λv1vLvR)

√
(v2
L + v2

L)(v2
R + v2

R)

vLvLvRvR
,

M13 = −
(λµ1vLvR + 2Bµv2 − 2λµvLvR)

√
(v2
L + v2

L)[v2
Lv

2
R + v2

1(v2
L + v2

R)]

v2
LvLvR

,

M14 = −
(λµ1vRvL + 2Bµv1 − 2λµvLvR)

√
(v2
L + v2

L)[v2
Lv

2
R + v2

2(v2
L + v2

R)]

vLv2
LvR

,

M22 =
(v2
R + v2

R) [B1µ1vRvR − µ1(v2vLvR + v1vLvR)λ− 2µ(λv2vLvR + λv1vLvR −Bv1v2)]

v2
Rv

2
R

,

M23 =
(λµ1vRvL − 2Bµv2 + 2λµvLvR)

√
(v2
R + v2

R)[v2
Lv

2
R + v2

1(v2
L + v2

R)]

vLvRv2
R

,

M24 =
(λµ1vLvR − 2Bµv1 + 2λµvLvR)

√
(v2
R + v2

R)[v2
Lv

2
R + v2

2(v2
L + v2

R)]

vRvLv2
R

,

M33 =
[v2
Lv

2
R + v2

1(v2
L + v2

R)] [λAλvLvR + λµ1(vLvR − vLvR) + 2Bµv2 − 2λµvLvR]

v1v2
Lv

2
R

,

M34 =
2µB

√
v2
Lv

2
R + v2

1(v2
L + v2

R)
√
v2
Lv

2
R + v2

2(v2
L + v2

R)

vLvRvLvR
,

M44 =
[v2
Lv

2
R + v2

2(v2
L + v2

R)] [λAλvLvR − λµ1(vLvR − vLvR) + 2Bµv1 − 2λµvLvR]

v2v2
Lv

2
R

. (78)

The charged Higgs boson mass-squared matrix is a 6× 6 matrix of which there are two zero

mass eigenstates which are the Goldstone bosons required to give mass to the WR and the W
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bosons. The elements of the 6× 6 matrix in the original basis are given as:

M11 = m2
1 + µ2

1 +
1

4

[
g2
L(v2

1 − v2
2 + v2

L + v2
L) + g2

V (v2
L − v2

L − v2
R + v2

R)
]

+ λ2(v2
2 + v2

R),

M12 = −B1µ1 +
g2
LvLvL

2
,

M13 = λ(λvLvR −Aλv2 + 2µv1),

M14 = λ[λvRvL + µ1(v1 − v2)],

M15 =
1

2
g2
Lv1vL + λ(AλvR − µ1vR − λv1vL),

M16 =
1

2
g2
Lv2vL − λ(µ1vR − λv2vL − 2µvR),

M22 = m2
3 + µ2

1 +
1

4

[
g2
L(−v2

1 + v2
2 + v2

L + v2
L) + g2

V (−v2
L + v2

L + v2
R − v2

R)
]

+ λ2(v2
1 + v2

R),

M23 = λ[λvLvR − µ1(v1 − v2)],

M24 = λ(λvLvR −Aλv1 + 2µv2),

M25 =
1

2
g2
Lv1vL − λ(µ1vR + λv1vL − 2µvR),

M26 =
1

2
g2
Lv2vL + λ(AλvR − µ1vR − λv2vL),

M33 = m2
2 + µ2

1 +
1

4

[
g2
R(v2

1 − v2
2 + v2

R + v2
R) + g2

V (−v2
L + v2

L + v2
R − v2

R)
]

+ λ2(v2
2 + v2

L),

M34 = B1µ1 +
g2
RvRvR

2
,

M35 =
1

2
g2
Rv2vR + λ(µ1vL − λv2vR + 2µvL),

M36 =
1

2
g2
Rv1vR + λ(µ1vL + λv1vR +AλvL),

M44 = m2
4 + µ2

1 +
1

4

[
g2
R(−v2

1 + v2
2 + v2

R + v2
R) + g2

V (v2
L − v2

L − v2
R + v2

R)
]

+ λ2(v2
1 + v2

L),

M45 =
1

2
g2
Rv2vR + λ(µ1vL − λv2vR +AλvL),

M46 =
1

2
g2
Rv1vR + λ(µ1vL − λv1vR + 2µvL),

M55 = m2
5 + 4µ2 +

1

4

[
g2
L(v2

1 + v2
2 + v2

L − v2
L) + g2

R(v2
1 + v2

2 − v2
R + v2

R)
]

+ λ2(v2
L + v2

R),

M56 =
(g2
L + g2

R)v1v2 + 4Bµ

2
,

M66 = m2
5 + 4µ2 +

1

4

[
g2
L(v2

1 + v2
2 − v2

L + v2
L) + g2

R(v2
1 + v2

2 + v2
R − v2

R)
]

+ λ2(v2
L + v2

R). (79)

Using the minimization conditions given in Eq. (73), we eliminate m1, m2, m3, B, B1 and

m5. We then numerically calculate the pseudo-scalar and charged Higgs boson masses choosing

the remaining parameters such the the lightest Higgs mass is 125 GeV after radiative corrections.

We choose a stop squark mass of 500 GeV and the mixing parameter Xt=4. The numerical
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values of the Higgs masses are given in Table 2 for this choice of parameters.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L φ̃+
1 W̃+

R W̃+
L

)




µ1 −λv2 λvL gRvR 0

−λv1 −µ1 λvR 0 gLvL

λvL λvR 2µ gRv1 gLv1

gRvR 0 gRv2 MR 0

0 gLvL gLv2 0 ML







H̃
−
R

H̃−L
φ̃−2
W̃−R
W̃−L



,

(80)

and the neutralino mass matrix in the basis
(
H̃0
R H̃0

L H̃
0

R H̃
0

L φ̃0
1 φ̃0

2 B̃ W̃R3 W̃L3

)
is

given as

Mn =




0 −λv1 −µ1 0 −λvL 0 gV vR√
2

−gRvR√
2

0

−λv1 0 0 µ1 −λvR 0 −gV vL√
2

0 gLvL√
2

−µ1 0 0 −λv2 0 −λvL −gV vR√
2

gRvR√
2

0

0 µ1 −λv2 0 0 −λvR gV vL√
2

0 −gLvL√
2

−λvL −λvR 0 0 0 −2µ 0 −gRv1√
2
−gLv1√

2

0 0 −λvL −λvR −2µ 0 0 gRv2√
2

gLv2√
2

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

0 0 M1 0 0

−gRvR√
2

0 gRvR√
2

0 −gRv1√
2

gRv2√
2

0 MR 0

0 gLvL√
2

0 −gLvL√
2
−gLv1√

2

gLv2√
2

0 0 ML




, (81)

The chargino and neutralino masses are given in Table. 2.

Scalar Higgs
boson masses

Pseudo-scalar
Higgs boson

masses

Single charged
Higgs boson

masses

Chargino
masses

Neutralino
masses

MH1=5.80 TeV,
MH2=5.43 TeV,
MH3=3.08 TeV,
MH4=694 GeV,
MH5=436 GeV

MA1=29.6 TeV,
MA2=4.67 TeV,
MA3=2.80 TeV,
MA4=478 GeV

MH+
1

=5.80 TeV,

MH+
2

=5.21 TeV,

MH+
3

=3.08 TeV,

MH+
4

=454 GeV

Mχ̃+
1

=5.80 TeV,

Mχ̃+
2

=3.87 TeV,

Mχ̃+
3

=2.86 TeV,

Mχ̃+
4

=1.88 TeV,

Mχ̃+
5

=800 GeV

Mχ̃0
1,2

=5.80 TeV,

Mχ̃0
3
=4.31 TeV,

Mχ̃0
4
=2.90 TeV,

Mχ̃0
5,6

=2.86 TeV,

Mχ̃0
7
=2.09 TeV,

Mχ̃0
8
=800 GeV,

Mχ̃0
9
=526 GeV

Table 2: Higgs boson, chargino and neutralino masses for inverse seesaw model with a sample
point given as: λ=0.36, v1=165.8 GeV, v2=8 GeV, vL=10 GeV, vL=51 GeV, vR=3 TeV, vR=4
TeV, µ1=-2.68 TeV, µ=-2.8 TeV, m2

4=−7002 GeV2, Aλ=700 GeV, MR=800 GeV, ML=800
GeV, M1=400 GeV.
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5 Universal Seesaw model

5.1 Case with a Singlet

The particle spectrum for this case is given in Eq. (14) with an additional singlet Higgs field S.

The superpotential is given as:

W = S(iλHT
L τ2HL + iλcHT

Rτ2HR −M2), (82)

where λc = λ∗ and M2 is real from parity invariance.

The D-terms, F -terms and the soft supersymmetry breaking terms are given as:

VF =
∣∣λTr[iHT

L τ2HL + iHT
Rτ2HR]−M2

∣∣2

+ |λS|2Tr[H†LHL +HL
†
HL +H†RHR +HR

†
HR], (83)

VD =
g2
L

8

3∑

a=1

|H†LτaHL +H
†
LτaHL|2

+
g2
R

8

3∑

a=1

|H†RτaHR +H
†
RτaHR|2

+
g2
V

8
| −H†LHL +H

†
LHL +H†RHR −H†RHR|2, (84)

VSoft = m2
3(H†LHL) +m2

4(H†RHR) +m2
5(HL

†
HL) +m2

6(HR
†
HR) +m2

S |S|2

+
[
λAλS(HT

L τ2HL +HT
Rτ2H) + h.c.

]
+ (λCλM

2S + h.c.). (85)

We choose a rotated basis which is exactly the same as in Eq. (27) with φ1 → HL, φ2 →
HL, δ

c0 → HR, δ
c0 → HR, v1 → vL, v2 → vL. The minimization conditions are slightly modified

form of Eq. (28) and are given by:

0 =vL[4m2
3 + g2

L(−v2
L + v2

L) + g2
V (−v2

L + v2
L − v2

R + v2
R)] + 4λAλvLvS + 4λ2vLv

2
S

+ 4λvL(−M2 + λvLvL − λvRvR),

0 =vL[4m2
5 + g2

L(−v2
L + v2

L) + g2
V (−v2

L + v2
L + v2

R − v2
R)] + 4λAλvLvS + 4λ2vLv

2
S

+ 4λvL(−M2 + λvLvL − λvRvR),

0 =vR[4m2
4 + g2

V (−v2
L + v2

L + v2
R − v2

R) + g2
R(v2

R − v2
R)]− 4λAλvRvS

+ 4λvR(M2 − λvLvL) + 4λ2vR(v2
R + v2

S),

0 =vR[4m2
6 + g2

V (v2
L − v2

L − v2
R + v2

R) + g2
R(v2

R − v2
R)]− 4λAλvRvS

+ 4λvR(M2 − λvLvL) + 4λ2vR(v2
R + v2

S),

0 =2m2
SvS + 2CλM

2λ+ 2λAλ(vLvL − vRvR) + λ2(v2
L + v2

L + v2
R + v2

R)vS . (86)
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Using this minimization and the basis (Reρ1,Reρ2,ReH0
R,ReHR

0
), the relevant mass-squared

matrix elements are given by:

M11 =
g2
L(v2

L − v2
L)2 + g2

V (v2
L − v2

L)2 + 8v2
Lv

2
Lλ

2

2(v2
L + v2

L)
,

M12 =
vLvL(v2

L − v2
L)(g2

L + g2
V − 2λ2)

(v2
L + v2

L)
,

M13 =
−g2

V (v2
L − v2

L)(v2
R − v2

R)− 8λ2vLvLvRvR√
(v2
L + v2

L)(v2
R + v2

R)
,

M14 =
−g2

V (v2
L − v2

L)vRvR + 2λ2vLvL(v2
R − v2

R)√
(v2
L + v2

L)(v2
R + v2

R)
,

M15 =
λ[2AλvLvL + 2(v2

L + v2
L)vSλ]√

v2
L + v2

L

,

M55 = m2
S + (v2

L + v2
L + v2

R + v2
R)λ2. (87)

The other terms in the mass matrix are given in the appendix. We choose the ratio between

vR and vR such that the matrix element M13 vanishes and we choose the value of Aλ such

that M15 becomes zero. Then we calculate the correction from the off-diagonal elements to

the lightest eigenvalue of this mass-squared matrix. In the limit where the soft-supersymmetry

breaking parameter m6 is significantly larger vR, we can show that this correction vanishes. We

use the definitions of tanβ = vL
vL

and v2 = v2
L + v2

L. Including the loop corrections from the top

and stop sector, the Higgs boson mass is:

M2
h =

(
M4
W

2M2
W −M2

Z

cos2 2β + λ2v2 sin2 2β

)
∆1 + ∆2, (88)

where ∆1 and ∆2 are defined in Eq. (32). As before the coefficient of the ∆1 term is the

tree-level Higgs boson mass upper limit.

The Higgs boson mass is plotted in Fig 4(a) as a function of tanβ. The red region in the

figure represents the band where the mass is between 124 GeV and 126 GeV. The light green

region represents the area where the stop squark mixing is minimum, i.e., Xt = 0 while the

blue upper region is for maximal mixing where Xt = 6. The red shaded region is for all values

of Higgs mass greater than 126 GeV and it is overlapped by the blue and the green regions.

Fig. 4(b) represents the upper limit of the Higgs mass and as a function MS . Again the red band

is where the Higgs boson mass is between 124 GeV and 126 GeV, green region is for Xt = 0,

blue region represents Xt = 6 and shaded red region is for all values of Higgs mass greater than

126 GeV which is overlapped by the green and the blue regions. The black solid line in each

case represents the MSSM upper limit for the Higgs mass.
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Figure 4: (a) Variation of Higgs boson mass with tanβ, (b) Higgs boson mass as a function of
MS in the universal seesaw model. Notation same as in Fig. 1.

To obtain the pseudo scalar mass-squared matrix , we make the following transformation

ρ1 =
vRH

0
R + vRH

0
R√

v2
R + v2

R

, ρ2 =
vLH

0
L + vLH

0
L√

v2
L + v2

L

, g1 =
vRH

0
R − vRH

0
R√

v2
R + v2

R

, g2 =
vLH

0
L − vLH

0
L√

v2
L + v2

L

.

(89)

The imaginary components of g1 and g2 are identified as the Goldstone states, and the 3 × 3

pseudo-scalar matrix elements in the basis (Imρ1, Imρ2, ImS) are given as:

M11 = m2
4 +m2

6 + λ2(v2
R + v2

R + v2
S),

M12 = −λ2
√

(v2
R + v2

R)(v2
L + v2

L)

M13 = λAλ

√
v2
R + v2

R

M22 = m2
3 +m2

5 + λ2(v2
L + v2

L + 2v2
S)

M23 = −λAλ
√
v2
L + v2

L

M33 = m2
S + λ2(v2

L + v2
L + v2

R + v2
R) (90)

The charged Higgs boson matrix is obtained by identifying the Goldstone boson states to

be:

g+
1 =

vRH
+
R − vRH

−
R

∗

√
v2
R + v2

R

, g+
2 =

vLH
−
L
∗ − vLH+

L√
v2
L + v2

L

, (91)
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and the physical charged Higgs boson mass eigenstates as:

h+
1 =

vRH
+
R + vRH

−
R

∗

√
v2
R + v2

R

, h+
2 =

vLH
−
L
∗

+ vLH
+
L√

v2
L + v2

L

. (92)

The two eigenvalues of the charged Higgs boson mass-squared matrix in this case are given by:

M2
h+

1
= m2

4 +m2
6 +

1

2
g2
R(v2

R + v2
R) + 2λ2v2

S ,

M2
h+

2
= m2

3 +m2
5 +

1

2
g2
L(v2

L + v2
L) + 2λ2v2

S . (93)

We again use the minimization conditions given in Eq. (86) to eliminate m3, m4, m5, m6

and Cλ. We take a stop squark mass of 600 GeV and Xt = 6. Using all these constraints on

the aforementioned parameters and making sure that the lightest CP-even Higgs boson mass

is 125 GeV, we numerically calculate the masses of the charged and pseudo-scalar Higgs boson

for a sample point. The results are given in Table 3 for this choice of parameters.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L W̃+
R W̃+

L

)




λ∗vS 0 gRvR 0

0 −λvS 0 gLvL

gRvR 0 MR 0

0 gLvL 0 ML







H̃
−
R

H̃−L
W̃−R
W̃−L



, (94)

and the neutralino mass matrix in the basis
(
H̃0
R H̃0

L H̃
0

R H̃
0

L B̃ W̃R3 W̃L3 S̃

)
is given

as

Mn =




0 0 −λ∗vS 0 gV vR√
2

−gRvR√
2

0 −λ∗vR
0 0 0 λvS −gV vL√

2
0 gLvL√

2
λvL

−λ∗vS 0 0 0 −gV vR√
2

gRvR√
2

0 −λ∗vR
0 λvS 0 0 gV vL√

2
0 −gLvL√

2
λvL

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

M1 0 0 0

−gRvR√
2

0 gRvR√
2

0 0 MR 0 0

0 gLvL√
2

0 −gLvL√
2

0 0 ML 0

−λ∗vR λvL −λ∗vR λvL 0 0 0 0




, (95)

where W̃R, W̃L and B̃ are the superpartners of the right-handed gauge bosons, left-handed gauge

bosons and the U(1)B−L gauge boson and MR,ML and M1 are their soft masses respectively

as given in Eq. 42. The numerical values of the masses for the chosen sample point are given in

Table 3.
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Scalar Higgs
boson masses

Pseudo-scalar
Higgs boson

masses

Single charged
Higgs boson

masses

Chargino
masses

Neutralino
masses

MH1=4.53 TeV,
MH2=2.47 TeV,
MH3=1.84 TeV,
MH4=636 GeV

MA1=4.49 TeV,
MA2=1.92 TeV,
MA3=636 GeV

MH+
1

=1.98 TeV,

MH+
2

=641 GeV

Mχ̃+
1

=2.55 TeV,

Mχ̃+
2

=1.47 TeV,

Mχ̃+
3

=809 GeV,

Mχ̃+
4

=274 GeV

Mχ̃0
1
=2.96 TeV,

Mχ̃0
2
=2.13 TeV,

Mχ̃0
3
=2.02 TeV,

Mχ̃0
4
=1.85 TeV,

Mχ̃0
4
=809 GeV,

Mχ̃0
6
=543 GeV,

Mχ̃0
7
=281 GeV,

Mχ̃0
8
=266 GeV

Table 3: Higgs boson, chargino and neutralino masses for Universal seesaw model with a sin-
glet Higgs boson field using a sample point with parameters given as: λ=0.46, vL=7.4 GeV,
vL=173.85 GeV, vR=3 TeV, vR=3.1 TeV, M2=-2.22 TeV2, vS=600 GeV, m2

S=16 TeV2, Aλ=-1
TeV, MR=800 GeV, ML=800 GeV, M1=400 GeV.

5.2 Case without singlet

The most general superpotential involving the Higgs fields in this case is given by:

W = iµ1H
T
L τ2HL + iµ2H

T
Rτ2HR. (96)

The D-terms in the superpotential is the same as in Eq. (84). The F -terms and the soft

supersymmetry breaking terms in the Higgs potential are given by:

VF = µ2
1(H†LHL +H

†
LHL) + µ2

2(H†RHR +H
†
RHR), (97)

VSoft = B1µ1(iHT
L τ2HL + h.c.) +B2µ2(iHRτ2HR + h.c)

+ m2
3(H†LHL) +m2

4(HL
†
HL) +m2

5(H†RHR) +m2
6(HR

†
HR). (98)

The vacuum structure in this case is given as:

〈HL〉 =

(
vL

0

)
, 〈HR〉 =

(
0

vR

)
,
〈
HL

〉
=

(
0

vL

)
,
〈
HR

〉
=

(
vR

0

)
. (99)

We take a rotated basis given by:

ρ1 =
vLH

0
L + vLHL

0

√
v2
L + v2

L

, ρ2 =
vLH

0
L − vLH

0
L√

v2
L + v2

L

. (100)

The minimization conditions are given by:

0 = 2µ2
2vR + 2m2

4vR − 2B2µ2vR +
1

2
vR[g2

R(v2
R − v2

R)− g2
V (v2

L − v2
L − v2

R + v2
R)],
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0 = 2µ2
2vR + 2m2

6vR − 2B2µ2vR +
1

2
vR[g2

R(−v2
R + v2

R) + g2
V (v2

L − v2
L − v2

R + v2
R)],

0 = 2µ2
1vL + 2m2

3vL + 2B1µ1vL +
1

2
vL[g2

L(v2
L − v2

L) + g2
V (v2

L − v2
L − v2

R + v2
R)],

0 = 2µ2
1vL + 2m2

5vL + 2B1µ1vL +
1

2
vL[g2

L(−v2
L + v2

L) + g2
V (v2

L − v2
L + v2

R − v2
R)]. (101)

Using the potential and minimization equations, we calculate the mass-squared matrix in

the basis (Reρ1,Reρ2,ReH0
R,ReHR

0
). We get the following matrix:




(g2
L+g2

V )(v2
L−v

2
L)2

2(v2
L+v2

L)

(g2
L+g2

V )(v2
L−v

2
L)vLvL

(v2
L+v2

L)
−g2

V vR(v2
L−v

2
L)

2
√

(v2
L+v2

L)

g2
V vR(v2

L−v
2
L)

2
√

(v2
L+v2

L)
(g2
L+g2

V )(v2
L−v

2
L)vLvL

(v2
L+v2

L)

2(g2
L+g2

V )v2
Lv

2
L+(m2

3+m2
5+2µ2

1)(v2
L+v2

L)

(v2
L+v2

L)
−g2

V vLvLvR√
v2
L+v2

L

g2
V vLvLvR√
v2
L+v2

L

−g2
V vR(v2

L−v
2
L)

2
√

(v2
L+v2

L)
−g2

V vLvLvR√
v2
L+v2

L

(g2
R+g2

V )v3
R+2B2µ2vR

2vR
−B2µ2 − 1

2
(g2
R + g2

V )vRvR

g2
V vR(v2

L−v
2
L)

2
√

(v2
L+v2

L)

g2
V vLvLvR√
v2
L+v2

L

−B2µ2 − 1
2
(g2
R + g2

V )vRvR
(g2
R+g2

V )v3
R+2B2µ2vR

2vR



.

(102)

Here we have assumed vR, vR 6= 0 in obtaining the mass matrix. We calculate the contri-

bution of the off-diagonal elements to the lightest eigenvalue using the seesaw formula and this

gives us the result

M2
htree = M2

Z cos2 2β, (103)

where we have also assumed that the SU(2)R gauge coupling (gR) is equal to the SU(2)L gauge

coupling (gL), tanβ = vL
vL

and v2 = v2
L + v2

L.

The CP-odd Higgs boson mass-squared matrix is a 4 × 4 matrix which has two Goldstone

states same as in Sec. 5.1. The resulting matrix after eliminating the Goldstone states is a 2×2

matrix whose eigenvalues are given as:

M2
A1

= m2
4 +m2

6 + 2µ2
2, M2

A2
= m2

3 +m2
5 + 2µ2

1. (104)

The charged Higgs boson matrix is again a 4 × 4 matrix with two Goldstone states which

are the same as in Eq. (91). The eigenvalues of the remaining 2 × 2 charged Higgs boson

mass-squared matrix in this case are given by:

M2
h+

1
= m2

4 +m2
6 +

1

2
g2
R(v2

R + v2
R) + 2µ2

2,

M2
h+

2
= m2

3 +m2
5 +

1

2
g2
L(v2

L + v2
L) + 2µ2

1. (105)

Here we use the minimization conditions given in Eq. (101) to eliminate B1, B2, µ1 and µ2.

Since the light Higgs boson mass in this case is the same as in MSSM we use a stop squark

mass of 1.5 TeV and maximal mixing between the stop squarks to get a Higgs boson mass of
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125 GeV. The pseudo-scalar and charged Higgs boson masses are given in Table 4.

Chargino and Neutralino masses

The chargino mass terms in this case is written as

Lchargino = −1

2

(
H̃+
R H̃

+

L W̃+
R W̃+

L

)




µ2 0 gRvR 0

0 −µ1 0 gLvL

gRvR 0 MR 0

0 gLvL 0 ML







H̃
−
R

H̃−L
W̃−R
W̃−L



, (106)

and the neutralino mass matrix in the basis
(
H̃0
R H̃0

L H̃
0

R H̃
0

L B̃ W̃R3 W̃L3

)
is given as

Mn =




0 0 −µ2 0 gV vR√
2

−gRvR√
2

0

0 0 0 µ1 −gV vL√
2

0 gLvL√
2

−µ2 0 0 0 −gV vR√
2

gRvR√
2

0

0 µ1 0 0 gV vL√
2

0 −gLvL√
2

gV vR√
2

−gV vL√
2
−gV vR√

2

gV vL√
2

M1 0 0

−gRvR√
2

0 gRvR√
2

0 0 MR 0

0 gLvL√
2

0 −gLvL√
2

0 0 ML




, (107)

where MR,ML and M1 are given in Eq. 42. The numerical values of the masses for the chosen

sample point are given in Table 4.

Scalar Higgs
boson masses

Pseudo-scalar
Higgs boson

masses

Single charged
Higgs boson

masses

Chargino
masses

Neutralino
masses

MH1=5.71 TeV,
MH2=2.32 TeV,
MH3=360 GeV

MA1=5.07 TeV,
MA2=2.32 TeV

MH+
1

=5.50 TeV,

MH+
2

=2.32 TeV

Mχ̃+
1

=4.57 TeV,

Mχ̃+
2

=1.11 TeV,

Mχ̃+
3

=792 GeV,

Mχ̃+
4

=389 GeV

Mχ̃0
1
=4.98 TeV,

Mχ̃0
2
=3.39 TeV,

Mχ̃0
3
=1.11 TeV,

Mχ̃0
4
=1.10 TeV,

Mχ̃0
4
=948 GeV,

Mχ̃0
6
=793 GeV,

Mχ̃0
7
=554 GeV

Table 4: Higgs boson, chargino and neutralino masses for Universal seesaw model using a sample
point with parameters given as: vL=10 GeV, vL=173.71 GeV, vR=3 TeV, vR=3.5 TeV, m2

3=4
TeV2, m2

4=4 TeV2, m2
5=-1 TeV2, m2

6=-1 TeV2, MR=800 GeV, ML=800 GeV, M1=400 GeV.
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6 E6 Inspired Left-right Supersymmetric model

The Higgs spectrum for this model is discussed in Eq. (18). The relevant terms in the superpo-

tential involving the HL, HR and Φ fields are given as:

W = λHT
L τ2Φτ2HR + µTr

[
Φτ2ΦT τ2

]
, (108)

where the parameter λ and µ must be real for the superpotential to be invariant under parity

transformation.

The Higgs potential consisting of the VF , VD and VSoft terms will be given as:

VF = Tr(|λHT
Rτ2Φτ2|2 + |λHT

L τ2Φτ2|2) + Tr(|λHLH
T
R + 2µΦ|2), (109)

VD =
g2
L

8

3∑

a=1

|H†LτaHL + Tr(Φ†τaΦ)|2 +
g2
R

8

3∑

a=1

|H†RτaHR + Tr(Φ∗τaΦ
T )|2

+
g2
V

8
|H†RHR −H†LHL|2, (110)

VSoft = m2
1Tr(Φ†Φ) +

[
BµTr(ΦT τ2Φτ2) + h.c.

]
+m2

3H
†
LHL +m2

4H
†
RHR

+ (AλλH
T
L τ2Φτ2HR + h.c.). (111)

Using this potential we calculate the Higgs boson mass-squared matrix. We choose the

following vacuum structure for the Higgs fields:

〈HL〉 =

(
vL

0

)
, 〈HR〉 =

(
0

vR

)
, 〈Φ〉 =

(
0 v2

v1 0

)
(112)

To easily identify the field corresponding to the lightest eigenvalue, we take a linear combination

of the H0
L, φ

0
1 and φ0

2 fields. We make sure that only one of the newly defined fields get a non-zero

vacuum expectation value(or VEV). The field redefinition that we used is:

ρ1 =
vLH

0
L + v1φ

0
1 + v2φ

0
2√

v2
L + v2

1 + v2
2

, ρ2 =
vLφ

0
1 − v1H

0
L√

v2
1 + v2

L

,

ρ3 =
vLv2H

0
L + v1v2φ

0
1 − (v2

1 + v2
L)φ0

2√
(v2

1 + v2
2)(v2

1 + v2
2 + v2

L)
. (113)

With this choice, one can verify that only the ρ1 field gets a non-zero vacuum expectation value

of
√
v2

1 + v2
2 + v2

L. We calculate the 4 × 4 mass-squared matrix for the neutral CP-even Higgs

boson in the basis (Reρ1,ReH0
R,Reρ2,Reρ3). It is easy to identify the lightest mass eigenvalue

in this new basis. We use the minimization condition for the potential to express the soft

SUSY breaking masses and the coefficient µ in terms of the other parameters in the model.

The minimization conditions and mass-squared matrix is given in Appendix. We assume that

vR >> v1, v2, vL and using this assumption we can get he lightest eigenvalue of the mass-squared

matrix. It turns out that we can neglect the corrections from two of the off-diagonal matrix
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elements as they are of order of ∼ v4
1

v2
R

. So we effectively have a 2× 2 matrix. Diagonalizing this

matrix, we get the lightest neutral CP-even Higgs mass given by:

M2
htree = [g2

R(v2
1 − v2

2)2 + g2
V v

4
L + g2

L(−v2
1 + v2

2 + v2
L)2 + 8v2

1v
2
Lλ

2

− (g2
V v

2
L + g2

R(−v2
1 + v2

2 + v2
L) + 4v2

1λ
2)2/(g2

R + g2
V )]/(2(v2

1 + v2
2 + v2

L)). (114)

We then choose v1 = v sinβ, v2 = v cosβ cosφ and vL = v cosβ cosφ. Maximizing the resulting

expression with respect to λ and φ and choosing gR = gL, we get:

M2
htree = 2M2

W cos2 2β. (115)

This result is exactly the same as in Section 3.2 and has been discussed in details in that section.

The pseudo-scalar Higgs boson mass-squared matrix is obtained by eliminating the Gold-

stone states and choosing the following basis:

ρ1 =
v1vLH

0
R + v1vRH

0
L + vLvRφ

0
1√

v2
1v

2
L + v2

1v
2
R + v2

Lv
2
R

, ρ2 =
v2φ

0
1 + v1φ

0
2√

v2
1 + v2

2

. (116)

The 2× 2 mass-squared matrix in the basis (Imρ1,Imρ2) can be written as



λ(Aλv1−2µv2)[v2

Lv
2
R+v2

1(v2
L+v2

R)]

v2
1vLvR

2λµ
√

(v2
1+v2

2)[v2
Lv

2
R+v2

1(v2
L+v2

R)]

v2
1

2λµ
√

(v2
1+v2

2)[v2
Lv

2
R+v2

1(v2
L+v2

R)]

v2
1

2(v2
1+v2

2)(µ2
2v1−λµvLvR)

v2
1v2


 (117)

The charged Higgs boson mass-squared matrix is a 4 × 4 matrix of which there are two

Goldstone states. In the original basis of (H−L
∗
, H+

R , φ
+
1 , φ

−
2
∗
) the mass-squared matrix is given

as:

M11 = m2
3 +

1

4

[
g2
L(v2

1 − v2
2 + v2

L) + g2
V (v2

L − v2
R)
]

+ λ2(v2
2 + v2

R),

M12 = λ(−Aλv2 + 2µv1),

M13 =
1

2
g2
Lv1vL + λ(AλvR − λv1vL),

M14 =
1

2
g2
Lv2vL − λ(λv2vL − 2µvR),

M22 = m2
3 +

1

4

[
g2
R(v2

1 − v2
2 + v2

R) + g2
V (−v2

L + v2
R)
]

+ λ2(v2
2 + v2

L),

M23 =
1

2
g2
Rv2vR + λ(−λv2vR + 2µvL),

M24 =
1

2
g2
Rv1vR − λ(λv1vR −AλvL),

M33 = m2
1 +

1

4

[
g2
L(v2

1 + v2
2 + v2

L) + g2
R(v2

1 + v2
2 − v2

R)
]

+ λ2v2
R + 4µ2,

M34 =
(g2
L + g2

R)v1v2 + 4Bµ

2
,

M44 = m2
1 + 4µ2 +

1

4

[
g2
L(v2

1 + v2
2 − v2

L) + g2
R(v2

1 + v2
2 + v2

R)
]

+ λ2v2
L. (118)
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We use the minimization conditions given in Eq. (143) to eliminate B,m1,m3 and m4. To

get the correct CP-even lightest Higgs boson mass of 125 GeV, we choose a stop squark mass

of 600 GeV and Xt = 1. The numerical values of the masses of the Higgs boson physical states

are given in Table 5.

Chargino and Neutralino masses

The higgsinos and the gauginos mix to form the charginos and the neutralinos. The chargino

mass term in this case is written as

Lchargino = −1

2

(
H̃+
R φ̃+

1 W̃+
R W̃+

L

)




−λv2 λvL gRvR 0

λvR 2µ gRv1 gLv1

0 gRv2 MR 0

gLvL gLv2 0 ML







H̃−L
φ̃−2
W̃−R
W̃−L



, (119)

and the neutralino mass matrix in the basis
(
H̃0
R H̃0

L φ̃0
1 φ̃0

2 B̃ W̃R3 W̃L3

)
is given as

Mn =




0 −λv1 −λvL 0 gV vR√
2

−gRvR√
2

0

−λv1 0 −λvR 0 −gV vL√
2

0 gLvL√
2

−λvL −λvR 0 −2µ 0 −gRv1√
2
−gLv1√

2

0 0 −2µ 0 0 gRv2√
2

gLv2√
2

gV vR√
2

−gV vL√
2

0 0 M1 0 0

−gRvR√
2

0 −gRv1√
2

gRv2√
2

0 MR 0

0 gLvL√
2

−gLv1√
2

gLv2√
2

0 0 ML




. (120)

where MR,ML and M1 are given in Eq. 42. The numerical values of the masses for the chosen

sample point are given in Table 5.

Scalar Higgs
boson masses

Pseudo-scalar
Higgs boson

masses

Single charged
Higgs boson

masses

Chargino
masses

Neutralino
masses

MH1=3.04 TeV,
MH2=1.72 TeV,
MH3=890 GeV

MA1=3.05 TeV,
MA2=888 GeV

MH+
1

=3.04 TeV,

MH+
2

=898 GeV

Mχ̃+
1

=2.22 TeV,

Mχ̃+
2

=2.09 TeV,

Mχ̃+
3

=799 GeV,

Mχ̃+
4

=2.53 GeV

Mχ̃0
1
=2.21 TeV,

Mχ̃0
2
=2.20 TeV,

Mχ̃0
3
=2.00 TeV,

Mχ̃0
4
=1.63 TeV,

Mχ̃0
4
=799 GeV,

Mχ̃0
6
=24.3 GeV,

Mχ̃0
7
=4.96 GeV

Table 5: Higgs boson, chargino and neutralino masses for Universal seesaw model using param-
eters given as: λ=0.3, vL=20 GeV, v1=172.5 GeV, v2=11 GeV, vR=3 TeV, µ=-1 TeV, Aλ=1
TeV, MR=-800 GeV, ML=-800 GeV, M1=400 GeV.
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7 Allowed parameter space and fine-tuning

The discovery of a 125 GeV Higgs boson has severely constrained the MSSM parameter space

with the need for a large fine-tuning to explain the observed Higgs boson mass. In all the models

we have discussed so far, the tree-level mass of the Standard Model-like Higgs boson is pushed

up and hence the constraints on the allowed parameter space are relaxed and the fine-tuning is

improved quite significantly. We would like to look at a few cases that we have studied in the

earlier sections and quantitatively examine how our results compare to that in MSSM.

The upper bound of the tree-level Higgs boson mass in MSSM is constraint by the Z-boson

mass and hence a 125 GeV Higgs boson requires a large contribution from the loop corrections.

This in turn requires the stop mass (MS) and the stop mixing parameter (At) to be quite large,

resulting in significant fine-tuning of the parameter space. The Higgs mass in MSSM may be

written as [27]:

m2
h ' µ2 +m2

Hu + δm2
Hu , (121)

where δmHu is the radiative correction to up-type Higgs boson soft term. Neglecting the gauge

coupling terms while keeping the top sector contributions, we can write an approximate expres-

sion for the fine-tuning measure as:

∆ ≡ δm2
Hu

/
(m2

h/2), (122)

where δm2
hu

is defined as

δm2
hu ∼ −

3f2
t

8π2
(m2

Q3
+m2

U3
+A2

t )ln(Λ2/m2
SUSY ). (123)

Here mQ3 and mU3 are the stop masses, At is the stop mixing parameter and M2
SUSY ≡ mt̃1

mt̃2
.

This expression holds true for the left-right supersymmetric models discussed in this paper as

well since the lightest neutral scalar Higgs boson in each case is a mixture of doublets or

bidoublet Higgs boson fields. Using this definition of fine-tuning, we derive their values for

some supersymmetric models as given in Table 6.

Model MSUSY = mQ3 = mU3 At tanβ ∆

MSSM 1.50 TeV 3.40 TeV 40 3170

E6 Inspired Model/Case with a
pair of triplets, a bidoublet

500 GeV 250 GeV 20 117

and a heavy singlet 800 GeV 0 9 260

Case with a pair of triplets, a 500 GeV 200 GeV 20 112
bidoublet and a singlet 700 GeV 0 9 200

Table 6: Higgs boson mass fine-tuning parameter for some supersymmetric models with mh =
125.09± 0.24 GeV . Here we have taken Λ = 1012 GeV, ft ∼ 1.
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As is evident from Table 6, the fine-tuning in the left-right supersymmetric models discussed

in this paper is much improved compared to MSSM.

Figure 5: Allowed parameter space in E6 inspired model vs MSSM, (b) Allowed parameter
space in LRSUSY with a pair of triplets, a bidoublet and a singlet vs MSSM.

Another important aspect of the left-right supersymmetric models discussed in this paper is

that the allowed parameter space for the range of values of mSUSY and Xt increases immensely

in comparison to MSSM. Fig. 5(a) shows the allowed range of parameter space in the mSUSY vs

Xt plane with the Higgs boson mass fixed to within 1σ of its experimental values as quoted by

LHC [28] which is mh = 125.09± 0.24. Here we have taken the E6 inspired case and compared

the allowed parameter space in MSSM. The green region is the one allowed by MSSM while

the red region together with the green region is the one allowed by the E6 inspired model. Fig.

5(b) is a plot of the allowed parameter space for the case with a pair of triplets, a bidoublet and

a singlet compared with the MSSM allowed region. Again the green region is the one allowed

in MSSM while the red along with the green region is the one allowed by the other model. We

can again see that the allowed range of parameters is much larger in the LRSUSY models that

have been discussed in this paper compared to MSSM.

8 Doubly-charged Higgs boson mass from loop corrections

In the models discussed under section 3, the SU(2)R symmetry breaking is achieved by triplet

Higgs bosons. Each triplet Higgs boson has a doubly-charged particle which should be relatively

easy to detect experimentally if they can be produced at the colliders. These doubly-charged

particles, if seen, can tell us a lot about the symmetry breaking pattern and their properties

can help identify the underlying model. It turns out that in the minimal models, the doubly

charged Higgs boson remains light [29] with a mass below a TeV regardless of the scale of

SU(2)R breaking. This arises owing to an enhanced symmetry of the tree-level Higgs potential

of the model. In this section we present a complete calculation of the one-loop induced mass

of this scalar proportional to its Majorana Yukawa coupling. This completes the calculation

initiated in Ref. [12].

We focus on a realistic left-right supersymmetric model where the SU(2)R×U(1)B−L sym-

metry is broken into U(1)Y by triplet Higgs boson field ∆c, and then the SU(2)L × U(1)Y
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symmetry breaking is achieved via bidoublet field Φ. The chiral matter sector of this model is

given in Eq. (1). The Higgs boson sector is given in Eq. (2). A singlet field S is introduced so

that the SU(2)R × U(1)BL symmetry breaking can be achieved in the supersymmetric limit.

The superpotential of the model is given as:

W = YuQ
T τ2Φ1τ2Q

c + YdQ
T τ2Φ2τ2Q

c + YνL
T τ2Φ1τ2L

c + YlL
T τ2Φ2τ2L

c

+ i(
f

2

∗
LT τ2∆L+

f

2
Lc

T
τ2∆cLc)

+ S[Tr(λ∗∆∆ + λ∆c∆
c
) + λ

′
abTr(Φ

T
a τ2Φbτ2)−M2

R] +W ′ (124)

where

W ′ =
[
M∆Tr(∆∆) +M∗∆Tr(∆

c∆
c
)
]

+ µabTr
(
ΦT
a τ2Φbτ2

)
+MSS

2 + λSS
3. (125)

Here Yu,d and Yν,l are the Yukawa couplings for quarks and leptons respectively and f is the

Majorana neutrino Yukawa coupling matrix. This is the most general superpotential. R-parity

is automatically preserved in this case. Putting W ′ = 0 gives an enhanced U(1) R-symmetry in

the theory. Under this R-symmetry, Q,QC , L, LC fields have a charge of +1, S has charge +2

and all other fields have charge zero with W carrying a charge +2. Putting W ′ = 0 also helps

in understanding the µ-problem. The doubly-charged left-handed and right-handed Higgsinos

would be degenerate in mass in this case.

We will study the case where W ′ = 0. The left-handed triplets do not get any VEV and

hence the masses of their doubly-charged particles are heavy. Thus we will concentrate on the

right-handed Higgs boson triplet sector from here on. The Higgs potential consists of F term,

D term and soft supersymmetry breaking terms which in this case are then given as

VF =
∣∣λTr(∆c∆

c
) + λ′abTr

(
ΦT
a τ2Φbτ2

)
−M2

R

∣∣2 + |λ|2|S|2
∣∣∣Tr(∆c∆c†) + Tr(∆

c
∆
c†

)
∣∣∣

Vsoft = M2
1 Tr(∆c†∆c) +M2

2 Tr(∆
c†

∆
c
) +M2

S |S|2

+ {AλλSTr(∆c∆c†)− CλM2
RS + h.c.}

VD =
g2
R

8

∑

a

∣∣∣Tr(2∆c†τa∆
c + 2∆

c†
τa∆

c
+ Φaτ

T
a Φ†a)

∣∣∣
2

+
g′2

8

∣∣∣Tr(2∆
c†

∆
c − 2∆c†∆c)

∣∣∣
2
. (126)

If we consider a charged breaking vacuum structure for the ∆c and ∆
c

fields given as

〈∆c〉 =
1√
2

(
0 vR

vR 0

)
,

〈
∆
c〉

=
1√
2

(
0 vR

vR 0

)
, (127)

it can be shown that the Higgs potential is lower compared to the charge conserving vacuum

given in Eq. (26) [10]. The F term and the soft SUSY breaking terms will be the same for both

vacuua whereas the D term of the potential will vanish for the charged breaking vacuum while
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being positive definite for the charge conserving one. This would lead to a charge breaking

vacuum to be the stable one which is not desirable. This is also the root cause for the doubly

charged scalar of the model receiving negative squared mass, which is unacceptable. The solution

to these problems lies in the calculation of the loop correction to the Higgs potential which can

make the mass of the doubly charged field positive and at the same time reverse the roles of

charge breaking and charge conserving vacuua.

The tree-level doubly-charged Higgs mass-squared matrix in the basis (δc
−−∗

, δ
c++

) is given

as

M2
δ++ =

(
−2g2

R(|vR|2 − |vR|2)− v∗R
vR
Y ∗ Y

Y ∗ 2g2
R(|vR|2 − |vR|2)− vR

v∗R
Y

)
(128)

where Y = λAλS + |λ|2
(
vRvR − M2

R
λ

)
and the electroweak vev has been neglected. It can

be easily seen that if the gauge couplings are neglected, then this matrix will have a massless

mode. Thus in this limit, the loop corrections to this massless mode should remain finite [30].

We proceed to compute the one-loop corrections to the would-be Goldstone boson mass arising

from its Majorana Yukawa couplings.

We first identify the eigenstate corresponding to the Goldstone state. It is given as

G++ =
v∗Rδ

c−− + vRδ
c++∗

√
v2
R + v2

R

. (129)

The couplings that we would need to consider include the direct coupling of the doubly-charged

particles to the electron and selectron fields, doubly-charged Higgs coupling to the neutral Higgs

triplet and singlet Higgs bosons and the coupling of these neutral fields to the neutrino and

sneutrino fields. These are the fields that appear in one-loop diagrams that induce a finite mass

for G++. We also need to calculate the masses of each of these particles.

We assume that the Majorana coupling f of Eq. (124) is significant for one generation of

leptons. This coupling involves an almost massless electron, a heavy right-handed neutrino, two

degenerate selectrons and two sneutrinos. If we denote

ν̃c =
n1 + in2√

2
, ν̃c

∗
=
n1 − in2√

2
, (130)

then the masses of all the particles are then given as

Mec ≈ 0, M2
ẽc1,2

= m2
Lc , Mνc = fvR,

M2
n1,2

= m2
Lc +

[
f2v2

R ± (fλvRvS + fAfvR)
]

(131)

where m2
Lc is the soft mass for the sleptons and Af is the trilinear coupling associated with the

Majorana Yukawa coupling f .

The neutral Higgs sector relevant for our calculation would include the δc
0
, δ
c0

and S fields.
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Let us write them as

δc
0

=
X1 + iY1√

2
, δ

c0
=
X2 + iY2√

2
, S =

X3 + iY3√
2

. (132)

If we choose all the couplings and the VEVs to be real, then we will get two 3× 3 mass-squared

matrices for these fields– one for the real part and another for the imaginary part. We only

need to consider the real fields as the imaginary fields will have no relevant cubic couplings to

the Goldstone field G++. The relevant interaction terms in the Lagrangian which would be

necessary for our calculation are given as

−Lint = G++G−−
[
(|ẽc1|2 + |ẽc2|2)

f2v2
R

v2
R + v2

R

+
√

2
λ2vRv

2
R

v2
R + v2

R

X1 +
√

2
λ2v2

RvR
v2
R + v2

R

X2

+
√

2

(
λ2vS +

λAλvRvR
v2
R + v2

R

)
X3

]
−


fAfvR + fλvRvS

2
√
v2
R + v2

R

(ẽc1ẽ
c
1 + ẽc2ẽ

c
2)G−−




+

[
fAf

2
√

2
(n2

1 − n2
2) +

f2vR√
2

(n2
1 + n2

2)

]
X1

+
fλvS

2
√

2
(n2

1 − n2
2)X2 +

fλvR

2
√

2
(n2

1 − n2
2)X3. (133)

The mass-squared matrix for the neutral scalar Higgs bosons is given as

M2
H =




M2
1 + λ2(v2

S + v2
R) λ2vRvR + λAλvS − λ2M2

R 2λ2vSvR + λAλvR

λ2vRvR + λAλvS − λ2M2
R M2

2 + λ2(v2
S + v2

R) 2λ2vSvR + λAλvR

2λ2vSvR + λAλvR 2λ2vSvR + λAλvR M2
S + λ2(v2

R + v2
R)


 . (134)

Usually one would need to diagonalize this mass-squared matrix and identify the mass eigen-

states. Fortunately that is not the case here. Let us choose a basis given as

X̂ = V TX (135)

where X =
(
X1 X2 X3

)T
, V is an orthogonal transformation matrix and X̂ represents the

mass eigenbasis. Then the diagonal mass-squared matrix is given as

D2 = V TM2
HV. (136)

All the couplings of the neutral Higgs bosons can now be written as

−LX̂ = PiVijX̂jG
++G−− +QiVijX̂jn

2
1 +RiVijX̂jn

2
2 + TiVijX̂jν

cνc (137)

where P,Q,R and T are vectors given as

P =
[√

2
λ2vRv

2
R

v2
R+v2

R
,
√

2
λ2v2

RvR
v2
R+v2

R
,
√

2
(
λ2vS + λAλvRvR

v2
R+v2

R

)]
,
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Q =
[
fAf
2
√

2
+ f2vR√

2
, fλvS

2
√

2
, fλvR

2
√

2

]
,

R =
[
−fAf
2
√

2
+ f2vR√

2
, −fλvS

2
√

2
, −fλvR

2
√

2

]
,

T =
[
f√
2
, 0, 0

]
. (138)

δ++ δ++

h0

ν̃c

δ++ δ++

h0

νc

Figure 6: One-loop Feynman diagrams inducing finite mass for doubly charged Higgs boson
with sneutrino and neutrino exchange.

We can now calculate the one-loop corrections to the doubly-charged Higgs boson mass.

The corrections coming from the right-handed neutrino and sneutrino sector are given by the

Feynman diagrams in Fig. 6. The corresponding amplitudes are given as

M1 = − i
2

[
P TM−2

h Q

∫
d4k

(2π)4

1

k2 −m2
n1

+ P TM−2
h R

∫
d4k

(2π)4

1

k2 −m2
n2

]
,

M2 = 2iMνcP
TM−2

h T

∫
d4k

(2π)4
Tr

(
/k +Mνc

k2 −M2
νc

)
. (139)

The Feynman diagrams for the electron and selectron corrections are given in Fig. 7 and the

δ++ δ++
ẽc

ẽc

δ++ δ++
ec

ec
δ++ δ−−

ẽc

Figure 7: Feynman diagrams for electron and selectron one-loop correction

corresponding amplitudes are given as

M3 = − i
2

(fAfvR + fλvRvS)2

v2
R + v2

R

∫
d4k

(2π)4

1

k2 −m2
ẽc
,

M4 = − if2v2
R

v2
R + v2

R

∫
d4k

(2π)4

1

k2
,

M5 =
if2v2

R

v2
R + v2

R

∫
d4k

(2π)4

1

k2 −m2
ẽc

(140)
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Summing over all the correction to the doubly-charged Higgs boson mass coming from these

diagrams we get

∆M2
G++ =

1

16π2
(
v2
R + v2

R

)
[
f2v2

Rm
2
ẽc ln

(
m2
ẽc

M2
νc

)
+
f2

2
(λvRvS +AfvR)2

[
ln

(
m2
ẽc

M2
νc

)
+ 1

]

− f

4

(
AfvR + 2fv2

R + λvRvS
)
m2
n1

ln

(
m2
n1

M2
νc

)

− f

4

(
−AfvR + 2fv2

R − λvRvS
)
m2
n2

ln

(
m2
n2

M2
νc

)]
. (141)

A nontrivial check of the calculation is finiteness of the sum, although individual diagrams

diverge.

It is interesting to see what happens to the mass as vR, vR �MSUSY is taken. In this limit

Eq. (141) reduces to

∆M2
G++ ' f2

16π2

v2
R

v2
R + v2

R

[
m2
ẽc +

1

2

(λvRvS +AfvR)2

v2
R

](
ln
m2
ẽc

M2
νc
− 1

)
. (142)

Since m2
ẽc is of order SUSY breaking scale and M2

νc is of order v2
R, in this limit we see that the

loop correction to the doubly charged mass is negative! This suggests that the SU(2)R breaking

scale cannot be much above the SUSY breaking scale for consistency. When the two scales are

comparable, the loop correction can make the doubly charged Higgs boson squared mass to be

positive for various choice of parameters. One would expect the mass to be below a TeV, owing

to the suppression factor f2/(16π2).

9 Discussion and Conclusion

In this paper we have carried out a systematic investigation of the Higgs boson spectra in a

variety of supersymmetric left-right models. We have focused on the lightest CP even Higgs

boson mass and found its theoretical upper limit at tree level deviates significantly from Mh <

MZ of MSSM. Several variations relax this limit to Mh <
√

2mW , while other variations make it

even weaker. Our analysis focused on two basic classes of models, one which uses Higgs triplets

to break SU(2)R gauge symmetry, and the other which uses doublet for this purpose. In the

latter case additional fermion fields are needed in order to generate realistic fermion masses.

We studied models with inverse seesaw for neutrino masses, universal seesaw model for fermion

masses, and an E6 inspired left-right model. The Higgs sectors of these models were analyzed

with or without a gauge singlet Higgs field present. The relaxed limit on Mh suggests that large

supersymmetric contribution from the top–stop sector is not required, and fine tuning may be

minimized compared to MSSM.

In the model with SU(2)R triplet Higgs fields, a doubly charged scalar remains light below

a TeV, regardless of the scale of SU(2)R breaking. We have computed one-loop corrections

to its mass arising from Majorana Yukawa couplings. For these corrections to be positive, the
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SU(2)R breaking scale should be not much above the SUSY breaking scale.

SUSYLR models with Higgs triplet fields can only be extrapolated to energy scales of order

1012 GeV, at which point some new dynamics should appear. On the other hand, models with

Higgs doublets and bidoublets can be extrapolated all the way to the GUT scale.
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APPENDIX

Here we summarize various expressions that were relevant for the Higgs boson mass spectra in

variations of the SUSYLR models.

Minimization conditions and scalar Higgs boson mass-squared matrix

E6 Inspired LRSUSY model

The minimization conditions for the potential are given as:

0 = 2m2
1v1 +

1

2
[−g2

Lv1(−v2
1 + v2

2 + v2
L)− g2

Rv1(−v2
1 + v2

2 + v2
R)]− 2λAλvLvR + 2v1(v2

L + v2
R)λ2

− 4Bv2µ+ 8v1µ
2,

0 = 2m2
3vL +

1

2
vL
[
g2
L(−v2

1 + v2
2 + v2

L) + g2
V (v2

L − v2
R)
]

+ 2λ(λv2
1vL + λvLv

2
R + 2µv2vR −Aλv1vR),

0 = 2m2
4vR +

1

2
vR
[
g2
R(−v2

1 + v2
2 + v2

R) + g2
V (−v2

L + v2
R)
]

+ 2λ(λv2
1vR + v2

LvRλ+ 2µv2vL −Aλv1vL),

0 = 2m2
1v2 +

1

2
v2[g2

L(−v2
1 + v2

2 + v2
L) + g2

R(−v2
1 + v2

2 + v2
R)] + 4µ(λvLvR + 2µv2 −Bv1) (143)

The mass-squared matrix elementsMij(= Mji) in this case in the basis (Reρ1,ReH0
R,Reρ2,Reρ3)

is given by:

M11 =
g2
R(v2

1 − v2
2)2 + g2

V v
4
L + g2

L(v2
1 − v2

2 − v2
L)2 + 8λ2v2

1v
2
L

2(v2
1 + v2

2 + v2
L)

,

M12 =
g2
RvR(v2

2 − v2
1)− g2

V vRv
2
L + 4λ

{
−Aλv1vL + λvR(v2

1 + v2
L) + 2µv2vL

}

2
√
v2

1 + v2
2 + v2

L

,

M13 =
v1vL

[
g2
R(v2

2 − v2
1) + g2

V v
2
L + 2g2

L(v2
2 − v2

1 + v2
L) + 4λ2(v2

1 − v2
L)
]

2
√

(v2
1 + v2

2 + v2
L)(v2

1 + v2
L)

,

M14 =
v2

[
g2
V v

4
L + 2g2

Lv
2
1(v2

1 − v2
2 − v2

L) + g2
R(v2

1 − v2
2)(2v2

1 + v2
L) + 8λ2v2

1v
2
L

]

2(v2
1 + v2

2 + v2
L)
√

(v2
1 + v2

L)
,

M22 =
g2
Rv

3
R + g2

V v
3
R + 2λAλv1vL − 4λµv2vL

2vR
,

M23 =
(g2
R − g2

V )v1vLvR + 2λ
[
Aλ(v2

L − v2
1) + 2µv1v2

]

2
√
v2

1 + v2
L

,

M24 =
v2vR

[
−2g2

Rv
2
1 − (g2

R + g2
V )v2

L + 4λ2(v2
1 + v2

L)
]
− 4λvL

[
Aλv1v2 + µ(v2

1 − v2
2 + v2

L)
]

2
√

(v2
1 + v2

2 + v2
L)(v2

1 + v2
L)

,

M33 =
(4g2

L + g2
R + g2

V )v3
1v

3
L + 4Bµv2v

3
L + 2λAλvR(v2

1 + v2
L)2 − 8λ2v3

1v
3
L − 4λµv3

1v2vR
2v1vL(v2

1 + v2
L)

,

M34 =
[
− 4m2

2vL(v2
1 + v2

2 + v2
L) + v1v2vL{4g2

Lv
2
1 − g2

V v
2
L + g2

R(2v2
1 + v2

L)}+ 4λ2v2vL(v2
L − v2

1),

+ 4λµvR(v2
1 + v2

2 + v2
L)
]
/

[
2(v2

1 + v2
L)
√

(v2
1 + v2

2 + v2
L)

]

M44 =
[
−g2

R

(
v6

1 + 10v4
1v

2
2 − v2

1v
4
2 − 2v4

1v
2
L + 10v2

1v
2
2v

2
L − v2

1v
4
L + 3v2

2v
4
L + v4

1v
2
R − v2

1v
2
2v

2
R
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+ 2v2
1v

2
Lv

2
R + v4

Lv
2
R) + g2

L

{
−v6

1 + v4
1(10v2

2 − v2
L) + v2

L(v2
2 + v2

L)2 + v2
1(−v4

2 + v4
L)
}

+ g2
V (3v2

2v
4
L − v2

2v
2
Lv

2
R) + 4M2

3 v
2
2v

2
L + 4λ2(6v2

1v
2
2v

2
L + v2

1v
2
2v

2
R + v2

2v
2
Lv

2
R)

− 8λAλv1v
2
2vLvR + 4M2

1

{
v4

1 + v4
L + v2

1(v2
2 + 2v2

L)
}

+ 16µv2(v2
1 + v2

L)(Bv1 − λvLvR)

+ 16µ2
{
v4

1 + v4
L + v2

1(v2
2 + 2v2

L)
}]/ [

8(v2
1 + v2

L)(v2
1 + v2

2 + v2
L)
]
. (144)

Case with a pair of triplets and two bidoublets

The minimization conditions for this case are given as:

0 = 4m2
12vd1 + 4B12µ12vd2 + 4m2

11vu1 + 8B11µ11vu2 + g2
Lvu1(v2

d1
− v2

d2
+ v2

u1
− v2

u2
)

+ g2
Rvu1(v2

d1
− v2

d2
+ 2vR

2 − 2v2
R + v2

u1
− v2

u2
) + 4

[
vu1(µ2

11 + µ2
12) + vd1µ12(µ11 + µ22)

]
,

0 = 4B12µ12vd1 + 4m2
12vd2 + 8B11µ11vu1 + 4m2

11vu2 + g2
Lvu2(−v2

d1
+ v2

d2
− v2

u1
+ v2

u2
)

+ g2
Rvu2(−v2

d1
+ v2

d2
− 2vR

2 + 2v2
R − v2

u1
+ v2

u2
) + 4

[
vu2(µ2

11 + µ2
12) + vd2µ12(µ11 + µ22)

]
,

0 = 4m2
22vd1 + 8B22µ22vd2 + 4m2

12vu1 + 4B12µ12vu2 + g2
Lvd1(v2

d1
− v2

d2
+ v2

u1
− v2

u2
)

+ g2
Rvd1(v2

d1
− v2

d2
+ 2vR

2 − 2v2
R + v2

u1
− v2

u2
+ 4

[
vu1µ12(µ11 + µ22) + vd1(µ2

12 + µ2
22)
]
,

0 = 8B22µ22vd1 + 4m2
22vd2 + 4B12µ12vu1 + 4m2

12vu2 + g2
Lvd2(−v2

d1
+ v2

d2
− v2

u1
+ v2

u2
)

+ g2
Rvd2(−v2

d1
+ v2

d2
− 2vR

2 + 2v2
R − v2

u1
+ v2

u2
) + 4

[
vu2µ12(µ11 + µ22) + vd2(µ2

12 + µ2
22))

]
,

0 = 2B2µ2vR + vR(2m2
5 + 2µ2

2 + 2g2
V (vR

2 − vR2) + g2
R(v2

d1
− v2

d2
+ 2vR

2 − 2v2
R + v2

u1
− v2

u2
),

0 = 2B2µ2vR + vR(2m2
6 + 2µ2

2 + 2g2
V (v2

R − vR2) + g2
R(v2

d2
− v2

d1
− 2vR

2 + 2v2
R − v2

u1
+ v2

u2
). (145)

Universal seesaw model with a singlet

The mass-squared matrix elements are given by:

M11 =
g2
L

(
vL

2 − vL2
)2

+ gV
2
(
vL

2 − vL2
)2

+ 8vL
2vL

2λ2

2
(
vL2 + vL2

) ,

M12 =
vLvL

(
vL

2 − vL2
) (
gL

2 + gV
2 − 2λ2

)

vL2 + vL2 ,

M13 =
−gV 2

(
vL

2 − vL2
) (
vR

2 − vR2
)
− 8vLvLvRvRλ

2

2
√
vL2 + vL2

√
vR2 + vR2

,

M14 =
gV

2
(
−vL2 + vL

2
)
vRvR + 2vLvL

(
vR

2 − vR2
)
λ2

√
vL2 + vL2

√
vR2 + vR2

,

M15 =
2λ
(
AλvLvL +

(
vL

2 + vL
2
)
vSλ

)
√
vL2 + vL2

,

M22 = 2[gL
2vL

2vL
2 + 2gV

2vL
2vL

2 +m3
2
(
vL

2 + vL
2
)

+m5
2
(
vL

2 + vL
2
)

+ vL
4λ2 − 2vL

2vL
2λ2 + vL

4λ2 + 2vL
2vS

2λ2 + 2vL
2vS

2λ2]/
(
vL

2 + vL
2
)
,

M23 =
gV

2vLvL
(
−vR2 + vR

2
)

+ 2
(
vL

2 − vL2
)
vRvRλ

2

√
vL2 + vL2

√
vR2 + vR2

,

M24 =
−2gV

2vLvLvRvR −
(
vL

2 − vL2
) (
vR

2 − vR2
)
λ2

√
vL2 + vL2

√
vR2 + vR2

,

51



M25 = −Aλ
(
vL

2 − vL2
)
λ√

vL2 + vL2
,

M33 =
gR

2
(
vR

2 − vR2
)2

+ gV
2
(
vR

2 − vR2
)2

+ 8vR
2vR

2λ2

2
(
vR2 + vR2

) ,

M34 =
vRvR

(
vR

2 − vR2
) (
gR

2 + gV
2 − 2λ2

)

vR2 + vR2 ,

M35 =
λ
(
−2AλvRvR + 2

(
vR

2 + vR
2
)
vSλ

)
√
vR2 + vR2

,

M44 = [2gR
2vR

2vR
2 + 2gV

2vR
2vR

2 +m4
2
(
vR

2 + vR
2
)

+m6
2
(
vR

2 + vR
2
)

+ vR
4λ2 − 2vR

2vR
2λ2 + vR

4λ2 + 2vR
2vS

2λ2 + 2vR
2vS

2λ2]/
(
vR

2 + vR
2
)
,

M45 =
Aλ
(
vR

2 − vR2
)
λ√

vR2 + vR2
,

M55 = m2
S + (v2

L + v2
L + v2

R + v2
R). (146)
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