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We explore the quark mass effects on inclusive hadron production in proton-nucleus collisions
at high energies. We consider two processes. First, we compute the single inclusive cross-section
for production of hadrons with open heavy flavour in the proton forward direction at leading
order. Next, in the same kinematics, we calculate the heavy-quark contribution to single inclusive
production of light or unidentified hadrons at next-to-leading-order. For both studies we exploit
the hybrid formalism, that is the collinear factorisation on the proton side while high-density and
high-energy effects are resummed on the side of the nucleus.

I. INTRODUCTION AND SUMMARY

Since the original suggestions [1], during the last three decades a lot of effort has been devoted to the study of
hadronic structure at high energies. The main motivation for it is possible existence of a new regime of Quantum
Chromodynamics (QCD) where partonic densities exhibit perturbative saturation. In this regime of partonic states
become dense but the coupling constant is still small and the physics remains perturbative. The recent theoretical
implementation of these ideas goes by the name of Color Glass Condensate (CGC) [2–7]. Besides the intense theoretical
activity, experiments at the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at
CERN offer new possibilities for searching and characterising such regime.

Admittedly, in spite of the fact that several saturation-based calculations describe data satisfactorily (e.g. [8–13]),
there is no conclusive evidence for the existence of the saturated state in experimental data. One of the main reasons
for this is that the accuracy of most calculations is still not sufficient to establish quantitative conclusions. Only a
small (although important) part of next-to-leading order (NLO) corrections (the running coupling effects) is presently
included in numerical implementations of high-energy evolution [14] even though the full set of NLO corrections is
already available [15–18]. Calculation of various observables, like inclusive hadroproduction [19], photoproduction
[20], etc. is confined at present to leading order (LO) in the strong coupling constant αs.

Recently several papers have aimed to extend the accuracy of calculations in the CGC framework to NLO: deep
inelastic scattering [21, 22] or single hadroproduction cross section at forward rapidities [23, 24] in the ”hybrid”
formalism [25]. Concerning the latter, numerical studies indicate very strong effects of the NLO corrections, with
cross sections even becoming negative at moderate transverse momenta [26, 27], and even substantial next-to-next-to-
leading (NNLO) effects are found [28]. More recent discussions focus on the eventual relevance of additional collinear
resummations at small x [29, 30] and on the correct choice of the factorisation scale for the high-energy evolution
[31, 32]. In the previous publication [33], we have introduced a restriction on the lifetime of the partonic fluctuations
of the projectile and also revisited the choice of scales. These considerations led to modified NLO expressions which
later were shown to improve considerably the stability of the results and their agreement with experimental data [34].

An important aspect of the calculations is the fact that in hadronic collisions one is forced to rely on factorisation
schemes that separate hard scale perturbative processes from the non-perturbative structure of hadrons. Depending on
the kinematics of the process under study, two main factorisation schemes are usually employed. The most common one
is collinear factorisation [35] (see an introduction to heavy quark production in collinear factorisation in [36]). In the
collinear scheme, one neglects the transverse momenta of incoming partons. Production cross sections are computed
via a convolution in longitudinal momenta of partonic distribution functions with hard on-shell parton production
matrix elements. The scheme is normally applicable when produced hadrons have large transverse momentum, and
neglecting the transverse momenta of incoming partons is indeed a valid approximation. The scheme breaks down,
however, when the produced system has relatively low transverse momentum such that either saturation or non-
perturbative effects in at least one of the incoming hadrons become important.

An alternative scheme is based on kT (or, more generally, high-energy) factorisation [37]. The kT -factorisation
scheme is built upon a separation between hard off-shell matrix elements and kT -dependent unintegrated gluon
densities. It is particularly tuned for central production of states with relatively small transverse energy. Heavy quark
production within the high-energy factorisation formalism has been considered e.g. in Refs. [38–48]. The scheme
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breaks down in the forward kinematics, when Bjorken-x of one of the incoming partons is large.
Another factorisation scheme, the so called hybrid formalism, was introduced in Ref. [25]. In the present work we

employ the hybrid framework. It is a combination of the previous two factorization approaches applied to asymmetric
production, particularly when the inclusively produced state is measured in the forward direction of one of the colliding
hadrons. In pA collisions, we focus on the hadron production in the proton forward direction. This implies that a
relatively large fraction of the proton longitudinal momentum is taken by the incoming parton, and the collinear
factorisation on the proton side can be applied. At the same time, the target nucleus is dense. Only its tail of small-x
partons, with a typical transverse momenta of order Qs, contributes to particle production. This is a kinematical
regime for which the CGC formalism is most adequate. Technically, the hybrid formalism is realised in three steps:

1. A parton is collinearly factorised from the proton. Then, the contribution to its light-front wave function at first
order in the QCD coupling constant g (including the gluon-to-quark-antiquark splitting in our case) is computed
exactly in light-cone perturbation theory [49–51].

2. In the CGC, the propagation of gluons and light quarks is treated eikonally. That is, the Ŝ-matrix element of
all massless partons scattered off the fast nucleus is diagonal in coordinate space and simply given by a light-like
Wilson line U in a relevant colour representation. In the high-energy limit, even massive quarks interact with
the target via light-like Wilson lines [50], up to power-suppressed corrections, due to the Lorentz contraction
of the target. However, when discussing the large mass limit, this approximation can break down. Then, our
calculations are valid only as long as the energy of the collision is taken to be much larger than the large mass
of the quark.

3. The partonic-level cross section has to be translated into the hadronic one. This requires a convolution with
the proton parton distribution and parton fragmentation functions as in the usual collinear formalism. On
the target nucleus side, we average the Wilson lines with respect to some given distribution WT [U ], as in all
CGC-type calculations.

As discussed above, single inclusive hadron production in the hybrid formalism has been the focus of a large number
of recent publications [23, 24, 26–28, 31–34] . The result of this series of papers is a CGC-based computation performed
at a full NLO accuracy in massless QCD. This opens a path for precise phenomenology based on saturation physics.
In this paper, we further contribute to this effort by computing the heavy quark contribution to the NLO correction
for this observable. We also calculate single inclusive heavy flavored hadron production at LO, mainly D or B
mesons (analogous efforts for heavy quarkonia production can be found in [52–56]). This calculation is relevant for
experimental data in the forward region. In this respect, LHCb has measured, in the region 2 < y < 4.5 (5), B-meson
production in pp collisions at

√
s = 7 [57, 58] and 8 [59] TeV, Λb production in pp collisions at

√
s = 7 TeV [60], and

prompt charm production at
√
s = 7 [61] and 13 [62] TeV. ALICE has measured heavy flavour production through

its decay into muons [63] in the forward rapidity range 2.5 < y < 4.
It is still an open debate how to consistently treat heavy flavors in the parton model. The discussion has been

mainly conducted in the framework of collinear factorisation and for the initial state. There are two basic alternatives
(see [36, 64, 65]):

1. Fixed Flavor Number Scheme (nFFNS). n quarks q are considered as massless. Only for massless quarks
and gluons there exist parton density functions (PDFs) that evolve according to massless splitting functions,
radiation off massive quarks showing no collinear divergence [66]. In most implementations of nFFNS, heavy
flavours Q are generated through gluon splitting g → qq̄ and appear at order O(αs). This scheme should be
valid at moderate scales µ but collapse when µ � mQ. Indeed, logarithms of µ2/m2

Q that may become large

e.g. at large µ = p⊥, are not resummed. It is used in some PDF global fits [67].

2. Variable Flavor Number Scheme (VFNS): n light quarks q are considered as massless. They are evolved as
massless up to µ2 = m2

Q, where the heavy quark PDF appears through a matching, at this scale, to the results

of the convolution of the matrix elements to produce heavy flavour with the light flavour PDFs. Above µ2 = m2
Q,

Q is treated as massless for the evolution and there is one additional PDF, so heavy flavour is O(1). This scheme
resums properly the mentioned logarithms, thus it is correct for µ2 � m2

Q, but close to threshold neglects powers

of m2
Q/µ

2. Therefore, a matching of FFNS and VFNS, generically known as Generalized Mass (GM-)VFNS,
is nowadays commonly used. There are, at least, three versions of this matching used by different PDF fitting
groups in their most recent analysis: TR in MMHT14 [68], ACOT in CT14 [69] and FONLL in NNPDF3.0 [70],
see recent discussions in [65]. Note that while we have considered the initial state for the discussion, similar
considerations hold for fragmentation functions (FFs) [71]. αs has also to be matched at heavy quark thresholds.

As our aim is to provide results valid in the saturation regime for the target, we use the hybrid factorization
formalism, and focus on the regime of moderate transverse momentum ph of the produced hadron. Hence, logarithms
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of the type ln(ph
2/m2

c) or ln(ph
2/m2

b) will not be considered large, and accordingly we will use the 3FFNS. The
introduction of intrinsic charm [72] is a open issue. We will follow the idea in [65] of including it through a non-
evolving PDF.

The main results of our paper are the following:

• We provide results for the single inclusive cross section for extrinsic charm and beauty hadron production at
LO, given in Eqs. (3.18), (3.19) and (3.20).1

• We discuss their heavy quark limit, whose final expression (3.32) is O(1/m4
Q). Interestingly, in the heavy quark

limit, the production cross section is linearly proportional to Q2
s.

• We also provide the LO term for the intrinsic contribution to single inclusive heavy flavored hadron production
(3.35).

• We compute the (extrinsic) heavy quark contribution to the NLO corrections to the single inclusive cross section
for light or unidentified hadron production, including the heavy quark loop part (5.3).

Technical details are provided for all calculations. Note that part of our computations differ from the ones performed
in kT factorisation where heavy quarks appear at order α2

s and, thus, they also contain instantaneous contributions.
We start with a moderate-x gluon in the proton and hence our computation is order αs. Individual graphs with a
quark loop do have a UV divergence, but these cancel in the sum over the graphs, at the amplitude level. Moreover,
there is no collinear divergence in our calculation, because these are regulated by the heavy quark mass. Nevertheless,
we will do the calculation fully in dimensional regularisation. Indeed, this facilitates the recovery of the massless
limit in the MS factorization scheme, without complicating notably the calculations. Of course, it is safe to put
D = 4 in any of our final expressions.

Furthermore, at variance with the previous calculation for massless partons [33], we do not introduce the Ioffe
time restriction in the present paper. This restriction corresponds to the requirement that the coherence time of
the produced fluctuation of the parent parton is larger than the size of the target, in order to guarantee that the
fluctuation-target scattering is coherent. It acts as a regulator of soft divergencies due to gluon emission and its effects
are twofold. On the one hand, it modifies soft non-divergent pieces; this modification amounts to power-suppressed
contributions that are usually neglected, as contributions of such kind are not under control in the hybrid formalism.
On the other hand, it makes it possible to absorb in a consistent way the soft divergencies into the small-x evolution
of dipole amplitudes - the Balitsky-Kovchegov equation [3–5]. In the present work, there is no radiation of gluons in
the leading-order heavy quark production as only g → qq̄ splitting processes are considered, thus no soft divergencies
appear. Therefore, the introduction of the Ioffe time restriction is not required as it results only in the mentioned
power-suppressed contributions that are usually neglected.

The structure of the paper is as follows. In the next Section (II), we introduce the light cone perturbation theory
applied to a gluon splitting (merging) into a heavy quark pair. We compute the amplitude of the quark pair production
in gluon scattering off the nucleus. Partonic and hadron level cross-sections are computed in Section III. Section
IV is devoted to calculation of heavy quark loop contribution to gluon-to-gluon scattering amplitude. In Section V,
results from previous sections are combined in order to provide the massive quark contribution to the NLO correction
to single inclusive light or unidentified hadron production. Our conventions are summarised in Appendix A.

1 While in principle these results could be extracted from the existing literature [40, 43, 45], we have chosen to provide an independent
and self-consistent derivation resulting in a form suitable for direct numerical implementation.
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k1, h1, α1

k2, h2, α2

k0, λ0, a0

x+ → −∞ x+ = 0

FIG. 1: Tree-level contribution to the qq̄ Fock component of the incoming gluon state. λ0, a0 denote the gluon polarization
and color index, and h1, h2 and α1, α2 the helicities and color indices of quark and antiquark respectively.

II. AMPLITUDE FOR HEAVY QUARK-ANTIQUARK PAIR PRODUCTION IN GLUON
SCATTERING ON A BACKGROUND FIELD

A. Initial-state gluon wave function including heavy quarks

1. Momentum space

The Fock state decomposition of the physical (or dressed) state of the incoming gluon, at x+ = 0, reads (see [49]
and [50])

|g(k0, λ0, a0)phys〉 =
√
ZA

[
a†(k0, λ0, a0) |0〉

+
∑

qq̄ states

Ψg0
q1q̄2 (ta0)α1 α2

b†(k1, h1, α1) d†(k2, h2, α2) |0〉 (2.1)

+
∑

gg states

Ψg0
g1g2 (T a0)a1 a2 a†(k1, λ1, a1) a†(k2, λ2, a2) |0〉+ · · ·

]
.

We use the notation k ≡ (k+,k), and a†, b† and d† are creation operators for gluons, quarks and antiquarks respectively.
For later convenience, the fundamental (ta0) and adjoint (T a0) color generators have been extracted from the wave
functions. Sum over repeated color indices is always implied. The sums over Fock states contain for each particle the
sums over all the quantum numbers (apart from color) and the integration over momentum as∫ +∞

0

dk+

(2π)2k+

∫
dD−2k

(2π)D−2
, (2.2)

as well as the symmetry factor 1/n! every time that the Fock state contains n identical particles. Hence, there is an
1/2 factor in the sum over gg states, but not in the one over the qq̄ states.

The contribution of gluons and massless quarks to eq. (2.1) has already been calculated, for example in ref. [24, 33].
Here we are interested in the massive quark contributions. For simplicity, we perform the calculation in the case of
QCD with a single massive quark flavor. Indeed, it is trivial to restore the flavor structure at the end of the calculation.

At tree level in light-front perturbation theory, there is only one graph, see Fig. 1, contributing to the qq̄ Fock state
component of the wave function of the physical incoming gluon, which gives

Ψg0
q1q̄2 (ta0)α1 α2

=
〈0| d2 b1 VI(0) a†0 |0〉[
k−0 −k−1 −k−2 + iε

] , (2.3)

where VI(0) is the interaction part of the light-front QCD hamiltonian (see ref. [51]) evaluated at x+ = 0 in the
interaction picture. From the expressions (A1) and (A2) of the quantized free fields in the interaction picture, one
finds the vertex

〈0| d2 b1 VI(0) a†0 |0〉 = (2π)D−1δ(D−1)(k1+k2−k0) (µ)2−D2

× g (ta0)α1 α2
u(k1, h1) /ελ0

(k0) v(k2, h2). (2.4)
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Using the k+ and k conservation, the energy denominator can be rewritten as[
k−0 −k−1 −k−2 + iε

]
=

[
k2

0

2k+
0

−k2
1 +m2

2k+
1

−k2
2 +m2

2k+
2

+ iε

]
= − k+

0

2k+
1 k

+
2

[(
k1−

k+
1

k+
0

k0

)2

+m2 − iε
]

(2.5)

and we can drop the −iε.
Moreover, using relations (A14), (A15) and (A17), one can make explicit all of the transverse momentum dependence

of the qq̄g Dirac structure as

u(k1, h1) /ελ0
(k0) v(k2, h2) = εjλ0

uG(k+
1 , h1)

[
1 +

(
ki1γ

i+m
) γ+

2k+
1

][
− γj +

kj0
k+

0

γ+

]
×
[
1 +

γ+

2k+
2

(
kl2γ

l−m
) ]
vG(k+

2 , h2)

= − k+
0

2k+
1 k

+
2

(
ki1−

k+
1

k+
0

ki0

)
εjλ0

uG(k+
1 , h1) γ+

[
(k+

0 −2k+
1 )

k+
0

δij + i σij
]
vG(k+

2 , h2)

− k+
0

2k+
1 k

+
2

mεjλ0
uG(k+

1 , h1) γ+γj vG(k+
2 , h2), (2.6)

where

σij =
i

2
[γi, γj ]. (2.7)

So, the tree-level amplitude for qq̄ Fock state inside the incoming gluon wave function reads

Ψg0
q1q̄2 =

(2π)D−1δ(D−1)(k1+k2−k0)[(
k1− k+1

k+0
k0

)2

+m2

] (µ)2−D2 g

×
{(

ki1−
k+

1

k+
0

ki0

)
εjλ0

uG(k+
1 , h1) γ+

[
(k+

0 −2k+
1 )

k+
0

δij + i σij
]
vG(k+

2 , h2)

+mεjλ0
uG(k+

1 , h1) γ+γj vG(k+
2 , h2)

}
. (2.8)

Compared to the massless case, not only the mass now appears in the denominator, but we also have a new term
in the wave function, associated with helicity flip for the quark.

2. Mixed space

Performing the Fourier transform of the Fock states to mixed space, defined by eq. (A6), we have

|gphys(k0, λ0, a0)〉 =
√
ZA

[ ∫
dD−2x0 eik0·x0 a†(k+

0 ,x0, λ0, a0) |0〉

+
∑̃

qq̄ states

Ψ̃g0
q1q̄2 (ta0)α1 α2 b†(k+

1 ,x1, h1, α1) d†(k+
2 ,x2, h2, α2) |0〉 (2.9)

+
∑̃

gg states

Ψ̃g0
g1g2 (T a0)a1 a2 a†(k+

1 ,x1, λ1, a1) a†(k+
2 ,x2, λ2, a2) |0〉+ · · ·

]
.

The tilde on the sum over Fock states indicates that we replace for each parton the phase space integration eq. (2.2)
by ∫ +∞

0

dk+

(2π)2k+

∫
dD−2x . (2.10)
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For the massive quark-antiquark case, the Fourier-transformed amplitude reads

Ψ̃g0
q1q̄2 ≡

∫
dD−2k1

(2π)D−2

∫
dD−2k2

(2π)D−2
eik1·x1+ik2·x2 Ψg0

q1q̄2

= 2πδ(k+
1 +k+

2 −k+
0 ) e

i
k0

k
+
0

·(k+1 x1+k+2 x2)
(µ)2−D2 g

×
{
εjλ0

uG(k+
1 , h1) γ+

[
(k+

0 −2k+
1 )

k+
0

δij + i σij
]
vG(k+

2 , h2) BiV (x12,m)

+m εjλ0
uG(k+

1 , h1) γ+γj vG(k+
2 , h2) BS(x12,m)

}
, (2.11)

with the integrals

BiV (x12,m) ≡
∫

dD−2K

(2π)D−2
eiK·x12

Ki

K2 +m2

=
i

2π

xi12

x2
12

[
2π x2

12

]2−D2 [
m|x12|

]D
2 −1

KD
2 −1 (m|x12|) , (2.12)

BS(x12,m) ≡
∫

dD−2K

(2π)D−2
eiK·x12

1

K2 +m2

=
1

2π

[
2π x2

12

]2−D2 [
m|x12|

]D
2 −2

KD
2 −2 (m|x12|) . (2.13)

One recovers the same result as for the qq̄ component of the transverse photon wave function (up to the color factor,
obviously) as expected, with (in D = 4) the K1 and K0 modified Bessel functions of the second kind.

B. Final state gluon to heavy quark pair splitting

1. Momentum space

The Fock state decomposition of the heavy quark-antiquark final state reads

〈q̄(p2, h2, β2)q(p1, h1, β1)phys| =
(√

ZΨ

)2
[
〈0| d(p2, h2, β2) b(p1, h1, β1)

+
∑

g states

Φq1q̄2g0 (tb0)β1 β2
〈0| a(p0, λ0, b0) + · · ·

]
. (2.14)

The different terms in this expression have the following interpretation:

• First term: trivial contribution with the quark and antiquark directly emerging out of the target at x+ = 0.

• Second term: contribution of gluon splitting to qq̄ in the final state, see Fig. 2.

• Other terms: either they are of higher order in g, or they will not contribute to the g+A→ q+ q̄+X amplitude
in which we are interested.

At tree level, only the graph on Fig. 2 contributes to the final state wave function Φq1q̄2g0 for the one-gluon Fock
component inside the qq̄ final state. It gives

Φq1q̄2g0 (tb0)β1 β2
=
〈0|d(2) b(1)VI(0) a†(0) |0〉[

p−1 +p−2 −p−0 + iε
] . (2.15)
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p
1
, h1, β1

p
2
, h2, β2

p
0
, λ0, b0

x+ = 0 x+ → +∞

FIG. 2: Tree-level contribution to the Fock component of the outgoing qq̄ state.

Up to the signs in the energy denominator and a trivial relabelling of the momentum variables and color indices, this
is identical to its initial state analog Ψg0

q1q̄2 , see eq. (2.3). Hence, from eq. (2.8) , we deduce

Φq1q̄2g0 = −
(2π)D−1δ(D−1)(p1+p2−p0)[(

p1− p+1
p+0

p0

)2

+m2

] (µ)2−D2 g

×
{(

pi1−
p+

1

p+
0

pi0

)
εjλ0

uG(p+
1 , h1) γ+

[
(p+

0 −2p+
1 )

p+
0

δij + i σij
]
vG(p+

2 , h2)

+mεjλ0
uG(p+

1 , h1) γ+γj vG(p+
2 , h2)

}
(2.16)

and, thus, due to transverse and light-cone momentum conservation,

Φq1q̄2g0 = −
(2π)D−1δ(D−1)(p1+p2−p0)[(
p2− p+2

p+1
p1

)2

+
(
p+0
p+1

)2

m2

] (µ)2−D2 g

×
{
−
(
p+

0

p+
1

)(
pi2−

p+
2

p+
1

pi1

)
εjλ0

uG(p+
1 , h1) γ+

[
(p+

0 −2p+
1 )

p+
0

δij + i σij
]
vG(p+

2 , h2)

+

(
p+

0

p+
1

)2

mεjλ0
uG(p+

1 , h1) γ+γj vG(p+
2 , h2)

}
. (2.17)

2. Mixed space

Rewriting eq. (2.14) in mixed space, one gets

〈q̄(p2, h2, β2)q(p1, h1, β1)phys| =
(√

ZΨ

)2

×
[ ∫

dD−2x1

∫
dD−2x2 e−ip1·x1−ip2·x2 〈0| d(p+

2 ,x2, h2, β2) b(p+
1 ,x1, h1, β1)

+
∑̃

g states

Φ̃q1q̄2g0 (tb0)β1 β2
〈0| a(p+

0 ,x0, λ0, b0) + · · ·
]
, (2.18)
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where

Φ̃q1q̄2g0 ≡
∫

dD−2p0

(2π)D−2
e−ip0·x0 Φq1q̄2g0

=
−2πδ(p+

1 +p+
2 −p+

0 )[(
p2− p+2

p+1
p1

)2

+
(
p+0
p+1

)2

m2

] e−i(p1+p2)·x0 (µ)2−D2 g

×
{
−
(
p+

0

p+
1

)(
pi2−

p+
2

p+
1

pi1

)
εjλ0

uG(p+
1 , h1) γ+

[
(p+

0 −2p+
1 )

p+
0

δij + i σij
]
vG(p+

2 , h2)

+

(
p+

0

p+
1

)2

mεjλ0
uG(p+

1 , h1) γ+γj vG(p+
2 , h2)

}
. (2.19)

C. Amplitude for quark-antiquark production in gluon scattering on the background field

We have the mixed-space Fock state decomposition (2.9) of the incoming physical gluon. It describes the partonic
content of the gluon at x+ = 0 right before scattering with the target. In the eikonal approximation, the instantaneous
interaction with the target is described by the operator ŜE , which introduces a Wilson line for each parton present
in the Fock state. More precisely, it acts as

ŜE |0〉 = |0〉 ,
ŜE a†(k+,x, λ, a) = UA(x)ba a†(k+,x, λ, b) ŜE ,

ŜE b†(k+,x, h, α) = UF (x)βα b†(k+,x, h, β) ŜE ,

ŜE d†(k+,x, h, α) =
[
U†F (x)

]
αβ

d†(k+,x, h, β) ŜE . (2.20)

After applying the operator ŜE to the initial state (2.9), one only needs to project on the desired final state (2.18) in
order to get the S-matrix element for the massive qq̄ production by scattering of a gluon on the target background
field. Extracting the delta function ensuring light-cone momentum conservation, we can define the amplitudeMg→qq̄
for this process as

〈q̄(p2, h2, β2)q(p1, h1, β1)phys|ŜE |gphys(k0, λ0, a0)〉
= (2k+

0 )(2π)δ(p+
1 +p+

2 −k+
0 ) iMg→qq̄ . (2.21)

Then, from the Fock state decompositions (2.9) and (2.18), the identities (2.20) and the commutation relations (A7),
(A8) and (A9), it is straightforward to calculate the amplitude to leading order in the coupling g. One obtains

iMg→qq̄ = iMbef
g→qq̄ + iMaft

g→qq̄ , (2.22)

where

iMbef
g→qq̄ =

1

2k+
0

(µ)2−D2 g

∫
dD−2x1 e

−ix1·
[
p1−

p
+
1

k
+
0

k0

] ∫
dD−2x2 e

−ix2·
[
p2−

p
+
2

k
+
0

k0

]

×
[
UF (x1) ta0 U†F (x2)

]
β1 β2

εjλ0

{
BiV (x12,m) uG(p+

1 , h1) γ+

[
(k+

0 −2p+
1 )

k+
0

δij + i σij
]
vG(p+

2 , h2)

+BS(x12,m) m uG(p+
1 , h1) γ+γj vG(p+

2 , h2)

}
(2.23)
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and

iMaft
g→qq̄ = − 1

2k+
0

(µ)2−D2 g

∫
dD−2x0 e

−ix0·(p1+p2−k0) (tb0)β1 β2 UA(x0)b0 a0[(
p2− p+2

p+1
p1

)2

+
(
k+0
p+1

)2

m2

]
×εjλ0

{
−
(
k+

0

p+
1

)(
pi2−

p+
2

p+
1

pi1

)
uG(p+

1 , h1) γ+

[
(k+

0 −2p+
1 )

k+
0

δij + i σij
]
vG(p+

2 , h2)

+

(
k+

0

p+
1

)2

m uG(p+
1 , h1) γ+γj vG(p+

2 , h2)

}
(2.24)

correspond to the contributions where the gluon splits into qq̄ before or after crossing the target, respectively.

III. HEAVY FLAVORED HADRON PRODUCTION IN THE HYBRID FACTORIZATION

A. Partonic cross section for heavy quark production

From the amplitude Mg→qq̄, one can obtain the partonic cross section for the process g + A → q + q̄ + X at LO,
as (see ref. [50])

(2p+
1 )(2p+

2 )(2π)2D−2 dσg+A→q+q̄+X

dp+
1 d

D−2p1 dp
+
2 d

D−2p2

= (2k+
0 )(2π)δ(p+

1 +p+
2 −k+

0 )
1

dA

×
∑

a0, β1, β2

1

D−2

∑
λ0, h1, h2

∣∣∣Mg→qq̄

∣∣∣2 , (3.1)

where, as usual, one has to sum over the colors and polarizations of final particles and average over the colors and
polarizations of initial particles (note that D− 2 is indeed the number of physical gluon polarizations in conventional
dimensional regularization). dA is the dimension of the adjoint representation of the gauge group i.e. dA = N2

c−1 for
SU(Nc).

Then, the single inclusive massive quark production cross section is obtained by integrating over the kinematics of
the antiquark, as

(2p+
1 )(2π)D−1 dσ

g+A→q+X

dp+
1 d

D−2p1

=

∫ +∞

0

dp+
2

(2π)2p+
2

∫
dD−2p2

(2π)D−2
(2p+

1 )(2p+
2 )(2π)2D−2

× dσg+A→q+q̄+X

dp+
1 d

D−2p1 dp
+
2 d

D−2p2

. (3.2)

1. Spin

Note that both contributions to the amplitude, (2.23) and (2.24) are linear combinations of the same two spinor
structures (spin-flip and spin non-flip), which contain all of the dependence on the helicities of the quarks, whereas

the dependence on the gluon polarization always appears via a εjλ0
factor. The spin sum/average for the square of

the spin-flip structure reads

1

D−2

∑
λ0, h1, h2

εj
′ ∗
λ0
εjλ0

[
uG(p+

1 , h1) γ+γj
′
vG(p+

2 , h2)

]†
uG(p+

1 , h1) γ+γj vG(p+
2 , h2)

=
−gjj′

D−2

∑
h1, h2

− vG(p+
2 , h2) γ+γj

′
uG(p+

1 , h1)uG(p+
1 , h1) γ+γj vG(p+

2 , h2)

=
−gjj′

D−2
(−1)(2p+

1 )(2p+
2 ) Tr

[
PG γj

′
γj
]

= 2(2p+
1 )(2p+

2 ) . (3.3)
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For the square of the spin non-flip structure, one gets

1

D−2

∑
λ0, h1, h2

εj
′ ∗
λ0
εjλ0

[
uG(p+

1 , h1) γ+

[
(k+

0 −2p+
1 )

k+
0

δi
′j′ + i σi

′j′
]
vG(p+

2 , h2)

]†
×uG(p+

1 , h1) γ+

[
(k+

0 −2p+
1 )

k+
0

δij + i σij
]
vG(p+

2 , h2)

=
−gjj′

D−2
(2p+

1 )(2p+
2 )Tr

[
PG
(

(k+
0 −2p+

1 )

k+
0

δi
′j′ − i σi′j′

)(
(k+

0 −2p+
1 )

k+
0

δij + i σij
)]

= 4(2p+
1 )(2p+

2 )

(
− gii′

)
D−2

[(
p+

1

k+
0

)2

+

(
p+

2

k+
0

)2

+
D−4

2

]
. (3.4)

For the interference between the spin flip and spin non-flip structures, the helicity sums lead to the trace of an odd
number of gamma matrices, and thus vanish. Hence, as expected, there is no interference between the spin flip and
spin non-flip contributions to the amplitude Mg→qq̄.

2. Squared amplitude

It is now straightforward to calculate the spin and color sums/averages for the squared amplitude. First, for the
after contribution, Maft

g→qq̄, one gets

1

dA

∑
a0, β1, β2

1

D−2

∑
λ0, h1, h2

∣∣∣Maft
g→qq̄

∣∣∣2 =
g2 TF (µ2)2−D2[(

p2− p+2
p+1

p1

)2

+
(
k+0
p+1

)2

m2

]2

×
∫
dD−2x0

∫
dD−2x0′ e

−i(p1+p2−k0)·x00′ SA00′
p+

1 p
+
2

(k+
0 )2

×
{

4

D−2

(
k+

0

p+
1

)2 [(
p+

1

k+
0

)2

+

(
p+

2

k+
0

)2

+
D−4

2

](
p2−

p+
2

p+
1

p1

)2

+ 2

(
k+

0

p+
1

)4

m2

}
, (3.5)

with the adjoint dipole defined as

SA01 ≡
1

dA
Tr
[
UA(x0)U†A(x1)

]
. (3.6)

Second, for the before contribution, Mbef
g→qq̄, one obtains

1

dA

∑
a0, β1, β2

1

D−2

∑
λ0, h1, h2

∣∣∣Mbef
g→qq̄

∣∣∣2 = (µ2)2−D2 g2 p+
1 p

+
2

(k+
0 )2

×
∫
dD−2x1

∫
dD−2x1′ e

−i
(
p1−

p
+
1

k
+
0

k0

)
·x11′

∫
dD−2x2

∫
dD−2x2′ e

−i
(
p2−

p
+
2

k
+
0

k0

)
·x22′

× 1

dA
Tr
[
UF (x1)taU†F (x2)UF (x2′)t

aU†F (x1′)
]

×
{

4

D−2

[(
p+

1

k+
0

)2

+

(
p+

2

k+
0

)2

+
D−4

2

]
BiV (x12,m) Bi ∗V (x1′2′ ,m)

+2m2 BS(x12,m) B∗S(x1′2′ ,m)

}
. (3.7)

The multipole appearing in eq. (3.7) can be rewritten as a product of fundamental dipoles, and a Nc-suppressed
fundamental quadrupole term. In single inclusive heavy quark production, this multipole will collapse to a dipole
upon integration over the transverse momentum of the un-tagged produced particle.
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Finally, for the interference between the before and after contributions to the amplitude, one gets

1

dA

∑
a0, β1, β2

1

D−2

∑
λ0, h1, h2

[ (
Maft

g→qq̄
)†Mbef

g→qq̄ + c.c.
]

= −g2 TF (µ2)2−D2
p+

1 p
+
2

(k+
0 )2

×
∫
dD−2x0

∫
dD−2x1 e

−i
(
p1−

p
+
1

k
+
0

k0

)
·x10

∫
dD−2x2 e

−i
(
p2−

p
+
2

k
+
0

k0

)
·x20

×
{ −4

D−2

[(
p+

1

k+
0

)2

+

(
p+

2

k+
0

)2

+
D−4

2

] (
k+

0

p+
1

) [
pi2−

p+
2

p+
1

pi1

]
BiV (x12,m)

+2m2

(
k+

0

p+
1

)2

BS(x12,m)

}
S120[(

p2− p+2
p+1

p1

)2

+
(
k+0
p+1

)2

m2

] + c.c. , (3.8)

where we have defined the tripole operator as

S120 ≡
1

dF CF
Tr
[
UF (x1)taU†F (x2)tb

]
UA(x0)b a (3.9)

and we have used the identity dF CF = dA TF .
We have checked that eqs. (3.1), (3.5), (3.7) and (3.8) are equivalent to the collinear limit (provided in [45]) of the

results for heavy qq̄ pair production obtained in [40, 43, 45].

3. Partonic cross-section for single inclusive heavy quark production

The next step is to integrate over the momentum of the produced antiquark in order to obtain the single inclusive
cross section at parton level, following the relation (3.2). Then, the contribution from the square of the before term
reads

(2p+
1 )(2π)D−1 dσ

g+A→q+X

dp+
1 d

D−2p1

∣∣∣∣
bef.-bef.

= g2 TF θ(k
+
0 −p+

1 )
p+

1

k+
0

∫
dD−2x1

∫
dD−2x1′ S

F
11′

× e
−i
(
p1−

p
+
1

k
+
0

k0

)
·x11′

{
4

D−2

[(
p+

1

k+
0

)2

+

(
1− p

+
1

k+
0

)2

+
D−4

2

]
C1 (|x1′1|,m)

+2m2 C0 (|x1′1|,m)

}
, (3.10)

where

C1 (|r|,m) ≡ (µ2)2−D2
∫

dD−2K

(2π)D−2
e−iK·r

K2[
K2 +m2

]2
=

1

2π

(
m2

4π µ2

)D
2 −2 [(

m|r|
2

)2−D2
K2−D2

(m|r|)−
(
m|r|

2

)3−D2
K3−D2

(m|r|)
]
, (3.11)

C0 (|r|,m) ≡ (µ2)2−D2
∫

dD−2K

(2π)D−2
e−iK·r

1[
K2 +m2

]2
=

1

2πm2

(
m2

4π µ2

)D
2 −2 (

m|r|
2

)3−D2
K3−D2

(m|r|) , (3.12)

with the fundamental dipole defined as

SF01 ≡
1

dF
Tr
[
UF (x0)U†F (x1)

]
. (3.13)
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The contribution from the square of the after term in the amplitude can be written as

(2p+
1 )(2π)D−1 dσ

g+A→q+X

dp+
1 d

D−2p1

∣∣∣∣
aft.-aft.

= g2 TF θ(k
+
0 −p+

1 )
k+

0

p+
1

∫
dD−2x0

∫
dD−2x0′ S

A
00′

×e
−i
(
k
+
0

p
+
1

p1−k0

)
·x00′

{
4

D−2

[(
p+

1

k+
0

)2

+

(
1− p

+
1

k+
0

)2

+
D−4

2

]
C1
(
|x00′ |,

k+
0

p+
1

m

)
+2m2

(
k+

0

p+
1

)2

C0
(
|x00′ |,

k+
0

p+
1

m

)}
. (3.14)

Finally, the interference contribution reads

(2p+
1 )(2π)D−1 dσ

g+A→q+X

dp+
1 d

D−2p1

∣∣∣∣
interf.

= −g2 TF (µ2)2−D2 θ(k+
0 −p+

1 )

×
∫
dD−2x0

∫
dD−2x1

∫
dD−2x2 S120 e

−i
(
p1−

k
+
0

p
+
1

k0

)
·
(
x12+

k
+
0

p
+
1

x20

)

×
{ −4

D−2

[(
p+

1

k+
0

)2

+

(
1− p

+
1

k+
0

)2

+
D−4

2

]
BiV (x12,m) Bi ∗V

(
x20,

k+
0

p+
1

m

)
+2m2

(
k+

0

p+
1

)
BS(x12,m) B∗S

(
x20,

k+
0

p+
1

m

)}
+ c.c. (3.15)

B. Hadron-level cross section for heavy quark production

Now, we want to use the results (3.10), (3.14) and (3.15) in order to write the cross section for single inclusive
production of a heavy flavored hadron in the hybrid factorization, in a high-energy dense-dilute collision. The
momentum of the projectile, target and produced hadron are denoted respectively PµP , PµT and pµh. By choice of

frame, we have PP = PT = 0 and P−P and P+
T are negligible, whereas the Mandelstam s variable of the collision is

given by s ' 2P+
P P−T . The Feynman xF variable is defined by xF ≡ p+

h /P
+
P .

Neglecting for the moment possible contributions from the eventual intrinsic heavy flavor content of the projectile,
and from heavy quark production during jet fragmentation, the picture is the following: A large-xB gluon with
momentum kµ0 is picked inside the projectile, then it collide on the target, producing a heavy quark of momentum pµ1 ,
according to the partonic cross-section sum of (3.10), (3.14) and (3.15), and, finally, the heavy quark of momentum
pµ1 fragments into heavy flavored hadron h of momentum pµh.

So, the hadronic cross section is obtained from the partonic cross section as

(2p+
h )(2π)D−1 dσ

p+A→h+X

dp+
h d

D−2ph
=

∫ 1

0

dxB g0(xB)

∫ 1

0

dζ

ζD−2
D0
h/q(ζ)

× (2p+
1 )(2π)D−1 dσ

g+A→q+X

dp+
1 d

D−2p1

, (3.16)

where, due to the collinear approximation, one has

k+
0 = xB P

+
P , k0 = 0 , p+

1 =
p+
h

ζ
and p1 =

ph
ζ
. (3.17)

Since we are interested only in the leading-order result for this channel, we can replace the bare PDFs and FFs by
the renormalized ones.

All in all, one obtains from equations (3.10), (3.14) and (3.15) the following three contributions to the hadronic
cross section:

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
bef.-bef.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) αs TF
xF
xB ζ

×
∫
dD−2x1

∫
dD−2x2 S

F
12 e
− i
ζ ph·x12

×
{

4

D−2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D−4

2

]
C1 (|x12|,m) + 2m2 C0 (|x12|,m)

}
, (3.18)
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(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
aft.-aft.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) αs TF
xB ζ

xF

×
∫
dD−2x1

∫
dD−2x2 S

A
12 e
−i xBxF ph·x12

×
{

4

D−2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D−4

2

]
C1
(
|x12|,

xB ζ

xF
m

)
(3.19)

+2m2

(
xB ζ

xF

)2

C0
(
|x12|,

xB ζ

xF
m

)}
and

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
interf.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) (−1)αs TF
(
µ2
)2−D2

×
∫
dD−2x0

∫
dD−2x1

∫
dD−2x2 S120 e

− i
ζ ph·

[
x12−

xB ζ

xF
x02

]

×
{ −4

D−2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D−4

2

]
BiV (x12,m) Bi ∗V

(
x20,

xB ζ

xF
m

)
+2m2

(
xB ζ

xF

)
BS(x12,m) B∗S

(
x20,

xB ζ

xF
m

)}
+ c.c. (3.20)

C. Large mass limit of the hadronic cross section

We also consider the large mass limit of the hadronic cross section. The before-before and after-after contributions
to the total hadronic cross section are written in terms of the functions C0(|r|,m) and C1(|r|,m). These functions,
when expanded in the large mass limit, can be approximated as

C0(|r|,m) '
(
µ2
)2−D2 1

m4

(
1 +

2

m2
∂2
r

)
δ(D−2)(r) , (3.21)

C1(|r|,m) '
(
µ2
)2−D2 1

m4

(
− ∂2

r

)
δ(D−2)(r) . (3.22)

The interference contribution to the cross section is written in terms functions BiV (r,m) and BS(r,m), whose leading
term in the large mass limit reads

BiV (r,m) ' 1

m2

(
− i ∂ir

)
δ(D−2)(r) , (3.23)

BS(r,m) ' 1

m2

(
1 +

1

m2
∂2
r

)
δ(D−2)(r) . (3.24)

Using these equations, we can obtain the large mass limit of the each contribution to the hadronic cross section that
reads

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
bef.-bef.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) αs TF
xF
xB ζ

×
(
µ2
)2−D2 ∫ dD−2x1

∫
dD−2x2 δ

(D−2)(x12)

×
{

2

m2
− 1

m4

p2
h

ζ2

[
4− 4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]]

+
1

m4

[
4− 4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]][ (
∂2
x1
SF12

)
− 2i

1

ζ
pih
(
∂ix1

SF12

) ]

+O
(

1

m6

)}
,
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(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
aft.-aft.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) αs TF
xF
xB ζ

×
(
µ2
)2−D2 ∫ dD−2x1

∫
dD−2x2 δ

(D−2)(x12)

×
{

2

m2
− 1

m4

p2
h

ζ2

[
4− 4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]]

+
1

m4

(
xF
xB ζ

)2
[

4− 4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]]

×
[ (
∂2
x1
SA12

)
− 2i

xB
xF

pih
(
∂ix1

SA12

) ]
+O

(
1

m6

)}
, (3.25)

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
interf.

=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) (−1)αs TF

×
(
xF
xB ζ

)(
µ2
)2−D2 ∫ dD−2x1

∫
dD−2x2

∫
dD−2x0 δ

(D−2)(x12) δ(D−2)(x02)

×
{

2

m2
− 1

m4

p2
h

ζ2

[
4− 4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]]

+
1

m4

(
xF
xB ζ

)
4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]

×
[(
∂ix1

∂ix0
S120

)
− i

ζ
pih
(
∂ix0

S120

)
− i

ζ
pih

(
xB ζ

xF

)(
∂ix1

S120

)]
+

2

m4

[(
∂2
x1
S120

)
− 2

i

ζ
pih
(
∂ix1

S120

)
+

(
xF
xB ζ

)2 (
∂2
x0
S120

)
− 2

i

ζ
pih

(
xF
xB ζ

)(
∂ix0

S120

)]

+O
(

1

m6

)}
+ c.c. (3.26)

Each contribution to the total hadron-level cross section can be simplified. Any term with a single transverse derivative
acting on an adjoint or fundamental dipole or the tripole operator can be dropped. This is due to the fact that each
transverse derivative brings a generator of the SU(Nc) group either in the fundamental or adjoint representation
inside the trace. These terms become a trace of single generator by realising the delta functions, hence they vanish.
Moreover, the delta functions also leads to simplifications on the tripole operator. It can be reduced to either the
identity or a fundamental or adjoint dipole. Specifically, we have

S222 = 1, S220 = SA20, S122 = SF12 . (3.27)

After all these simplifications, the total hadron-level cross section in the large mass limit reads

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph
=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2) αs TF

(
xF
xB ζ

)(
µ2
)2−D2

× 1

m4

∫
dD−2x1

∫
dD−2x2

∫
dD−2x0 δ

(D−2)(x12) δ(D−2)(x02)

× −4

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]

×
[
∂2
x1
SF12 +

(
xF
xB ζ

)2

∂2
x0
SA02 +

(
xF
xB ζ

)
∂ix1

∂ix0
[S120 + S210]

]
+O

(
1

m6

)
(3.28)
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It is straightforward to calculate the action of the transverse derivatives on the dipole and tripole operators:

∂2
x1
SF12

∣∣∣∣
x2→x1

= −2
CF
dA

g2

∫ +∞

−∞
dx+

∫ x+

−∞
dz+

[
∂ix1
A−a (x+,x1)

]
×UA(x+, z+;x1)ab

[
∂ix1
A−b (z+,x1)

]
, (3.29)

∂2
x0
SA02

∣∣∣∣
x2→x0

= −2
CA
dA

g2

∫ +∞

−∞
dx+

∫ x+

−∞
dz+

[
∂ix0
A−a (x+,x0)

]
×UA(x+, z+;x0)ab

[
∂ix0
A−b (z+,x0)

]
, (3.30)

∂ix0
∂ix1

SF120

∣∣∣∣
x1→x2;x0→x2

=
CA
dA

g2

∫ +∞

−∞
dx+

∫ x+

−∞
dz+

[
∂ix2
A−a (x+,x2)

]
×UA(x+, z+;x2)ab

[
∂ix2
A−b (z+,x2)

]
. (3.31)

Plugging (3.29), (3.30) and (3.31) in the total hadron-level cross section, (3.28), we get

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph
=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2)
αs TF
m4

(
xF
xB ζ

)(
µ2
)2−D2

× 2

D − 2

[(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

][(
xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
2CF − CA

CA

]

× CA
CF

∫
dD−2x1

∫
dD−2x2 δ

(D−2)(x12)(−1)
(
∂2
x1
SF12

)
+O

(
1

m6

)
. (3.32)

It is possible to further simplify the expression of the cross section by adopting a model for the fundamental dipole
operator. Then, this model can be used to explicitly perform the transverse integrations. For instance, in the Golec-
Biernat-Wüsthoff (GBW) model [73] (or in the McLerran-Venugopalan (MV) model [74] neglecting the logarithm in
the exponent) the fundamental dipole is written as

SF12 = e−
x2
12Q

2
s

4 . (3.33)

Thus, the cross section in the GBW model reads

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph
=

∫ 1

xF

dxB g(xB , µ
2)

∫ 1

xF
xB

dζ

ζD−2
Dh/q(ζ, µ

2)
αs TF
m4

(
xF
xB ζ

)(
µ2
)2−D2

×
[(

xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
D − 4

2

]

×
[(

xF
xB ζ

)2

+

(
1− xF

xB ζ

)2

+
2CF − CA

CA

]
CA
CF

Q2
s S⊥ +O

(
1

m6

)
. (3.34)

Here S⊥ is the transverse area of the target, introduced to replace the x1 integration, as required due to the impact
parameter independence of the GBW model.

D. About the intrinsic heavy flavor contribution

So far, we have considered only the extrinsic contribution to heavy flavored hadron production, where the heavy
quarks are pair-produced perturbatively upon scattering on the target of an incoming gluon from the projectile. This
is indeed expected to be usually the dominant contribution to heavy flavored hadron production, but maybe not the
only one.

Another sizable contribution might come from the intrinsic heavy flavor content of the proton projectile at non-
perturbative level, before any perturbative evolution. Such intrinsic heavy flavor contribution is known to be power-
suppressed in the large mass limit. But, still, it might be relevant in the case of the charm quark and possibly also
(but to a lesser extent) in the case of the bottom quark.
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In a fixed flavor number scheme (FFNS) like the one we are using, where the heavy flavors are not considered
active, the intrinsic charm and bottom contributions can be taken into account by providing charm and bottom PDFs
inside the proton, and considering the relevant diagrams with an incoming charm or bottom quark. However, note
that in this scheme, these heavy flavor PDF are independent of the factorization scale, and thus are not affected by
perturbative evolution, as explained for example in Refs. [64, 65].

Then, the leading-order term for the intrinsic heavy flavor contribution to heavy flavored hadron production is
identical to the quark channel leading-order term for unidentified hadron (or pion) production, up to the replacement
of PDF and FF. One has

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
intr. heavy flavor

=

∫ 1

0

dxB Q(xB)

∫ 1

0

dζ

ζD−2
Dh/q(ζ, µ

2)

×xB δ
(
xB−

xF
ζ

)∫
dD−2x1

∫
dD−2x2 S

F
12 e
− i
ζ ph·x12 , (3.35)

where Q(xB) is the scale-invariant PDF for the intrinsic charm or bottom content of the proton projectile. It is a
non-perturbative input which has to be modeled (see for example Refs. [72, 75]) and/or fitted on experimental data,
like the initial condition at low µ for the PDFs of massless partons.

Formally, the intrinsic heavy flavor contribution (3.35) is of order O(1) in perturbation theory, whereas the extrinsic
contribution starts at order O(αs), see eqs. (3.18), (3.19) and (3.20). Hence, from a formal point of view, if one wants
to include both the extrinsic and intrinsic contributions, one should also calculate and include the O(αs) corrections
to the intrinsic contribution (3.35). However, Q(xB) is expected to be much smaller than the gluon PDF, so that the
the difference in perturbative order can be overcome.

In practice, one can estimate the leading-order term for each contribution in the kinematical range of interest thanks
to the formulae (3.18), (3.19) and (3.20), and (3.35), and start to worry about the O(αs) corrections to the intrinsic
contribution only when its O(1) term is non-negligible compared to the extrinsic contribution. The calculation of
these O(αs) corrections to the intrinsic contribution can be done with the same method used in this paper. However,
this is beyond the scope of this study, which focuses on the extrinsic contribution.

IV. HEAVY QUARK LOOP CORRECTION TO THE GLUON IN THE GLUON SCATTERING
AMPLITUDE ON THE BACKGROUND FIELD

A. Final state heavy quark pair contribution to gluon merging

1. Momentum space

The Fock state decomposition of the one-gluon final state can be calculated directly following the rules of light-
front perturbation theory. But, alternatively, it can also be obtained by taking the conjugate of the Fock state
decomposition of the one-gluon initial state, Eq. (2.1). In both cases, one obtains

〈g(pf , λf , bf )phys| =
√
ZA

[
〈0| a(pf , λf , bf )

+
∑

qq̄ states

(
Ψg0
q1q̄2

)†
(tbf )β2 β1

〈0| d(p2, h2, β2) b(p1, h1, β1) (4.1)

+
∑

gg states

(
Ψg0
g1g2

)†
(T bf )b2 b1 〈0| a(p2, λ2, b2) a(p1, λ1, b1) + · · ·

]
.

The different terms in this expression have the following interpretation:

• First term: trivial contribution with the gluon directly emerging out of the target at x+ = 0.

• Second term: contribution of heavy quark-antiquark pair merging to a gluon in the final state, see Fig. 3.

• Third term: contribution of gluon pair merging to one single gluon in the final state.

• Other terms: either they are of higher order in g, or they will not contribute to the amplitudes in which we are
interested.
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p
1
, h1, β1

p
2
, h2, β2

p
f
, λf , bf

x+ = 0 x+ → +∞

FIG. 3: Tree-level contribution to the qq̄ Fock component of the outgoing g state.

Taking the conjugate of the wave function from Eq. (2.8), and using the notations from Fig. 3, one finds

(
Ψg0
q1q̄2

)†
=

(2π)D−1δ(D−1)(p1+p2−pf )[(
p1− p+1

p+f
pf

)2

+m2

] (µ)2−D2 g

×
{(

pi1−
p+

1

p+
f

pif

)
εj ∗λf vG(p+

2 , h2) γ+

[
(p+
f −2p+

1 )

p+
f

δij − i σij
]
uG(p+

1 , h1)

−mεj ∗λf vG(p+
2 , h2) γ+γj uG(p+

1 , h1)

}
. (4.2)

2. Mixed space

In the mixed-space representation, the one-gluon final state (4.1) rewrites

〈gphys(pf , λf , bf )| =
√
ZA

[ ∫
dD−2x0 e−ipf ·x0 〈0| a(p+

f ,x0, λf , bf )

+
∑̃

qq̄ states

(
Ψ̃
gf
q1q̄2

)†
(tbf )β2 β1

〈0| d(p+
2 ,x2, h2, β2) b(p+

1 ,x1, h1, β1)

+
∑̃

gg states

(
Ψ̃
gf
g1g2

)†
(T bf )b2 b1 〈0| a(p+

2 ,x2, λ2, b2) a(p+
1 ,x1, λ1, b1) + · · ·

]
, (4.3)

where (
Ψ̃
gf
q1q̄2

)†
= 2πδ(p+

1 +p+
2 −p+

f ) e
−i

pf

p
+
f

·(p+1 x1+p+2 x2)

(µ)2−D2 g

×
{
εj ∗λf vG(p+

2 , h2) γ+

[
(p+
f −2p+

1 )

p+
f

δij − i σij
]
uG(p+

1 , h1)
[
BiV (x12,m)

]∗
−m εj ∗λf vG(p+

2 , h2) γ+γj uG(p+
1 , h1) [BS(x12,m)]

∗

}
. (4.4)
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B. Heavy quark loop contribution to the gluon-to-gluon amplitude

1. Generic form

In the eikonal approximation, the scattering amplitude Mg→g for a gluon on the target, and the corresponding
S-matrix element, are related by

〈gphys(pf , λf , bf )| ŜE |gphys(k0, λ0, a0)〉 = (2k+
0 )(2π)δ(p+

f −k+
0 ) iMg→g , (4.5)

with the eikonal scattering operator ŜE introduced in subsection II C. Calculating the left-hand side using the
expansions (2.9) and (4.3), one finds

〈gphys(pf , λf , bf )| ŜE |gphys(k0, λ0, a0)〉 = ZA

×
{

(2k+
0 )(2π)δ(p+

f −k+
0 ) δλf ,λ0

∫
dD−2x0 e−i(pf−k0)·x0 UA(x0)bfa0

+
∑̃

qq̄ states

(
Ψ̃
gf
q1q̄2

)†
(tbf )β2 β1

UF (x1)β1α1

[
U†F (x2)

]
α2β2

(ta0)α1 α2
Ψ̃g0
q1q̄2 (4.6)

+
∑̃

gg states

(
Ψ̃
gf
g1g2

)†
(T bf )b2 b1 UA(x1)b1a1 UA(x2)b2a2 (T a0)a1 a2 Ψ̃g0

g1g2 +O
(
g4
)}
.

Isolating the leading-order contribution

iMLO
g→g = δλf ,λ0

∫
dD−2x0 e−i(pf−k0)·x0 UA(x0)bfa0 , (4.7)

one rewrites eq. (4.6) as

(2k+
0 )(2π)δ(p+

f −k+
0 ) i

[
Mg→g −MLO

g→g
]

= −(1−ZA) (2k+
0 )(2π)δ(p+

f −k+
0 ) δλf ,λ0

×
∫
dD−2x0 e−i(pf−k0)·x0 UA(x0)bfa0

+ZA

{ ∑̃
qq̄ states

(
Ψ̃
gf
q1q̄2

)†
Tr
[
tbf UF (x1) ta0 U†F (x2)

]
Ψ̃g0
q1q̄2

+
∑̃

gg states

(
Ψ̃
gf
g1g2

)†
Tr
[
T bf UA(x1) T a0 U†A(x2)

]
Ψ̃g0
g1g2 +O

(
g4
)}

. (4.8)

2. Heavy quark contribution to the gluon wave function renormalization

The gluon renormalization constant ZA, appearing in the Fock state decompositions (2.1), (2.9), (4.1) and (4.3), is
determined by imposing the following normalization to the one-gluon asymptotic state:

〈g(pf , λf , bf )phys|g(k0, λ0, a0)phys〉 = (2k+
0 )(2π)D−1δ(D−1)(pf−k0) δλf ,λ0 δbf ,a0 . (4.9)

Usually, the calculation of such renormalization constant is done in momentum space, inserting the expansions (2.1)
and (4.1) into the normalization relation (4.9). But we will need a mixed space relation for ZA, for coherence with
the rest of the calculation, so that the Fock state expansions (2.9) and (4.3) are used instead, and one obtains

(2k+
0 )(2π)D−1δ(D−1)(pf−k0) δλf ,λ0 δbf ,a0

(1−ZA)

ZA
=
∑̃

qq̄ states

(
Ψ̃
gf
q1q̄2

)†
(tbf )α2 α1

(ta0)α1 α2
Ψ̃g0
q1q̄2

+
∑̃

gg states

(
Ψ̃
gf
g1g2

)†
(T bf )a2 a1 (T a0)a1 a2 Ψ̃g0

g1g2 +O
(
g4
)
, (4.10)
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thanks to the commutation relations (A7), (A8) and (A9). Taking care of the color algebra, it results in

(2k+
0 )(2π)D−1δ(D−1)(pf−k0) δλf ,λ0

(1−ZA)

ZA
= TF

∑̃
qq̄ states

(
Ψ̃
gf
q1q̄2

)†
Ψ̃g0
q1q̄2

+ CA
∑̃

gg states

(
Ψ̃
gf
g1g2

)†
Ψ̃g0
g1g2 +O

(
g4
)
. (4.11)

In that expression, the first term correspond to the quark loop contribution, and the second one to the gluon loop
contribution. Both are of order g2, obviously.

3. Initial state/final state wave function overlap for a heavy quark loop

The next step is to evaluate the quantity∑̃
qq̄ states

(
Ψ̃
gf
q1q̄2

)†
Ψ̃g0
q1q̄2 F (x1,x2) (4.12)

for a generic function F (x1,x2). Indeed, for F (x1,x2) ≡ 1, it gives the quark loop contribution to the gluon wave
function renormalization (4.11), and for

F (x1,x2) ≡ Tr
[
tbf UF (x1) ta0 U†F (x2)

]
, (4.13)

it gives the resolved quark loop contribution to the scattering amplitude (4.8). Thanks to the expressions (2.11) and
(4.4), one finds ∑̃

qq̄ states

(
Ψ̃
gf
q1q̄2

)†
Ψ̃g0
q1q̄2 F (x1,x2) =

∑
h1, h2

∫ +∞

0

dk+
1

(2π)2k+
1

∫ +∞

0

dk+
2

(2π)2k+
2

∫
dD−2x1

∫
dD−2x2

×F (x1,x2)(2π)δ(k+
1 +k+

2 −k+
0 ) (2π)δ(k+

1 +k+
2 −p+

f ) e
−i
(

pf

p
+
f

− k0

k
+
0

)
·(k+1 x1+k+2 x2)

(µ2)2−D2 g2

×εj
′ ∗
λf
εjλ0

vG(k+
2 , h2)γ+

{
Bi′ ∗V (x12,m)

[
(p+
f −2k+

1 )

p+
f

δi
′j′ − i σi′j′

]
− B∗S(x12,m) m γj

′

}

×uG(k+
1 , h1)uG(k+

1 , h1) γ+

{
BiV (x12,m)

[
(k+

0 −2k+
1 )

k+
0

δij + i σij
]

+ BS(x12,m) m γj

}
× vG(k+

2 , h2) (4.14)

= (2π)δ(k+
0 −p+

f )

∫
dD−2x1

∫
dD−2x2 F (x1,x2) (µ2)2−D2 g2

∫ k+0

0

dk+
1

(2π)

× e
−i
(

pf−k0

k
+
0

)
·(k+1 x12+k+0 x2)

εj
′ ∗
λf
εjλ0

{
Bi′ ∗V (x12,m) BiV (x12,m)

× Tr

[
PG
(

(k+
0 −2k+

1 )

k+
0

δi
′j′ − i σi′j′

)(
(k+

0 −2k+
1 )

k+
0

δij + i σij
)]

− |BS(x12,m)|2 m2 Tr

[
PG γj

′
γj
]}

(4.15)

= (2k+
0 )(2π)δ(k+

0 −p+
f )

∫
dD−2x1

∫
dD−2x2 F (x1,x2) (µ2)2−D2 g2

∫ k+0

0

dk+
1

(2π)(2k+
0 )

× e
−i(pf−k0)·

(
x2+

k
+
1

k
+
0

x12

)
εj
′ ∗
λf
εjλ0

{
2Bi′ ∗V (x12,m) BiV (x12,m)

×
[(

k+
0 −2k+

1

k+
0

)2

δi
′j′ δij − δi′j′ δij + δi

′i δj
′j

]
+ 2m2 δj

′j |BS(x12,m)|2
}
, (4.16)
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using, in order to simplify the calculation of the Dirac trace, the fact that Bi′ ∗V (x12,m) BiV (x12,m) is invariant under
the exchange of i and i′.

4. Back to the heavy quark contribution to the gluon wave function renormalization

For the case F (x1,x2) ≡ 1 one can perform the integration over x2 in (4.16), while keeping x12 as independent
integration variable. One gets∑̃

qq̄ states

(
Ψ̃
gf
q1q̄2

)†
Ψ̃g0
q1q̄2 = (2k+

0 )(2π)D−1δ(D−1)(pf−k0)

∫
dD−2x12 (µ2)2−D2

× g2

∫ k+0

0

dk+
1

(2π)(2k+
0 )

εj
′ ∗
λf
εjλ0

{
2Bi′ ∗V (x12,m) BiV (x12,m)

×
[(

k+
0 −2k+

1

k+
0

)2

δi
′j′ δij − δi′j′ δij + δi

′i δj
′j

]
+ 2m2 δj

′j |BS(x12,m)|2
}
. (4.17)

Hence, the heavy quark loop contribution to the wave function renormalization obtained from eq. (4.11) is

δλf ,λ0

(1−ZA)

ZA

∣∣∣∣
quark loop

= (µ2)2−D2 g2 TF

∫
dD−2x12

∫ k+0

0

dk+
1

(2π)(2k+
0 )

εj
′ ∗
λf
εjλ0

×
{

2Bi′ ∗V (x12,m) BiV (x12,m)

[(
k+

0 −2k+
1

k+
0

)2

δi
′j′ δij − δi′j′ δij + δi

′i δj
′j

]

+2m2 δj
′j |BS(x12,m)|2

}
. (4.18)

5. Explicit expression for the heavy quark loop correction

Inserting the expressions (4.16) and (4.18) into the general expression (4.8) for the gluon to gluon scattering
amplitude, and dropping the gluon loop contributions (and higher orders), one finds2

iMg→g

∣∣∣∣
quark loop

= (µ2)2−D2 g2

∫ k+0

0

dk+
1

(2π)(2k+
0 )

∫
dD−2x1

∫
dD−2x2 εj

′ ∗
λf
εjλ0

×
{

2Bi′ ∗V (x12,m) BiV (x12,m)

[(
k+

0 −2k+
1

k+
0

)2

δi
′j′ δij − δi′j′ δij + δi

′i δj
′j

]

+2m2 δj
′j |BS(x12,m)|2

}
(4.19)

×
{

Tr
[
tbf UF (x1) ta0 U†F (x2)

]
e
−i(pf−k0)·

(
x2+

k
+
1

k
+
0

x12

)
− TF UA(x1)bfa0 e

−i(pf−k0)·x1

}
.

Note that the two terms in the last line cancel one each other when x1 and x2 coincide. Hence, there is a cancelation of
UV divergences between the resolved quark loop graph and the quark loop contributions to the gluon wave function
renormalization, leaving the UV finite result (4.19). This is to be expected since ZA is determined by unitarity,
without introducing a counterterm in the lagrangian (or hamiltonian).

2 In order to get a more compact expression, the integration variable x0 has been relabelled x1.
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V. HEAVY QUARK CONTRIBUTION TO THE NLO CORRECTION TO THE SINGLE INCLUSIVE
HADRON PRODUCTION CROSS SECTION

A. Heavy quark loop contribution to the partonic cross section

Here, we are interested in the heavy quark loop contribution to the partonic cross section for the process g +A→
g +X. It is obtained from the overlap of the heavy quark loop contribution (4.19) to the g + A→ g +X amplitude
with the LO contribution (4.7), as

(2p+
f )(2π)D−1 dσ

g+A→g+X

dp+
f d

D−2pf

∣∣∣∣
quark loop

= (2k+
0 )(2π)δ(p+

f −k+
0 )

× 1

dA

∑
a0, bf

1

D−2

∑
λ0, λf

{(
iMLO

g→g
)†

iMg→g

∣∣∣
quark loop

+ c.c.

}
. (5.1)

A straightforward calculation gives

(2p+
f )(2π)D−1 dσ

g+A→g+X

dp+
f d

D−2pf

∣∣∣∣
quark loop

= (2k+
0 )(2π)δ(p+

f −k+
0 ) αs TF

∫ k+0

0

dk+
1

k+
0

(µ2)2−D2

×
∫
dD−2x0

∫
dD−2x1

∫
dD−2x2

{[
4

D−2

[(
k+

1

k+
0

)2

+

(
k+

0 −k+
1

k+
0

)2

+
D−4

2

]

× Bi ∗V (x12,m) BiV (x12,m) + 2m2 |BS(x12,m)|2
]

×
[
S120 e

−i(pf−k0)·
(
x20+

k
+
1

k
+
0

x12

)
− SA10 e

−i(pf−k0)·x10

]
+ c.c.

}
. (5.2)

B. Hadron-level cross section

The NLO corrections calculated in refs. [24, 33] for the single inclusive hadron production considered only the
contributions from gluons and massless quarks. However, the inclusion of heavy quarks leads to additional NLO
contributions.

First, there is the possibility of producing a heavy quark, which then fragments for example into a pion or an
unidentified hadron (depending on the precise observable that one is considering). That contribution is given by the
sum of the results (3.18), (3.19) and (3.20), up to the appropriate change of fragmentation function.

Second, there is the contribution from heavy quark loops. At partonic level, this corresponds to eq. (5.2). In order
to transform it into a hadron level cross section, one can follow the same steps as in subsection III B, in particular eq.
(3.16). One obtains

(2π)D−2 dσ
p+A→h+X

dxF dD−2ph

∣∣∣∣
quark loop

=

∫ 1

0

dxB g(xB , µ
2)

∫ 1

0

dζ

ζD−2
Dh/g(ζ, µ

2) αs TF

× xB δ
(
xB−

xF
ζ

) ∫ 1

0

dz

∫
dD−2x0

∫
dD−2x1

∫
dD−2x2

×
{[

4

D−2

[
z2 + (1−z)2 +

D−4

2

]
Bi ∗V (x12,m) BiV (x12,m) + 2m2 |BS(x12,m)|2

]

×
[
S120 e

− i
ζ ph·(x20+z x12) − SA10 e

− i
ζ ph·x10

]
+ c.c.

}
, (5.3)

with Dh/g(ζ, µ
2) the fragmentation function for gluon into pion or unidentified hadron.

On the other hand, one also expects a contribution from intrinsic charm or bottom in the proton. At LO, it writes
the same as in the equation (3.35), but with the fragmentation function now into pion or unidentified hadron. This
contribution is expected to be suppressed by the smallness of the intrinsic heavy flavor PDF Q(xB). But it is formally
LO instead of NLO. Hence, if this contribution is not negligible, one may want to include also the corresponding NLO
corrections, whose calculation is however beyond the scope of the present study.
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Appendix A: Conventions

1. Fock space and the interaction picture

In the interaction picture the quark and gluon fields read

Ψα(x) =

∫ +∞

0

dk+

(2π)2k+

∫
dD−2k

(2π)D−2
(A1)

×
∑
h=± 1

2

[
e−ik·x b(k, h, α)u(k, h) + e+ik·x d†(k, h, α) v(k, h)

]∣∣∣∣∣
k−≡ k2+m2

2k+

,

Aµa(x) =

∫ +∞

0

dk+

(2π)2k+

∫
dD−2k

(2π)D−2

×
∑
λ

[
e−ik·x a(k, λ, a) εµλ(k) + e+ik·x a†(k, λ, a) εµ ∗λ (k)

]∣∣∣∣∣
k−≡ k2

2k+

, (A2)

respectively.
The commutation relations for creation and annihilation operators read[

a(k1, λ1, a1), a†(k2, λ2, a2)
]

= (2k+
1 )(2π)D−1δ(D−1)(k1−k2) δλ1,λ2

δa1,a2 , (A3){
b(k1, h1, α1), b†(k2, h2, α2)

}
= (2k+

1 )(2π)D−1δ(D−1)(k1−k2) δh1,h2
δα1,α2

, (A4){
d(k1, h1, α1), d†(k2, h2, α2)

}
= (2k+

1 )(2π)D−1δ(D−1)(k1−k2) δh1,h2
δα1,α2

. (A5)

The Fourier transform from momentum space to mixed space is defined, for the gluon creation operator, as follows:

a†(k, λ, a) =

∫
dD−2x eik·x a†(k+,x, λ, a) , (A6)

and analogously for other quantities.
Hence, we have the mixed-space commutation relations[

a(k+
1 ,x1, λ1, a1), a†(k+

2 ,x2, λ2, a2)
]

= D(k+
1 , k

+
2 ) δ(D−2)(x1−x2) δλ1,λ2 δa1,a2 , (A7){

b(k+
1 ,x1, h1, α1), b†(k+

2 ,x2, h2, α2)
}

= D(k+
1 , k

+
2 ) δ(D−2)(x1−x2) δh1,h2 δα1,α2 , (A8){

d(k+
1 ,x1, h1, α1), d†(k+

2 ,x2, h2, α2)
}

= D(k+
1 , k

+
2 ) δ(D−2)(x1−x2) δh1,h2 δα1,α2 , (A9)

with

D(k+
1 , k

+
2 ) = (2k+

1 )(2π)δ(k+
1 −k+

2 ). (A10)
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2. Spinors

The projectors over good (G) and bad (B) components of a spinor Ψ are defined

PG ≡
γ− γ+

2
=
γ0 γ+

√
2

,

PB ≡
γ+ γ−

2
=
γ0 γ−√

2
, (A11)

so

ΨG,B ≡ PG,B Ψ . (A12)

Note that

Ψ PB = ΨG, Ψ PG = ΨB . (A13)

Concerning the solutions u(k, h) and v(k, h) of the free Dirac equation, the good and bad components are related
through

uB(k, h) =
γ+

2k+

(
kjγj+m

)
uG(k+, h),

vB(k, h) =
γ+

2k+

(
kjγj−m

)
vG(k+, h). (A14)

In this way, the dependence on k and m appears only in the bad components:

uB(k, h) = uG(k+, h)
(
kjγj+m

) γ+

2k+
,

vB(k, h) = vG(k+, h)
(
kjγj−m

) γ+

2k+
. (A15)

Finally, the completeness relations read∑
h=± 1

2

uG(k+, h) uG(k+, h) γ+ =
∑
h=± 1

2

vG(k+, h) vG(k+, h) γ+ = 2k+ PG . (A16)

3. Polarization vectors

The polarization vectors in light-cone gauge A+ = 0 are defined

ε+λ(k) = 0,

εjλ(k) = εjλ ,

ε−λ(k) =
kj εjλ
k+

, (A17)

where the transverse vectors ελ obey the relations∑
λ

εiλ ε
j ∗
λ = −gij ,

−gij εiλ1
εj ∗λ2

= δλ1,λ2
. (A18)

Note that, for arbitrary D, there are D − 2 transverse polarizations λ. For D = 4, one can take

ελ =
1√
2

(
1
iλ

)
, (A19)

with λ = ±1, so that λ coincides with the light-front helicity of the gluon.
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