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In a previous paper (JHEP 05 (2014) 27), we calculated the three-loop thermodynamic potential
of QCD at finite temperature 7" and quark chemical potentials g using the hard-thermal-loop
perturbation The result allows us to study the thermodynamics of QCD at finite temperature and
finite baryon, strangeness, and isospin chemical potentials ug, ps, and ur. We calculate the pressure
at nonzero up and pur with ug = 0, and the energy density, entropy density, the trace anomaly,
and the speed of sound at nonzero pur with up = ps = 0. The second and fourth-order isospin
susceptibilities are calculated at ug = ps = pr = 0. Our results can be directly compared to lattice
QCD without Taylor expansions around pg = 0 since QCD has no sign problem at up = ps =0
and finite isospin chemical potential pr.



I. INTRODUCTION

Quantum chromodynamics (QCD) in extreme conditions such as high temperature and high density has been a very
active area of research for more than two decades. The interest in QCD at finite temperature has largely been spurred
by the experimental programs in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven
and the Large Hadron Collider (LHC) at CERN. One of the goals of these programs is the creation and study of
the quark-gluon plasma - the deconfined phase of QCD. The equation of state (EoS) of QCD is essential to the
phenomenology of the quark-gluon plasma. Lattice gauge theory provides a first-principle method to calculate the
thermodynamic functions of QCD at finite temperature and zero baryon chemical potential up. However, at finite
up, QCD suffers from the so called sign problem, namely that the fermion determinant is complex. This prevents
one from using standard lattice techniques involving importance sampling to calculate the partition function of QCD.
One way to circumvent this problem, at least for small baryon chemical potentials, is to make a Taylor expansion of
the thermodynamic functions around pp. This requires the calculation of the quark-number susceptibilities evaluated
at zero quark chemical potentials, pq = 0.

Perturbative QCD offers an alternative to lattice gauge theory for the calculations of thermodynamic functions in
the deconfined phase. Invoking asymptotic freedom, one might expect that perturbation theory works at sufficiently
high temperatures. However, one does not know a priori how large T must be in order to obtain a sufficiently
good approximation. Using the weak-coupling expansion in the strong coupling constant g, the calculation of the
thermodynamic functions has been pushed to order ¢g®logg both at zero [1] and finite chemical potential [2-4].
However, a strict perturbative expansion in g does not converge at temperatures relevant for the heavy-ion collision
experiments. It turns out that the convergence is very poor unless the temperature is many orders of magnitude
larger than the critical temperature T, for the deconfinement transition. The source of the poor convergence is the
contributions to the thermodynamic functions coming from soft momenta of order g7'. The poor convergence of the
weak-coupling expansion suggests that one needs to reorganize the perturbative series of thermal QCD. For scalar
theories, screened perturbation theory (SPT) has been applied successfully up to four loops [5-8]. SPT is in part
inspired by variational perturbation theory [9-14], see also [15] for a renormalization-group improved reorganization
of the perturbative series. In the case of gauge theories, using a local mass term for the gluons breaks gauge invariance
and one needs to generalize SPT. Hard-thermal-loop perturbation theory (HTLpt) represents such a generalization
and was developed over a decade ago [16]. Since its invention, HTLpt has been used to calculate thermodynamic
functions through three loops at zero chemical potential [17-21] as well as finite chemical potential [22, 23]. Depending
on the thermodynamic function at hand, the agreement between lattice simulations and the results from HTLpt is
very good down to temperatures of approximately T' ~ 250 MeV. Application of some HTL-motivated approaches
can be found in Refs. [24-35].

While three-color QCD at finite baryon chemical potential has a sign problem, there are a number of other cases
where the sign problem is absent. This includes QCD in a strong magnetic field B, two-color QCD at finite baryon
chemical potential pp [36, 37], and three-color QCD at finite isospin chemical potential p;[38]. In this paper, we
will focus on three-color QCD at finite isospin density. There are a few papers on lattice QCD with finite isospin
chemical potential [39-46], however, these mostly focus on the phase transitions themselves and not on the deconfined
phase: In addition to the deconfinement transition, there is an additional transition to a Bose condensate of pions
at sufficiently low temperature 7' and sufficiently large isospin chemical potential p; [47]. For T = 0, the critical
chemical potential for pion condensation is u§ = m,. Moreover, the results of [44] seem to indicate that the first-order
deconfinement transition at zero isospin density turns into a crossover at py/T ~ 2.5. At sufficiently low temperature
and high isospin chemical potential, i.e. around the phase boundary, HTLpt is unreliable. Thus, at this point in time,
we cannot compare our HTLpt predictions with lattice Monte Carlo at finite ;. Therefore, our results should be
considered as predictions which can be checked by future lattice simulations. This is in contrast to three-color QCD
at pp = 0, where there is a plethora of lattice results [48-66] on the thermodynamics of the deconfined phase.

The paper is organized as follows. In section II, we briefly discuss finite chemical potentials and the sign problem
of QCD. In section III, we review hard-thermal-loop perturbation theory and the HTLpt thermodynamic potential
through next-next-to-leading order (NNLO). In section IV, we present and discuss our numerical results for the
thermodynamic functions. In section V, we summarize and conclude.

II. PARTICLE DENSITIES, CHEMICAL POTENTIALS, AND THE SIGN PROBLEM IN QCD

In massless QCD with N; flavors there are NJ% conserved charges which corresponds to the number of generators of
the group SU(Ny) x U(1). For each conserved charge @);, we can introduce a nonzero chemical potential p;. However,
it is possible to specify the expectation values of different charges simultaneously, only if they commute. For Ny = 2
and Ny = 3, this implies that we can introduce two and three independent chemical potentials, respectively. These



can conveniently be chosen as the quark chemical potentials ji,, which corresponds to the separate conservation of
the number of u, d, and s quarks. However, any other independent linear combination of 1, is equivalent and it is
customary to introduce chemical potentials for baryon number np, isospin ny, and strangeness ng.

After having introduced the chemical potentials in the Lagrangian, the partition function as well as all thermody-
namic quantities are functions of the temperature and the chemical potentials. For example, the corresponding charge
densities n; are given by
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where F is the free energy density.
The baryon, isospin, and strangeness densities np, ny, and ng can be expressed in terms of the quark densities ns
as

1
ng = g(nu—i—nd—i—ns) ,

Ny =mny —N4g ,

ng = —nsg . (4)
Egs. (2)—(4) can be used to derive relations between the corresponding chemical potentials ppg, w7, and pg and the
quark chemical potentials p,. Egs. (1) and (3) give
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In the same manner, one can show that g}‘:}’; = gﬁ; = gﬁ; =3, gz; = gﬁ; =0, and % = —1. This gives the
following relations between the chemical potentials up, 17, and ps and the quark chemical potentials p,
1
Hu = ZhB + (7)
1
Hd = ghB = I, (8)
1
fs = ghp — Hs - (9)

In the chiral (Weyl) representation, we can write the Dirac operator (ID+ m — pg7o) for three flavors as

m iX — tus — w1 0 0 0 0
iXT— tpup — pr m 0 0 0 0
0 0 m X — %,uB + pr 0 0
0 0 iXT— g +pr m 0 0 ’
0 0 0 0 m 1 X — %uB + ps
0 0 0 0 ixt— %/,LB + us m

where iX = Dg +io - D . The fermion determinant then becomes
det(D+m — pgyo) = det [(XT + Jipp +ipr) (X + Lipp +ing) +m?]
xdet [(XT+ Lipp —ipr) (X + Lipp —ipr) +m?]
xdet [(XT+ Sipp —ips)(X + Lipp —ins) + m?] . (11)
The terms proportional to pup and pg appear in the same way in combination with X and X. Consequently, the
fermion determinant is real only for up = us = 0. Using Egs. (7)—(9), this yields the constraints
fiu 4 g =0, (12)
s =0. (13)



Given the two constraints, there is only one independent chemical potential, for example, the isospin chemical potential
Wy = %(Mu — pta)- The fermion determinant reduces to

det(@ +m — ppvo) = det [(XT +ipr)(X +ipg) +m?] det [(XT —ipr)(X —ipr) +m?] [XTX +m?] . (14)

We conclude that the fermion determinant is real even for nonzero isospin chemical potential and this proves that
there is no sign problem for ur # 0.

III. HARD-THERMAL-LOOP PERTURBATION THEORY

In this section, we briefly review hard-thermal-loop perturbation theory. For a detailed discussion, see for example
Ref. [23]. Hard-thermal-loop perturbation theory is a reorganization of perturbation theory for thermal QCD. The
HTLpt Lagrangian density is written as

L= (Lqcp + Lut)l, 5, + ALuTL (15)

where the HTL improvement term is [67]
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and ALy, contains additional HTLpt counterterms. Here y* = (1,¥) is a light-like four-vector with § being a three-
dimensional unit vector and the angular bracket indicates an average over the direction of §. The two parameters
mp and m, can be identified with the Debye screening mass and the thermal quark mass, respectively, and account
for screening effects. HTLpt is defined by treating § as a formal expansion parameter. The HTLpt Lagrangian (15)
reduces to the QCD Lagrangian if we set 6 = 1. Physical observables are calculated in HTLpt by expanding in powers
of 4, truncating at some specified order, and setting § = 1 in the end. This defines a reorganization of the perturbative
series in which the effects of m%, and mi terms in (16) are included to leading order but then systematically subtracted
out at higher orders. Note that HTLpt is gauge invariant order-by-order in the § expansion and, consequently, the
results obtained are independent of the gauge-fixing parameter £ (in the class of covariant gauges we are using). To
zeroth order in §, HTLpt describes a gas of massive gluonic and quark quasiparticles. Thus, HTLpt systematically
shifts the perturbative expansion from being around an ideal gas of massless particles to being around a gas of massive
quasiparticles which are the appropriate physical degrees of freedom at high temperature and/or chemical potential.

Higher orders in § describe the interaction among these quasiparticles and involve standard QCD Feynman diagrams
as well new diagrams generated by the HTL improvement term. If the expansion in § could be calculated to all orders,
the final result would not depend on mp and m, when we set 6 = 1. However, any truncation of the expansion in ¢
produces results that depend on mp and m,. As a consequence, a prescription is required to determine mp and m,
as a function of T', p,, and «. Several prescriptions were discussed in [20] at zero chemical potential and generalized
to finite chemical potential in [23]. We return to this issue below.

A. NNLO HTLpt thermodynamic potential

The QCD free energy to three-loop order in HTLpt for the case that each quark f has a separate quark chemical
potential sy was calculated in [23]. The final result is
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where Qg = d“” by = py/2nT, A= A/27T, and "hp = mp/2xT. The QCD Casimir numbers are ¢4 = N,
da = N2 -1, sF = N¢/2, dp = N.N¢, and sop = Crsp with Cp = (N2 — 1)/2N,. The sums over f and g 1nclude




all quark flavors, zy = 1/2 —ifiy, and Q%%LO is the pure-glue contribution
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In Eq. (17), the functions N(z) and N(n, z) appear. These are defined as
N(z) =U(2) + ¥(z), (19)
R(n,2) = ¢'(—n, 2) + (=) (—=n, 2*) , (20)
where
¢"(z,y) = 9:C(2,y) , (21)
I'(2)
U(z) = . 22
(2) T(2) (22)

Here ((z,y) is the Riemann zeta function and I'(z) is the digamma function.

B. Mass prescription

In order to complete a calculation in HTLpt, we must have a prescription for the mass parameters mp and m,
appearing in the HTL Lagrangian. A variational prescription seems natural, i.e. one looks for solutions of

0

%Q(T7 asamDamq7uqa6 = 1) =0 ’ (23)
0

3qu(T, Qs,Mp, My, g, 0 =1) =0 (24)

However, in some case the resulting gap equations only have complex solutions and one must look for other pre-
scriptions. Inspired by dimensions reduction, one equates the mass parameter mp with the mass parameter of
three-dimensional Electric QCD (EQCD) in [68]. This mass can be interpreted as the contribution to the Debye mass
from the hard scale T'and is well defined and gauge invariant order-by-order in perturbation theory. This prescription
was used in Ref. [23] and will be used in the remainder of the paper as well. Originally, the two-loop perturbative
mass was calculated in Ref. [68] for zero chemical potential, however, Vuorinen has generalized it to finite chemical
potential. The resulting expression for M3, is [2, 3]
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The effect of the in-medium quark mass parameter mgy in thermodynamic functions is small and following Ref. [20],
we take mgy = 0.

IV. NUMERICAL RESULTS

In this section, we present our results for the NNLO HTLpt thermodynamic functions at finite temperature 7" and
isospin chemical potential py, and up = ug = 0. We emphasize that all thermodynamic functions can be calculated
for nonzero values of the three independent chemical potentials.



A. Running coupling and scales

In Ref. [20], we showed that the renormalization of the three-loop HTLpt free energy is consistent with the standard
one-loop running of the strong coupling constant [69, 70]. Using a one-loop running is therefore self-consistent and
will be used in the remainder of this paper.! In this case, the running coupling as(A) is given by

as(A) (26)

~bot

with ¢ = In(A?/AZ<) and by = (1lca —2Ny)/127m. We fix the scale Agrg by requiring that as(1.5 GeV) = 0.326 which

is obtained from independent lattice measurements [71]. For one-loop running, this procedure gives Ayg = 176 MeV.
MeV.

For the renormalization scale we use separate scales, Ay and A4, for purely-gluonic and fermionic graphs, respectively.
We take the central values of these renormalization scales to be A, = 27T and A = Ay = 2m+/T2 + (u% + 2u2) /(Ny72).
In all plots, the thick lines indicate the result obtained using these central values and the light-blue band indicates
the variation of the result under variation of both of these scales by a factor of two, e.g. 71" < Ay < 47T, For all
numerical results below we use c4 = N, = 3 and Ny = 3.

Since our final result for the thermodynamic potential (17) and the thermodynamic functions that are derived from
it, are expansions in mp/T and m,/T, we cannot push our results to very high values of py; the Debye mass in
Eq.(25) depends on the quark chemical potentials p;. An estimate for the reliability of HTLpt is that mp ~ ¢T. If
T <3u ¢/m, the py-dependent term of mp just starts to dominate over the T-dependent term. Thus we consider
py S T as reasonable. For temperatures down to 150 MeV, we decide to err on the safe side and use p; no larger
than 400 MeV.

B. Pressure

The pressure of the quark-gluon plasma can be obtained directly from the thermodynamic potential (17)

P(TaAaNuaUdaus) = _Q(TaAaﬂuvﬂdaﬂs) ) (27)

where A includes both Ay and A,. The pressure can be obtained using our general expression Eq. (17) for nonzero
values of up and py and for pug = 0 using the Eqgs. (7)-(9). For simplicity, we are presenting here the NNLO HTL
pressure only at nonzero value of puy and for pup = g =0 as
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1 In our previous paper [23], we used one-loop running as well as three-loop running to gauge the sensitivity of our results. Generally, our
three-loop HTLpt predictions were rather insensitive to whether we used one-loop or three-loop running.
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In Fig. 1, we show the NNLO pressure obtained using HTLpt as a function of T' normalized to that of an ideal gas
of massless particles for p; = 200 MeV, up = 0 (left) and p; = 200 MeV, pup = 400 Mev (right). The pressure is an
increasing function of T', but stays well below the ideal-gas value even for the highest temperatures shown.

1.0— T T T T 1.0— T T T T
1, =200 MeV ‘ 1 loop as; A5 =176 MeV ‘ 1, =200 MeV ‘ 1 loop as; A5 =176 MeV ‘

15 =0 MeV g =400 MeV

P/ Pideal
P/ Pideal

= NNLO HTLpt = NNLO HTLpt

200 400 600 800 1000 200 400 600 800 1000
T[MeV] T [MeV]

FIG. 1. The pressure normalized to that of an ideal gas of massless particles as a function of T'. Left figure is for ur = 200
Mev, up = 0 and right figure is for pr = 200 MeV, pp = 400 MeV.

In Fig. 2, we show the normalized NNLO pressure of HTLpt as a function of T for four different values of the
isospin chemical potential p;. We notice that the pressure is an increasing function of p; for fixed temperature and



that the pressure curves converge at a temperature of approximately 800 MeV.

P/ Pideal

FIG. 2. The pressure normalized to that of an ideal gas of massless particles as a function of T for various values of the

isospin chemical potential pur at up = ps = 0 (left) and up = 400 MeV, pus = 0 (right).

1.0

‘ '1Ioop as; /'\E:NG MeV ‘

(/ —_— ;=0 MeV
—==- ;=200 MeV ]
02 ===y, =300 MeV
----- uy =400 MeV
0.0~ L ! ! !
200 400 600 800 1000
T [MeV]

1.0

115 =400 MeV

‘ 1loop as; A,-=176 MeV

— 4, =0Mev
——— ;=200 MeV 1
0.2 —e= 1, =300 MeV
..... 1, =400 MeV
00 1 1 1 1 1
200 400 600 800 1000
T [MeV ]

Here Ay = 27T and Ay =

2m/T? + (u% + 2u2) /(372) were used.

C. Energy density

Once we know the pressure P, we can calculate the energy density £ by the Legendre transform

oP  oP
£ = TaiT + ,leqai'uq - P
aP oP

where we have used that p; = 5(py — pa) and p; = 0. In Fig. 3, we show the energy density as a function of the
temperature for uy = 0 (left) and pu; = 200 MeV (right). As in the case of the pressure, the energy density is an
increasing function of 1" and stays well below the ideal-gas value for all temperatures.

1.0 T T T T 1.0 T T T T
| 1=0 MeV | [ Lloop a3 Ag-=176 MeV | | 1 =200 MeV | [TToop ay: A =176 MeV
0.8F 1
Ei 5 0.6 1
W @
W 0.4F 1 W 041 1
0.2} 1 0.2f .
—— NNLO HTIpt —— NNLO HTIpt
00 1 1 1 1 1 00 1 1 1 1 1
200 400 600 800 1000 200 400 600 800 1000
T [MeV] T [MeV]

FIG. 3. The energy density normalized to that of an ideal gas of massless particles as a function of T'. Left figure is for uy =0
and right figure is for pr =200 MeV. pup = ps = 0 in both plots.
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In Fig. 4, we show the normalized energy density for four different values a of the isospin chemical potential p;.
For puy = 0 or uy = 200, the energy density is an increasing function of 7. Note, however, that there is a minimum
for the energy density for low temperatures and higher values of the isospin chemical potential. We would like to
mention here that HTLpt probably cannot be trusted at these low temperatures with large chemical potential and
one can not attribute any interesting physics to this nonmonotonic behavior.

Likewise, the curves converge at high temperatures, here already at approximately 7" = 600 MeV.

1.0—

i Toop a, /\M—SI=176 Mevj

- ]
%3
=
W
~
W 04F :
——  4;=0 MeV
—— =200 MeV
0.2f K 1
=== ;=300 MeV
----- 1y =400 MeV
0.0

200 400 600 800 1000
T [MeV]

FIG. 4. The energy density normalized to that of an ideal gas of massless particles as a function of T for four different values
of the isospin chemical potential and pp = ps = 0. Here Ay = 2aT and Ay = 2m/T? + 22 /(37w2) were used.

D. Trace anomaly

The trace anomaly or interaction measure Z is defined by the difference
I=E-3P. (30)

For an ideal gas of massless particles, the trace anomaly vanishes since £ = 3P. For massless particles and nonzero
g, T is nonzero and is a measure of the interactions in the plasma.? In Fig. 5, we show the interaction measure as
a function of the temperature for two different values of the isospin chemical potential, u; = 0 (left) and p; = 200
MeV (right). The trace anomaly is a decreasing function of 7" and it converges to zero for large values of T' due to
asymptotic freedom.

In Fig. 6, we show the normalized interaction measure as a function of the temperature T" for four different values
of the isospin chemical potential ;. As the figure demonstrates, the curves are essentially identical.

E. Speed of sound

The speed of sound ¢, is defined by
oP

In Fig. 7, we show the speed of sound squared c¢? for two different values of the isospin chemical potential, p; = 0
(left) and p; = 200 MeV (right). The horizontal dotted line is the ideal-gas value ¢2 = %. As this figure demonstrates,
the speed of sound is an increasing function of 7.

In Fig. 8, we show the speed of sound squared ¢? for four different values of the isospin chemical potential y;. We
notice that the speed of sound is an increasing function of py for fixed T and that the curves converge rather quickly,
here at approximately T' = 400 MeV.

2 For nonzero current quark masses mq, Z # 0 even in the absence of interactions.
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St u, =0 l\l/[eV ‘ ‘ Il loop ay; /I\I\E:]76 ]\I/IeV I ! =20(;MeV‘ ‘ Il loop ay ; /I\E=l76 I\I/IeV
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FIG. 5. Trace anomaly divided by T* as a function of the temperature 7. Left figure is for x4y = 0 and right figure is for
pr =200 MeV. up = pus = 0 in both plots.
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FIG. 6. Trace anomaly divided by T* as a function of the temperature T for four different values of the isospin chemical
potential and pup = pg = 0. Here Ay = 27T and Aq = 2m/T? + 2u2/(372) were used.

F. Susceptibilities

Using the thermodynamic potential given by Eq. (28), we can compute the quark-number susceptibilities. In the
most general case, we have one quark chemical potential py for each quark flavor f, which we can organize in an
Ny-dimensional vector g = (ftu, fd, is, ---, N, ). The single quark susceptibilities are defined by

6i+j+k+...fp 717
Xijh...(T) = ————— (k 2 : (32)
Opt Oy Opk ... | u=po

where g is a configuration of quark chemical potentials. When computing the derivatives with respect to the chemical
potential, we will use po = 0. We treat A, as being a constant and only put the chemical potential dependence of A,
in after the derivatives are taken. We have done this in order to more closely match the procedure used to compute the
susceptibilities using resummed dimensional reduction [2] and to ensure that the susceptibilities vanish when N, = 0.
In the following, we will use a shorthand notation for the quark susceptibilities by specifying derivatives by a string
of quark flavors using superscript. For example, x4¥* = X200, X4° = Xo11, and 4“4 = ya990. For a three-flavor system
with (u,d, s) quarks with up = ug = 0, the n’th-order isospin number susceptibility evaluated at pu; = 0 is defined
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FIG. 7. Speed of sound squared as a function of the temperature T'. Left figure is for p;y = 0 and right figure is for p; = 200
MeV. pup = ps = 0 in both plots.

0.35F 1 loop a; ; Aﬁ=176 MeV 4

0.30 ]
© 025 ]
u; =0 MeV
0.20F === ;=200 MeV ]
sme= ;=300 MeV
----- u; =400 MeV
0.15

200 400 600 800 1000
T [MeV]

FIG. 8. Speed of sound squared as a function of the temperature T for different values of the isospin chemical potential p;r and

us = s = 0. Here Ay = 27T and Aq = 2m+/T? + 2u%/(372) were used.
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We can analytically express various order susceptibilities as

d,qOéST2

1
I 2 A2 Al
= —1 321V0—3d4 D —
X2 ( mpm ) 9%
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(35)
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(37)
For a three-flavor system consisting of (u,d, s) quarks, we can express the isospin susceptibilities in terms of the
quark susceptibilities as

Xo = " +x57 - 2x87] (38)
XZIL — [quuu + Xiliddd _ 4X21Luud _ 4xgddu + GXZUdd] ) (39)

The isospin susceptibilities are expressed in terms of diagonal (same flavor on all indices) quark susceptibilities or
off-diagonal (different flavor on some or all indices). In HTLpt, there are off-diagonal susceptibilities arising explicitly
from some of the three-loop graphs [20, 23]. There also potential off-diagonal contributions coming from all HTL terms
since the mass parameter mp receives contributions from all quark flavors. However, these contributions vanish when
we evaluate the susceptibilities at p©y = 0. In this case, the HTLpt second and fourth-order isospin susceptibilities
reduce to

X5 = 2x5", (40)
= [2xi 4 6] (41)

In Fig. 9, we show the HTLpt predictions for the isospin second and fourth-order susceptibilities x4/72 and x} as
functions of T. The horizontal dotted lines are the corresponding isospin susceptibilities for an ideal gas, indicated
by SB limit. The central line for the second-order susceptibility is almost flat, while the central line for the and
fourth-order susceptibility is slowly increasing.
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FIG. 9. Second and fourth-order susceptibilities as functions of the temperature 7' normalized to T2 and one, respectively.
ur = up = ps = 0 in both plots.
V. SUMMARY

In this paper, we presented results for a number of thermodynamic functions of QCD at finite temperature 7" and
finite isospin chemical potential u; using hard-thermal-loop perturbation theory. The pressure was also calculated at
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nonzero baryon chemical potential pg. Our results were derived from the three-loop thermodynamic potential, which
was computed in Ref. [23] as a function of temperature and quark chemical potentials. Our final results depend on
two renormalization scales A, and A, which are expected to be approximately 27T and 2m+/T2 + (u% + 2u2)/(372).
In order to gauge the theoretical uncertainty associated with the scale choice, we varied both A, and A, by a factor
of two (light-blue bands in some figures). We found that most quantities have a sizable scale variation and, at this
moment in time, we do not have a method to reduce the size of the bands. A solution to this problem is suggested by
the authors of Ref. [15]. In this approach, dubbed renormalization group optimized perturbation theory, the authors
modify standard optimized perturbation theory or SPT. This is done by changing the added/subtraction mass term,
including a finite vacuum term, and imposing renormalization group invariance on the pressure. In the case of ¢*-
theory, the result for the pressure up to two-loop order is very stable and with narrow bands under a scale variation.
Note, however, that some quantities, e.g. X%, have very small scale variation for temperatures 7' > 400 MeV and
hence HTLpt provides testable predictions.

Given the relatively good agreement between lattice results and the predictions of NNLO HTLpt at zero and finite
baryon chemical potential for " 2 250 MeV, we expect that the lattice results at finite p; should fall close to the
central (black) lines predicted herein at high temperatures. We are looking forward to lattice measurements of QCD
thermodynamics at finite p; and high temperatures (with ug = pg = 0) in order to test the predictions made herein.
Since the necessary lattice measurements can be done without Taylor expansion, they would provide a high-precision
test of NNLO HTLpt.
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