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Abstract

In this paper we consider CP-violating new-physics contributions to the decay t → bb̄c. We

examine the prospects for detecting such new physics at the LHC, which requires studying the

process gg → t(→ bb̄c)t̄(→ b̄ℓν̄). We find two observables that can be used to reveal the presence

of CP-violating new physics in t → bb̄c. They are (i) the partial-rate asymmetry and (ii) the triple-

product correlations involving the momenta of various particles associated with the interaction. A

Monte Carlo analysis is performed to determine how well these observables can be used to detect

the presence of new physics, and to measure its parameters. We find that there is little difficulty in

extracting the value of the relevant new-physics parameter from the partial-rate asymmetry. For

the triple-product correlations, we test multiple strategies that can be used for the extraction of

the corresponding combination of new-physics parameters.
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I. INTRODUCTION

It is widely believed that physics beyond the Standard Model (SM) must exist. However,

to date, no evidence of this new physics (NP) has been found. It appears that the energy

scale of the NP is larger than was hoped for, or that its manifestation is subtler than

envisioned. Over the years many models of NP have been proposed, and a number of these

feature the top quark in a central role [1]. Being particularly heavy, with a mass near the

electroweak scale, the top quark may well be sensitive to NP interactions that do not much

affect other SM particles. On the other hand, top observables such as total cross-section [2],

decay width [3], differential cross-sections [4], etc. appear to be in good agreement with

the corresponding SM predictions. Significant NP contributions may therefore exist only in

processes that are suppressed in the SM. One such process is the decay t → bbc. The SM

rate for this process is very small as it involves the Cabibbo-Kobayashi-Maskawa (CKM)

element Vcb (∼ 0.04).

NP contributions to t → bbc were studied in Ref. [5], and several observables that can

reveal the presence of NP were found. This decay can be studied at the LHC, which is

essentially a top-quark factory. However, single-top production is rather suppressed at the

LHC [6], so that it is difficult to isolate t → bbc experimentally and analyze it on its

own. Instead, one considers tt pairs that are produced predominantly through gluon fusion:

gg → tt. The t and t then decay into a pair of b-jets along with other hadronic and/or

leptonic final states. In order to study t → bbc, it is useful to consider the semi-leptonic

channel gg → t(→ bbc)t(→ bℓν) where the charge of the lepton may be used to ascertain

that it is the t that is undergoing the rare decay.

In Refs. [7, 8] a detailed numerical simulation of gg → t(→ bbc)t(→ bℓν) was performed

to examine how well NP parameters can be determined at the LHC when it operates at

14 TeV. This analysis focused on CP-conserving NP. In the present paper, we examine the

possibilities for detecting CP-violating NP and measuring its parameters. In Ref. [5] it was

shown that there are two observables that are sensitive to CP violation in t → bbc – the

partial-rate asymmetry and the triple product. In the full process, gg → t(→ bbc)t(→ bℓν),

one has these same two observables. We examine each of these observables separately. For

the partial-rate asymmetry, the analysis is straightforward. However, as we will see, for the
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triple product it is more involved.

We begin in Sec. II by describing the effective Lagrangian describing NP contributions

to t → bbc and oulining the calculation of the differential cross section for gg → tt →
(

bbc
) (

bℓν
)

. In Sec. III we define CP-violating observables in gg → tt →
(

bbc
) (

bℓν
)

. In-

cluded here are the analytic expressions for the partial-rate asymmetry and the triple product

in this process. In Sec. IV we detail the numerical simulations performed to determine how

well the CP-odd NP parameter combinations can be extracted from measurements of the

partial-rate asymmetry, the triple product and related observables. We discuss the feasibility

of measuring gg → tt →
(

bbc
) (

bℓν
)

in Sec. V. We conclude in Sec. VI.

II. NEW PHYSICS CONTRIBUTIONS TO t DECAY

A. t → bbc: effective Lagrangian

The decay t → bbc can have contributions coming from the SM (t → bW+ → bbc) and

from various NP sources. We parameterize the NP contributions via an effective Lagrangian,

as was done in Refs. [5, 7, 8]: we set Leff = LV
eff + LS

eff + LT
eff, with

LV
eff = 4

√
2GFVcbVtb

{

XV
LL bγµPLt cγ

µPLb+XV
LR bγµPLt cγ

µPRb

+ XV
RL bγµPRt cγ

µPLb+XV
RR bγµPRt cγ

µPRb
}

+ h.c., (1)

LS
eff = 4

√
2GFVcbVtb

{

XS
LL bPLt cPLb+XS

LR bPLt cPRb

+ XS
RL bPRt cPLb+XS

RR bPRt cPRb
}

+ h.c., (2)

LT
eff = 4

√
2GFVcbVtb

{

XT
LLbσ

µνPLt cσµνPLb

+ XT
RRbσ

µνPRt cσµνPRb
}

+ h.c. (3)

The colour indices in the above expressions are assumed to contract in the same manner

as those in the SM; Ref. [5] contains an analysis of the case in which the indices contract

differently than in the SM.

The dimensionless NP parameters XI
AB in Eqs. (1)-(3) may be assumed to be O(1). Under
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this assumption, the NP contributions to t → bbc can be of the same order as that coming

from the SM. For this reason, when analyzing possible NP effects it is important to consider

not just the SM-NP interference terms, but also the NP-NP pieces. In this paper we focus

specifically on CP-violating effects, which can arise when the XI
AB contain weak phases.

Throughout this work we ignore strong phases related to NP contributions, since these are

negligible [9]. There is a strong phase related to the W resonance in the SM contribution to

the decay; this phase plays an important role in the partial-rate asymmetry (see Sec. IIIA).

B. Differential cross section for gg → tt →
(

bbc
) (

bℓν
)

The differential cross section for gg → tt →
(

bbc
) (

bℓν
)

was worked out in Ref. [7]. In

this section we summarize the procedure; the results can be found in Appendix A. The full

details are given in Ref. [7].

The kinematics of the process gg → tt →
(

bbc
) (

bℓν
)

is represented in Fig. 1. As described

in Ref. [7], the six-body phase space may be decomposed into five solid angles and four

invariant masses. Note that Fig. 1 represents only the kinematics of gg → tt →
(

bbc
) (

bℓν
)

– it is not a Feynman diagram. Thus, M2
5 does not necessarily correspond to the W−

resonance in the t decay, and M2
2 does not necessarily correspond to the W+ resonance in

the SM part of the t decay. Rather, p1, p2 and p3 are the momenta of the b, b and c quarks in

t → bbc, with all permutations being allowed. Assuming that the t and t quarks are on-shell

before decaying, two of the invariant-mass degrees of freedom can be eliminated. The solid

angles dΩ∗∗
1 , dΩ∗

2, dΩ
∗∗
4 , dΩ∗

5 and dΩt in Fig. 1 are defined in five different rest frames, with

the ∗ and ∗∗ superscripts indicating that these angles are defined in reference frames that

are, respectively, one and two boosts away from the tt rest frame. The invariant masses M2

and M5 are defined via M2
2 = (p1 + p2)

2 and M2
5 = (p4 + p5)

2. The differential cross section

is a complicated function of the various momenta [see Eqs. (A.1)-(A.4)]; these momenta may

in turn be related back to the solid angles and invariant masses via boosts and rotations.

The approximate analytical expression for the differential cross section for gg → tt →
(bbc)(bℓν) was derived making several simplifying assumptions:

1. We considered only the gg initial state, ignoring qq initial states.
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FIG. 1: Kinematics for gg → tt →
(

bbc
) (

bℓν
)

[10]. The definitions of the various angles and

invariant masses are identical to those given in Ref. [7]; these definitions are reproduced here for

convenience. Ω∗∗
1 denotes the direction of ~p ∗∗

1 in the rest frame of M2, relative to the direction of

~p ∗
1 + ~p ∗

2 , where M2
2 = (p1 + p2)

2. Similarly, Ω∗
2 denotes the direction of (~p ∗

1 + ~p ∗
2 ) in the t rest

frame, relative to the direction of ~pt in the tt rest frame. Ωt denotes the direction of ~pt relative

to ~q1, also in the tt rest frame. The solid angles Ω∗∗
4 and Ω∗

5 are defined analogously to Ω∗∗
1 and

Ω∗
2, respectively, and M2

5 = (p4 + p5)
2. In this work we take p1 = pc, p2 = pb, p3 = pb1 , p4 = pν ,

p5 = pb2 and p6 = pℓ.

2. We ignored the parton distribution functions (PDFs) for the initial gluons and worked

in the rest frame of the initial gg pair. In the actual experiment, the initial gluons

have a wide range of momenta, and the lab frame is generally different than the gg

rest frame for a given event.

3. We considered the final state b’s to be “distinguishable,” when in fact they are identical

particles.

In addition to the above simplifications, we also set the masses of the light quarks and

the charged lepton to zero. The analytical expressions for the differential cross section and

integrated cross section for gg → tt →
(

bbc
) (

bℓν
)

are given in Appendix A. At first glance,
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it might appear that the above assumptions would have rendered these expressions almost

completely useless. On the contrary, however, we have found that these expressions provide

crucial insights into the actual physical process and serve as a useful starting point for a

more robust numerical treatment of the problem.

In Refs. [7, 8] we focused primarily on CP-even observables. In the present work we

turn our attention to CP-odd observables. We proceed in the same manner as we did in

Refs. [7, 8], working first from theoretical expressions derived under various simplifying

assumptions, and turning later to a more robust numerical treatment.

III. CP-VIOLATING OBSERVABLES IN gg → tt →
(

bbc
) (

bℓν
)

A perusal of the general expressions for the differential and integrated cross sections

for gg → t(→ bbc)t(→ bℓν) shows that that there are two CP-odd combinations1 of

NP parameters that can be probed in this process, namely Im(XV ∗
LL) [Eq. (A.13)] and

Im(XT
LLX

S∗
LL + XT

RRX
S∗
RR) [Eq. (A.3)]. These same two parameter combinations were an-

alyzed in Ref. [5], although the notation in that paper was somewhat different. In addition,

for Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) it was assumed there that the spin of the top quark could be

measured (obviously a simplifying assumption). In the present context, the correlations

between the pair-produced t and t effectively allow us to gain access to the spin of the top.

The CP-violating observables that will allow experimentalists to measure the above CP-

odd NP parameter combinations are as follows. Im(XV ∗
LL) is probed using the partial-rate

asymmetry, while Im(XT
LLX

S∗
LL + XT

RRX
S∗
RR) appears in triple products and can be probed

in several ways. In the following subsections we describe each of these observables in turn.

Note that the analytic expressions, wherever quoted, have been derived with the simplifying

assumptions discussed above.

1 This statement is true in the limit that the light quarks are taken to be massless. There are other CP-

odd combinations of NP parameters that show up in t → bbc if we relax this assumption, but they are

suppressed by ∼ O(mb/mt).
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A. Partial rate asymmetry

The simplest CP-odd observable may be obtained by comparing the cross section for

gg → tt →
(

bbc
) (

bℓν
)

to that for gg → tt →
(

bℓ̄ν
) (

bbc̄
)

. Now, CP-violating effects can

only arise as a result of the interference of two amplitudes. Furthermore, all signals of

direct CP violation, such as the partial-rate asymmetry (PRA), are proportional to the CP-

odd quantity sin φ sin δ, where φ and δ are respectively the weak-phase and strong-phase

differences between the two amplitudes. As noted in Sec. IIA, the NP strong phases are

negligible, so δ is due entirely to the SM W -mediated amplitude. Furthermore, the weak

phase must arise entirely from NP since the SM weak phase is ≃ 0. Therefore, the PRA is

due to SM-NP interference. The only NP contribution that interferes with the SM is the

(V − A) × (V − A) term in the effective Lagrangian. As a result, the PRA is proportional

to the width of the W and to Im(XV ∗
LL).

Normalizing to the sum of the cross sections, the PRA can be written

A =
σ − σ

σ + σ
≃ 1

R
4ΓW

mW

Im
(

XV ∗
LL

)

, (4)

where

R =
σ + σ

2σSM

= 1 +
3GFm

2
t

4
√
2π2 (1− ζ2W )

2
(1 + 2ζ2W )

∑

i,σ

Âσ
i (5)

with ζW ≡ mW/mt and Âσ
i being combinations of various XI

AB, as defined in Eq. (A.10).

While the presence of the ratio ΓW/mW in Eq. (4) leads to a suppression of the PRA, it is

still possible to obtain an asymmetry whose magnitude is in excess of 10% [5]. And, despite

this suppression, the PRA still offers several advantages. The foremost among these is that

it is relatively straightforward to measure, since it does not require a detailed kinematical

analysis or the determination of angles in various rest frames. One simply counts the number

of events for the t decay in this channel and compares that to the number of events for the

t decay in the analogous channel. In fact, since the PRA does not require the presence

of correlations between the pair-produced t and t, we needn’t be so restrictive regarding

the decay mode of the “other” particle. That is, we could just as well compare the width

for gg → t(→ bbc)t(→ everything) to that for gg → t(→ bbc)t(→ everything) in order to

increase statistics (assuming, of course, that the process and conjugate process could still
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be distinguished without tagging on the charge of the lepton). We present the numerical

results for benchmark NP scenarios in Sec. IVA.

B. Triple product

In decay processes with two contributing amplitudes A and B, the square of the total

amplitude may contain interference terms of the form Im(AB∗)[~v1 · (~v2 ×~v3)], where each vi

is a spin or a momentum. These triple products (TPs) are odd under time reversal (T) and

hence, by the CPT theorem, also constitute potential signals of CP violation. Now,

Im(AB∗) = |A||B|(sinφ cos δ + cosφ sin δ) , (6)

where φ and δ are respectively the weak-phase and strong-phase differences between A and

B. The first term is CP-odd, while the second is CP-even, so that the TP is not by itself

a signal of CP violation (this is due to the fact that T is an anti-unitary operator). On the

other hand, the TP in the CP-conjugate process is proportional to

Im(AB∗)CP−conj = |A||B|(− sinφ cos δ + cos φ sin δ) . (7)

Combining Im(AB∗) and Im(AB∗)CP−conj allows one to isolate the CP-odd piece propor-

tional to sin φ cos δ. That is, as with direct CP violation (the PRA), in order to obtain a

CP-violating signal, one must compare the TP in the process with that in the CP-conjugate

process. However, in contrast to direct CP violation, no strong-phase difference between the

interfering amplitudes is required in order to obtain a non-vanishing CP-violating signal (i.e.

δ can be 0). It is interesting to note that, if the strong phase difference is indeed negligible

(δ ≈ 0), then the CP-even term (proportional to cosφ sin δ) is approximately zero, which

then makes the TP a signal of CP-violation by itself.

In Ref. [5], it was shown that, in the presence of NP, a TP of the form ~st · (~pb × ~pc) can be

generated in the decay t → bbc. Here ~st denotes the spin of the t, and ~pi is the momentum

of the particle i coming from the decay of the t. Since the top decays, one might try to

gain access to the top’s spin via correlations with the momenta of its decay products. Such

an approach cannot give access to a quantity such as ~st · (~pb × ~pc), however, since the three

momenta ~pi (i = b, b̄, c) are not independent. The problem can be circumvented by using the
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fact that, in tt production, the spins of the t and the t are statistically correlated [11]. As ~st

is related to the momenta of the decay products of the t, the TP in t → bbc can be rewritten

as a TP involving three final-state momenta of the full process, gg → t(→ bbc)t(→ bℓν), and

this does not vanish. In practice, this is implemented by introducing the tt spin-correlation

coefficient:

κtt =
σ↑↑ + σ↓↓ − σ↑↓ − σ↓↑

σ↑↑ + σ↓↓ + σ↑↓ + σ↓↑

. (8)

Here, ↑ and ↓ denote the alignment of the spins of the top and antitop with respect to

the chosen spin-quantization axis. As noted above, ~st is related to the momenta, or angular

distribution, of the t decay products, and similarly for ~st. The TP in gg → t(→ bbc)t(→ bℓν)

then involves the angular correlation between the decay products of the two particles. As

is evident in Eq. (A.3), there are also triple-product terms relating the initial-state gluons

and the decay products of the top.

As was noted above, the CP-odd combination of NP parameters that shows up in the

triple-product terms is Im(XT
LLX

S∗
LL + XT

RRX
S∗
RR) (see Appendix A1). That is, the TP is

due to NP-NP interference. Furthermore, since the NP strong phases are negligible, δ = 0

in Eqs. (6) and (7). Hence, following the discussion below Eq. (7), the TP by itself is a

signal of CP-violation in gg → tt →
(

bbc
) (

bℓν
)

. In the sub-sections that follow we identify

observables that can be used to isolate the TP and quantify the resulting CP-violation.

1. Angular Distributions

The first observable is the double differential distribution relative to the angles θ∗5 and

φ∗∗
1 . Of these, θ∗5 is related to the lepton polar angle in the t rest frame, while φ∗∗

1 is an

azimuthal angle in the b-c rest frame.2 Integrating the differential cross section over all

2 θ∗
5
is defined in the t rest frame. In this frame, we define the z axis to be the direction of the boost from

the tt rest frame to the t rest frame. θ∗5 is the angle between the z axis and the b2ν center of mass direction

in this frame. φ∗∗
1

is defined in the bc center of mass frame. We define the z axis in that frame to be the

direction of the boost from the t rest frame to the bc rest frame. The t momentum in this frame is taken to

be in the x− z plane, with its x−component being non-negative. This completely defines the coordinate

system in which φ∗∗
1

is then calculated as the usual azimuthal angle of the c quark’s momentum.
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phase-space variables except for these two angles yields

dσ

dcos θ∗5 dφ
∗∗
1

=
σSM

4π

{

1 +
4ΓW

mW

Im
(

XV ∗
LL

)

+
3GFm

2
t

4
√
2π2 (1− ζ2W )

2
(1 + 2ζ2W )

(

∑

i,σ

Âσ
i

+
2π2κ(r)

35

[

cos θ∗5 cosφ
∗∗
1

(

Â−
b − Â+

b − Â−
c + Â+

c

)

+ 16 cos θ∗5 sinφ
∗∗
1 Im

[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

]

)}

, (9)

where σSM is given by Eq. (A.11), ζW = mW/mt and

κ(r) =
(−31r4 + 37r2 − 66) r − 2 (r6 − 17r4 + 33r2 − 33) tanh−1 (r)

r2
[

(31r2 − 59) r + 2 (r4 − 18r2 + 33) tanh−1 (r)
] , (10)

with r =
√

1− 4m2
t/Q

2 and Q ≡ pt + pt. Note that κ(r), as defined above, differs from κtt

in Eq. (8) by an overall sign; also, κtt is averaged over energies.

Equation (9) contains both CP-even and CP-odd terms. The part of the expression that

is proportional to κ(r) arises from tt spin correlations [12]. These terms disappear upon

integration over the angles θ∗5 and φ∗∗
1 , as one might expect.

The term proportional to cos θ∗5 cos φ
∗∗
1 in Eq. (9) is sensitive to the CP-even combination

of NP parameters (Â−
b −Â+

b −Â−
c +Â+

c ). This combination is distinct from the NP parameter

combinations that arise in the observables described in Refs. [7] and [8]. Thus, although

our emphasis in the present work is on CP-odd observables, we note that Eq. (9) leads to

a complementary approach to measuring CP-even combinations of NP parameters. The

term that is of primary interest to us in this work is the one proportional to cos θ∗5 sinφ
∗∗
1 .

This term arises from the triple-product terms in t → bbc and contains the CP-odd NP

parameter combination Im(XT
LLX

S∗
LL+XT

RRX
S∗
RR). The value of Im(XT

LLX
S∗
LL+XT

RRX
S∗
RR) can

be extracted directly by fitting the angular distribution in Eq. (9) using the template method

developed in Ref. [8]. We perform such a fit here for a few benchmark NP scenarios. The

details of the fitting procedure, our choice of templates, as well as the results are presented

in Sec.IVB1.
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2. 〈cos θ∗5 sinφ∗∗
1 〉

Equation (9) is also suggestive of a second observable that can be used to extract the

value of Im(XT
LLX

S∗
LL+XT

RRX
S∗
RR). This is the expectation value of cos θ∗5 sinφ

∗∗
1 . Taking into

account the overall normalization, we find

〈cos θ∗5 sinφ∗∗
1 〉 =

σSM

σ

(

2
√
2GFm

2
tκ(r)

35 (1− ζ2W )
2
(1 + 2ζ2W )

)

Im
[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

(11)

for a fixed value of the gluon energy. For pp collisions, one convolutes over parton distribution

functions. This can be incorporated in an approximate way by making the replacement

κ(r) → 〈κ(r)〉, with 〈κ(r)〉 being measured over the events included in the analysis. From

Eq. (11) we see that 〈cos θ∗5 sin φ∗∗
1 〉 (σ/σSM) as a function of Im

[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

is

expected to be a straight line passing through the origin. However, as mentioned earlier,

this expression has been derived under the simplifying assumptions discussed in Sec.II B. To

see how well this relation holds up in a more realistic scenario, we perform a Monte Carlo

simulation where we generate data sets with different choices for Im
[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

.

The results are detailed in Sec.IVB2.

3. ATP

The third observable that can be used to capture the effect of the TP is the quantity

ATP, which we define as

ATP =
N [ǫ(pb, pb̄, pc, pℓ) > 0] − N [ǫ(pb, pb̄, pc, pℓ) < 0]

N [ǫ(pb, pb̄, pc, pℓ) > 0] + N [ǫ(pb, pb̄, pc, pℓ) < 0]
, (12)

where ǫ(pb, pb̄, pc, pℓ) = ǫµνρλ p
µ
b p

ν
b̄
pρc p

λ
ℓ with ǫ0123 = +1.

Equation (A.3) contains several terms of the type ǫ(qi, qj, qk, ql), where the qi are momenta

or combinations of momenta of the initial and/or final state particles. Of these, one expects

that ǫ(pb, pb̄, pc, pℓ) would be quite amenable to experimental measurement, as it only involves

the measurement of the 4-momenta of the final state b, b̄, c and lepton. Moreover, it does

not require the reconstruction of any special frames of reference and can be measured in the

lab frame itself. Note that the measurement of ATP would not lead to the measurement of
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Im(XT
LLX

S∗
LL+XT

RRX
S∗
RR) as such. Nevertheless, a non-zero value of ATP would be a smoking

gun signal of presence of CP-violating NP. Furthermore, upon measurement of a non-zero

signal, it is expected that detailed numerical simulations could be used to constrain the

value of Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR).

Once again, we perform a Monte Carlo simulation for certain benchmark NP scenarios,

the results of which are presented in Sec. IVB3.

IV. NUMERICAL RESULTS

In this section we present the results of the numerical simulations to which we have

alluded earlier. All the analytic expressions presented hitherto were obtained under the

simplifying assumptions discussed in Sec.II B. However, for our numerical analysis we return

to a more realistic treatment. To be specific :

1. We include the contribution from qq initial states. This can be calculated in a manner

similar to that used for obtaining the gg contribution (see Appendix B). At the LHC,

it gives only a sub-dominant contribution (∼ 10%-15%). Nevertheless, it is interesting

to note that the structure of distributions such as the one in Eq. (9) remains the same.

In fact, the only change appears in the expressions for σSM and κ(r). This, of course,

is expected because in Eq. (9), these are the only two pieces that depend on the tt̄

production mechanism. The rest relates exclusively to the dynamics of the decay.

2. We incorporate PDFs appropriately for the initial state partons.

3. We implement a procedure to distinguish between the identical b̄’s in the final state

and identify “correctly” the b̄ coming from the t decay. To do this, we construct the

quantities m2
1 = (pb + pc + pb̄1)

2 and m2
2 = (pb + pc + pb̄2)

2. If both m1 and m2 lie

within mt ± 15Γt, the event is discarded. Otherwise, the b̄i that leads to a smaller

value of |mi − mt| is assumed to come from the t decay. For the conjugate process

(pp → t(→ bℓ̄ν)t(→ bbc)), a similar criterion is applied to the b’s. The result is a loss

of ∼ 20% of the events for both process and conjugate process.
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In addition, in generating the simulation data, we allow the light quarks and the charged

lepton to have non-zero masses. The event samples have been generated using Mad-

Graph5 [13] in conjuction with FeynRules [14]. We consider a few benchmark NP

scenarios to test the efficacy of the observables discussed above.
√
s is taken to be 14

TeV and CTEQ6L [15] parton distribution functions are used with both factorization and

renormalization scales set to mt = 172 GeV. The integrated luminosity corresponds to 105

SM events of the type pp → tt →
(

bbc
) (

bℓν
)

, which is expected to be achieved by the year

2030 [16].

A. Partial rate asymmetry - Results

In this section we consider two benchmark NP scenarios3, which we label EX-A and EX-B.

It is clear from Table I that even when Im(XV ∗
LL) ∼ O(1), A can be fairly large (∼ 10%).

We also use Eqs. (4) and (5) to extract the value of Im(XV ∗
LL) from the “data”. Note that

in real-life we would have no a priori knowledge of the Âσ
i ’s. Therefore R would have to be

calculated in terms of the observed σ and σ̄ and the expected σSM. As can be seen from the

last column of Table I, the values of Im(XV ∗
LL) are recovered quite accurately. As expected,

the PRA provides a simple and effective way to capture the effect of CP-violation in t → bbc.

Model Input Im(XV ∗
LL) A =

N −N

N +N
Extracted value of Im(XV ∗

LL)

SM 0.0 −0.002 ± 0.002 −0.01 ± 0.02

EX-A −3.0 −0.117 ± 0.001 −2.97 ± 0.03

EX-B −2.0 −0.060 ± 0.001 −1.97 ± 0.04

TABLE I: Partial rate asymmetries and recovered NP parameter values for the SM and two NP

models.

3 See Appendix C for details of the choices made for the XI

AB
.
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B. Triple product - Results

1. Angular Distributions

In an experiment, a distribution of the type of Eq. (9) would be measured as a 2-D

histogram, D. We see that the RHS of Eq. (9) can be expressed as the sum of five terms

– one term independent of NP parameters and four terms dependent on Im(XV ∗
LL),

∑

Âσ
i ,

(Â−
b − Â+

b − Â−
c + Â+

c ) and Im(XT
LLX

S∗
LL + XT

RRX
S∗
RR), respectively. Using MadGraph5,

and with appropriate choices for the XI
AB, one can generate this angular distribution for

a case where only one of the NP parameter combinations is non-zero and all others are

zero. This can be done in turn for each of the four combinations. In addition, there would

be the case corresponding to the SM, where all the NP parameter-combinations are zero.

These histograms form the templates that we label TM-0, TM-1, TM-2, TM-3, TM-4. Now the

measured histogram D, in which the NP parameters take arbitrary, unknown values, can be

expressed as a linear combination of the templates TM-i with appropriate weights; i.e.,

D = w0TM-0 + w1TM-1 + w2TM-2 + w3TM-3 + w4TM-4 . (13)

The weights wi can be determined through a simple fitting procedure such as χ2 minimization

and be used to extract the values of Im(XV ∗
LL),

∑

Âσ
i , (Â

−
b −Â+

b −Â−
c +Â+

c ) and Im(XT
LLX

S∗
LL+

XT
RRX

S∗
RR) encoded in the data histogram D.

While the idea is simple, there are a few subtleties that must be taken care of during its

implementation:

- First, the parameter inputs are provided in terms of XI
AB. By doing so it is possible to

ensure that only one Âσ
i is non-zero at a time. However, it can still lead to overlapping

contributions in the templates that we are interested in. For example, a non-zero input

for Â+
c makes

∑

Âσ
i as well as (Â−

b − Â+
b − Â−

c + Â+
c ) non-zero simultaneously. These

kinds of overlaps need to be removed. How we do this can be seen in Table II.

- Second, a χ2 fit, by construction, can only distinguish between terms with different
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angular structure. Equation (9) contains three terms with no angular dependence:

the SM term, the term proportional to Im(XV ∗
LL) and the term proportional to

∑

Âσ
i .

The fit is not capable of identifying the contributions coming from these three pieces

separately. To circumvent this problem, we fix the SM contribution to 1.0 and assume

that Im(XV ∗
LL) could be fixed to the value obtained by measuring the PRA. Thereafter

we extract the values of
∑

Âσ
i , (Â

−
b − Â+

b − Â−
c + Â+

c ) and Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR).

- Third, the template distributions must be subjected to the same selection criteria,

cuts, etc. as the data.

We implement this fitting algorithm for two NP scenarios4. Once again, we generate

“pseudo-data” using MadGraph5. Here we have specifically chosen NP scenarios where

Im(XV ∗
LL) = 0, to demonstrate the efficacy of the procedure in the “best-case” scenario when

Im(XV ∗
LL) is actually 0. In the case of non-zero Im(XV ∗

LL), the value of Im(XV ∗
LL) estimated

from the PRA is an input to the fit. This is also true of the observables discussed in Refs. [7]

and [8] where we focused primarily on CP-even observables and set Im(XV ∗
LL) to zero in much

of the analysis. Hence, while attempting to extract NP parameters in t → bbc, the first task

would be to measure the PRA and the value of Im(XV ∗
LL).

The results of the fit are presented in Table III. It can be seen that, despite all the

complications, the extracted values lie relatively close to the input values, although some

of the fit values are several standard deviations away from the corresponding inputs. More

importantly, the presence of NP, of both CP-conserving and CP-violating variety, is firmly

established.

4 See Appendix C for details of the choices made for the XI

AB
.
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Template XI
AB Âσ

i Surviving Contribution

TM-0 All XI
AB = 0 All Âσ

i = 0 SM

TM-1 TME-5 − TME-1 Im(XV ∗
LL)

TM-2 TME-2 + TME-3
∑

Âσ
i

TM-3 TME-2 − TME-3 (Â−
b − Â+

b − Â−
c + Â+

c )

TM-4 TME-4 − TME-1 − TME-2 Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR)

TME-1 Re(XV
LL 6=) 0 Â+

b
6= 0; all other Âσ

i = 0 Â+

b

TME-2 XV
LR 6= 0 Â+

c 6= 0; all other Âσ
i = 0 Â+

c

TME-3 XV
RL 6= 0 Â−

c 6= 0; all other Âσ
i = 0 Â−

c

TME-4

Re(XS
LL) 6= 0 ; Â+

b
, Â+

c 6= 0 ; Â+

b
, Â+

c ,

Im(XT
LL) 6= 0 all other Âσ

i = 0 Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR)

TME-5 Im(XV
LL) 6= 0 Â+

b
6= 0; all other Âσ

i = 0 Â+

b
, Im(XV ∗

LL)

TABLE II: NP parameter choices for each of the templates. TM-0, TM-1, TM-2, TM-3, TM-4 are the

ones actually included in the fit. The templates histograms have been generated with 106 events

each so that the statistical uncertainty originating from them is negligible and does not affect the

fit.

2. 〈cos θ∗5 sinφ∗∗
1 〉

In Sec. III B 2, we saw that 〈cos θ∗5 sinφ∗∗
1 〉 can be expressed as

〈cos θ∗5 sin φ∗∗
1 〉 =

σSM

σ
W Im

[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

where W =

(

2
√
2GFm

2
t 〈κ(r)〉

35 (1− ζ2W )
2
(1 + 2ζ2W )

)

.
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Model Parameter Input Value Fit Result χ2/d.o.f.

EX-C Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 64 65.7 ± 0.3 1.2

Â−
b − Â+

b − Â−
c + Â+

c 32 29.5 ± 4.1

Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) 4 3.1 ± 0.2

EX-D Â+
c + Â−

c + Â+

b̄
+ Â−

b̄
+ Â+

b + Â−
b 77 77.6 ± 0.3 1.3

Â−
b − Â+

b − Â−
c + Â+

c 67 62.8 ± 4.4

Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) 3.5 2.8 ± 0.2

TABLE III: Input values and fit results for the double differential distribution in cos(θ∗5) and φ∗∗
1 .

The theoretical expression for the angular distribution is given in Eq. (9); the actual fit is performed

using templates, as described by Eq. (13).

Using MadGraph5, we generate several data-sets with different input values of

Im[XT
LLX

S∗
LL + XT

RRX
S∗
RR]. We then calculate and plot (σ/σSM) (〈cos θ∗5 sinφ∗∗

1 〉) for each

data-set. These are shown as orange ‘+’s in Fig. 2. We also calculate and plot

W Im[XT
LLX

S∗
LL +XT

RRX
S∗
RR] using the input value of Im[XT

LLX
S∗
LL +XT

RRX
S∗
RR] and the value

of 〈κ(r)〉 obtained from the SM data-set5. These are the blue ×s in Fig. 2. We see that,

although the ‘+’s and ‘×’s do not coincide, (σ/σSM) (〈cos θ∗5 sin φ∗∗
1 〉) is, nonetheless, a linear

function of Im[XT
LLX

S∗
LL +XT

RRX
S∗
RR] with zero intercept.

The linearity of the plot in Fig. 2 has important ramifications. Firstly, we realize that

a measurement of 〈cos θ∗5 sinφ∗∗
1 〉 is, by itself, sufficient to indicate the presence of CP-

violating new physics in t → bbc. Secondly, if such new physics does indeed exist in nature,

then knowledge of the slope of the green dashed line in Fig. 2, along with σSM, puts us in

a position to directly extract the value of Im
[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

by simply measuring σ

and 〈cos θ∗5 sinφ∗∗
1 〉. Thirdly, while the PRA is sensitive to vectorial couplings (specifically

Im(XV ∗
LL)), 〈cos θ∗5 sinφ∗∗

1 〉 gives us a handle on scalar and tensorial NP couplings.

5 Since 〈κ(r)〉 depends only on tt̄ the production process, it is independent of NP.
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FIG. 2: Plot of (σ/σSM) (〈cos θ∗5 sinφ∗∗
1 〉) as a function of Im[XT

LLX
S∗
LL + XT

RRX
S∗
RR] for various

combinations of NP parameters. As is evident from the plot, the simulated data has a linear

dependence on Im[XT
LLX

S∗
LL +XT

RRX
S∗
RR], as in Eq. (11), even though Eq. (11) was derived under

several simplifying assumptions.

3. ATP

ATP is perhaps the simplest observable that can provide an indication of the TP contri-

butions due to NP. Table IV shows the values of ATP obtained for the benchmark scenarios

EX-C and EX-D, as well as the SM. It appears that ATP can prove to be an effective discrimi-

nator between SM and CP-violating NP. Of course, our analysis is a simple-minded one and

the errors quoted are only statistical. Nevertheless, we feel that this is an observable worth

experimental exploration, if only for its easy accessibility.
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Model ATP

SM 0.0043 ± 0.004

EX-C −0.021 ± 0.002

EX-D −0.015 ± 0.002

TABLE IV: Numerical results for the TP asymmetry defined in Eq. (12) for the SM and two NP

models.

V. FEASIBILITY

The above analysis, and indeed those in Refs. [7, 8], is largely theoretical. On the whole,

experimental considerations have not been taken into account6. But this raises the question

of feasibility: can the process gg → tt →
(

bbc
) (

bℓν
)

even be seen7? While a definitive

answer cannot be given at this point, based on the following discussion it appears that the

chances are reasonably good that the process can be observed [18].

As noted earlier, the LHC is essentially a top-quark factory. Thus, even though |Vcb|2 =
O(10−3), there should be many t → bbc decays. The main difficulty is extracting the signal of

this decay from the very large background. To be specific, the signal of gg → tt →
(

bbc
) (

bℓν
)

will involve three b jets, one c jet, one charged lepton, and missing ET . The dominant

background is expected to be gg → tt → (bsc)
(

bℓν
)

, which contains two b jets, one c jet,

one light (s) jet, one charged lepton, and missing ET . The signal and background thus

look very similar – the only difference is that one b jet (signal) is replaced by a light jet

(background). Furthermore, the background is roughly three orders of magnitude larger

than the signal. Clearly the analysis for extracting the signal won’t be easy.

The key to differentiate the signal from background is to precisely tag (i.e., identify) the b

6 There are two exceptions. We include a b-tagging efficiency in our estimate of the number of events

produced after a certain number of years. And we include a kinematic cut to determine which of the two

b̄’s in the final state came from the t and which came from the t̄.
7 We remind the reader that although we refer to the process as arising from gluon fusion, our analysis also

includes events coming from qq̄ annihilation.
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jets and to distinguish them from light-quark jets. This is done using properties such as the

presence of a secondary vertex inside the jet (with a high mass), and many tracks with high

impact parameters. b tagging is discussed in a recent note from the ATLAS Collaboration

[19]. In Fig. 11 of this reference it is found that, for a b-tagging efficiency of ∼ 65%, a

rejection factor of ∼ 103 can be obtained (these numbers are relevant for Run 2 of the

LHC). This leads to a signal-to-background ratio approaching 1:1, as can be seen as follows.

Above we noted that, in searching for the t → bbc signal, the dominant background involves

t → bsc. This means we expect roughly one signal event for every |Vcs|2/|Vcb|2 = 575

[20] background events. Now, suppose there are 1000 signal events and hence ∼ 575000

background events. The signal requires an additional b tag. A 65% tagging efficiency leaves

650 signal events. On the other hand, the rejection factor of 103 leaves ∼ 575 background

events, for a signal-to-background ratio of about 1:1. If one can predict the background

fairly precisely, then, just based on this argument it should be possible to eventually observe

a signal over the background.

It is also likely to be necessary to tag the c jet in order to differentiate the signal from the

large background. A charm tagger has been developed by the ATLAS Collaboration [21].

For an efficiency of 25% in tagging c jets, rejection factors of ≈ 100 and ≈ 20 are obtained

for light and b jets, respectively.

Other important expected backgrounds are the associated production of tt̄ pairs with

bb̄ or cc̄, producing four b jets or two b + two c jets. To deal with these, good b and c

tagging will be necessary. These backgrounds could be reduced further by searching for a

peak in the mass of the bb̄c jets coming from the top quark. This is non-trivial because it is

necessary to determine which of the three b jets belongs to the other top quark in the event,

and so leads to a combinatorial background. Still, there are tools to deal with this, such as

reconstructing the whole event with a kinematic fitter [22].

Admittedly, this is all speculative. A firm answer will only be obtained when experiment

actually looks for gg → tt →
(

bbc
) (

bℓν
)

. Its observation will certainly require a good

amount of data because the signal efficiency will be reduced due to the requirement of three

b jets (tagging efficiency: 0.653 = 27%), as well as the hard cuts necessary to see the signal

above background. Still, given the number of experimental handles (and the ingenuity of
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experimentalists), it does appear that a measurement of gg → tt →
(

bbc
) (

bℓν
)

will be

possible. Once this is done, one can then apply the various proposed methods to search for

the presence of new physics.

VI. CONCLUSIONS

This paper builds on the work done in Refs. [5, 7, 8], in which (NP) contributions to

t → bbc were considered. Because this decay is suppressed in the SM – the amplitude is

proportional to Vcb (∼ 0.04) – the NP effects could potentially be sizeable. Reference [5]

allows for all Lorentz structures, so that there are ten possible dimension-6 NP operators

that can contribute to t → bbc. References [7, 8] look primarily at CP-conserving NP effects,

and examine the prospects for their measurement at the LHC. Here we perform a similar

analysis, but for CP-violating effects.

At the LHC, single-top production is suppressed. t → bbc must therefore be studied

within the context of tt pair production. To be specific, we consider the semi-leptonic channel

gg → t(→ bbc)t(→ bℓν). Here the observation of a negatively-charged lepton indicates that

it is the t that is undergoing the rare decay.

We find that there are two types of CP-violating observables. The first is the partial

rate asymmetry (PRA), which compares the cross section for gg → t(→ bbc)t(→ bℓν) to

that for gg → t(→ bbc)t(→ bℓν). Now, all CP-violating effects are due to the interference

of two amplitudes, and a nonzero PRA requires that these amplitudes have both weak- and

strong-phase differences. The NP strong phases are negligible, but the SM W -mediated

amplitude has a strong phase due to the width of the W . Thus, the PRA arises from SM-

NP interference, which requires that the NP Lorentz structure be (V − A)× (V − A) (i.e.,

bγµPLt c̄γ
µPLb). Despite the suppression by ΓW/mW , a PRA whose magnitude is in excess

of 10% is possible [5].

The second type of observable is a triple product (TP). A TP takes the form ~v1 ·(~v2×~v3) in

the square of the total amplitude of a decay process, where each vi is a spin or momentum.

The TP is odd under time reversal. Due to the presence of strong phases, a truly CP-

violating observable can be obtained only by comparing the TP in the process with that
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in the CP-conjugate process. In Ref. [5], it was shown that, in the presence of NP, one

can generate a TP of the form ~st · (~pb × ~pc) in the decay t → bbc, where ~st is the spin of

the top quark, and ~pi is the momentum of the particle i. However, this TP is generated

only through NP-NP interference, in which one of the NP Lorentz structure is scalar (S),

the other tensor (T ). And since the NP strong phases are negligible, the TP is by itself a

signal of CP violation. In the full process, gg → t(→ bbc)t(→ bℓν), one obtains information

about ~st by using the fact that, in tt production, the spins of the t and t are correlated [11].

Since ~st is related to the momenta of the decay products of the t, the TP in t → bbc can be

rewritten as a TP involving the final-state momenta of the decay products of the t and t.

Furthermore, other TPs also appear, which involve initial state momenta.

The PRA and TP involve different combinations of NP parameters: the PRA is due

to SM-NP interference in which the NP is (V − A) × (V − A), while the TP arises from

the interference of S and T NP. In order to see how well these observables can be used to

detect the presence of NP, and to measure the associated combinations of NP parameters, we

perform a Monte Carlo analysis using MadGraph5 along with FeynRules. This analysis

follows that of Ref. [8], and includes (i) a method for distinguishing the b’s coming from the t

and t decays in order to identify the b in t → bbc, (ii) the contribution to tt production from a

qq̄ initial state, and (iii) the PDFs for the initial-state partons. The analysis is performed for

an integrated luminosity corresponding to 105 SM events of the type pp → tt → (bbc)(bℓν),

which is expected to be achieved by the year 2030.

For the PRA, we find that, if it is large enough to be measured, there is little difficulty

in extracting the value of the (V − A) × (V − A) NP parameter. The PRA is therefore an

excellent observable for measuring one type of CP-violating NP in t → bbc.

For the TP, the analysis is more complicated. We find three observables that can be used

to probe the TP. One involves both CP-conserving and CP-violating NP, the other two are

purely CP-violating. In all three cases, it is straightforward to obtain statistically-significant

evidence that CP-violating NP is present. We examine two methods for extracting the value

of the combination of NP parameters responsible for the TP. The first involves a weighted

fitting of histograms (described in Sec. IVB1), and does not lead to a very accurate extrac-

tion of the desired parameter. This is related to the fact that the CP-violating parameter
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in the TP is due to a particular combination of the operators introduced in the Lagrangian.

Each of these operators also leads to CP-conserving contributions. Subtracting out the CP-

conserving part from the histograms, while retaining the CP-violating part, should ideally

include a careful consideration of the correlations between these two contributions. However,

these have been ignored in our relatively simple-minded analysis.

Interestingly, these kinds of complications can be simply avoided by adopting a graphical

method (discussed in Sec. IVB2), which fares much better in the task of extracting the

relevant CP-violating combination of NP parameters.
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APPENDIX

A. CROSS SECTION FOR gg → tt →
(

bbc
) (

bℓν
)

1. Differential cross-section

We have

dσ
(

gg → tt →
(

bbc
) (

bℓν
))

= (Bnon-TP + BTP) dλ , (A.1)

where

Bnon-TP =
∑

i,σ

Aσ
i Aℓ

{

− pi ·pt pℓ ·pt
m2

t

[

f(r, z)+ξσ
(

r4
(

z4 − 2
)

+1
)]

−ξσpi ·pℓ g(r, z)

− (r2 − 1) [r2 (z2 − 2) + 1] ξσ

2m2
t

(pi ·QQ·pℓ + pi ·Pt Pt ·pℓ)

− r2(r2 − 1)(z2 − 1)ξσ

2m2
t

[

pi ·Pg (Pg ·pℓ −Q·pℓ rz)

+ pi ·Q (Pg ·pℓ rz −Q·pℓ)
]

}

, (A.2)

BTP = 16Aℓ Im
(

XT
LLX

S∗
LL +XT

RRX
S∗
RR

)

{

− g(r, z)ǫ (pb, pb, pc, pℓ)

−(r2 − 1) pℓ ·pt
m2

t

[

r2
(

z2 − 2
)

+ 1
]

ǫ (pb, pb, pc, Q)

−r2(r2 − 1)(z2 − 1)

2m2
t

[

(Pg ·pℓ −Q·pℓ rz) ǫ (pb, pb, pc, Pg)

+ (Pg ·pℓ rz −Q·pℓ) ǫ (pb, pb, pc, Q)
]

}

, (A.3)

and

dλ =
α2
S G

4
FV

4
tbV

2
cb (1− r2) r

4 (4π)10 Γ2
t m

2
t

(

1− M2
2

m2
t

)(

1− M2
5

m2
t

)

(9r2z2 + 7)

(r2z2 − 1)2

×dM2
2 dM

2
5 dΩ

∗∗
1 dΩ∗

2 dΩ
∗∗
4 dΩ∗

5 dΩt . (A.4)

In the above, the pi are the momenta of the final-state quarks coming from the top decay

(i.e., b, b and c). Also, σ = ±, ξ± = ±1, and ǫ(p1, p2, p3, p4) ≡ ǫαβγδp1αp2βp3γp4δ, with

ǫ0123 = +1. Furthermore,

Pt ≡ pt − pt , Q ≡ q1 + q2 = pt + pt , Pg ≡ q1 − q2 ,

r ≡
√

1− 4m2
t/Q

2 , z ≡ −Pt · Pg/(rQ
2) , (A.5)
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where pt and pt are the t and t momenta, and q1 and q2 are the momenta of the initial

gluons, and

f(r, z) = z4r4 + 2r2z2
(

1− r2
)

+ 2r4 − 2r2 − 1 , (A.6)

g(r, z) = r4
(

z4 − 2z2 + 2
)

− 2r2 + 1 . (A.7)

A+

b
is defined as

A+

b
= (pt − pb)

2
[

m4
W |GT |2 + 4m2

WRe
(

GTX
V ∗
LL

)

+ Â+

b

]

, (A.8)

where GT ≡ GT (q
2) = (q2 − M2

W + iΓWMW )−1 and q2 = 2 pb · pc. The remaining Aσ
i are

defined as

Aσ
i = (pt − pi)

2 Âσ
i , (all i, σ, except i = b, σ = +). (A.9)

In the above,

Â+

b
= 4

∣

∣XV
LL

∣

∣

2 − 8Re
(

XT
LLX

S∗
LL

)

+ 32
∣

∣XT
LL

∣

∣

2
,

Â−

b
= 4

∣

∣XV
RR

∣

∣

2 − 8Re
(

XT
RRX

S∗
RR

)

+ 32
∣

∣XT
RR

∣

∣

2
,

Â+
b =

∣

∣XS
LL

∣

∣

2
+
∣

∣XS
LR

∣

∣

2 − 16
∣

∣XT
LL

∣

∣

2
,

Â−
b =

∣

∣XS
RR

∣

∣

2
+
∣

∣XS
RL

∣

∣

2 − 16
∣

∣XT
RR

∣

∣

2
,

Â+
c = 4

∣

∣XV
LR

∣

∣

2
+ 8Re

(

XT
LLX

S∗
LL

)

+ 32
∣

∣XT
LL

∣

∣

2
,

Â−
c = 4

∣

∣XV
RL

∣

∣

2
+ 8Re

(

XT
RRX

S∗
RR

)

+ 32
∣

∣XT
RR

∣

∣

2
. (A.10)

2. Integrated cross-section

The tree-level SM cross section for gg → tt →
(

bbc
) (

bℓν
)

is

σSM ≡ σ
(

gg → tt →
(

bbc
) (

bℓν
))
∣

∣

SM

= σ
(

gg → tt
)

BR
(

t → bbc
)
∣

∣

SM
BR
(

t → bℓν
)

, (A.11)

where BR
(

t → bbc
)
∣

∣

SM
=V 2

tbV
2
cb/3, BR

(

t → bℓν
)

=V 2
tb/9 and

σ
(

gg → tt
)

=
πα2

S(1− r2)

192m2
t

[

r(31r2 − 59) + 2(r4 − 18r2 + 33) tanh−1(r)
]

. (A.12)
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After the inclusion of new physics,

σSM+NP ≡ σ
(

gg → tt →
(

bbc
) (

bℓν
))
∣

∣

SM+NP

= σSM

{

1 +
4ΓW

mW

Im
(

XV ∗
LL

)

+
3GFm

2
t

4
√
2π2 (1− ζ2W )

2
(1 + 2ζ2W )

∑

i,σ

Âσ
i

}

. (A.13)

B. CROSS SECTION FOR qq → tt →
(

bbc
) (

bℓν
)

1. Differential cross-section

The expression for the differential cross section for the qq → tt →
(

bbc
) (

bℓν
)

can be

determined using the approach described in the appendix of Ref. [7] (see also Ref. [17]). For

the qq case we find

dσ
(

qq → tt →
(

bbc
) (

bℓν
))

=
(

Bqq
non-TP + Bqq

TP

)

dλqq , (B.1)

where

Bqq
non-TP =

∑

i,σ

Aσ
i Aℓ

{

pi ·pt pℓ ·pt
m2

t

[

2 + r2(z2 − 1) + r2(1 + z2)ξσ
]

− pi ·pℓ r2(1− z2)ξσ

− (1− r2) ξσ

2m2
t

[

pi ·QQ·pℓ + pi ·Pt Pt ·pℓ
+ pi ·Pg (Pg ·pℓ −Q·pℓ rz)

+ pi ·Q (Pg ·pℓ rz −Q·pℓ)
]

}

, (B.2)

Bqq
TP = 16Aℓ Im

(

XT
LLX

S∗
LL +XT

RRX
S∗
RR

)

{

− r2(1− z2)ǫ (pb, pb, pc, pℓ)

− pℓ ·pt
m2

t

(

1− r2
)

ǫ (pb, pb, pc, Q)

− (1− r2)

2m2
t

[

(Pg ·pℓ −Q·pℓ rz) ǫ (pb, pb, pc, Pg)

+ (Pg ·pℓ rz −Q·pℓ) ǫ (pb, pb, pc, Q)
]

}

, (B.3)

and

dλqq =
8α2

S G
4
FV

4
tbV

2
cb (1− r2) r

3 (4π)10 Γ2
t m

2
t

(

1− M2
2

m2
t

)(

1− M2
5

m2
t

)

×dM2
2 dM

2
5 dΩ

∗∗
1 dΩ∗

2 dΩ
∗∗
4 dΩ∗

5 dΩt . (B.4)
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In the above expressions, Pg, Q, Pt, r and z are defined as in Eq. (A.5), except that q1

and q2 are now the momenta of the q and q, respectively. The above expressions can be

integrated to determine any differential cross sections that are of interest. Comparison with

the analogous expressions that we had derived for the gluon fusion case shows that the

overall structure of the two sets of expressions is very similar. The main differences are in

the functions of r and z that multiply the various terms.

2. Integrated cross-section

The tree-level SM cross section for qq → tt →
(

bbc
) (

bℓν
)

is

σqq
SM ≡ σ

(

qq → tt →
(

bbc
) (

bℓν
))
∣

∣

SM

= σ
(

qq → tt
)

BR
(

t → bbc
)
∣

∣

SM
BR
(

t → bℓν
)

, (B.5)

where BR
(

t → bbc
)
∣

∣

SM
=V 2

tbV
2
cb/3, BR

(

t → bℓν
)

=V 2
tb/9 and

σ
(

qq → tt
)

=
πα2

S(1− r2)(3− r2)r

27m2
t

. (B.6)

After the inclusion of new physics, σqq
SM+NP assumes the same form as Eq. (A.13) with σSM

replaced by σqq
SM.

3. Angular distribution

Integrating the differential cross section over all phase space variables except for the angles

θ∗5 and φ∗∗
1 yields

dσqq̄

dcos θ∗5 dφ
∗∗
1

=
σqq̄
SM

4π

{

1 +
4ΓW

mW

Im
(

XV ∗
LL

)

+
3GFm

2
t

4
√
2π2 (1− ζ2W )

2
(1 + 2ζ2W )

(

∑

i,σ

Âσ
i

+
2π2η(r)

35

[

cos θ∗5 cos φ
∗∗
1

(

Â−
b − Â+

b − Â−
c + Â+

c

)

+ 16 cos θ∗5 sinφ
∗∗
1 Im

[

XT
LLX

S∗
LL +XT

RRX
S∗
RR

]

]

)}

, (B.7)
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where

η(r) =
(1 + r2)

(3− r2)
, (B.8)

with r =
√

1− 4m2
t/Q

2 and Q ≡ q1 + q2 = pt + pt.

Comparing Eq. (B.7) with the analogous expression from the gluon fusion case, we see that

the current expression can be obtained from the former one by the replacements κ(r) → η(r)

and σSM → σqq
SM. What this means is that the angular dependence, including its dependence

on the NP parameters, is practically identical in the gg and qq cases. What is different in

the two cases is the relative size and possibly the sign of the angular terms compared to the

constant terms; these are determined by κ(r) in the gg case and η(r) in the qq case.
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C. CHOICE OF XI

AB
FOR BENCHMARK SCENARIOS
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Test Case XI
AB Âσ

i σ/σSM

EX-A XV
LL = 3i ; XV

RR = 1 ; Â+

b
= 36 ; Â−

b
= 4 ; 2.3

XV
LR = 2i ; XV

RL = 0 ; Â+
b = 17 ; Â−

b = 0 ;

XS
LL = 4i ; XS

RR = 0 ; Â+
c = 16 ; Â−

c = 0 ;

XS
LR = 1 ; XS

RL = 0 ; Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) = 0

XT
LL = 0 ; XT

RR = 0

EX-B XV
LL = 2i ; XV

RR = 2i ; Â+

b
= 26.08 ; Â−

b
= 24 ; 3.2

XV
LR = 2i ; XV

RL = 2 ; Â+
b = 16.56 ; Â−

b = 12 ;

XS
LL = 3 + 3i ; XS

RR = 4i ; Â+
c = 11.68 ; Â−

c = 24 ;

XS
LR = 0 ; XS

RL = 0 ; Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) = -2.9

XT
LL = -0.3i ; XT

RR = 0.5

EX-C XV
LL = 0 ; XV

RR = 0 ; Â+

b
= 32 ; Â−

b
= 0 ; 2.4

XV
LR = 0 ; XV

RL = 0 ; Â+
b = 0 ; Â−

b = 0 ;

XS
LL = 4 ; XS

RR = 0 ; Â+
c = 32 ; Â−

c = 0 ;

XS
LR = 0 ; XS

RL = 0 ; Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) = 4

XT
LL = i ; XT

RR = 0

EX-D XV
LL = 0 ; XV

RR = 0 ; Â+

b
= 16 ; Â−

b
= 0 ; 2.7

XV
LR = 0 ; XV

RL = 0 ; Â+
b = -3 ; Â−

b = 0 ;

XS
LL = 4 + i ; XS

RR = 0 ; Â+
c = 64 ; Â−

c = 0 ;

XS
LR = 0 ; XS

RL = 0 ; Im(XT
LLX

S∗
LL +XT

RRX
S∗
RR) = 3.5

XT
LL = 0.5 + i ; XT

RR = 0

TABLE V: Input values of the NP parameters for the four test cases. The last column shows

how the total cross section σ is affected in each of the test cases. The values quoted are for
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