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I. INTRODUCTION

Hadrons produced in high multiplicity events of A-A, p-A and p-p collisions show col-

lective behavior [1, 2]. This collectivity becomes apparent in the dihadron correlation func-

tion, which quantify the collective behavior of the hadrons in terms the rapidity difference

∆η = η1 − η2 and azimuthal angle difference ∆φ = φ1 − φ2. The origin of some of the

contributions to the dihadron correlations are known. These are jet fragmentation around

∆η ∼ ∆φ ∼ 0, resonance decays and momentum conservation around ∆φ ∼ π. When

these are subtracted from the dihadron correlation function, the “double ridge” structure,

cos(2∆φ), becomes apparent. This shows that the correlation between hadron pairs becomes

maximum when the hadrons are azimuthally collimated in the same direction or when they

are back-to-back. Furthermore, these correlations in the near- and away-side are elongated

in rapidity difference; the collimation and anti-collimation effects are robust even though

the hadrons are separated in rapidity for multiple units [3–18].

That the correlations are of long-range in ∆η is attributed to the boost invariance; the

gluons are produced at different rapidities, which is properly understood in the Regge limit of

the QCD parton evolution. This is in contrast to the Bjorken limit of QCD, where gluons are

emitted while being local in rapidity (∆η ∼ 0), but they evolve in kT during branching. As

for the “double ridge” structure of the azimuthal correlations, there are currently two major

attempts to explain the collectivity either as a final state (hydrodynamics) or as an initial

state effect (glasma state by gluon saturation). One of them is a possible hydrodynamical

evolution of the hadrons where the hadrons are affected by radial flow, and they come out

around the relative angles ∆φ ∼ 0 or ∆φ ∼ π [19–24]. The other approach searches for

the origin of the collectivity of hadrons in the very early stages of collisions. Saturation of

the gluons is expected to create a semi-hard mean transverse momentum in the target and

projectile, which causes the emitted gluons to be azimuthally correlated. This is studied

by convolving unintegrated gluon distribution functions (UGD) from both the target and

projectile, and this gives rise to ridge-type azimuthal correlations in the inclusive double

gluon distribution. The initial correlation of the gluons are preserved when fragmentation

functions are used to obtain final state hadrons from the correlated gluons [25–29].

The measured dihadron correlations alone are not enough to settle the dispute regarding

the origin of the collectivity in high multiplicity hadron or nucleus collisions. Also, calcu-
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lations based on the gluon saturation suggest that multi-gluon correlations exhibit strong

nongaussianity [30]. Therefore examination of higher order inclusive distribution functions

Cn becomes necessary to learn better about the true nature of the hadronic collectivity. The

Cn’s for hadrons are measurable, and in an earlier study we predicted that they would reveal

higher-dimensional ridges [31]. Cn’s are also related to the observable flow moments vm(nPC)

where nPC suggests that vm is measured from n-particle correlations [7, 32, 33]. On the

experimental side, measurements of multiple hadron correlations (tri-hadron, quadro-hadron

etc.) in high multiplicity p-p, p-A and A-A collisions are needed.

To study the hadronic correlations at a greater resolution, we derived triple and quadruple

gluon correlations at arbitrary transverse momentum and rapidity dependence in [31] in the

Gaussian white noise approximation [34–37]. The purpose of this paper is to generalize these

calculations to arbitrary number of gluons, and provide a formula that generates inclusive

n-gluon distribution with full transverse momentum and rapidity dependency. Knowing

all cumulants of a distribution is tantamount to knowing the distribution of the correlated

random gluon production, and this distribution contains a complete information on the

system. Hence, this work provides the solution to the problem of the gluon production from

hadrons or nuclei at the saturation scale.

The outline of the paper is as follows. We first introduce the technology of superdiagrams

that are used to obtain explicit expression for the inclusive gluon correlations with full

momentum and rapidity dependence for any number of gluons. Then we give examples of

how superdiagrams work for triple- and quadruple-gluon correlations, which were already

calculated in an earlier work via regular glasma diagrams. We also derive, for the first

time, the quintuple-gluon cumulant, C5, via the superdiagram technique. Finally, we list

the superdiagramatic rules, and provide a formula for Cn.

II. SUPERDIAGRAMS FOR TRIPLE- AND QUADRUPLE-GLUON GLASMA

DIAGRAMS

The inclusive gluon distribution functions Cn’s are calculated via connected diagrams.

Therefore Cn’s are cumulants, not moments, and they contain information of the genuine

multi-particle gluon correlations as cumulants do not contain disconnected diagrams. The

double-, triple- and quadruple-gluon cumulants are found by calculating 4, 16 and 96 con-
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nected glasma diagrams, respectively [31, 38]. Using glasma diagrams to calculate even

higher cumulants is impractical. Already for C5, the number of connected rainbow glasma

diagrams to be calculated becomes 448.

In this section, we introduce the machinery of superdiagrams; a handful of diagrams that

does the job of hundreds of connected glasma diagrams. With superdiagrams, one needs

to calculate only 2(n− 2) diagrams for the n-gluon cumulant, Cn. For example, C4 can be

easily obtained by 4 superdiagrams instead of calculating 96 connected glasma diagrams.

For C5, one needs only 6 superdiagrams rather than 448 connected glasma diagrams.

Below we show how superdiagrams work for C3 and C4. The triple-gluon cumulant is

given by [31]

C3(p, q, l) =
α3
sN

3
c S⊥

π12(N2
c − 1)5

1

p2
⊥q

2
⊥l

2
⊥

∫
d2k⊥
(2π)2

(T1 + T2), (1)

where Nc is the gluon color factor, S⊥ is the transverse area of the overlap between the

target and projectile, p⊥, q⊥ and l⊥ are transverse momentum variables of the produced

gluons. The strong coupling constant αs can be taken as constant, or, it can be running

with respect to the gluon transverse momenta. The terms T1 and T2 that contain the UGDs

are given by

T1 = Φ2
1,p(k⊥)[2× Φ1,q(k⊥)]Φ2,p(p⊥ − k⊥)TA2 , (2)

T2 = Φ2
2,l(k⊥)[2× Φ2,q(k⊥)]Φ1,p(p⊥ − k⊥)TA1 , (3)

TA1,A2 = [Φ1(2),q(q⊥ − k⊥) + Φ1(2),q(q⊥ + k⊥)]

×[Φ1(2),l(l⊥ − k⊥) + Φ1(2),l(l⊥ + k⊥)]. (4)

Here the indices 1 and 2 of the UGDs (Φ) refer to nucleus 1 and nucleus 2, and the second

letter indices refer to the rapidity variables. The argument of the UGDs in the parentheses

correspond to transverse momentum of the gluons, and k⊥ is the integration variable . The

transverse momentum dependence of the UGDs at any order (n = 3, 4, . . .) follows a simple

pattern [compare Eqs. (2-4) with Eqs. (6-8)]. On the other hand, the rapidity indices of the

UGDs are nontrivial. The main power of the glasma superdiagrams is to readily determine

the rapidity dependence of the cumulant Cn at any order.

According to the conventions we use, p is the momentum and rapidity index of the gluon

closest to nucleus 1 (A1) in rapidity evolution whereas l is the index of the gluon which is
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FIG. 1. Two glasma superdiagrams to determine the rapidity indices of UGDs in Eqs. (2) and (3).

The superdiagram on the left produces the rapidity indices of the UGDs in T1 [see Eq. (2)] whereas

the superdiagram on the right is for T2 [see Eq. (3)]. Whether one begins writing down UGDs

starting from A1 (left figure) or A2 (right figure), the first UGD is always squared, which is Φ2
1,p

when one starts from A1 and Φ2
2,l when one starts from A2. C3 contains multiplication of three

UGDs from A1 and another three from A2. In the superdiagram on the left, three hoppings on A1

already brings three UGDs, so before reaching l, one has to move to the other nucleus. Another

rule of the superdiagrams is that one starts from the rightmost index on A1 (p) and ends at the

leftmost index on A2 as in the left superdiagram. There is also the same number of superdiagrams

where one starts from the leftmost index on A2 and end at the rightmost index on A1 as in the

right superdiagram. Since these two sets of superdiagrams are simultaneous horizontal and vertical

reflections of each other, in the following figures we will only draw the first set of the superdiagrams

where one start from the rightmost index on A1. As for the hoppings, only next-to-nearing hoppings

are allowed; hence, connecting p to l by skipping q is not allowed.

closest to nucleus 2 (A2). From Eq. (2), one observes that the UGD with the rapidity index

p is squared, whereas in Eq. (3) the UGD with the rapidity index l is squared since it is

the closest one to A2. The rapidity structure of Eq. (2) can be summarized by the glasma

superdiagrams in Fig. 1. These two superdiagrams represent 16 connected glasma diagrams

that is necessary to calculate C3, and they give T1 and T2.

The quadruple-gluon cumulant that requires calculation of 96 glasma diagrams can be

produced with 4 superdiagrams. The fourth cumulant is given by [31]

C4(p, q, l,w) =
α4
sN

4
c S⊥

π16(N2
c − 1)7

1

p2
⊥q

2
⊥l

2
⊥w

2
⊥

∫
d2k⊥
(2π)2

(Q1 +Q2), (5)
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FIG. 2. Two glasma superdiagrams that contribute to Q1 given in Eq. (6), which is part of C4. The

other two superdiagrams are not shown as they are simultaneous horizontal and vertical reflections

of these two superdiagrams.

where

Q1 = Φ2
1,p(k⊥)Φ1,q(k⊥)[4× Φ1,l(k⊥) + 2× Φ1,q(k⊥)]Φ2,p(p⊥ − k⊥)QA2 , (6)

Q2 = Φ2
2,w(k⊥)Φ2,l(k⊥)[4× Φ2,q(k⊥) + 2× Φ2,l(k⊥)]Φ1,p(p⊥ − k⊥)QA1 , (7)

QA1(A2) = [Φ1(2),q(q⊥ − k⊥) + Φ1(2),q(q⊥ + k⊥)][Φ1(2),l(l⊥ − k⊥) + Φ1(2),l(l⊥ + k⊥)]

×[Φ1(2),w(w⊥ − k⊥) + Φ1(2),w(w⊥ + k⊥)]. (8)

Fig. 2 shows the two superdiagrams that contributes to Q1; the two mirror images of these

contractions (not shown in the figure) gives Q2.

III. RULES FOR SUPERDIAGRAMS

The rules of superdiagrams can be summarized as follows.

1. On nucleus A1 (A2), one starts from the rightmost (leftmost) rapidity index, and end

at the leftmost (rightmost) rapidity index on A2 (A1). The first rapidity site is always

visited twice; it is the rightmost (leftmost) site on A1 (A2).

2. For Cn, there must be n hoppings on each nucleus. For example, there are four

hoppings on A1 for C4 as shown in Fig. 2. Also, the line connecting the rapidity sites

should continue by visiting nearest-neighbors without skipping any site. For example,

going from p directly to l by skipping q is not allowed.

3. Each site can only be visited twice at maximum.

In light of these rules, one can draw the possible 6 superdiagrams for C5. Figure 3 shows

three of these superdiagrams.
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FIG. 3. Three glasma superdiagrams that contribute to C5. The other three superdiagrams are not

shown as they are simultaneous horizontal and vertical reflections of these three superdiagrams.

Now a multi-gluon cumulant at any order for n ≥ 4 can be constructed by the following

recipe.

(i) The prefactor and the integral part of Cn shall be in the form

Cn =
αn
sN

n
c S⊥

π4n(N2
c − 1)2n−1

(
n∏

i=1

1

p2
⊥i

)∫
d2k⊥
(2π)2

(N1 +N2) . (9)

(ii) N1 is given by

N1 = Φ2
1,p1

(k⊥)

[
n−3∏
j=1

Φ2
1,pj+1

(k⊥)

][
n−2∑
h=1

2hΦ2
1,ph+1

(k⊥)

]
Φ2,pn(p⊥1 − k⊥)NA2 . (10)

N2 can be obtained from N1 by making these changes: Replace the nucleus index 1

with 2, and replace the momentum index pi with pn+1−i, where n is the order of the

cumulant. For example, one should change the indices according to p↔ w and q ↔ l

for C4.

(iii) NA1(A2) that is contained in N2(1) is given by

NA1(A2) =
n∏

m=2

[Φ1(2),pm(p⊥m − k⊥) + Φ1(2),pm(p⊥m + k⊥)], (11)

where n is again the order of the cumulant Cn. For C4, (p2, p3, p4) = (q, l, w), and

(p⊥2,p⊥3,p⊥4) = (q⊥, l⊥,w⊥). [see Eq. (8)].

Equation (9) together with the definitions given in Eqs. (10) and (11) is the main result

of this paper. Cn gives inclusive n-gluon distribution, and it quantifies the correlation

of n-gluons in transverse momentum and rapidity. Cn can be used to calculate higher-

dimensional ridges and flow moments vm(nPC) from n-particle correlations. In principle,

the cumulants Cn can be summed to find the cumulant generating function, and then the
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probability distribution via Laplace transform of this generating function. We will not make

any attempt in this direction since the UGDs contained in Cn are complicated functions,

and in practice they are in the form of numerical tables.

Now we shall check if the recipe given above yields the correct number of glasma diagrams

for C5. At the order n = 5, NA2 will contain 24 separate terms, so N1 will contain (23 +

22 + 2)× 24 = 224 terms. N2 contains the same number of diagrams, so the total number of

connected diagrams becomes 448.

We shall now check if the cumulant expansion gives the same number of diagrams. The

moments µn
1 can be written in terms of the cumulants κn

µn =
n∑

k=1

Bn,k(κ1, . . . , κn−k+1), (12)

where Bn,k are partial Bell polynomials. The fifth cumulant κ5 is same as C5, and it can be

written in terms of the lower-order cumulants and the fifth moment µ5

κ5 = µ5 − 5κ4κ1 − 10κ3κ2 − 10κ3κ
2
1 − 15κ22κ1 − 10κ2κ

3
1 − κ51. (13)

Here µ5 includes all connected and disconnected glasma rainbow diagrams with five gluons.

Subtracting from µ5 the other terms in RHS of Eq. (13) gives the connected five gluon

diagrams, which is κ5. A word of caution regarding the term κ22 is in order [31]. κ2 includes

two upper and two lower rainbow diagrams. However, the term κ22 mixes upper and lower

rainbow diagrams. Such mixings do not occur in µ5, where the disconnected diagrams are

formed either by the combination of lower or upper rainbow diagrams. So, since µ5 is already

free from mixed diagrams, subtracting any mixed diagrams from µ5 would result in wrong

counting. We resolve this issue by modifying the term in Eq. (13) as such

15κ22κ1 −→
1

2
15κ22κ1, (14)

so that only the diagrams of the form upper⊗upper and lower⊗ lower are substracted from

µ5, but not those of the form lower⊗ upper or upper⊗ lower.

The fifth moment µ5 includes all connected and disconnected rainbow glasma diagrams

at the five gluon level, and the number of such diagrams is given by 2(2n − 1)!! − 1 [31].

The first factor of 2 accounts for both upper and lower rainbow diagrams, the term with the

1 µn are moments, not “central moments.” In the literature, sometimes µ′n are used for moments.
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double factorial counts the number of pairings between gluons, and 1 is subtracted at the

end not to double count the maximally disconnected glasma diagram (κn1 ), which is shown as

concentric circles [31]. At the order n = 5, there are µ5 = 1889 connected and disconnected

rainbow diagrams in total. The numbers of diagrams that each cumulant for n < 5 contains

have been given in Ref. [31]: κ1 = 1, κ2 = 4, κ3 = 16 and κ4 = 96. From Eq. (13) with the

modification in Eq. (14), we find the number of connected diagrams for C5

κ5 = 1889− 5× 96− 10× 16× 4− 10× 16

−15× 1

2
× 42 − 10× 4− 1 = 448. (15)

This number is the same as what our recipe previously gave; see the discussion above

Eq. (13). This completes the proof that our formulas given in the recipe Eqs. (9-11) produce

the correct number of diagrams.

IV. SUMMARY AND OUTLOOK

We have developed a superdiagramatic technique which allows calculating the inclusive

gluon distributions Cn at the saturation limit easily bypassing the necessity of calculating

thousands of glasma diagrams. Inclusive gluon distribution functions contain information on

azimuthal and rapidity correlations between produced gluons in p-p, p-A and A-A collisions.

Multiple-hadron correlations are measured in these experiments. These hadronic correlation

functions are used to measure the ridge-type azimuthal correlations between hadrons as well

as flow moments vm(nPC) from multiple hadrons. On the theory side, hadron correlations

are calculated by convolving the gluon correlation functions Cn with fragmentation functions.

Higher dimensional ridges from number of gluons n > 2 and flow moments vm from multi-

particle correlations are a testing ground for different approaches such as hydrodynamics

and gluon saturation/glasma physics.
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