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We perform a systematic study on the spin decomposition of an electron in QED at one-loop
order. It is found that the electron orbital angular momentum defined in Jaffe-Manohar and Ji
spin sum rules agree with each other, and the so-called potential angular momentum vanishes at
this order. The calculations are performed in both dimensional regularization and Pauli-Villars
regularization for the ultraviolet divergences, and they lead to consistent results. We further inves-
tigate the calculations in terms of light-front wave functions, and find a missing contribution from
the instantaneous interaction in light-front quantization. This clarifies the confusing issues raised
recently in the literature on the spin decomposition of an electron, and will help to consolidate the
spin physics program for nucleons in QCD.

I. INTRODUCTION

One of the most important goals in hadron physics is to
understand the longitudinal spin structure of the proton.
Although the total angular momentum of an isolated sys-
tem is well-defined in QCD, apportioning it into the spin
and orbital angular momentum (OAM) contributions of
the quarks and gluons has been a challenging task. Over
the past twenty-five years, two well-known sum rules have
been proposed and inspired much theoretical and exper-
imental effort to understand the longitudinal spin struc-
ture of the proton.
One of them is the sum rule proposed by Jaffe and

Manohar [1],

1

2
=

1

2
∆Σ+ Lq +∆G+ Lg , (1)

where each individual term is defined to be the proton
matrix element of the canonical spin and OAM tensors in
the infinite momentum frame (IMF) or on the light-front:

M+12 =
1

2
ψ̄γ+γ5ψ + ψ̄γ+(~x× (−i~∇))3ψ

+ǫ−+ijTrF i+Aj + 2TrF i+(~x × ~∇)3Ai . (2)

Here i, j = 1, 2, and a summation over dummy indices is
implied. Except for the quark spin, all the other terms
are gauge variant and have to be fixed in the light-cone
gauge A+ = (A0 + A3)/

√
2 = 0. The residual gauge

invariance is fixed by imposing anti-periodic boundary
conditions A1,2(~x⊥,−∞) = −A1,2(~x⊥,+∞). Despite its
gauge dependence, there is a strong motivation behind
the Jaffe-Manohar sum rule since both ∆Σ and ∆G are
measurable in high-energy scattering experiments [2, 3].
The other sum rule proposed by Ji [4] is frame inde-

pendent and manifestly gauge invariant,

1

2
= Jq + Jg =

1

2
∆Σ+ Lq + Jg , (3)

where the quark spin, the kinetic quark OAM, and the
total gluon angular momentum are the proton matrix
elements of each term in the following expression:

M012 =
1

2
ψ̄γ+γ5ψ+ ψ̄γ+(~x×(−i ~D))3ψ+[~x×( ~E× ~B)]3 ,

(4)

with ~D = ~∇ − ig ~A. The quark and gluon angular mo-
menta satisfy separate sum rules,

Jq, g =
1

2
[Aq, g(0) +Bq, g(0)] , (5)

where Aq, g and Bq, g are the gravitational form factors of
the symmetric quark and gluon energy-momentum ten-
sors. Therefore, the kinetic quark OAM in the Ji sum
rule can be obtained by

Lq =
1

2
[Aq(0) + Bq(0)]−

1

2
∆Σ . (6)

The Ji sum rule has received considerable attention for
its relation to generalized parton distributions (GPDs)
and experimental probes [4–6].
There have been investigations on the difference be-

tween the canonical and kinetic OAM in the Jaffe-
Manohar and Ji sum rules. According to their definition,
Lq and Lq are simply related by [7, 8]

Lq = Lq + lpot , (7)

where lpot is the proton matrix element of the potential
angular momentum operator

lzpot = −eψ̄γ+(~x× ~A)3ψ . (8)

While attempts have been made to compute Lq using lat-
tice QCD [9], strategies for a direct lattice computation
of Lq have been proposed only recently [10, 11]. De-
spite that a lattice evaluation of the latter is required to
show the numerical significance of their difference, model-
dependent analyses and the study of the case in QED
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can already shed some light on this problem. In fact,
few people will trust any QCD analysis unless the QED
case is completely understood. In Ref. [12], Burkardt et
al. computed the quark OAM in both the Jaffe-Manohar
and Ji sum rules in a scalar diquark model and found
an agreement. This is expected since the scalar diquark
model does not contain a gauge field. They also com-
puted the electron OAM to O(α) in QED using the for-
malism of light-front wave functions, and found a finite
difference between the electron OAM defined in Jaffe-
Manohar and Ji decompositions. This also implies a non-
vanishing finite difference in the quark case in QCD [12].
Burkardt [13] interpreted this difference as the change
in the quark OAM as it leaves the target in a deep-
inelastic scattering (DIS) experiment, which is similar to
the mechanism responsible for the transverse single-spin
asymmetries in semi-inclusive DIS.

In a recent paper [14], Liu and Ma also computed
the canonical and kinetic OAM for a dressed electron
to O(α) in QED. Their result confirmed the finite dif-
ference obtained by Burkardt et al. [12], if the same ul-
traviolet (UV) regularization (Pauli-Villars) is adopted.
Moreover, they considered the contributions from the
potential angular momentum and surface terms arising
from the derivation of the Ji sum rule, and found that
both have a non-vanishing anomalous dimension atO(α).
They then claimed that the difference between the canon-
ical and kinetic OAM cannot be explained by the poten-
tial angular momentum or the surface term, and that the
Ji sum rule is incorrect for quarks and gluons separately.

In this paper, we show that to O(α) in QED, the elec-
tron OAM defined in the Jaffe-Manohar and Ji sum rules
are consistent, and actually equal to each other. The fact
that the result of Liu and Ma for the potential angular
momentum is incorrect can be seen from the following:
as was shown in Refs. [4, 15], the potential angular mo-
mentum does not contribute to the evolution at one-loop
order, therefore it must have a vanishing anomalous di-
mension (this conclusion applies to both QCD and QED,
since at one-loop order the contributing diagrams in QCD
are Abelian-like). Actually, our explicit calculation shows
that the contribution of the potential angular momentum
vanishes at O(α), so do the surface terms. Moreover, as
we will point out, in light-front quantization a proper
implementation of UV regularization is of crucial impor-
tance to resolve the inconsistency between the canoni-
cal and kinetic electron OAM in Refs. [12, 14]. This
is closely related to the subtle difference between light-
front and equal-time quantizations, as the Hamiltonian
of the former contains an instantaneous interaction while
the latter does not. If this difference is properly taken
into account, the electron OAM in the Jaffe-Manohar
and Ji sum rules are equal at O(α) (Note that this does
not mean that there is no difference between them to all
orders, because the potential angular momentum might
contribute starting from O(α2).). We also compute the
same quantities using the Feynman diagram approach,
where the electron OAM in the Jaffe-Manohar and Ji

sum rules are found to be equal to each other at O(α).
The rest of the paper is organized as follows. In Sec. II,

we use the Feynman diagram approach to compute the
electron OAM at one-loop order, with two regularization
methods—dimensional regularization and Pauli-Villars
regularization—for the UV divergences. In Sec. III, we
review the computation of the electron OAM in the Jaffe-
Manohar and Ji sum rules in Ref. [12], and explain why
the difference between them should be zero. We then
conclude in Sec. IV. Some of the detailed derivations are
given in the appendices.

II. ELECTRON ORBITAL ANGULAR

MOMENTUM AT ONE-LOOP ORDER

We follow the procedure of Refs. [4, 15] to calculate
the electron spin and OAM at one-loop order in QED.
Different from Refs. [4, 15], in order to obtain the finite
contributions at this order, we will keep a non-zero elec-
tron mass m in the calculations, which also regularizes
the collinear divergences.

A. Dimensional regularization

At leading order, the total spin is carried by the elec-
tron spin ∆Σe/2. This will be modified by photon radi-
ation at one-loop order, where we have to deal with the
UV divergences. In the following, we will first apply di-
mensional regularization with D = 4−2ǫ, where we have
to specify the prescription for γ5. To perform the calcu-
lations consistently, we follow the HVBM scheme [16]:

γ5 ≡ i

4!
ǫµνρσγµγνγργσ . (9)

Splitting the D-dimensional metric tensor into its four-
and (D − 4)-dimensional components, we have

gµν = ḡµν + ĝµν , ḡµµ = 4, ĝµµ = D−4 = −2ǫ , (10)

and

{γµ, γ5} = 0, for µ = 0, 1, 2, 3,
[

γµ, γ5
]

= 0, otherwise . (11)

It is straightforward to calculate electron spin at one-loop
order, and we obtain

∆Σ
(1)
e

2
=

e2

4π

∫

dx

∫

dD−2k⊥
(2π)D−2

[

1 + x2

1− x

1

k2⊥ + (1 − x)2m2

−2(1− x)(1 − x+ x2)m2

(k2⊥ + (1− x)2m2)2
+

3ǫ(1− x)

k2⊥ + (1− x)2m2

]

+Γv , (12)

where Γv is the virtual contribution. To calculate Γv, we
need the electron wave function renormalization constant
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in the light-cone gauge, a proper definition of which is
given by (for a similar treatment in the axial gauge Az =
0, see e.g. Ref. [17]),

Z = 1 +
1

2P+
ū(P )

∂Σ(P )

∂P−
u(P ) , (13)

where Σ(P ) is the self energy of an on-shell electron. This
definition guarantees that the vector current ψ̄γ+ψ is
strictly conserved (at least at one-loop order) and is con-
sistent with the renormalization constant defined from
light-front wave functions below. For the explicit expres-
sion of the virtual contribution, see Appendix A.
The UV divergences from the real and virtual contri-

butions will be cancelled out between each other, and we
are left with a finite contribution. In the above equation,
we have kept the mass-dependent term as well as the
ǫ-term, because they will lead to a finite contribution in
the end. Clearly, there is the splitting kernel in the above
equation, and the ǫ-term is consistent with previous cal-
culations (see, for example, Ref. [18]). After applying
dimensional regularization for the k⊥ integral, we obtain
the following result,

∆Σ
(1)
e

2
=

α

4π

∫

dx

[

1 + x2

1− x

(

Nǫ + ln
µ2

(1− x)2m2

)

−2(1− x+ x2)

1− x
+ 3(1− x)

]

+ Γv , (14)

where Nǫ = 1/ǫ− γE + ln(4π), and µ is the renormaliza-
tion scale. As mentioned above, the UV divergences are
cancelled out between the real and virtual contributions,
and the final result is

∆Σ
(1)
e

2
=

α

4π

∫

dx 2(1− x) =
α

2π
· 1
2
. (15)

To calculate the electron OAM in the Ji sum rule, we
need to subtract the electron spin of Eq. (15) from the
sum rule of Eq. (6), for which we will calculate Ae(0) and
Be(0). The one-loop result for Be(0) has been calculated
in the literature, which is finite and does not depend on
the regularization method. Here, we quote the result
in [12],

Be(0) =

∫

dx xE(x) =
α

2π

∫

dx 2x2 =
α

2π
· 2
3
, (16)

where E(x) = E(x, 0, 0) is a GPD defined in Refs. [4, 5].
The one loop result for Ae(0) is

A(1)
e (0) =

e2

2π

∫

dx x

∫

dD−2k⊥
(2π)D−2

[

1 + x2

1− x

× 1

k2⊥ + (1 − x)2m2
− 2x(1− x)m2

(k2⊥ + (1− x)2m2)2

− ǫ(1− x)

k2⊥ + (1 − x)2m2

]

+ Γv , (17)

where the virtual contribution is the same as that for the
electron spin in Eq. (12). Without the additional fac-
tor x in the integral of dx, the above equation gives the
splitting of electron to electron at one-loop order in QED.
That provides an important cross check, because the inte-
gral of the electron splitting function (over x) vanishes at
any order of perturbation theory. Comparing the above
equation to Eq. (12), there are two differences: one is the
mass term, and the other the ǫ-term. The difference in
the ǫ-term is consistent with the corresponding splitting
functions for the unpolarized and polarized quark distri-
butions in Ref. [18]. This difference is crucial to have
a consistent calculation for the polarized structure func-
tions beyond one-loop, as shown in Ref. [18]. From our
calculations in the following, we also find that it plays a
crucial role to fulfill the spin sum rule. After applying
dimensional regularization, we obtain,

A(1)
e (0) =

α

2π

[

−4

3

(

Nǫ + ln
µ2

m2

)

− 17

9

]

. (18)

From the Ji sum rule, we finally obtain the kinetic elec-
tron OAM,

Le =
α

2π

[

−2

3

(

Nǫ + ln
µ2

m2

)

− 10

9

]

. (19)

In the following, we will carry out the calculation of OAM
in the Jaffe-Manohar sum rule and compare it to the
above result.
It is not straightforward to calculate the OAM in the

Jaffe-Manohar sum rule. We follow the procedure in
Refs. [4, 15] to calculate the matrix element,

Le =
1

2P+
ǫij lim

∆→0

∂

∂i∆i
⊥

〈P ′S|ψ̄(0)γ+i∂j⊥ψ(0)|PS〉 ,
(20)

where ǫij is the antisymmetric tensor with ǫ12 = 1, and
∆ = P ′ − P . In the above equation, S represents the
helicity for the electron state. There is no virtual con-
tribution. In the real contribution, we have to keep the
momentum dependence of ∆⊥ and perform the derivative
in the end to arrive at the OAM contribution. Again, we
will also apply the HVBM scheme for the γ5 prescription
in the calculations, and the final expression for the OAM
can be written as,

Le =
e2

2π

∫

dx
(

1− x2 + ǫ(1− x)2
)

×
∫

dD−2k⊥
(2π)D−2

(1 + ǫ)k2⊥
(k2⊥ + (1− x)2m2)2

, (21)

where the ǫ in the last factor comes from the angular

average in D − 2 dimensions: kα⊥k
β
⊥ ⇒ gαβ⊥ k2⊥/(D − 2).

In dimensional regularization, we arrive at the following
result for Le,

Le =
α

2π

[

−2

3

(

Nǫ + ln
µ2

m2

)

− 10

9

]

. (22)
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Indeed, we find that, at the one-loop order, the OAM
defined in Jaffe-Manohar and Ji sum rules agrees with
each other,

Le = Le . (23)

Now, let us examine the so-called potential angular mo-
mentum contribution. The calculation follows that for
the OAM above, with the replacement of ∂j⊥ with Aj

⊥ in
the matrix element. In particular, we will end up with
the following integral,

∫

dx(1 − x)

∫

dD−2k⊥
(2π)D−2

(k⊥ − (1− x)∆⊥/2)
j

(k⊥ − (1− x)∆⊥/2)
2
+ (1− x)2m2 + x(1− x)∆2

⊥/4
,

(24)

which vanishes after taking the derivative in Eq. (20).
Therefore, at one-loop order, the potential OAM does
not contribute,

lpot = 0 . (25)

This proves that the electron OAM defined in Jaffe-
Manohar and Ji sum rules agree with each other at one-
loop order, and they are consistent with the fact that the
potential OAM vanishes at this order as well.

B. Pauli-Villars regularization

In this subsection, we check the spin sum rules in the
Pauli-Villars regularization. The advantage of this regu-
larization is that we do not need to worry about the pre-
scription of γ5, because the calculations are performed in
4 dimensions. As discussed in Ref. [19], Pauli-Villars reg-
ularization can be consistently implemented in the light-
cone gauge by making the following replacement in the
photon propagator

idµν(k)

k2
→ idµν(k)

k2
− idµν(k)

k2 − Λ2
, (26)

where dµν(k) takes the following form,

dµν(k) = −gµν +
nµkν + kµnν

n · k . (27)

With this setup, we carry out the calculations with
Pauli-Villars regularization for all the terms discussed in
the last subsection, and obtain the following results,

∆Σe

2
=

1

2
− α

2π
· 1
2
, (28)

Le = − α

2π

[

2

3
ln

Λ2

m2
− 1

9

]

, (29)

Ae(0) = 1− α

2π

[

4

3
ln

Λ2

m2
+

13

9

]

, (30)

Be(0) =
α

2π
· 2
3
, (31)

lpot = 0 . (32)

The kinetic electron OAM is obtained from the Ji sum
rule

Le =
1

2
[Ae(0) +Be(0)]−

1

2
∆Σe = − α

2π

[

2

3
ln

Λ2

m2
− 1

9

]

.

(33)
Again, we find that the OAM in Jaffe-Manohar and Ji
sum rules agree with each other. Comparing the above
results to those obtained in Ref. [12], we find that we
agree on ∆Σe, Le, and Be(0), but not on Ae(0). In the
following section, we will review the light-front wave func-
tion calculation and show that after including a missing
contribution, we obtain the same results as the above.

III. ELECTRON ORBITAL ANGULAR

MOMENTUM FROM LIGHT-FRONT WAVE

FUNCTIONS

In light-front quantization, the physical electron state
is expanded in the complete basis of electron and photon
Fock states [20]. Up to O(α), the wave function of an

electron with momentum P = (P+, P−, ~P⊥) and helicity
S can be expressed as

|P+, ~P⊥, S〉
=

√
Z
√
2P+ b†S(P,

~P⊥)|0〉

+
∑

σ,h

∫

dxd2~k⊥
2(2π)3

2P+ψS
σ,h(x,

~k⊥)b
†
σ(xP

+, x ~P⊥ + ~k⊥)

a†h((1− x)P+, (1− x)~P⊥ − ~k⊥)|0〉 .
(34)

Here b†σ and a†h are the electron and photon creation op-
erators, and ψS

σ,h is the light-front wave function of the

electron-photon two-particle Fock state. x and ~k⊥ are
the light-front momentum fraction and intrinsic trans-
verse momentum of the electron, and the renormaliza-
tion constant Z ensures that the electron wave function
is normalized as

〈P ′+, ~P ′
⊥, S

′|P+, ~P ′
⊥, S〉

= 2P+(2π)3δ(P ′+ − P+)δ2(~P ′
⊥ − ~P⊥)δS′S . (35)

For the two-particle Fock state, there are four helic-
ity combinations, and their light-front wave functions
are [21]:

ψ↑
↑,+ =

k1 − ik2

x(1 − x)
φ(x,~k⊥) ,

ψ↑
↑,− = −k

1 + ik2

1− x
φ(x,~k⊥) ,

ψ↑
↓,+ =

1− x

x
mφ(x,~k⊥) ,

ψ↑
↓,− = 0 , (36)
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and

ψ↓
↑,+ = 0 ,

ψ↓
↑,− =

1− x

x
mφ(x,~k⊥) ,

ψ↓
↓,+ =

k1 − ik2

x(1− x)
φ(x,~k⊥) ,

ψ↓
↓,− = −k

1 + ik2

1− x
φ(x,~k⊥) , (37)

where

φ(x,~k⊥) = −
√
2e√

1− x

x(1 − x)

~k2⊥ + (1− x)2m2 + xλ2
, (38)

with λ being the photon mass introduced to regularize

potential IR divergences. The coefficients of φ(x,~k⊥) in
the above light-front wave functions arise from the fol-
lowing matrix elements

ū(xP+, x ~P⊥ + ~k⊥, σ)√
xP+

γµǫ
∗µ
h

u(P,Λ)√
P+

, (39)

where the Dirac spinors are given in Refs. [21, 22].

In light-front quantization, the free-field operators can
be expanded as

ψ(ξ) =
∑

σ

∫

dl+d2~l⊥√
2l+(2π)3)

×
[

bσu(l, σ)e
−il·ξ + d†σ(l)v(l, σ)e

il·ξ
]

,

Aµ(ξ) =
∑

h

∫

dl+d2~l⊥√
2l+(2π)3)

×
[

ah(l)ǫ
µ
h(l)e

−il·ξ + a†h(l)ǫ
∗µ
h (l)eil·ξ

]

,(40)

and the free one-particle state |l〉 is defined as√
2l+a†(l)|0〉. Conventions for the photon polarization

vector ǫµh have also been given in [21, 22].

With the light-front wave functions above, one can do a
direct computation and finds the following wave function
renormalization constant

Z = 1−
∫

dxd2~k⊥
2(2π)3

(

|ψ↑
↑,+|2 + |ψ↑

↑,−|2 + |ψ↑
↓,+|2

)

. (41)

For an electron with helicity +1/2, the electron spin and
OAM in the Jaffe-Manohar sum rule can be computed as

∆Σe = 1− 2

∫

dxd2~k⊥
2(2π)3

|ψ↑
↓,+|2 ,

Le =

∫

dxd2~k⊥
2(2π)3

(1− x)
(

−|ψ↑
↑,+|2 + |ψ↑

↑,−|2
)

.

(42)

On the other hand, Ae(0) and Be(0) can be computed as

Ae(0) = 1−
∫

dxd2~k⊥
2(2π)3

(1− x)

×
(

|ψ↑
↑,+|2 + |ψ↑

↑,−|2 + |ψ↑
↓,+|2

)

,

Be(0) =

∫

dxd2~k⊥
2(2π)3

(1− x)m2|φ(x,~k⊥)|2 , (43)

which are the same as the results of Burkardt et al. [12].
Clearly, there are UV divergences in the above equations,
for which we will apply the Pauli-Villars regularization.
Before we proceed to that, we would like to comment
on dimensional regularization calculations of the above
integrals in Ref. [14]. Because of the divergences, we
have to keep the ǫ-terms in the light-front wave func-
tions if we want to apply dimensional regularization in
the above equations. The naive implementation as that
of Ref. [14] will miss finite contributions. Compared to
the explicit expressions from the above equations with x
and k⊥ dependence to the results in the previous section,
Eqs. (12,16,20), we will find that they agree except for
all the ǫ-terms. Without the ǫ-terms, dimensional regu-
larization will not give the complete results.
In the Pauli-Villars regularization, instead, we perform

the calculation in 4 dimensions. For each divergent k⊥
integral, there is a Pauli-Villars subtraction with λ2 →
Λ2, and the λ2 → 0,Λ2 ≫ m2 limit is taken at the end of
the calculation. In this way, the results for Eqs. (42–43)
are

∆Σe = 1− α

4π
· 2 , (44)

Le = − α

4π

[

4

3
ln

Λ2

m2
− 2

9

]

, (45)

and

Ae(0) = 1− α

4π

[

8

3
ln

Λ2

m2
+

44

9

]

, (46)

Be(0) =
α

4π
· 4
3
. (47)

The kinetic electron OAM is obtained from the Ji sum
rule

Le =
1

2
[Ae(0) +Be(0)]−

1

2
∆Σe = − α

4π

[

4

3
ln

Λ2

m2
+

7

9

]

.

(48)
From this result, it was then concluded in Ref. [12] that

Le − Le =
α

4π
6= 0 , (49)

where the authors also attributed this discrepancy be-
tween the canonical and kinetic OAM to the potential
angular momentum. Later on, Liu andMa [14] calculated
the potential angular momentum to O(α), and found
that it has a non-vanishing anomalous dimension. As
already mentioned in the Introduction, this cannot be
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correct because the potential angular momentum does
not contribute at this order to the evolution of angular
momentum [4, 15]. Actually, our direct evaluation of the
matrix element of lpot yields zero (see Appendix B).
Liu and Ma [14] also considered the surface terms in

the electron angular momentum density operator for the
Ji sum rule

Mµνρ
surf = − i

2
(xν∂ρ − xρ∂ν) (ψ̄γµψ)

+
1

4
∂ρ

[(

xνǫµλρσ − xλǫµνρσ
)

ψ̄γσγ
5ψ

]

.(50)

While the contribution from these surface terms is
claimed by them to be non-zero, our direct evaluation
shows that their off-forward matrix elements vanish in
the forward limit.
With zero contributions from the potential angular

momentum and surface terms, there seems to be an in-
consistency between the Jaffe-Manohar and Ji sum rules
from Eq. (49), at least at O(α) in QED. However, as we
now explain, this is because the calculation by Burkardt
et al. [12] is not complete. In order to see what is miss-
ing in their calculation, it is worthwhile to recall the dif-
ference between light-front quantization and equal-time
quantization in the light-cone gauge. In the equal-time
quantization, the light-cone gauge photon propagator is
given by idµν(k)/k2 with

dµν(k) = −gµν + nµkν + nνkµ

n · k
=

∑

h=±,0

ǫ∗µh (k)ǫνh(k) , (51)

which means that both the transverse and longitudinal
modes propagate. In contrast, in light-front quantization
at equal light-front time, one has [23]

d̃µν(k) = −gµν + nµkν + nνkµ

n · k − k2nµnν

(n · k)2

=
∑

h=±

ǫ∗µh (k)ǫνh(k) . (52)

Since the photon is essentially put on-shell in the latter
case, it is not surprising that only the physical transverse
modes propagate. In general, the extra term proportional
to k2 in Eq. (52) is compensated for by an instantaneous
interaction in the light-front Hamiltonian, which comes
from eliminating the non-dynamical field A− in terms of
the dynamical ones in the light-cone gauge (there is also
an instantaneous fermion propagator in light-front quan-
tization, but it does not contribute here) [23]. Therefore,
to do calculations one can either use the photon propa-
gator in Eq. (51), or the one in Eq. (52) plus an instan-
taneous interaction contribution. In this way, physics
remains the same in light-front and equal-time perturba-
tion theories. This is similar to the case of quantization
of QED in the Coulomb gauge.

It should be also noted here that in Pauli-Villars regu-
larization one just needs to choose the photon propagator
in Eq. (51) and do the replacement in Eq. (26).
From the discussions above, we can see that for a mas-

sive photon, the contribution of the instantaneous inter-
action does not vanish in the light-front wave functions
arising from the matrix elements in Eq. (39), and there-
fore has to be taken into account. Its contribution is
equivalent to adding an extra independent polarization
vector,

ǫµ0 (k) = −
√
k2nµ

n · k , (53)

which results in extra light-front wave functions for the
two-particle state,

ψ↑
↑,0(x,

~k⊥) = ψ↓
↓,0(x,

~k⊥) = −
√
2λ

(1− x)
φ(x,~k⊥) . (54)

If one adopts the Pauli-Villars regularization, they will
contribute to ∆Σe and Ae(0) of the Pauli-Villars particle
with λ replaced by Λ in Eq. (54). In the λ → 0,Λ ≫ m
limit, their contributions to the real and virtual parts of
∆Σe cancel, while Ae(0) receives a nonzero correction,

δAe(0) =

∫

dxd2~k⊥
2(2π)3

(1− x)|ψ↑
↑,0|2 =

α

2π
, (55)

which exactly cancels the difference between the canon-
ical and kinetic OAM in Eq. (49). Note that the ex-
tra light-front wave function is intimately connected to
the Pauli-Villars regularization, it changes the momen-
tum/angular momentum carried by the electron and pho-
ton, respectively, but not their sum. The reason is that
the momentum/angular momentum carried by the elec-
tron or photon by itself is not a conserved quantity, and
thus may contain UV divergences and depend on the reg-
ularization scheme, but their sum is conserved and there-
fore is independent of regularization.
In summary, there is no difference between the canon-

ical and kinetic OAM for an electron at O(α) in QED.
The perturbative calculation with light-front wave func-
tions is subtle due to the existence of an extra instan-
taneous interaction in the light-front Hamiltonian. It is
the contribution of this term that is missing and leads to
the incomplete result of Burkardt et al. [12] and Liu and
Ma [14] in the Pauli-Villars regularization.

IV. CONCLUSION

In this paper, we reexamined the canonical and ki-
netic OAM for a dressed electron at O(α) in QED. We
performed the calculation both with Feynman diagrams
and with light-front wave functions, and in the former
case we used both dimensional regularization and Pauli-
Villars regularization for the UV divergences. Our re-
sults show that the canonical and kinetic electron OAM
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are equal, and the contribution from the potential an-
gular momentum is zero. The reason that Burkardt et
al. [12] and Liu and Ma [14] obtained a finite difference
between the canonical and kinetic electron OAM is that
the contribution of an instantaneous interaction term is
missing in their computation using light-front wave func-
tions and Pauli-Villars regularization. After including
its contribution, the Jaffe-Manohar and Ji sum rules are
then consistent with each other.
It should also be pointed out that our result is at O(α)

in QED. When going to higher perturbative orders, it is
likely that the potential angular momentum will start to
contribute, but the Jaffe-Manohar and Ji sum rules are
expected to be consistent with each other.
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clear Physics under Award Number DE-FG02-93ER-
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ogy in Shanghai Municipal Government, and also by
grants from the National Science Foundation of China
(No. 11175114, No. 11405104) and by a DFG grant
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Appendix A: Virtual contributions to the electron

spin and OAM

The virtual contributions to the electron spin and
OAM are given by the electron wave function renormal-
ization constant Z times their tree-level matrix elements.
According to Eq. (13),

Z = 1− 1

2P+
ū(P )

∫

dDk

(2π)D
(−ieγµ)

i

/P − /k +m
γ+

i

/P − /k +m
(−ieγν)

idµν(k)

k2
u(P ) . (A1)

In dimensional regularization, we can first use trans-
lational invariance to replace k with P − k, and then

integrate out k− and ~k⊥ components. Finally, we have

Z = 1− α

2π

∫

dx

[

1 + x2

1− x

(

Nǫ + ln
µ2

(1− x)2m2

)

− 2x

1− x
− (1− x)

]

. (A2)

Appendix B: Light-front wave function calculation

of the potential angular momentum

The potential angular momentum can be expressed as

〈lzpot〉 = − e

2P+
ǫij lim

∆→0

∂

∂i∆i
⊥

〈P ′S|ψ̄(0)γ+Aj(0)ψ(0)|PS〉 ,
(B1)

where we have chosen ~P⊥ = 0.

From the light-front wave functions, we have

〈P ′, ↑ |ψ̄(0)γ+Aj(0)ψ(0)|P, ↑〉

= e
√
Z
∑

σ,h

∫

dxd2~k⊥
2(2π)3

1
√

x(1− x)
ψ+
σ,h(x,

~k⊥)

×ū(P ′, ↑)γ+uσ(xP+, ~k⊥)ǫ
j
h((1 − x)P+,−~k⊥)

+e
√
Z
∑

σ,h

∫

dxd2~k⊥
2(2π)3

1
√

x(1 − x)
ψ+,∗
σ,h (x,

~k⊥)

×ūσ(xP ′+, x~∆⊥ + ~k⊥)γ
+u(P, ↑)

×ǫ∗jh ((1− x)P ′+, (1− x)~∆⊥ − ~k⊥) . (B2)

Using the explicit expressions of the electron spinor and
photon polarization vector in Refs. [21, 22], we have

ū(P ′, S′)γ+u(P, S) = 2
√
P ′+P+δSS′ , (B3)

and

~ǫ±⊥ = ∓ x̂± iŷ√
2

. (B4)

Plugging them into Eq. (B2), we find that the matrix

element of interest has no dependence on ~∆′
⊥, so that

the potential angular momentum in Eq. (B1) must be
zero.
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[hep-ph/9912289]; Ph. Hägler et al. [LHPC and SESAM
Collaborations], Phys. Rev. D 68, 034505 (2003) [hep-
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