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We present static meson-meson and baryon–anti-baryon potentials in Z(2) and Z(3) random
center vortex models for the infrared sector of Yang-Mills theory, i.e., hypercubic lattice models
of random vortex world-surfaces. In particular, we calculate multiple Polyakov loop correlators
corresponding to static meson-meson resp. baryon–anti-baryon configurations in a center vortex
background and observe that their expectation values follow the minimal area law, displaying bond
rearrangement behavior, a characteristic expected for the confining dynamics of the strong inter-
action. The static meson-meson and baryon–anti-baryon potentials are compared with theoretical
predictions and lattice QCD simulations.
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I. INTRODUCTION

Center vortices [1–6] are closed tubes of quantized chromomagnetic flux which spontaneously condense in the
vacuum, giving rise to the non-perturbative phenomena which characterize the infrared sector of strong interaction
physics, namely, quark confinement, the spontaneous breaking of chiral symmetry (χSB) and the axial UA(1) anomaly.
The vortex model of confinement has been buttressed by a multitude of studies, in lattice Yang-Mills theory, see

e.g. [7–15], within the infrared effective model of center vortices under investigation here [16–24] and another infrared
model of random vortex lines in continuous 3D space-time [25, 26] and also by theoretical effective model calculations,
e.g. [27–30]. The physical motivation for the vortex picture can be seen from the Wilson loop criterion of confinement,
i.e., the expectation value of the Wilson loop has to follow an area law in the confined phase. The vortex model
deduces the area law from independent vortex piercings of the Wilson loop, which can be interpreted as crossings of
the static electric flux tube and moving closed magnetic flux. The area law follows from fluctuations in the number
of vortices piercing a Wilson loop and the deconfinement transition in the center vortex picture takes the guise of a
percolation transition [13, 16].
Numerical simulations indicate further that vortices are responsible for χSB as well [18, 24, 31–52]. Removal of

center vortices restores chiral symmetry [31]. A dense vortex vacuum gives rise to a finite density of Dirac operator
near-zero modes, see also [53, 54], hence a finite chiral condensate via the Banks-Casher relation [55], spontaneously
breaking chiral symmetry. More than one concrete mechanism may be at play in generating the near-zero mode
spectrum. On the one hand, center vortices give rise to lumps of topological charge through (self-)intersection and
writhe, as well as through their color structure. These attract Dirac zero modes, which can interact to generate the
near-zero mode spectrum in a manner reminiscent of the instanton liquid model, as studied in [46], where the close
analogy between specific spherical vortex configurations and instantons was noted. On the other hand, even in the
absence of would-be zero modes generated by topological charge lumps, the random interactions of quarks with the
vortex background may be strong enough to smear the free quark dispersion relation such that the spectral density
of the Dirac operator becomes nonzero near zero eigenvalue [18]. As vortices modify their percolation behavior at the
deconfinement transition, chiral symmetry is restored [18].
A recent study of double-winding Wilson loops [56] further favors the center vortex degrees of freedom as the

dominating fluctuations in the QCD vacuum. The spatial distribution of center vortex fields not only gives the area
law falloff for simple Wilson loops, but also shows the correct difference of areas behavior for double-winding Wilson
loops, in contrast to other confining gluonic field fluctuations. Further details, including an outlook on the relation
of the vortex picture to other models of the strong interaction vacuum, can be found in the reviews [57, 58].
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In the present work we revisit the random vortex world-surface model, which will be introduced in the next section
along with its main achievements, to measure static meson-meson and baryon–anti-baryon correlators, as specified
in section III together with simulation details and the exponential error reduction method. In these correlators, we
observe bond rearrangement behavior as the relative positions of the static quarks are varied, in accordance with a
strict minimal area law, operative already at finite separations. The confining bonds within each mesonic or baryonic
cluster appear to be fully saturating, with no residual interactions between clusters. Thus, cluster separation occurs
not only asymptotically, where it would be expected on general grounds, but already at intermediate distances. We
present these results in section IV and furthermore compare them with theoretical expectations and measurements in
lattice QCD. We draw our conclusions in section V.

II. RANDOM VORTEX WORLD-SURFACE MODEL

The random center vortex world-surface model [16, 19] describes the infrared gluonic dynamics in the strong
interaction vacuum in terms of collective degrees of freedom called center vortices, which represent random closed
lines of quantized chromomagnetic flux. In terms of field configurations in four-dimensional (Euclidean) space-time,
these correspond to an ensemble of closed random world-surfaces. The concrete implementation of this model ensemble
studied in the following employs a hypercubic lattice, on which the random surfaces are composed of elementary lattice
squares. The ensemble is governed by an action related to surface curvature1: If two of the aforementioned elementary
squares composing a vortex surface share a lattice link while lying in different lattice planes, an action increment c is
incurred. This can be written formally in terms of a sum over lattice links,

S[q] = c
∑
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∑

µ







∑
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where qµν(x) specifies the chromomagnetic flux associated with the elementary square that extends from the site x
into the positive µ and ν directions. The variables qµν(x) take three values, qµν(x) ∈ {−1, 0, 1}; the value 0 means
that the elementary square is not part of a vortex surface, whereas nonzero quantized flux carried by the vortices
is encoded in the other values ±1. The sign of qµν(x) corresponds to the orientation of the vortex flux, implying
the relation qνµ(x) = −qµν(x), as will be clear from the characterization of vortex flux by its effect on Wilson loops
circumscribing it, given in the next section. For the purpose of evaluating Wilson loops, in the SU(2) case it will be
seen that there is no physical distinction between the ±1 fluxes, and one could equivalently adopt a scheme in which
SU(2) elementary vortex squares only take the value +1; for consistency of notation, this option is not employed here.
In the SU(3) case, by contrast, the ±1 fluxes have physically distinct effects on Wilson loops and one must keep track
of the orientation of vortex flux.
Vortex flux is subject to the Bianchi identity, i.e., it is continuous modulo 2π, i.e., modulo Dirac strings [17–19].

Vortex world-surfaces therefore are closed, as already mentioned above. Nevertheless, in the SU(3) case, vortex
branchings are allowed; flux continuity is respected when a ±1 vortex splits into two ∓1 vortices, and vice versa.
In the SU(2) case, such branchings do not occur; there is really only one physical vortex flux, and the distinction
between +1 and −1 flux is purely formal for present purposes, as already noted above. This corresponds to there
being only one nontrivial center element in the SU(2) group. These constraints stemming from continuity of flux
must be respected in the generation of the random surface ensemble; in practice, this is achieved by performing
Monte-Carlo updates on all six squares making up the surface of an arbitrary elementary three-dimensional cube in

1 A systematic gradient expansion of the vortex world-surface action starts with a Nambu-Goto term (proportional to world-surface area),
followed by a curvature term. The effects of these terms are correlated; configurations with more area will generically also contain
more curvature. In [16, 19], the two-dimensional plane of coupling constants corresponding to the aforementioned two action terms was
explored, and it was indeed found that the terms can to a certain extent be traded off against one another. Lines of approximately
constant physics were identified, on which characteristics of SU(2) and SU(3) Yang-Mills theory are reproduced. These lines of constant
physics contain points on which the Nambu-Goto term vanishes (but do not include points on which the curvature term vanishes).
Consequently, these points in the coupling constant plane were adopted as the simplest realization of the vortex world-surface model
consistent with the confinement characteristics of Yang-Mills theory.
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the lattice simultaneously [19]. Essentially, the continuous flux of a vortex of the shape of the elementary cube surface
is superposed onto the previously present flux.
This infrared effective model of strong interaction dynamics has been explored extensively, ascertaining the reach

of such a description of the QCD vacuum in terms of vortex degrees of freedom with their simplified effective action.
Initial studies focused on the SU(2) gauge group; the random vortex world-surface model was seen to allow for both a
low-temperature confining as well as a high-temperature deconfined phase [16], which are separated by a second-order
phase transition [19]. The spatial string tension in the deconfined phase [16], the topological susceptibility [17] and
the (quenched) chiral condensate [18] are predicted in quantitative agreement with SU(2) lattice Yang-Mills theory.
Extending the model to SU(3) color, a weakly first-order deconfinement phase transition [19] was found, and confirmed
by investigating the vortex free energy [20]. The baryonic static potential exhibits a Y law [21], and also the SU(3)
topological susceptibility was evaluated [24]. Further gauge groups were studied in order to better understand the
systematics of competing confinement mechanisms [59], including SU(4) color [22] and Sp(2) color [23]. It was seen
that the vortex picture is sufficiently flexible to account for the confinement properties associated with various gauge
symmetries, provided the effective dynamics are suitably tailored; in general, one must employ more complex effective
actions than the simple curvature action (1) describing the SU(2) and SU(3) cases. The present work revisits the
latter, widening the scope from the simplest confinement properties studied previously, as described above, to more
complex static meson-meson and baryon–anti-baryon correlators.

III. OBSERVABLES AND EXPONENTIAL NOISE REDUCTION

Our objective is to evaluate expectation values of multiple Polyakov loop operators in a center vortex background.
Studies of quantities of this type have also been suggested in [60]. Generally, Wilson loops2 are influenced by the
quantized chromomagnetic flux carried by center vortices in a characteristic fashion: For an arbitrary area spanning
a given Wilson loop (the choice of area being immaterial owing to flux continuity), each time the area is pierced by
a vortex world-surface3, the Wilson loop is multiplied by a phase corresponding to a nontrivial center element of the
gauge group. Specifically, in the SU(2) color case, each piercing contributes a phase (−1) = exp(±iπ), whereas in the
SU(3) color case, two distinct phase factors are possible, corresponding to the two possible quantized vortex fluxes,
namely, exp(±i2π/3). Note, thus, that there is no physical distinction in the SU(2) case between the two orientations
of vortex flux, as already mentioned further above. To cast these properties into precise language, in terms of the
variables qµν(x), consider evaluating an elementary Wilson loop, i.e., the plaquette Uκλ(y), starting at the (dual)
lattice site y, integrating first into the positive κ direction, then into the positive λ direction, and continuing around
the plaquette. This plaquette is pierced (only) by the lattice elementary square qµν(x), with the indices κ, λ, µ, ν
spanning all four space-time dimensions and x = y + ( ~eκ + ~eλ − ~eµ − ~eν)a/2, where a denotes the lattice spacing.
Thus, Uκλ(y) is determined exclusively by qµν(x) as

Uκλ(y) = exp(iπ/N · ǫκλµνqµν(x)) (2)

where N is the number of colors and the usual Euclidean summation convention over Greek indices applies. An
arbitrary Wilson loop can be evaluated [21] by finding a tiling of that loop by a set of plaquettes, and multiplying the
values (2) of those plaquettes in the given vortex configuration.
To probe static meson-meson potentials, one measures the correlator of two (flat) Wilson loops of size R × T ,

i.e., the quark and antiquark in each static meson are separated by a distance R in a spatial direction and are
propagating in time direction, with distance D between the two mesons in an orthogonal spatial direction. To probe
static baryon–anti-baryon potentials, the spatial setup depicted in Fig. 1b was adopted: Two Wilson loops of size
R × T (static mesons) with opposite orientation are combined to construct a propagating static linear baryon, i.e.,
the three quarks in the baryon lie equidistantly along one line with total extent 2R. This pair of Wilson loops
is then again correlated with a mirrored pair of loops for the anti-baryon at distance D. A comment is in order
concerning this particular choice for the spatial arrangement of the quarks, which is owed to computational simplicity.
A realistic baryon of course is not described by any particular static arrangement of quarks, but by a wave function
which features a finite probability density for linear, triangular, and a continuum of other spatial arrangements of
the quarks (presumably, approximately triangular arrangements are somewhat more likely than approximately linear
ones). Studying all these possibilities in a representative manner lies beyond the scope of this work. No particular

2 A correlator of two Polyakov loops can be viewed as a special case of a Wilson loop, extending along the entire temporal direction of the
lattice; note that no path ordering issues arise in the present case, owing to the Abelian character of the Z(N) vortex configurations.

3 Wilson loops are defined on the lattice which is dual to the one on which the vortex world-surfaces are defined, i.e., on a lattice shifted
by the vector (a/2, a/2, a/2, a/2), where a is the lattice spacing. Consequently, the notion of a Wilson loop area being pierced by a
vortex world-surface is unambiguous.
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choice will adequately represent an actual baryon; this is not the intent of the present study. Instead, the focus lies on
the gluonic dynamics alone, namely, on the confining bond rearrangements given a collection of quarks. To address
this question, a particular spatial arrangement is selected from among the continuum which occurs in a baryon. The
linear arrangement has the advantage that all bonds occur along lattice axes, and therefore the resulting data do not
have to be disentangled with respect to, e.g., effects of rotational symmetry breaking when bonds do not lie along
axes. As already noted above, a detailed study of the baryonic Y law, including off-axis bonds, was carried out in [21].
In practice, in the present work, the Wilson loops were chosen to extend over the entire temporal extent of the

lattice, in which case the correlators described above take the form of multiple Polyakov loop correlators. Static
meson-meson correlators are obtained from four, static baryon–anti-baryon correlators from six Polyakov loops, see
Fig. 1.
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FIG. 1. Polyakov loop setups for static a) meson and b) baryon correlators.

To reduce the numerical noise contaminating the mesonic and baryonic Polyakov loop correlator measurements as
far as possible, the noise reduction technique introduced by Lüscher and Weisz [61] was employed, adapted to the
random center vortex world-surface model [21]:
As noted in conjunction with (1), the vortex world-surface action takes the form of a sum over contributions

associated with lattice links. The contribution at each link couples only elementary squares attached to the link. The
action can thus be decomposed in the form

S[q] ≡ S[qt, qs] = St[qt] +
∑

i

Si[qt, qsi ] , (3)

where the set of variables qt represents all elementary squares that extend into the time and one space direction,
whereas the set of variables qsi represents the elementary squares extending into two spatial directions at fixed lattice
time i. The Si piece of the action thus contains the sum over spatial links at lattice time i, and St contains the sum
over all temporal links. The constraint of continuity of flux can be treated in an analogous manner; it is a constraint
that must be satisfied at each lattice link separately [21], and in each case involves precisely the elementary squares
attached to the link in question. The constraint therefore factorizes into terms which either only couple the variables
qt and qsi at fixed lattice time i, or couple only the variables qt. One can thus express the constraint of continuity of
flux in the form

δ[q] ≡ δ[qt, qs] = δt[qt]
∏

i

δi[qt, qsi ] . (4)

Finally, Wilson loop observables obey a similar decomposition. As noted above in conjunction with Eq. (2), a Wilson
loop W is simply given as a product over the plaquettes making up a tiling of the loop. Each of the plaquettes is
determined exclusively by its dual vortex elementary square via Eq. (2); one can therefore group the product into
factors as

W [q] ≡ W [qt, qs] =
∏

i

W i[qt, qsi ] . (5)

The noise reduction method given by Lüscher and Weisz operates by introducing a hierarchy into the Monte Carlo
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averaging of W over the variables q, governed by the action S and the constraint δ, as follows,

〈W 〉{q;δ;S} =
1

Z

∫

[Dqt]δt[qt] exp(−St[qt])
∏

i

∫

[Dqsi ]δ
i[qt, qsi ]W

i[qt, qsi ] exp(−Si[qt, qsi ]) =

〈

∏

i

〈W i〉{qs
i
;δi;Si}[q

t]

〉

{q;δ;S}

I.e., one keeps the variables qt fixed while performing the inner averagings over the sets of variables qsi according to
the corresponding actions Si and constraints δi; then, the outer expectation value over the product of these inner
averages, taken over the full set of variables q according to the full action S and the full constraint δ, may fluctuate
much less than if one were simply to average the original Wilson loop W [q]. As noted in section II, updates of the
random vortex world-surfaces are performed on all six surfaces of an elementary three-dimensional cube in the lattice
simultaneously; in the inner averaging step, therefore, only cubes extending into three spatial directions, i.e., lying in
a fixed time slice, are updated.
This algorithm can be straightforwardly iterated, i.e., further levels of averaging can be introduced in which, at each

level, the quantities being averaged only depend on a subset of the variables on which the quantities at the next-lower
level depended. Concretely, from the set of variables qt a further subset can be selected which is kept fixed while
one averages over its complement, provided the action, the constraint and the observable can still be decomposed
analogously to Eqs. (3)-(5). In the present work, one additional such iteration was performed, namely, the set of
variables qt was partitioned into the sets qt2i of squares extending from lattice time (2i− 1) to lattice time (2i), with
the remaining squares constituting the set q̄t which is again kept fixed at this second level in the hierarchy. This
partitioning again yields decompositions of the type (3)-(5), given that for any i, the set of variables qt2i only enters
the product of inner averages

〈W 2i−1〉qs
2i−1

;δ2i−1;S2i−1〈W 2i〉qs
2i
;δ2i;S2i .

In this second level of averaging, therefore, one performs updates associated with all elementary three-dimensional
lattice cubes except for the ones extending from even lattice times 2i to the next higher odd lattice times 2i+ 1.
Finally, note that the auto-correlations between successive measurements can be practically rendered negligible by

updating the full configuration a significant number of times before evaluating the next sample. This adds only a small
overhead to the total execution time, which is dominated by the time required for the computation of the time-slice
averages, but exponentially reduced compared to measuring the observable with the same accuracy but without the
error reduction method [61].

IV. MEASUREMENTS AND RESULTS

We measure static meson-meson and baryon–anti-baryon correlators on 163 × 4 lattices, which is still well in the
confinement phase; the deconfinement transition occurs between inverse temperature T = 2 and T = 1 for both
Z(2) and Z(3) models with optimized curvature action parameters, cf. Eq. (1), namely, c = 0.24 and c = 0.21
respectively [16, 19]. The corresponding string tensions are very similar, σa2 = 0.755 in the Z(2) case [16] and
σa2 = 0.766 for the Z(3) vortex model [21], implying a lattice spacing of about a = 0.39 fm in both cases if one
sets the zero-temperature string tension to σ = (440MeV )2. In practice, it turned out to be efficient to carry
out the innermost averaging in the error reduction method by Lüscher and Weisz [61] described above using 8000
configurations; in the second-level averaging, 800 configurations were used. For the outermost averaging, typically 200
configurations were enough to achieve a sufficient level of accuracy. The correlator eventually becomes sensitive to the
double-precision machine accuracy at −log〈W (R, T = 4)xW (R, T = 4)x+D〉/T = 6, i.e., for individual meson/baryon
loops 〈W (R, T = 4)〉 ≈ 10−12.

A. Static meson-meson correlator in Z(2) and Z(3) vortex background

We show the static meson-meson potential −log〈W (R, T = 4)xW (R, T = 4)x+D〉/T for various quark source
separations R and distances D between two static mesons in Fig. 3 for the Z(2) case and in Fig. 4 for the Z(3) vortex
model. The potential is in fact symmetric with respect to R and D; the plots for constant R and D, respectively,
hence lie on top of each other4. Once the distance D between the two static mesons becomes smaller than the quark

4 It should be noted that this R − D symmetry is manifest in the multiple Polyakov loop correlators which are being evaluated in the
present specific calculational setup; on the other hand, for general Wilson loop correlators which do not extend over the entire temporal
extent of the lattice, one would presumably have to take care to allow for sufficiently long Euclidean time evolution in order to render
switching on-and-off effects, which break the symmetry, negligible, and thus recover the R−D symmetry.
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source separation within the mesons, i.e., the spatial meson loop extent R, we observe bond rearrangement, i.e., the
chromoelectric strings will always connect quark sources such as to minimize their combined length. The potential
follows a direct area law as predicted by vortex models; the bond rearrangement just means that the correlator will
always measure the minimal area of possible Polyakov loop combinations, and its values can be easily reproduced by
the form 2Rσ or 2Dσ respectively, indicated by blue (dashed) and cyan (short dashed) lines using the corresponding
string tensions from above. As the two string tensions are almost the same, also Z(2) and Z(3) results are likewise
and we only show the Z(2) correlator as a 3D plot in Fig. 2a vs. R and D, reflecting the R − D symmetry, and
the bond rearrangement, i.e., minimal area behavior. As long as machine precision is sufficient, i.e., up to distances
R = 4 or D = 4, the potentials nicely follow the cyan (short dashed) and blue (dashed) predictions of minimal area:
the potential first scales linearly with quark (meson) separation and stays constant once the active bonds are not
extended anymore. At bond rearrangement regions where R ≈ D the data show small deviations which are most likely
caused by mixed states. At small separations, cf. Figs. 3a,b and 4a,b, the potentials are still affected by short-distance
modifications to the asymptotic linear behavior, and thus they lie slightly above the constant blue (dashed) line.
Defining the potential energy V (R) to asymptotically go to zero, i.e. V (R) = E(R)− E(∞), we have to shift our

potentials by their asymptotic values 2Rσ, i.e., the two mesonic areas, in order to compare our results with SU(2)
and SU(3) lattice studies [62, 63]. Taking into account the fixed lattice spacing a = 0.39 fm of the vortex models and
the fact that center vortices do not reproduce Coulomb effects, the potentials are reproducing QCD results including
the bond rearrangement behavior [64], compare for example Fig. 4b and Fig. 1b in [63].
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FIG. 2. a) Z(2) static meson-meson Polyakov loop correlators −log〈W (R,T = 4)xW (R,T = 4)x+D〉/T for various distances R
between quark and anti-quark and distances D between static mesons on 163 × 4 lattices (the Z(3) results look, apart from the
slightly different string tension, the same). b) The expectation values of the static meson-meson correlator are given by the
minimal area of possible Polyakov loop combinations and display bond rearrangement between the quarks if D < R, compare
to Fig. 1a.

B. Static baryon–anti-baryon correlator in Z(3) vortex background

In Figs. 5 and 6a we present 2D and 3D plots of static baryon–anti-baryon potentials in the Z(3) vortex model with
respect to quark source separations R and baryon distances D. There is no more R −D symmetry, which becomes
clear in Fig. 6b, when after bond rearrangement we do not correlate a static baryon and anti-baryon anymore, but
rather three static mesons. Hence, we have four mesonic loops making up the static baryon and anti-baryon vs. three
static meson loops, and as the same minimal area law behavior as above applies, the plateau ratios 4Rσ : 3Dσ in
Fig. 5 can be easily understood. A nice detail is observed for static baryons with R = 8 on our lattices with spatial
lattice extent 16: In this case, the outer sources in the baryon and in the anti-baryon, respectively, share the same
spatial position and couple (3 ⊗ 3 → 3̄, 3̄ ⊗ 3̄ → 3), leaving a static meson-meson correlator, as is evident from the
constant D data (green lines, dashed) which drop at R = 8 from 3Dσ to 2Dσ. Thus, the potentials again follow
nicely the minimal area predictions; however, the signal becomes limited owing to machine precision limitations for R
resp. D > 2. Nevertheless, the potential energy redefined to asymptotically go to zero, i.e., shifted by the asymptotic
value 4Rσ (two baryonic areas), is again in good agreement with SU(3) lattice studies [65], keeping in mind the fact
that center vortices do not reproduce a Coulomb potential and short distance effects can not be studied within the
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vortex models at fixed lattice spacing a = 0.39 fm.
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on 163 × 4 lattices, compared with minimal area law predictions in cyan (short dashed) for constant D data (green, dashed)
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and in magenta (dashed) for constant R data (red, solid). The plateau ratios 4Rσ : 3Dσ can be understood from the Polyakov

loop setup shown in Fig. 6b, it is simply the area ratio of the Polyakov loop correlators in R vs. D direction. For constant

D plots (green, dashed), the data drop from the 3Dσ plateau to 2Dσ at R = 8 since, in this case, one is left with a static

meson-meson correlator because the two outer quarks (anti-quarks) of the initial static baryon (anti-baryon) recombine to a

anti-quark (quark) source. The R = 8 (red, solid) line in the bottom right plot (h) corresponds to the static meson-meson

correlator in Fig. 4h. Range of extracted lattice data is limited by machine precision.
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FIG. 6. a) Z(3) static baryon–anti-baryon potentials (Polyakov loop correlators) −log〈W (R,T )xW (R,T )x+D〉/T for various
distances R, with T = 4, between quarks (or anti-quarks), and distances D between static baryon and anti-baryon on 163 × 4
lattices. b) Polyakov loop setup reflects the plateau ratios 4Rσ : 3Dσ in Fig. 5, i.e., 4 meson loops in R direction vs. 3 in D
direction, meaning that, if 3D < 4R, bond rearrangement between the quark sources changes the static baryon–anti-baryon
into three static mesons.

V. CONCLUSIONS

Complementing earlier results within random center vortex world-surface models, which successfully describe the
confinement-deconfinement transition and reproduce (spatial as well as temporal) string tensions, topological suscep-
tibility and the (quenched) chiral condensate, we analyze static meson-meson and baryon–anti-baryon potentials in
Z(2) and Z(3) center vortex backgrounds. To this end, we calculate multiple Polyakov loop correlators corresponding
to static meson-meson and baryon–anti-baryon configurations in a hypercubic lattice model of random vortex world-
surfaces, an effective model for the infrared sector of Yang-Mills theory. An analysis of this type, namely, of the
area law associated with pairs of flat Wilson loops in a center vortex background, similar to the analysis of multiple
Polyakov loop correlators performed here, had also been suggested previously in [60].
We find that the expectation values of the static meson-meson and baryon–anti-baryon correlators follow a minimal

area law. Bond rearrangement results when the mesons resp. the baryon and anti-baryon become too close to one
another, i.e., it becomes energetically favorable to recombine the quark sources to two resp. three complementary
static meson pairs. No evidence of long-distance tails in the potentials, i.e., van der Waals type forces, is found as
the bonded clusters are separated; the confining bonds in the clusters thus appear to be truly saturating. Cluster
separation occurs already at finite distances, not only in an asymptotic sense. These properties are expected for
the confining dynamics governing quarks in the strong interaction [64], and our results are in good agreement with
SU(2) and SU(3) lattice studies [62, 63, 65] at long distances, keeping in mind the fact that center vortices do not
reproduce a Coulomb potential, and short distance effects cannot be studied within the vortex models at fixed lattice
spacing a = 0.39 fm. It should be emphasized that there is no conclusive a priori argument in favor of the (plausible)
conjecture that the random vortex world-surface model exhibits this behavior, i.e., that it generates a strict minimal
area law at finite separations as described above. Thus, our study constitutes a nontrivial test of the random vortex
world-surface model, investigating aspects of the confining dynamics of the model which had not been previously
probed. The model indeed reproduces the confinement characteristics expected within the strong interaction.
Work is in progress to investigate static meson-meson correlators in random center vortex models using quadratic

and circular Wilson (not Polyakov) loop correlators, focusing on the minimal area law [66]. Motivated by the minimal
surface of revolution problem, we aim to analyze possible signs of catenary solutions.
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