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We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular
momentum operators defined in the nucleon spin sum rule of X. S. Chen et al. are the same
as those whose matrix elements correspond to the moments of generalized transverse momentum
distributions. This completes the connection between the infinite momentum limit of each term in
that sum rule and experimentally measurable observables. We also show that these orbital angular
momentum operators can be defined locally, and discuss the strategies of calculating them in lattice
QCD.
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Apportioning the longitudinal spin of a fast-moving
nucleon among its quark and gluon partons is one of the
most challenging issues in QCD. The quark spin mea-
sured in deep-inelastic scattering (DIS) experiments con-
tributes about 25% to the proton spin [1], and a lot of
experimental and theoretical effort has been devoted to
determining the remaining pieces in the past 25 years. A
recent global analysis [2] that includes the high-statistics
2009 STAR [3] and PHENIX [4] data shows evidence of
non-zero gluon helicity in the proton. At Q2 = 10 GeV2,
the polarized gluon distribution ∆g(x,Q2) is found to be
positive and away from zero in the momentum fraction
range 0.05 ≤ x ≤ 0.2. However, the result presented in [2]
still has large uncertainty in the small-x region. Given
that the integral value of ∆g(x,Q2) from x = 0.05 to 0.2
is about 40% of the proton spin [2], there is still room for
substantial contribution from the quark and gluon orbital
angular momenta (OAM). To fully understand the pro-
ton spin structure, one needs to find the spin and OAM
operators whose matrix elements give the partonic con-
tributions that are both measurable in experiments and
calculable in theory, especially, in lattice QCD which is
a well-established non-perturbative approach to solving
QCD. Compared to the quark spin and gluon helicity,
parton OAM are still difficult to measure, while little
progress has been made in their lattice calculation.

In this work, we address the question of orbital contri-
butions, and show that the OAM operators in the gauge-
invariant nucleon spin sum rule of Chen et al. [5, 6],
when boosted to the infinite momentum frame (IMF), are
equal to those whose matrix elements correspond to the
moments of generalized transverse momentum distribu-
tions (GTMD). The latter contain information of parton
OAM, and their measurement has been speculated in re-
cent studies [7–9]. We also show that the OAM operators
in [5, 6] can be defined locally on the lattice, and outline
the ways to calculate their matrix elements. Therefore,
our work demonstrates that the experimental observables
for parton OAM are accessible through practical lattice
calculations.

The quark spin and gluon helicity measured in DIS
experiments can be incorporated into the naive nucleon

spin sum rule by Jaffe and Manohar [10]:

1

2
=

1

2
∆Σ + Lq +∆G+ Lg , (1)

where each individual term is defined to be the proton
matrix element of canonical spin and OAM operators in
the IMF (or on the light-cone) with the light-cone gauge
A+ = 0:

~Jcan =

∫

d3x ψ†
~Σ

2
ψ +

∫

d3x ψ† ~x× (−i~∇)ψ

+

∫

d3x ~Ea × ~Aa +

∫

d3x Ei
a ~x× ~∇Ai,a .(2)

Here a and i are the color and spatial Lorentz indices.
As is well known, ∆Σ and ∆G are the first moments of

polarized quark and gluon distributions which are given
by light-cone correlation functions [11]. Meanwhile, there
are attempts to define canonical OAM distributions and
relate them to experiments [12]. One proposal based
on quark models suggests that Lq is related to a trans-
verse momentum distribution (TMD) function h⊥1T [13–
16] which is measurable in semi-inclusive DIS experi-
ments [17, 18]. Furthermore, in a model-independent
proposal, Lq is directly given by a Wigner distribution
W q

LC, or GTMD F q
1,4 [19–24]:

Lq(x) =

∫

d2~b⊥d
2~k⊥(~b⊥ × ~k⊥)zW q

LC(x,
~b⊥, ~k⊥)

= −
∫

d2k⊥
~k2⊥
M2

F q
1,4(x, 0,

~k2⊥, 0, 0) , (3)

where M is the nucleon mass, ~b⊥ and ~k⊥ are the relative
average transverse position and momentum of the quark,
and “LC” stands for a specific choice of the gauge link
that corresponds to semi-inclusive DIS or Drell-Yan pro-
cesses. There is also similar relationship between Lg and
the gluon Wigner distribution or GTMD. The definition
of Lq in Eq. (3) has clear partonic interpretation, and it
is suggested that F q

1,4 can be measured in parity-violating
deeply virtual Compton scattering processes that involve
more than one hadronic reaction planes [7, 8]. Besides, it
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is also proposed that the gluon Wigner distribution can
be measured at small x in hard diffractive dijet produc-
tion [9].
Since the canonical quark and gluon OAM are defined

in the light-cone plane and gauge which involve linear
combinations of the spatial and and real time coordi-
nates, they are not directly accessible in lattice QCD
that uses imaginary time. Nevertheless, there has been
recent progress on the lattice calculation of TMD func-
tions [25–27], where a spatial gauge link is used in the
calculation and the result is evolved to the IMF to obtain
the light-cone correlator. This approach can be general-
ized to calculate Lq and Lg via Eq. (3).
A new perspective is provided in [28] which proves that

the frame-dependent gluon spin operator in [5, 6] is equal
to that defined from the first moment of ∆g(x,Q2) in
the IMF limit. Since the gluon spin operator does not
depend on time, its matrix element can be calculated in
lattice QCD, and is related to ∆G through a perturba-
tive matching condition in the large momentum effective
theory (LaMET) [29–32]. An attempt to calculate ∆G
in lattice QCD with this gluon spin operator has been
carried out recently [33, 34].
Inspired by this discovery, we explore the connection

between GTMD and the OAM operators in the gauge-
invariant nucleon spin sum rule by Chen et al. [5, 6],

~J =

∫

d3x ψ†
~Σ

2
ψ +

∫

d3x ψ†~x× i ~Dpureψ

+

∫

d3x ~E × ~Aphys +

∫

d3x Ei(~x × (− ~Dpure))A
i
phys ,

(4)

where i is the spatial Lorentz index. Here Dµ
pure =

∂µ − igAµ
pure and Dµ

pure ≡ ∂µ − ig[Aµ
pure, ] are the

gauge-covariant derivatives acting on the fundamental
and adjoint representations, respectively, with Aµ =
Aµ

phys + Aµ
pure, which is the QCD analogue of the well-

known Helmholtz decomposition ~A = ~A⊥+ ~A‖ in electro-
dynamics. To make each term in Eq. (4) gauge invariant,
one requires that under a gauge transformation g(x),

Aµ
phys(x) → g(x)Aµ

phys(x)g
−1(x) ,

Aµ
pure(x) → g(x)

(

Aµ
pure(x) +

i

g
∂µ

)

g−1(x) . (5)

In addition, to find a solution, it is suggested [6] that
Aµ

phys satisfies the non-Abelian transverse condition,

DiAi
phys ≡ ∂iAi

phys − ig[Ai, Ai
phys] = 0 , (6)

while Aµ
pure is constrained by a null-field-strength condi-

tion,

Fµν
pure ≡ ∂µAν

pure−∂νAµ
pure− ig[Aµ

pure, A
ν
pure] = 0. (7)

According to [28], in the IMF limit, A+
pure = A+. By

setting ν = +, one obtains a first-order linear equation

for Aµ
pure from Eq. (7),

∂+Aµ,a
pure + gfabcA+,bAµ,c

pure = ∂µA+,a . (8)

The solution is given by

Aµ,a
pure(z

−) = −1

2

∫

dz′−K(z′− − z−)

×
(

∂µA+,b(z′−)Lba(z′−, z−)
)

,(9)

where the light-cone coordinates z± = (x0 ± x3)/
√
2.

The kernel K(z′−−z−) is related to the boundary condi-
tion [21]. Here L is a light-cone gauge link defined in the
adjoint representation. We can easily obtain Aµ,a

phys by
subtracting Aµ,a

pure from Aµ,a. After integration by parts,

this solution for Aµ,a
phys is identical to the one found by

Hatta [21, 35],

Aµ
phys(z

−) = −1

2

∫

dy−K(y− − z−)W−
zyF

+µ(y−)W−
yz ,

(10)
where the light-cone gauge link W−

zy is defined in the
fundamental representation. Note that it only requires
A+

pure = A+ or A+
phys = 0 in the IMF limit to get Eq. (8),

thus Eq. (6) actually belongs to a universality class of
conditions that can be used to fix Aµ

phys and Aµ
pure [29].

According to Eq. (9), if A+ = 0, then Aµ
pure = 0, Aµ

phys =
Aµ. Therefore, the OAM operators of Chen et al. in
Eq. (4), when boosted to IMF and fixed in the light-cone
gauge, become those of Jaffe and Manohar in Eq. (2).
Under an infinite Lorentz boost along the z direction,

the equal-time plane is tilted to the light-cone, and the bi-
linear operator ψ̄γ0 · · ·ψ transforms into ψ̄γ+ · · ·ψ. The
quark OAM Lq defined in Eq. (4) becomes

lim
P z→∞

Lz
q =

∫

dz−d2zT ψ̄(z)γ
+(z1iD̃2

pure−z2iD̃1
pure)ψ(z) ,

(11)

where D̃µ
pure is the covariant derivative with Aµ,a

pure(z
−)

given in Eq. (9).
In the same limit, Ei = F i0 with i = 1, 2 transforms

into F i+, while E3 = F+− remains the same; whereas
A3

phys becomes A+
phys that vanishes according to [28].

Therefore, the IMF limit of the gluon OAM Lg in Eq. (4)
is

lim
P z→∞

Lz
g =

∫

dz−d2zT E
i(z)(−z1D̃2

pure+z
2D̃1

pure)A
i
phys(z) .

(12)
Now recall that the quark GTMD function,

f(x,~kT , ~∆T )

≡
∫

dz−d2zT
(2π)3

eixP̄
+z−−i~kT ·~zT 〈P ′S|ψ̄(−z

−

2
,−zT

2
)γ+

×W−
− z

2
,±∞WT

−
zT

2
,
zT

2

W−
±∞, z

2

ψ(
z−

2
,
zT
2
)|PS〉 , (13)

where P = P̄ − ∆/2, P ′ = P̄ + ∆/2, ∆+ = 0, and
WT

−
zT

2
,
zT

2

is a straight-line gauge link connecting the
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transverse fields at light-cone infinity. Here ±∞ cor-
respond to the link choices for semi-inclusive DIS and
Drell-Yan processes.
In [21], it is proved that

∫

dxd2kT kiT f(x,
~kT , ~∆T )

=
1

2P̄+
〈P ′S|ψ̄(0)γ+(iD̃i

pure − i
←−̃
D i

pure)ψ(0)|PS〉,(14)

where
←−̃
Dµ

pure =
←−
∂ µ + igAµ

pure, and Aµ
pure is exactly the

solution in Eq. (9). Therefore, combining Eqs. (11) and
(14), one obtains

lim
P z→∞

〈Lz
q〉 =

1

2P+

1

(2π)3δ(3)(0)
〈PS|

∫

dz−d2zT

×ψ̄(z)γ+ǫijzi(iD̃j
pure − i

←−̃
D j

pure)ψ(z)|PS〉

= ǫij lim
∆→0

∂

i∂∆i
T

∫

dxd2kT kjT f(x,
~kT , ~∆T )

= −
∫

d2k⊥
~k2⊥
M2

F q
1,4(x, 0,

~k2⊥, 0, 0) , (15)

with ǫ12 = −ǫ21 = 1, and ǫ11 = ǫ22 = 0.
Similarly, one can prove that

lim
P z→∞

〈Lz
g〉 =

1

2P+

1

(2π)3δ(3)(0)
〈PS|

∫

dz−d2zT

×F+
α(z)ǫ

ijzi(−D̃j
pure)A

α
pure(z)|PS〉

= ǫij lim
∆→0

∂

i∂∆i
T

∫

dxd2kT kjT g(x,
~kT , ~∆T )

= −
∫

d2k⊥
~k2⊥
M2

F g
1,4(x, 0,

~k2⊥, 0, 0) , (16)

with the gluon GTMD [24, 36],

g(x,~kT , ~∆T )

≡ − i

2xP̄+

∫

dz−d2zT
(2π)3

eixP̄
+z−−i~kT ·~zT

×〈P ′S|F+α(−z
−

2
,−zT

2
)W−

− z

2
,±∞WT

−
zT

2
,
zT

2

×W−
±∞, z

2

F+
α(
z−

2
,
zT
2
)|PS〉 , (17)

where the gauge links are defined in the adjoint represen-
tation.
This finishes our proof that the quark and gluon OAM

in Eq. (4) in the IMF limit are the same as those whose
matrix elements correspond to GTMD moments. Fur-
thermore, when fixed to the light-cone gauge, they re-
duce to the canonical OAM in the Jaffe-Manohar sum
rule. This is our main result.
Since the OAM operators in Eq. (4) do not depend on

the light-cone coordinates, their matrix elements can be
calculated in lattice QCD and related to the parton OAM
in the IMF through a perturbative matching condition

which has already been derived at one-loop order [32].
Therefore, we provide a new direction of theoretical de-
termination of the parton OAM that can be measured in
experiments.
As far as lattice calculation is concerned, solutions for

Aµ
phys and Aµ

pure satisfying Eqs. (5–7) can be obtained

through a gauge link fixed in the Coulomb gauge [37,
38]. To be specific, one starts from a link variable (or
Wilson line) Uµ(x) ≡ exp(−iagAµ(x)) on the lattice that
connects x to x + aµ̂, where a is the lattice spacing and
µ̂ is the unit vector in the µ direction. Under a gauge
transformation, Uµ(x) transforms as

Uµ(x)→ U ′µ(x) = g(x)Uµ(x)g−1(x+ aµ̂) , (18)

under a gauge transformation g(x). By finding
a gauge transformation gc that makes Uµ(x) =
gc(x)U

µ
c (x)g

−1
c (x + aµ̂) where Uµ

c (x) is fixed in the
Coulomb gauge, one can define a new gauge link Uµ

pure

and obtain the solution for Aµ
phys [38],

Uµ
pure ≡ gc(x)g

−1
c (x+ aµ̂),

Aµ
phys ≡

i

ag

(

Uµ(x)− Uµ
pure(x)

)

=
i

ag
gc(x)(U

µ
c (x)− 1)g−1

c (x) +O(a)

= gc(x)Ac(x)g
−1
c (x) +O(a) . (19)

This is the finite version of the result in the continuum
theory [37]. One can check that Aµ

phys so defined sat-

isfies the gauge transformation law in Eq. (5) with Uµ
c

being unchanged and gc transforming as g′c = ggc. A
straight-forward calculation confirms that Eqs. (6–7) are
also satisfied up to O(a) corrections which vanish in the
continuum limit. In this way, Aµ

phys is a local opera-
tor after imposing the non-Abelian transverse condition
and the OAM operator can be renormalized with stan-
dard perturbative or non-perturbative methods. This
approach has been applied to the recent attempt to cal-
culate ∆G [33, 34]. It can be used to calculate OAM
from the operators defined in Eq. (4), too. Since the
non-Abelian transverse condition is not the only one to
define Aµ

phys, one can also try other possibilities like the

axial gauge condition [29] on the lattice.
Note that Lq resembles the mechanical OAM in the

sum rule by Ji [39], except that the covariant derivative
Dµ in the latter is replaced by Dµ

pure. Ji’s sum rule is
based on a gauge-invariant and frame-independent de-
composition of the nucleon spin, so each individual con-
tribution is the same in arbitrary frame including the
IMF. This allows for a lattice calculation of the quark
OAM and total gluon angular momentum near the rest
frame of the proton, which has been carried out on a
quenched lattice [40]. In practice, an operator with
explicit dependence on the spatial coordinates poses a
problem for the direct calculation of its forward ma-
trix element due to periodic boundary conditions [41],
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so in [40] the quark OAM is not directly calculated. In-
stead, it is obtained by subtracting the quark spin from
the total quark angular momentum. The latter is cal-
culated from the Belinfante-improved symmetric energy-
momentum tensor T µν

q ,

J i
q =

1

2
ǫijk

∫

d3x
(

T 0k
q xj − T 0j

q xk
)

, (20)

T µν
q =

1

2

[

ψ̄γ{µiDν}ψ − ψ̄γ{µi←−Dν}ψ
]

, (21)

where the angular momentum Jq is obtained from the
forward limit of two form factors of T µν

q ,

Jq =
1

2
[T1(0) + T2(0)] . (22)

One might think of the same approach to obtain Lz
q by

using the symmetric energy-momentum tensor

T ′µν
q =

1

2

[

ψ̄γ{µiDν}
pureψ − ψ̄γ{µi

←−
Dν}

pureψ
]

. (23)

However, with this definition, Eq. (20) cannot be used;
that is, the right-hand side of Eq. (20) will produce the
quark angular momentum plus extra terms. Therefore,
the sum rule in Eq. (22) cannot be used, either. If, how-
ever, one adopts the asymmetric energy-momentum ten-
sor,

T µν
q−asy = ψ̄γµiDν

pureψ , (24)

one can obtain Lq via Eq. (20). Since the frame-
dependence of Dµ

pure in T µν
q−asy spoils the simple

parametrization of its off-forward matrix element, one
has to introduce a temporal vector nµ = (1, 0, 0, 0) in
this case to include more Lorentz structures and form
factors, which is analogous to that formulated on the
light-cone [42]. If all the form factors can be calculated
in lattice QCD, then the quark OAM can be obtained
through a relevant sum rule.

Alternatively, one can directly calculate OAM from the
off-forward matrix element by utilizing the relation

ǫij〈P ′S|
∫

d3x ψ̄γ0xiiDj
pureψ|PS〉

= ǫij lim
|~q|→0

〈P ′S|
∫

d3x ψ̄γ0
∂

∂qi
ei~q·~xDj

pureψ|PS〉 ,(25)

and the challenge here is to have a reliable extrapolation
to the |~q| → 0 limit.

The third lattice approach is the calculation of Lq and
Lg from GTMD which can be generalized from the lattice
study of TMD as mentioned in the introduction [25–27].
One of the challenges here is the renormalization of non-
local gauge-link operators on the lattice.

In conclusion, we have proved that, in the IMF limit,
the gauge-invariant quark and gluon OAM defined by
Chen et al. in Eq. (4) are equal to those whose ma-
trix elements correspond to GTMD moments. Further-
more, each term in the angular momentum sum rule in
Eq. (4) reduces to their corresponding term in the Jaffe-
Manohar sum rule in Eq. (2) in the light-cone gauge.
The former can be calculated through local operators
on the Euclidean lattice, and their matrix elements are
matched to the physical quark and gluon OAM through
LaMET. With the development of GTMD measurement
in hard-exclusive processes, we should eventually be able
to compare the theoretical and experimental results on
the parton OAM.
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