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Abstract

We show both the leading and subleading double soft theorems of the nonlinear sigma model

follow from a shift symmetry enforcing Adler’s zero condition in the presence of an unbroken global

symmetry. They do not depend on the underlying coset G/H and are universal infrared behaviors

of Nambu-Goldstone bosons. Although nonlinear sigma models contain an infinite number of

interaction vertices, the double soft limit is determined entirely by a single four-point interaction,

together with the existence of Adler’s zeros.
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I. INTRODUCTION

The study of soft massless particles has a long and rich history [1–6]. The subject gained

renewed interest following Refs. [7, 8], which stimulated many new analyses [10–13]. More

recently Ref. [11] proposed new double soft theorems for massless scalars in a variety of

quantum field theories, based on the study of scattering equations [14]. In particular, for

nonlinear sigma models (NLSM) with a U(N) color structure,1 they presented the following

double soft theorems for a color-ordered partial amplitude

M(1, 2, · · · , n, n+ 1, n+ 2) =
(
S(0) + S(1)

)
M(1, 2, · · · , n) +O(τ 2) , (1)

where momenta of particles n + 1 and n + 2 are taken soft, pµn+1 = τpµ and pµn+2 = τqµ, as

τ → 0. The leading and subleading soft factors are

S(0) =
1

2

(
pn · (pn+1 − pn+2) + pn+1 · pn+2

pn · (pn+1 + pn+2) + pn+1 · pn+2

+
p1 · (pn+2 − pn+1) + pn+2 · pn+1

p1 · (pn+2 + pn+1) + pn+2 · pn+1

)
, (2)

S(1) =
pn+1,µpn+2,ν

pn · (pn+1 + pn+2) + pn+1 · pn+2

Jµνn +
pn+2,µpn+1,ν

pn · (pn+2 + pn+1) + pn+2 · pn+1

Jµν1 , (3)

where Jµνa is the total angular momentum operator acting on the ath scalar particle

Jµνa ≡ pµa
∂

∂pa,ν
− pνa

∂

∂pa,µ
. (4)

The leading double soft factor S(0) contains the famous Adler’s zero [4] when either pµ → 0

or qµ → 0. Expanding to the first order in τ , it also reproduces the double soft limit

proposed in Ref. [7],2 which was later studied using BCFW-like recursion relations [9]. The

subleading double soft factor S(1) was proven with also recursion relations [13].

However, it is well-known from the early work of soft pion theorems [4–6] that emission of

soft pions often are uniquely determined by current algebra, i.e. commutators of vector and

axial currents. Therefore, they are dictated by the Ward identities, which are statements of

the symmetry in the system. Indeed, many of the recent results concentrate on relating soft

theorems to symmetries [8, 12]. This is the viewpoint we wish to pursue. In particular, we

will see that it is possible to derive the double soft theorems for the full scattering amplitudes,

i.e. the S-matrix elements, without recourse to color-ordered partial amplitudes.

1 It is customary to call this ”color”, even though it is really the ”flavor” structure for NLSM [9].
2 Early studies on the double soft pion emission, using techniques of current algebra, can be found in [5, 6]
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More specifically, we consider a set of scalars πa transforming under an unbroken global

symmetry group H and impose a set of shift symmetries to forbid a scalar mass term,

πa → πa + εa + · · · , (5)

We will see that this condition, together with the requirement of preserving the global

symmetry H for interaction vertices, is sufficient to prove the double soft theorems in Eq. (1),

without recourse to BCFW-like recursion relations. The proof is similar in spirit to the

derivation of soft-gluon and soft-graviton theorems using on-shell gauge invariance at tree-

level [2, 12].

This work is organized as follows. We first clarify the relation between shift symmetry

and Adler’s zeros in the next Section, and establish the four-point interaction satisfying both

the Adler’s zero condition and the unbroken global symmetry group H. Derivation of the

double soft theorems in NLSM for the full amplitude is presented in Section III. We end

with the Discussions section and also comment on how to recover the double soft theorem

for color-ordered partial amplitudes in Eq. (1) from our results.

II. SHIFT SYMMETRY AND ADLER’S ZEROS

We start with a set of scalars πa furnishing a linear representation of an unbroken global

symmetry group H, whose group generators T r satisfy the Lie algebra

[T r, T s] = if rstT t . (6)

Under an infinitesimal action of H, the scalars transform as

πa(x)→ πa(x) + iαr(T r)abπ
b(x) , (7)

where (T r)ab is the matrix entry of the generator T i in the particular representation under

consideration. Similar to Ref. [15], we adopt a basis where T r is purely imaginary and

anti-symmetric, so that all scalar fields are taken to be real. This is equivalent to writing a

complex scalar in terms of its real and imaginary components.

We further assume there is a set of shift symmetries acting on πa,

πa → πa + εa + · · · , (8)
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where · · · contains higher order terms we ignore for now. Assuming the lagrangian is invari-

ant under the shift symmetry,

L[π]→ L[π] for πa → πa + εa , (9)

a scalar mass term is forbidden and πa’s are strictly massless.

Without specifying any details of the theory, one can derive the Ward identity corre-

sponding to the shift symmetry in the path integral formalism [16], which gives

∂µ〈Aaµ(x)πa1(x1) · · · πan(xn)〉

= i
∑
r

〈πa1(x1) · · · πar−1(xr−1)δaarδ(4)(x− xr)πar+1(xr+1) · · · πan(xn)〉 , (10)

where the Noether current corresponding to the shift symmetry is

Aaµ =
δL

δ∂µπa
. (11)

If we take n = 1 in Eq. (10) and Fourier-transform with respect to πa1(x1), the Lehmann-

Symanzik-Zimmermann (LSZ) reduction formula then implies

i

p2
〈0|∂µAaµ(x)|πa1(p1)〉 = ifπδ

aa1e−ip1·x , (12)

leading to the famous result

〈0|Aaµ(x)|πa1(p)〉 = ifπδ
aa1pµe

−ip·x . (13)

In other words, the Noether current Aaµ has a non-vanishing matrix element between vacuum

and the one-particle state and, therefore, can create a one-particle pole for πa in the corre-

lation functions. The dimensionful parameter fπ plays the role of the pion decay constant

in low-energy QCD. For n ≥ 2, Eq. (10) and the LSZ reduction formula imply the current

conservation

pµ〈f |Ãaµ(p)|i〉 = 0 , (14)

since the right-handed side of Eq. (10) contains only n− 1 scalar fields and has a vanishing

residue when all n scalar momenta are taken on-shell. As is familiar in low-energy theorems

for pions, Eq. (13) together with the current conservation imply the single soft limit of the

scattering amplitudes of πa’s vanishes [17] :

lim
pµ→0
〈f + πa(p)|i〉 = 0 , (15)
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which is the Adler’s zero condition.

The shift symmetry in Eq. (8) implies the effective lagrangian must be derivatively cou-

pled, and at lowest order it contains only the kinetic energy,

L =
1

2
∂µπ

a∂µπa + · · · , (16)

where terms neglected are higher dimensional operators containing derivative couplings.

Beyond leading order, Ref. [15] proposed extending πa → πa + εa to second order,

πa → πa + εa − 1

3f 2
π

(T r)ab(T
r)cdπ

bπcεd , (17)

which form is dictated by the simple requirement of 1) invariance under the linearly realized

global symmetry group H and 2) it reduces to πai → πai + εai when all the other scalars

πa, a 6= ai is turned off and set to zero, so as to fulfill the Adler’s zero condition for πai .3

The lagrangian invariant under the second order shift symmetry in Eq. (17) is

L =
1

2
∂µπ

a∂µπa − 1

6f 2
π

(T r)ab(T
r)cd ∂µπ

aπbπc∂µπd . (18)

In fact, the full effective lagrangian for the NLSM, which is usually constructed using the

formalism of CCWZ [18, 19], can be reproduced to all orders in 1/fπ, without specifying the

underlying coset G/H, if the following ”Closure Condition” is satisfied [15],

(T i)ab(T
i)cd + (T i)ac(T

i)db + (T i)ad(T
i)bc = 0 . (19)

This can be viewed as a consistency condition imposed on the low-energy effective theory

constructed from the shift symmetry in the infrared. When comparing with the CCWZ for-

malism based on a particular coset G/H, the the matrix element (T i)ab should be identified

with the structure constant of the broken group G in the ultraviolet,

(T i)ab = −if iab = Tr(T i[Xb, Xa]) (20)

where T i and Xa are generators of H and G/H, respectively.4 Then the Closure condition

is nothing but the Jacobi identity of the structure constants [15]. Eq. (19) is satisfied

3 The numerical coefficient in the higher order term in Eq. (17) is arbitrary and can be absorbed into the

normalization of fπ [15].
4 With a slight abuse of notation, (T i)ab in the left-hand side of Eq. (20) denotes the generator of H in the

representation under which the scalars πa transform, while T i in the right-hand side of the equation sits

in the adjoint representation of the broken group G.
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quite commonly, for examples the adjoint representation of any Lie group, as well as the

fundamental representation of SO(N). It is, however, not fulfilled by the fundamental

representation of SU(N). In this case one need to enlarge SU(N) to SU(N) × U(1) then

the Closure condition is met.

At the order of 1/f 2
π , it is possible to work out the form of the dimension-six operator via

CCWZ to be Tr([Xa, Xb][Xc, Xd])∂πaπbπc∂πd, thereby giving support to the identification

(T i)ab = −if iab. However, the major distinction is the shift symmetry only requires infrared

data on the group generators of the unbroken group H, while CCWZ requires specifying the

ultraviolet data such as the broken group G.

Although the full CCWZ lagrangian for the nonlinear sigma model can be obtained

without knowledge of the underlying coset G/H, for the purpose of deriving the double soft

theorems we only need the lagrangian, up to the order of 1/f 2
π , in Eq. (18).

III. A DERIVATION OF THE DOUBLE SOFT THEOREMS

The double soft theorems considered in Ref. [11] are for NLSM with a U(N) color structure

and when the two soft momenta are adjacent to each other in the color-ordered partial

amplitudes. We will avoid both assumptions by working instead with the full amplitudes, i.e.

the S-matrix elements. If we defineMa1a2···an(p1, p2, · · · , pn) to be the scattering amplitudes

of n scalars, it is related to the color-ordered partial amplitudes Mσ(p1, · · · , pn) by

Ma1a2···an(p1, p2, · · · , pn) =
∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) · · ·T aσ(n))Mσ(p1, · · · , pn) , (21)

where the sum is over all permutations of the n indices modulo cyclic permutations. We

also follow the convention that all momenta are incoming. Moreover, M(p1, · · · , pn) ≡

Mσ(p1, · · · , pn) for σ = the identity.

As was demonstrated in the previous Section, shift symmetry imposes Adler’s zeros on

the amplitudes

∀ i , lim
τ→0
Ma1a2···an(p1, p2, · · · , τpi, · · · , pn) = 0 , (22)

while invariance under the linearly realized global symmetry H requires

∀ r ,
n∑
i=1

(T r)aibMa1···ai−1bai+1···an(p1, p2, · · · , pn) = 0 . (23)
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The above constraints can be understood by considering Ma1···an as a rank-n tensor of the

unbroken group H. Using Eq. (7), it transforms under the action of H as5

Ma1···an →Ma′1···a′n =
n∑
i=1

(
1 + iαr(T r)a′ib

)
Ma1···ai−1bai+1···an(p1, p2, · · · , pn) . (24)

Then Eq. (23) immediately follows by requiring Ma1···an = Ma′1···a′n . Alternatively, it can

be derived from the Ward identity associated with the H invariance as well as the LSZ

reduction [9].

The last ingredient we need for the derivation is the Feynman rule for the 4-point vertex

in the effective lagrangian in Eq. (18), written using the shorthand notation sij ≡ (pi + pj)
2,

iV a1a2a3a4(p1, p2, p3, p4) =

=
∑
σ∈cycl

1

6f 2
(T i)a1aσ(2)(T

i)aσ(3)aσ(4)(s1σ(4) − sσ(2)σ(4) + sσ(2)σ(3) − s1σ(3)) , (25)

where we only sum over cyclic permutations of {2, 3, 4}.

Before considering the double soft limit, it is instructive to consider the single soft limit

leading to the Adler’s zero. The single soft amplitude receives contributions from 1) the

”pole diagram” where the soft leg is attached to one of the external hard legs and 2) the gut

diagram where the soft leg is attached to an internal line [17]. When the soft momentum

is taken to zero, pµ = τpµ and τ → 0, the pole diagram could potentially develop a soft

singularity, because the propagator immediately following the soft leg can now go on-shell

as τ → 0,
1

(k + τp)2 −m2
=

1

2k · p τ
= O

(
1

τ

)
. (26)

In theories with a shift symmetry the massless scalar must be derivatively coupled, which

means each coupling carries a positive power of momentum and could potentially cancel

the soft singularity, thereby yielding a finite contribution. For Nambu-Goldstone bosons,

however, no cubic couplings exist.6 Then the Adler’s zero condition implies the gut diagrams

must vanish in the limit τ → 0.

For double soft limit, the pole diagram now consists of diagrams where both soft legs

are attached to the same external hard leg, which is shown in Fig. 1. This is the only class

5 On the right-hand side of Eq. (24) there are implicitly n− 1 Identity matrices acting on the group space,

which turn the ai indices into a′i indices.
6 For massless scalars with shift symmetry the cubic coupling must contain derivative. However all kinematic

invariants formed by three light-like momenta vanish.
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FIG. 1: An example of the pole diagram in double soft limit, where both soft legs are attached to

the same external hard leg.

of diagrams where a pole in the propagator could potentially develop, while everything else

belongs to the gut diagram which has no soft singularity. Thus the scattering amplitude of

n+ 2 scalars can be written as

Ma1a2···an+2(p1, p2, · · · , pn+2) = Na1a2···an+2(p1, p2, · · · , pn+2)

+
n∑
i=1

M̃aian+1an+2b(pi, pn+1, pn+2, qi)
1

q2
i

M̃a1···ai−1bai+1···an(p1, · · · ,−qi, · · · pn) , (27)

where Na1a2···an+2 represents the contribution from the gut diagrams while the pole diagram

factorizes into product of two semi-on-shell amplitudes, M̃, defined as scattering amplitudes

with one of the momenta taken off-shell. Momentum conservation implies qi = −(pi+pn+1 +

pn+2) and its associated propagator in the pole diagram becomes on-shell when pn+1 and

pn+2 become soft simultaneously. The four-point semi-on-shell amplitude can be obtained

from the Feynman rule in Eq. (25), after using the notation T abcd = (T r)ab(T
r)cd,

M̃aian+1an+2b(pi, pn+1, pn+2, qi) =
1

3f 2
π

[
T aian+1an+2b

(
s(n+1)(n+2) − si(n+2)

)
+T aian+2ban+1

(
s(n+1)i − s(n+1)(n+2)

)
+ T aiban+1an+2

(
s(n+2)i − s(n+1)i

)]
, (28)

We are interested in the limit pµn+1 → τpµn+1 and pµn+2 → τpµn+2 become soft as τ → 0.

Before looking at the double soft limit, however, we need to consider the single soft limit

first to ensure the amplitude respects Adler’s zero condition in Eq. (22), as required by shift

symmetry. By taking pµn+1 → 0 and setting the resulting amplitude to zero, we obtain

Na1a2···an+2(p1, · · · , pn, 0, pn+2)

=
1

3f 2
π

n∑
i=1

(
T aian+1an+2b − T aiban+1an+2

)
M̃a1···ai−1bai+1···an(p1, · · · , pi + pn+2, · · · pn). (29)
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If we further take pn+2 → 0 in the above,

Na1a2···an+2(p1, · · · , pn, 0, 0)

=
1

3f 2
π

n∑
i=1

(
T aian+1an+2b − T aiban+1an+2

)
Ma1···ai−1bai+1···an(p1, · · · , pi, · · · pn)

=
1

3f 2
π

n∑
i=1

T aian+1an+2bMa1···ai−1bai+1···an(p1, · · · , pi, · · · pn) . (30)

where the semi-on-shell n-point amplitude M̃a1···an now becomes the on-shell amplitude

Ma1···an , since all external momenta are now on-shell as both pn+1 and pn+2 are taken to

zero. Notice the term containing T aiban+1an+2 = (T r)aib(T
r)an+1an+2 vanishes due to the

constraints in Eq. (23), which arises from the unbroken global symmetry H. Similarly,

letting pµn+2 → 0 gives the relation

Na1a2···an+2(p1, · · · , pn, pn+1, 0)

= − 1

3f 2
π

n∑
i=1

(
T aian+2ban+1 − T aiban+1an+2

)
M̃a1···ai−1bai+1···an(p1, · · · , pi + pn+1, · · · pn).(31)

Again letting pn+2 → 0 we recover Eq. (30) after using constraints from invariance under

the H group as well as the Closure condition in Eq. (19).

Next we will take both pn+1 and pn+2 soft simultaneously. To compare with the proposed

double soft theorems in Ref. [11], we will keep the propagator in 1/q2
i in tact without

expanding in τ ,

1

q2
i

=
1

(pi + τpn+1 + τpn+2)2
→ 1

τ(si(n+1) + si(n+2)) + τ 2s(n+1)(n+2)

. (32)

On the other hand, we will only keep terms up to O(τ) in the semi-on-shell amplitudes.

The contribution from the gut diagram gives, after expanding in power series in τ ,

Na1···an+2(p1, · · · , pn+1, pn+2) = Na1···an+2(p1, · · · , pn, 0, 0)

+τ pµn+1

∂

∂p̄µn+1

∣∣∣∣
p̄µn+1=0

Na1···an+2(p1, · · · , pn, p̄n+1, 0)

+τ pµn+2

∂

∂p̄µn+2

∣∣∣∣
p̄µn+2=0

Na1···an+2(p1, · · · , pn, 0, p̄n+2) . (33)

After plugging in the conditions on Na1···an+2 in Eqs. (29) and (31), which are obtained from
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requiring Adler’s zeros in the amplitudes, we arrive at

Na1···an+2(p1, · · · , pn+1, pn+2) =
1

3f 2
π

n∑
i=1

T aian+1an+2bMa1···b···an

+ τ
1

3f 2
π

n∑
i=1

(
T aian+1an+2b − T aiban+1an+2

)
pµn+2

∂

∂pµi
Ma1···b···an

− τ
1

3f 2
π

n∑
i=1

(
T aian+2ban+1 − T aiban+1an+2

)
pµn+1

∂

∂pµi
Ma1···b···an , (34)

where again the semi-on-shell amplitudes M̃ have been replaced by the n-point on-shell

amplitudesMa1···b···an ≡Ma1···b···an(p1, · · · , pi, · · · , pn), as all external momenta become on-

shell after the expansion in τ .

Similarly the n-point semi-on-shell amplitude in the contribution from the pole diagram

in Eq. (27) can be expanded up to O(τ),

M̃a1···b···an(p1, · · · , pi+pn+1 +pn+2, · · · pn) =Ma1···b···an+(pn+1 +pn+2)µ
∂

∂pµi
Ma1···b···an , (35)

while the four-point semi-on-shell amplitude can be expanded in τ explicitly using Eq. (28).

Putting everything together, we obtain the following double soft theorems:

Ma1···an+2(p1, · · · , pn+2) =
(
S(0) + S(1)

sym + S(1)
asym

)
Ma1···b···an(p1, p2, · · · , pn) , (36)

where

S(0) =
n∑
i=1

1

2f 2
(T r)aib(T

r)an+1an+2

pi · (pn+2 − pn+1)

pi · (pn+1 + pn+2) + pn+1 · pn+2

, (37)

S(1)
asym =

n∑
i=1

1

2f 2
(T r)aib(T

r)an+1an+2

2pνn+1p
µ
n+2

pi · (pn+1 + pn+2) + pn+1 · pn+2

Jµνi , (38)

S(1)
sym =

n∑
i=1

1

2f 2

[
(T r)aian+1(T

r)an+2b + (T r)aian+2(T
r)an+1b

]
× pn+1 · pn+2

pi · (pn+1 + pn+2) + pn+1 · pn+2

. (39)

The angular momentum operator Jµνi for the ith particle is defined in Eq. (4).

IV. DISCUSSIONS

Having derived the leading and subleading double soft theorems in NLSM, we conclude

with several comments and discussions:
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• The soft theorems for the NLSM are written entirely using infrared data: (T i)ab is

the generator of the unbroken global symmetry group in the IR, without reference

to the broken group in the UV. This reflects the fact that Nambu-Goldstone bosons

interpolate the different degenerate vacua and their interactions encode the structure

of the vacua.

• We have only used the explicit form of the four-point interaction, together with the

existence of Adler’s zeros, to derive the soft theorems. This observation is fairly general

and should apply to other types of theories, including gluons and gravitons. In these

cases the cubic interaction will also enter, when each soft leg is connected to a different

external hard leg via three-point interactions.

• We can uplift the soft theorems to the formalism of CCWZ by using the identification

in Eq. (20). Then the leading soft factor S(0) agrees with the well-known double soft-

pion theorem [5–7], which is determined by the commutator of the two soft indices

[Xan+1 , Xan+2 ]. While the leading order soft factor S(0) is anti-symmetric in an+1 and

an+2, the next-to-leading soft factor contains both an anti-symmetric component S(1)
asym

and a symmetric component S(1)
sym.

• We derived the soft theorems for the full amplitudes, which include cases when the

two soft legs are adjacent to each other, or when there is a hard leg sandwiched by the

two soft legs. This can be seen by applying Eq. (20) to express the group-theoretic

factor in the soft factors in color-ordered form,

(T r)ab(T
r)cd = Tr

(
[Xa, Xb][Xc, Xd]

)
(40)

= Tr
(
XaXbXcXd

)
− Tr

(
XaXbXdXc

)
+Tr

(
XbXaXdXc

)
− Tr

(
XaXaXdXc

)
, (41)

from which we see terms that are anti-symmetric in an+1 and an+2 arises from diagrams

where the two soft legs are adjacent to each other. The leading soft factor S(0) receives

contribution only from this class of diagrams. Diagrams where there is a hard leg

sandwiched between the soft legs are next-to-leading order in the soft expansion and

only contribute to S(1)
sym. There is no contribution at this order in τ from other types

of configurations, consistent with the finding of Ref. [13] using recursion relations.

11



• Using the color decomposition in Eq. (40), we can also recover the result for color-

ordered partial amplitudes in Eq. (1). More specifically, the partial amplitude

M(1, · · · , n + 2) receives contributions from diagrams similar to Fig. 1, where the

(n+1)th and (n+2)th legs are attached only to either the 1st hard leg in the color-order

of {b(n + 1)(n + 2)1}, or the nth hard leg, in the color-order of {bn(n + 1)(n + 2)}.

Here the index b represents the ”color” of the off-shell leg carrying the momentum

qi = −(pn+1 + pn+2 + pi). Singling out these two contributions in Eq. (37–39) repro-

duces Eq. (1) exactly.

Last but not least, it seems plausible that the same approach of zooming in on four-

point (and three-point) couplings would allow one to derive the other double soft theorems

proposed in Ref. [11]. One obvious question is then the connection to other approaches

for deriving the soft theorems, which involve either the recursion relation or the scattering

equations. It would be interesting to clarify this connection in the future. In addition, it

would also be interesting to extend the present analysis to cases including spontaneously

broken spacetime symmetry.
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