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We numerically study the head-on scattering of a ’t Hooft-Polyakov magnetic monopole and anti-
monopole for a wide range of parameters. In contrast to the scattering of a λφ4 kink and antikink
in 1+1 dimensions, we find that the monopole and antimonopole annihilate even when scattered at
relativistic velocities. If the monopole and antimonopole have a relative twist, there is a repulsive
force between them and they can initially be reflected. However, in every case we have examined,
the reflected monopoles remain bound and eventually annihilate. We also calculate the magnetic he-
licity in the aftermath of monopole-antimonopole annihilation and confirm the conversion of relative
twist to magnetic helicity as discussed earlier in the electroweak case.

Beautiful results have been obtained on the scattering
of monopoles on monopoles [1–3]. For example, analyt-
ical techniques show that head-on collision leads to 90◦

scattering for a certain value of the coupling constant
(in the so-called BPS limit) [2]. Monopole-antimonopole
scattering, though, has received less attention, perhaps
because the process is less amenable to analysis.

A general expectation is that monopole-antimonopole
(MM ) scattering will lead to their annihilation and the
energy will be dissipated in the form of radiation. How-
ever this is not the result obtained in the analogous pro-
cess of Z2 kink-antikink scattering in 1+1 dimensions.
Numerical studies of kink-antikink scattering show anni-
hilation at low kinetic energy, reflection at higher incom-
ing energy, followed by annihilation at yet higher ener-
gies, etc., yielding a band structure reminiscent of solu-
tions of the Mathieu equation [4, 5]. One motivation for
the present work is to check for chaotic behavior in MM
scattering.

A second motivation for studying MM scattering comes
from the recent interest in the possible existence and
detection of a helical inter-galactic magnetic field [6].
Early work had speculated on the production of mag-
netic fields during monopole-antimonopole annihilation
[7, 8]. The connection to baryogenesis was made when
the electroweak sphaleron solution that mediates baryon
number violation was interpreted in terms of electroweak
MM pairs [9, 10]. It is crucial for this connection that
monopole-antimonopole pairs can have a relative “twist”
and the (unstable) electroweak sphaleron solution is re-
ally an MM pair that is prevented from annihilating by
the presence of a twist. In sphaleron decay, the twist
is believed to be the reason that the resultant magnetic
field has non-zero helicity, h, defined by

h =

∫
d3x A ·B (1)

where A is the electromagnetic gauge potential and B is
the magnetic field. In this paper, we will also study the
scattering of twisted MM pairs and confirm that mag-
netic field helicity originates in the relative twist of the
MM .

The results of our investigations are easily summarized:
numerical evolution for a wide range of MM initial condi-
tions show that untwisted MM scattering always leads to

annihilation. Thus we do not see any evidence for chaotic
behavior similar to that seen in 1+1 dimensions. How-
ever, when the monopoles are initially twisted, there is a
repulsive force between the monopoles. At low velocities,
the monopoles slow down or may even reflect back. Yet
this reflection is temporary and soon reversed, and the
MM then annihilate. Further, the annihilation of twisted
MM results in the production of a helical magnetic field.

We start out in Sec. I by defining the field theory, de-
scribing the magnetic monopoles and the twisted MM
ansatz in which the monopoles are also Lorentz boosted.
The MM field ansatz will form the initial conditions for
the numerical evolution described in Sec. II, where we
also show sample plots of the scattering, the trajectories
of the MM , and the magnetic helicity generated during
annihilation. We conclude in Sec. III.

I. SO(3) MODEL, MONOPOLES, AND MM
ANSATZ

A. SO(3)model

The model we study contains an SO(3)adjoint scalar
and gauge field, {φa,W a

µ} (a = 1, 2, 3) with the La-
grangian

L =
1

2
(Dµφ)a(Dµφ)a− 1

4
W a
µνW

aµν− λ
4

(φaφa−η2)2 (2)

where,

(Dµφ)a = ∂µφ
a − igW c

µ(T c)abφb (3)

and the SO(3)generators are (T a)bc = −iεabc. The gauge
field strengths are defined by

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (4)

The scalar field equations of motion are

∂2
t φ

a = ∂i∂iφ
a + igWµc(T c)ab∂µφ

b

+igWµc(T c)ab(Dµφ)b − λ(φbφb − η2)φa. (5)

We will work in the Lorenz gauge given by the equation

∂tW
a
0 = ∂iW

a
i (6)
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and then the gauge field equations are

∂2
tW

a
µ = ∂i∂iW

a
µ − gεabcW νb∂νW

c
µ − gεabcW b

νW
νc
µ

−gεabcφb(Dµφ)c. (7)

By rescaling the coordinates and the fields, as we shall
do from now on, we can set g = 1 and η = 1. Then λ is
the only free parameter left in the model. The BPS case
is when λ = 0. We will numerically evolve the 15 second
order partial differential equations (PDE) in (5) and (7).

The energy density for the model is given by

E =
1

2
(Dtφ)a(Dtφ)a +

1

2
(Diφ)a(Diφ)a

+
1

2
(W a

0iW
a
0i +W a

ijW
a
ij) +

λ

4
(φaφa − 1)2 (8)

where the sum over the repeated index j is restricted to
j > i.

Once φa acquires its vacuum expectation value (VEV),
the model contains two massive gauge fields and one
massless gauge field. The massless gauge field is

Aµ = naW a
µ (9)

where na ≡ φa/
√
φbφb is a unit vector at all spatial

points. The field strength corresponding to the gauge
field Aµ is defined as [13]

Aµν = naW a
µν − εabcna(Dµn)b(Dνn)c

= ∂µAν − ∂νAµ − εabcna∂µnb∂νnc. (10)

These definitions are strictly only valid when the magni-
tude |φ| is constant. We shall apply them at late times
after the monopoles have annihilated and when |φ| is ap-
proximately constant and non-zero everywhere.

B. Monopoles

The monopole solution takes the form

φa = P (r)x̂a (11)

W a
i =

(1−K(r))

r
εaij x̂j (12)

where x̂ = x/r and r is the (rescaled) spherical radial
distance centered on the monopole. The profile functions
P (r), K(r) are not known in closed form except in the
BPS (λ = 0) case [14, 15]

PBPS(r) =
1

tanh(r)
− 1

r
, (13)

KBPS(r) =
r

sinh(r)
. (14)
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FIG. 1: Monopole and antimonopole are chosen to be on the
z−axis with some initial separation 2z0. The spherical angles
θ and θ̄ are defined as shown.

We will be studying the evolution of monopoles for a
range of λ. A functional form that reduces to the BPS
profile functions for λ = 0 and has the correct asymptotic
properties is

P (r) =
1

tanh(r)
− (1 +mr)

e−mr

r
(15)

K(r) =
r

sinh(r)
(16)

where m =
√

2λ is the scalar particle mass (in η = 1
units).

Next we will need to patch together a monopole and
an antimonopole, with a relative twist, and also boost
the monopole and antimonopole towards each other.

C. MM Ansatz

A twisted monopole-antimonopole ansatz is known in
the context of the electroweak model where the scalar
field is an SU(2) doublet [9]. The form is

Φ =

(
sin(θ/2) sin(θ̄/2)eiγ + cos(θ/2) cos(θ̄/2)

sin(θ/2) cos(θ̄/2)eiϕ − cos(θ/2) sin(θ̄/2)ei(ϕ−γ)

)
(17)

where θ and θ̄ are the spherical angles centered on the
monopole and antimonopole respectively (see Fig. 1), ϕ
is the azimuthal angle, and γ is the twist. A little algebra
shows that Φ†Φ = 1.

From Φ, we construct the corresponding unit vector
field na using

na = Φ†σaΦ (18)

where σa are the Pauli spin matrices. The result, with
the replacement ϕ → ϕ − γ/2 to make the expressions



3

more symmetrical, is

n1 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)

− sin θ sin γ sin(ϕ− γ/2) (19)

n2 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) sin(ϕ− γ/2)

+ sin θ sin γ cos(ϕ− γ/2) (20)

n3 = cos θ cos θ̄ + sin θ sin θ̄ cos γ (21)

Close to the monopole, we have θ̄ → 0 and then

n1 → sin θ cos(ϕ+ γ/2) (22)

n2 → sin θ sin(ϕ+ γ/2) (23)

n3 → cos θ (24)

as we would expect around a monopole. Close to the
antimonopole, we have θ → π and then

n1 → sin θ̄ cos(ϕ− γ/2) (25)

n2 → sin θ̄ sin(ϕ− γ/2) (26)

n3 → − cos θ̄ (27)

which corresponds to an antimonopole (because of the
minus sign in n3). Also note the relative twist along ϕ of
the monopole and antimonopole.

Our ansatz has the nice feature that n̂ ∝ ẑ far away
from the MM in all directions when the twist vanishes.
To check this we set γ = 0, θ̄ → θ and obtain n̂ = (0, 0, 1).

Now we are ready to write down the scalar field for a
twisted monopole-antimonopole pair:

φa(x, y, z) = P (rm)P (rm̄)na (28)

where P (r) is the profile function in Eq. (15) and rm, rm̄
are the distances of the spatial point (x, y, z) from the
monopole and antimonopole respectively.

At this stage the monopole-antimonopole are at rest.
To boost the monopole along the −z direction and the
antimonopole along the +z direction we first re-express
rm, rm̄ and na in Cartesian coordinates

rm = |x− xm|, rm̄ = |x− xm̄| (29)

where xm = (0, 0, z0) and xm̄ = (0, 0,−z0) are the loca-
tions of the monopole and the antimonopole respectively.
The unit vector na is also expressed in Cartesian coordi-
nates,

rmrm̄n
1 = (cx+ sy)[(z + z0) cos γ − (z − z0)]

−(cy − sx)rm̄ sin γ (30)

rmrm̄n
2 = (cy − sx)[(z + z0) cos γ − (z − z0)]

−(cx+ sy)rm̄ sin γ (31)

rmrm̄n
3 = (z − z0)(z + z0) + (x2 + y2) cos γ (32)

where c ≡ cos(γ/2), s ≡ sin(γ/2). Here we have been
careful to distinguish the (z±z0) factors coming from the
monopole and antimonopole, since these will be boosted
differently,

(z ± z0)→ (z ± z0)(b) = γL((z ± z0)∓ vzt) (33)

where, γL = (1 − v2
z)−1/2. Note that these boosts

also have to be included in rm and rm̄. (We will de-
note boosted quantities by a (b) superscript.) Then the
scalar fields at t = 0 for a boosted, twisted monopole-
antimonopole pair are:

φa(x, y, z) =
[
P (r(b)

m )P (r
(b)
m̄ )n(b)a

]
t=0

(34)

We also need the first time derivative (denoted by an
overdot) of the scalar field at t = 0 and this is given by

φ̇a(x, y, z) =
[
∂t

(
P (r(b)

m )P (r
(b)
m̄ )n(b)a

)]
t=0

(35)

The partial time derivative can be expressed in terms of
spatial derivatives as discussed below.

Now that we have the initial scalar fields, we move on
to specify the initial gauge fields. This is most simply
done numerically using the following scheme. We fix the
internal space orientation of the gauge fields by mini-
mizing the covariant derivative. The vacuum solution of
Dµn̂ = 0 is

W a
µ |vacuum = −εabcn̂b∂µn̂c (36)

To this we attach profile functions so that the gauge fields
are well defined at the locations of the monopole and
antimonopole. So

W a
µ |t=0 = −

[
(1−K(r

(b)
m ))(1−K(r

(b)
m̄ ))

r
(b)
m r

(b)
m̄

×εabcn̂(b)b∂µn̂
(b)c

]
t=0

(37)

Finally we need the initial time derivative of W a
µ . We

shall treat the spatial and temporal components differ-
ently to enforce the Lorenz gauge condition. For the
spatial components, as in the case of the scalar field, the
time derivative is given by

Ẇ a
i |t=0 = −

[
∂t

(
(1−K(r

(b)
m ))(1−K(r

(b)
m̄ ))

r
(b)
m r

(b)
m̄

×εabcn̂(b)b∂in̂
(b)c

)]
t=0

(38)

For the time component of the gauge field, we use the
Lorenz gauge condition

Ẇ a
0 |t=0 = [∂iW

a
i ]t=0 (39)

Although the form of the initial conditions is quite
involved, they are not too difficult to implement since
temporal derivatives can be related to spatial derivatives
using

[(z ± z0)(b)]t=0 = γL(z ± z0) (40)

[∂t(z ± z0)(b)]t=0 = ∓γLvz (41)

and spatial derivatives can be evaluated numerically.
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II. EVOLUTION

We discretize the 15×2 first-order equations of motion
and evolve the system using the iterated Crank-Nicholson
method with two iterations [16]. Our code has the nov-
elty that all field theory specific routines are generated
symbolically and are then inserted into a PDE integrating
routine. We have also implemented absorbing boundary
conditions by assuming that all fields only depend on t−r
where r is the distance from the center of the lattice. For
the specific problem at hand, all the non-trivial dynam-
ics is well within the simulation volume and the choice of
boundary conditions is not crucial.

The initial energy of our ansatz for γ = 0 matches the
analytic result for untwisted BPS monopoles. During the
numerical evolution we have checked energy conservation
at the few percent level at early times, before energy can
start leaving the simulation volume. The Lorenz gauge
condition is also approximately satisfied at all times in
the parameter space we have investigated.

The free parameters in the model are the coupling con-
stant λ, the boost velocity vz, and the twist γ. The initial
separation is taken to be 0.3 times the semi-lattice size
plus an offset that ensures that the magnitude of φ does
not vanish on a lattice point at the initial time. (This
simplifies some of the numerics.) We have also chosen
λ = 1 for our runs, and experimentation with a few other
values (including λ = 0) showed similar results. The ini-
tial boost velocity vz was varied in the interval (0.1, 0.9),
and the twist angle was chosen to range from 0 to 2π in
steps of π/4. The only runs where we do not explicitly
see annihilation until the end of the simulation is in the
case when γ = π and for some low values of vz. How-
ever, even in the cases when the MM do not annihilate,
they form a bound system and do not escape to infin-
ity. In some cases, we have let the system evolve much
longer and always found that the MM eventually annihi-
late. In Fig. 2 we show snapshots of untwisted MM and
they simply come together and annihilate. In Fig. 3 we
show snapshots of twisted (γ = π) MM at the same times
as for the untwisted case and we see that they have not
yet annihilated.

We plot the location of the monopole as a function
of time for a few sample parameters in Figs. 4 and 5.
The monopole location is defined by the location of the
minimum of φaφa over the simulation volume for z > 0
provided min[

√
φaφa] < 0.25. In Fig. 4, we hold the

velocity fixed at 0.5 and vary the twist from 0 to π. (The
dynamics for twist of γ is the same as that for a twist
of 2π − γ.) It is clear from the plot that the twist slows
down the monopole and can even cause it to bounce back.
In Fig. 5 we show z(t) for the monopole when the twist
is held fixed at π and vz = 0.25, 0.50, 0.75. Here the
bounce back is very apparent. However, the monopoles
are still bound after they bounce back and will eventually
annihilate.

The untwisting and annihilation of the MM is expected
to radiate magnetic fields that are helical [11, 12]. To test

FIG. 2: Snapshots of a planar slice of annihilating monopole
and antimonopole for λ = 1, γ = 0, and vz = 0.5. The colors
represent energy density.

this expectation, we have calculated the helicity defined
in Eq. (1) using (9) and (10). The plot of the magnetic
helicity as a function of time is shown in Fig. 6 where we
hold the velocity fixed at 0.75 and vary the twist. The
plot shows that the helicity vanishes if there is no twist
(γ = 0). Also, we see that the h(γ) = −h(2π−γ), and the
helicity vanishes in the case γ = π (though in this case
the MM survive until the end of the simulation). These
observations can be understood if the helicity is due to
the untwisting motion of the MM . If γ < π, the MM un-
twist in one direction and then annihilate, while if γ > π,
the MM untwist in the other direction so that γ → 2π.
The opposite senses of untwisting lead to the production
of magnetic fields with opposite helicity. The value γ = π
is an unstable point where the MM are unable to decide
which way to untwist. Eventually numerical instabilities
will cause untwisting in one way or the other. In Fig. 6
we also observe oscillations in the magnetic helicity, sug-
gesting that there may be oscillations in the twist.

In Fig. 7 we plot the magnetic helicity for λ = 1, γ =
3π/4 and for vz = 0.25, 0.50, 0.75. The plots are similar
in shape but shifted to earlier times for higher velocities.
This can be understood because the MM scatter at earlier
times for higher velocities.

III. CONCLUSIONS

We have studied MM scattering by numerical methods.
Part of the challenge was to devise initial conditions that
are suitable to describe boosted and twisted MM . Our
ansatz for initial conditions are given in Sec. I C but there
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FIG. 3: Snapshots of a planar slice of non-annihilating
monopole and antimonopole for λ = 1, γ = π, and vz = 0.5.
Except for the twist, all parameters, including snapshot times,
are identical to those in Fig. 2. The colors represent energy
density. At yet later times, the monopoles back-scatter but
are still bound and return to annihilate as discussed in the
text.
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FIG. 4: The z-coordinate of the monopole as a function of
time for λ = 1, vz = 0.50 and γ/(π/4) = 0, 1, 2, 3, 4 (curves
from left to right). The curves terminate once min[

√
φaφa] ≥

0.25 (a condition that is met after the MM have annihilated)
except in the γ = π case, when the MM have not annihilated
even by the end of the simulation run (300 time steps with
dt = dx/2 = 0.1).

may be other choices.
The numerical evolution of MM shows that, unlike the

scattering of kinks in 1+1 dimensions, MM scattering is
not chaotic, as the MM are always found to annihilate
over the wide range of parameters we have investigated.
A twist in the initial conditions produces a repulsive force
between the monopole and antimonopole that can have
an important effect on the scattering dynamics. An in-
terpretation of our results is that, as the MM approach
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FIG. 5: The z-coordinate of the monopole as a function of
time for λ = 1, γ = π, and vz = 0.25, 0.50, 0.75 (blue, orange
and green curves). The MM have not annihilated until the
end of the simulation.
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FIG. 6: Magnetic helicity in the aftermath of MM anni-
hilation as a function of time for λ = 1, vz = 0.75 and
γ/(π/4) = 0, 1, 2, 3, 4, 5, 6, 7. The curves for γ/(π/4) = 0, 4 es-
sentially coincide with h = 0 and are not visible. The dashed
curves are for γ/(π/4) = 5, 6, 7 (green, blue, black), and mir-
ror the solid curves for γ/(π/4) = 3, 2, 1 (green, blue, black).
This shows that h(γ) = −h(2π − γ).

each other, they also tend to untwist. The untwisting
dynamics is damped due to radiation and eventually the
MM can annihilate. However, damping of the untwist-
ing dynamics leads to the production of helical magnetic
fields and the sign of the magnetic helicity is related to
the direction of untwisting.
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FIG. 7: Magnetic helicity in the aftermath of MM anni-
hilation as a function of time for λ = 1, γ = 3π/4, and
vz = 0.25, 0.50, 0.75 (black, blue and green curves).
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