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Abstract

We present analytic force-free solutions modeling rotating stars and black holes immersed
in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact
in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical
jet whose properties carry information about its nature. For example, the jet from a star is
surrounded by a current sheet, while that of a black hole is smooth. We compute an effective
resistance in each case and compare to the canonical values used in circuit models of energy
extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process
for energy extraction and jet formation in a clean setting.
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1 Introduction

The extraction of the spin energy of a rotating compact object by its plasma magnetosphere is
a basic physical process that is likely at work in a number of energetic astrophysical phenomena,
from pulsar winds and jets to active galactic nuclei (AGN), and possibly including gamma-ray
bursts and tidal disruption events. For pulsars, this process is essentially the original unipolar
induction of Faraday [1], in which a conductor rotating in a magnetic field generates an electric
field, whose voltage will drive a current if wires are present. The neutron star is the conductor and
magnet, while the plasma functions as wires. The study of this process began in the original work
of Goldreich and Julian [2], and continues today.

That such a process can also occur for black holes [3] is à priori rather shocking. After all, black
holes cannot source a magnetic field, cannot provide charge-carriers, and cannot support outflow of
local energy. Nevertheless, a number of physical processes conspire to allow black holes to behave
as unipolar inductors: an accretion disk can provide the magnetic field, immersing a spinning black
hole in such a magnetic field produces electric fields (with non-zero ~E · ~B) [4], these electric fields
can pair-produce plasma from the vacuum by accelerating stray charges to energies above the pair-
creation threshold [5], and spinning black holes can support outflow of the energy relevant to physical
work at infinity [6, 7, 8]. Blandford and Znajek (BZ) connected these formerly disparate ideas in
their ground-breaking paper [3] and demonstrated an astrophysically viable Penrose process—the
analogue of unipolar induction—with the potential to power AGN jets.

BZ, along with much subsequent work, considered the force-free approximation for the plasma, in
which the matter degrees of freedom do not contribute to the dynamics, leaving a closed, nonlinear
evolution system for the electromagnetic field alone [9, 10, 11]. While this is likely a good approxi-
mation for much of the magnetosphere (and essentially all of it in the pulsar case), it also has the
virtue of being the simplest set of plasma equations that can support the basic mechanism of unipo-
lar induction by stars and black holes in plasma. In particular, while nonlinear, the equations are
simple enough to admit analytic solution in a number of cases. Indeed, in the last few years there
has been an explosion of progress on analytic solutions, due in part to new techniques imported
from the relativity [11, 12, 13, 14, 15, 16, 17, 18] and high-energy theory [19, 20] communities. While
numerical simulation is essential to gaining enough detail to eventually capture all of the relevant
effects in real pulsars and AGN, analytic work is invaluable for elucidating basic mechanisms and
efficiently exploring their range of operation.

In this paper we continue the effort to push analytic solutions as far as they can be taken. We begin
in flat spacetime, which is a decent approximation for neutron stars, and, following the method
of BZ, a springboard for approximate black hole solutions. For stationary, axisymmetric, energy-
extracting, force-free magnetospheres, there are three previously known families of exact solutions,
which may be designated by the shapes of their poloidal field lines1: vertical, radial, and parabolic.2

1Toroidal refers to the φ direction, while poloidal refers to the remaining directions: ρ and z in cylindrical
coordinates. Poloidal field lines are simply the projection of the magnetic field lines onto the poloidal plane.

2The radial solution was found by Michel [21] and the parabolic by Blandford [22]. Vertical solutions appear in
the analysis of relativistic jets specialized to full cylindrical symmetry, where the theory becomes an ODE that can
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(a) vertical (b) radial (c) parabolic (d) hyperbolic

Figure 1: Poloidal field lines of known families of exact force-free magnetospheres, with current
sheets depicted by a thick line. Our new, hyperbolic solution includes the radial and vertical
solutions as limits. For the plots we take Ω = 0 for simplicity, but the rotating solutions are similar.

In this paper we will add a fourth, “hyperbolic” solution, whose basic geometry resembles that of
an AGN, with a thin accretion disk sourcing the magnetic field. The four field line geometries are
illustrated in Fig. 1.

The new family of solutions is parameterized by the disk’s inner termination radius b as well as a
free function Ω(ψ), corresponding to the angular velocity of each field line ψ. (These concepts will
be defined precisely below.) We can produce a complete model of unipolar induction, including jet
formation, by choosing Ω(ψ) to equal the angular velocity of a rigidly rotating conducting star (of
radius R) on field lines that intersect the star, and to vanish elsewhere. This generates a conical
jet of opening angle θstar

jet = arcsin(R/b) surrounded by a thin sheet of current flowing in the reverse
direction. This model could apply to a neutron star surrounded by a magnetized accretion disk or,
as a basic mechanism, to protostellar jets.

Following the method of BZ we can promote this exact flat space solution to an approximate solution
for a slowly spinning black hole. Aspects of this procedure were previously carried out by Beskin,
Istomin, and Pariev [25, 26], who were not in possession of the exact flat solution. Taking the disk
to terminate at the innermost stable circular orbit (ISCO) of the black hole, the opening angle is
≈ 20◦, and unlike in the star case, the return current is smoothly distributed in the jet, so that
there is no current sheet. One could in principle utilize this qualitative difference to determine the
nature of the central object from observations of the jet.3 Fig. 2 illustrates these results.

There has been much discussion over the years of the extent to which black holes behave like
conducting bodies. In possession of non-trivial analytic solutions with the same magnetic geometry
in each case, we are able to make a direct comparison. In particular we can test the idea that
the black hole has an effective resistance equal to that of free space (equal to 1 in our units, or

be directly integrated (e.g. [23, 24]).
3Note that the jet will only be conical as far away as the force-free approximation holds; beyond that limit, gas

confinement mechanisms will likely fix the shape.
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(a) star (b) black hole

Figure 2: Jet formation via unipolar induction by rotating compact objects in force-free plasma
with magnetic field provided by a thin disk. We provide exact solutions for stars in flat spacetime
and perturbative solutions for slowly rotating black holes. The main qualitative difference is that
the jet produced by a star is surrounded by a current sheet (shown in red), while the jet produced
by a black hole is not.

approximately 377 Ohms).4 In a limit where the two solutions can be precisely compared, we find
that the effective total resistance in the star circuit is equal to .5, while the effective total resistance
in the black hole circuit is approximately .77. Thus the black hole does in a sense provide extra
resistance, but it adds a much smaller amount than that of free space.

These solutions also possess pedagogical value. While the main features of the BZ mechanism—an
accretion disk sourcing a magnetic field that threads the black hole, producing a jet—are by now
well-established, there has not previously existed a complete analytic treatment demonstrating all
the features in a single setting. Our treatment also contextualizes the BZ mechanism within the
more established physics of unipolar induction. We hope that the calculations presented here will
help newcomers understand this beautiful process.

The remainder of the paper is organized as follows. In Sec. 2 we derive the new family of exact flat
force-free magnetospheres. In Sec. 3 we model unipolar induction by stars with disks, and in Sec. 4
we find approximate solutions in Kerr and model unipolar induction by black holes with disks (i.e.,
the BZ mechanism). We conclude with a comparison of the star and black hole cases in Sec. 5.
Our metric signature for flat spacetime is (−,+,+,+) and we work in Heaviside-Lorentz units with
G = c = 1.

4This notion holds precisely within the membrane paradigm [27, 28, 29] as a surface resistivity dictating the
behavior of ficticious electric and magnetic fields (defined by using infinitely accelerated observers with suitable
renormalization). The idea of assigning the whole black hole a true resistivity of 1 has later been applied in models
for binaries [30, 31].
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2 Hyperbolic Magnetosphere

We consider force-free field configurations, i.e. closed 2-forms F (∇[aFbc] = 0) satisfying the force-
free condition

FabJ
b = 0, (2.1)

where J b ≡ ∇cF
bc is the charge-current density four-vector.5 This is the statement of vanishing

Lorentz four-force density, ρ ~E+ ~J× ~B = 0 and ~J · ~E = 0. We restrict our attention to stationary and
axisymmetric solutions with nonzero poloidal magnetic field, which may always be written [11, 32]
as

2πF = dψ ∧ [ dφ− Ω(ψ) dt] +
I(ψ)

ρ
dz ∧ dρ, (2.2)

where (t, z, ρ, φ) are cylindrical coordinates and we use the orientation dt ∧ dz ∧ dρ ∧ dφ.6 Here
ψ(ρ, z) is the magnetic flux function, defined to be the upward7 magnetic flux through the loop of
revolution (about the symmetry axis) at the point (ρ, z) in the poloidal plane. The level sets of ψ
are the poloidal projections of the magnetic field lines, or poloidal field lines for short; these lines
are also equipotential surfaces. The quantity I is the total electric current flowing upward through
the (ρ, z) loop. That I is only a function of ψ corresponds to the statement that the poloidal current
flows along poloidal magnetic field lines. The toroidal magnetic field is also proportional to I by
Bφ̂ = I/(2πρ). Finally, Ω(ψ) represents the angular velocity of each field line ψ.8

The energy flowing upward through a loop labeled by ψ̂ is given by

P = − 1

2π

∫ ψ̂

0

I(ψ)Ω(ψ) dψ. (2.3)

The differential voltage drop across a field line is dV = Ω(ψ) dψ. Thus we have dP ∼ I dV at a
differential level, which is reminiscent of the circuit equation P = IV . However, here I is the total
current enclosed, while dP and dV are the local energy flux and voltage drop rates.

The form of Eq. (2.2) ensures that three of the four components of the force-free condition (2.1) are
satisfied. The remaining component in flat space is the so-called stream equation for ψ [21, 33, 34],(

1− ρ2Ω2
)
∇2ψ − 2

ρ
∂ρψ − ρ2(∇ψ)2ΩΩ′ + II ′ = 0, (2.4)

5Reviews of force-free electrodynamics, including the machinery used here for stationary, axisymmetric solutions,
may be found in [26] (primarily the 3 + 1 approach) and [11] (primarily the covariant approach).

6The electric and magnetic fields are given by 2π ~E = −Ω~∇ψ and 2π ~B = ρ−1(~∇ψ×φ̂+Iφ̂). Our conventions differ
from [11] (GJ) by ψ = 2πψGJ and from [26] (B) by ψ = ψB/

√
4π, I = −

√
4πIB, E = EB/

√
4π and B = BB/

√
4π,

where the
√

4π accounts for the change to Gaussian units.
7In this paper, by “upward” we mean using a surface that intersects the symmetry axis in the northern hemisphere

and has orientation induced by the right hand rule on the bounding loop.
8One physical consequence of this notion is that collisionless particles making up the plasma will be stuck to the

rotating line. It is also convenient because field lines that intersect rotating conductors must co-rotate (see Sec. 3).
See (e.g.) [11] for further discussion of the notion of field line angular velocity.
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where a prime denotes a derivative with respect to ψ. If definite expressions for I(ψ) and ΩF (ψ)
are chosen, Eq. (2.4) becomes a second order, nonlinear9 partial differential equation for ψ. For
analytic solutions this is not a particularly promising approach, since nonlinear partial differential
equations are generally difficult to solve. Furthermore, it is hard to see how to choose physically
interesting I(ψ) and Ω(ψ) before determining ψ itself.

An alternative approach consists of introducing an auxiliary variable u(ρ, z) and assuming that ψ,
I and Ω are only functions of u,

ψ = ψ(u), I = I(u), Ω = Ω(u). (2.5)

This makes the level sets of ψ the same as those of u, so that by picking u one chooses the shape
of the poloidal field lines but not their density. There is no guarantee that a force-free solution
corresponding to a particular shape will exist, but at least one can choose physically interesting
shapes and hope for the best. This is the method used by Blandford [22] to find the parabolic
solution, and by Menon and Dermer [35] to find their null solution in Kerr. The radial and vertical
solutions can also be derived straightforwardly this way.

Our choice of u(ρ, z) is derived from the confocal ellipsoidal coordinate system for flat space. The
coordinate lines are ellipses and hyperbolae with foci at a distance b from the origin. The curves of
interest to us are the hyperbolae that arise as level sets of

u =

√
(ρ+ b)2 + z2 −

√
(ρ− b)2 + z2

2b
, (2.6)

which have a shape that could plausibly resemble the field lines in an AGN. Fig. 3 plots these
hyperbolae along with the corresponding value of u ∈ [0, 1]. Plugging Eqs. (2.5) and (2.6) into
Eq. (2.4), we are able to satisfy the equation provided that

ψ′(u) = ψ0
u√

(1− u2) [1− b2Ω(u)2u4]
, I(u) = ±ψ0

b

√
1 + b2c [1− b2Ω(u)2u4]

1− b2Ω(u)2u4
, (2.7)

where ψ0 and c are constants and Ω(u) is an arbitrary function. The choice of sign corresponds to
the direction of current and energy flow. In order to avoid a line current on the symmetry axis,
I(u) must vanish there, I(0) = 0. This requires c = −b−2, leading to

ψ = ψ0

∫
u du√

(1− u2) [1− b2Ω(u)2u4]
, I = ±ψ0

Ω(u)u2√
1− b2Ω(u)2u4

, (2.8)

where the constant in the integral is to be fixed by requiring that ψ(0) = 0 to make ψ the flux
function. For Ω = 0, we can perform the integral explicitly, resulting in

ψ
∣∣
Ω=0

= ψ0

(
1−
√

1− u2
)
. (2.9)

9Choices of I and Ω that linearize the equation have various physical difficulties (e.g., Sec. 2.6.2 of [26]).
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Figure 3: Level sets of u(ρ, z). The coordinate u ranges from u = 0 on the axis θ = 0 to u = 1 on
the disk θ = π/2, ρ > b. Each line u 6= 1 meets the equator z = 0 at ρ = bu.

This vacuum solution of Maxwell’s equations was found previously in [25]. For Ω a non-zero constant
we can represent the integral with elliptic functions (see App. A), while for arbitrary Ω(u) we can
proceed no further. However, the electric and magnetic fields are directly expressible in terms of
ψ′(u), and therefore we have an explicit closed-form solution,

F =
(ψ0/2π)√

1− b2Ω(u)2u4

(
u du√
1− u2

∧ [ dφ− Ω(u) dt]± Ω(u)
u2

ρ
dz ∧ dρ

)
. (2.10)

Note that u(ρ, z) depends on b via (2.6). Eq. (2.10), or equivalently Eq. (2.8), provides a new exact
family of force-free magnetospheres, parameterized by disk termination radius b, field line angular
velocity Ω(u), and current/energy flow direction ±.10

2.1 Properties

In order for the prefactor [1− b2Ω(u)2u4]
−1/2

in the solution to be finite and real, each field line
u must satisfy bu2 < RL(u), where RL(u) ≡ Ω(u)−1 is the cylindrical radius of the light surface.
Since ρ = bu is the place where the field intersects the equator and u ≤ 1, the condition is satisfied
if all field lines rotate subluminally on the equator, and in particular if they are anchored there to
a rotating conductor (see discussion in Sec. 3).

The apparent singularity at the disk u = 1 is just a discontinuity in physical coordinates (e.g
cylindrical), and corresponds to the presence of surface charge and current. In particular, the
pullback of F to the disk is continuous, indicating the absence of magnetic monopoles, but the

10One way to compute the electric and magnetic fields associated with the solution is to begin with (2.8) and use
the formulas given in the footnote below Eq. (2.2).
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pullback of the dual ?F is discontinuous, revealing the presence of surface charge and current.
Using the formulas (A23) and (A24) from [11], we compute the surface charge and current to be

Jsurf = J δ(z)H(ρ− b) dz ∧ dρ ∧
(

dt− ρ2 Ω1 dφ
)
, J =

(ψ0/π)

ρ
√

(ρ2 − b2) (1− b2Ω2
1)
, (2.11)

where δ(x) is the Dirac delta and H(x) denotes the Heaviside function (zero for x < 0 and one for

x > 0). This corresponds to a surface current density ~Jsurf and charge density ρsurf of

~Jsurf = J δ(z)H(ρ− b) φ̂, ρsurf = ρΩ1

∣∣∣ ~Jsurf

∣∣∣ . (2.12)

Here Ω1 ≡ Ω
∣∣
u=1

is the value of Ω as the field lines collapse the disk, which would normally be zero
in physical models (e.g. those of Secs. 3 and 4). In this case there is no surface charge and the
surface current is given by

~Jsurf =
(ψ0/π)

ρ
√
ρ2 − b2

δ(z)H(ρ− b) φ̂. (2.13)

The current density blows up at the disk edge ρ = b (from the right), but the blowup grows only
like the square root of the distance, so the total current is finite. Orthonormal frame components of
the magnetic field also blow up like the square root of distance. This divergence is milder than the
inverse-distance singularity that would be produced by a line current. Thus our model contains a
concentration of current near the edge of the disk, but not as much concentration as a line current.
Similar comments apply to the charge and current density when Ω1 6= 0.

Using Eq. (2.3), the power (energy flux) flowing upward between two field lines u1 < u2 is given by

Pup = ∓ψ
2
0

2π

∫ u2

u1

Ω(u)2u3 du√
1− u2 [1− b2Ω(u)2u4]

. (2.14)

We see that if the lower sign is chosen, the solution represents energy flowing in from infinity in
the southern hemisphere and out to infinity in the northern, while the upper entails the opposite.
For physical models of unipolar induction (Secs. 3 and 4), we have the freedom to choose the sign
separately in each hemisphere for field lines that intersect the object, and will do so in order to
ensure outgoing flux everywhere.

In spherical coordinates,11 the asymptotic r →∞ behavior of the function u defined in Eq. (2.6) is

u = sin θ +O
(
b2

r2

)
. (2.15)

Thus from Eq. (2.8) the large-r behavior of the solution is

I = ±ψ0
Ω sin2 θ√

1− b2Ω2 sin4 θ
+O

(
1

r2

)
, (2.16)

∂θψ = ψ0
sin θ√

1− b2Ω2 sin4 θ
+O

(
1

r2

)
. (2.17)

11The transformation to spherical coordinates is defined by ρ = r sin θ and z = r cos θ.
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Since ψ is asymptotically r-independent, the field lines are asymptotically radial. They are uniformly
distributed (monopolar) when bΩ = 0, and become more bunched near the equator as this quantity
increases. From Eqs. (2.16) and (2.17) we see that

I = ±Ω sin θ ∂θψ, r →∞. (2.18)

This indicates that the electric and magnetic fields are asymptotically equal in magnitude.

The solution includes the radial and vertical solutions as special cases. The radial solution emerges
as b → 0 at fixed spherical coordinates r and θ. From Eq. (2.15) we have u = sin θ + O(b2), and
hence from Eq. (2.10) we find

lim
b→0

F =
ψ0

2π
sin θ

(
cos θ

|cos θ|
dθ ∧ [ dφ− Ω(sin θ) dt]± Ω(sin θ) dr ∧ dθ

)
. (2.19)

This is Michel’s radial solution [21], already in “split” form on account of the factor of cos θ/ |cos θ|.
Normally one derives the true monopole solution and then adds such a factor by hand. Here we
see the factor naturally emerge when the solution is regarded as a limiting case of the hyperbolic
solution. Note that if one chooses ± oppositely in each hemisphere so as to have pure outgoing
(or pure ingoing) flux, then the solution becomes proportional to sin θ dθ∧ [ dφ− Ω( dt± dr)] with
opposite signs in opposite hemispheres, the simple form discussed in [11].

The vertical solution emerges as b → ∞ at fixed cylindrical coordinate. From Eq. (2.6) we have
u = ρ/b+O(b−3) and hence from Eq. (2.10),

lim
b→∞

(
b2F
)

=
ψ0

2π
ρ dρ ∧ [ dφ− Ω( dt± dz)] . (2.20)

In this particular limit Ω is a constant because Ω(u ≈ ρ/b)→ Ω(0), but one may choose Ω to scale
with b so that the more general solution, Eq. (2.20) with Ω = Ω(ρ), is obtained. Time-dependent,
nonaxisymmeric generalizations of vertical solutions are given in [17].

3 Star with a Disk

Unipolar induction (also homopolar induction) is the generation of an electric field by a conductor
moving in a magnetic field. The effect may be understood directly from the perfect conductor
assumption that the electric field must vanish in the rest frame of the conductor. If the conductor
moves with velocity ~v (and boost factor γ) in a magnetic field ~B, the rest-frame electric field is

given by γ( ~E + ~v × ~B), so that an electric field of −~v × ~B must be generated. If wires (or plasma)
are connected to the conductor, then the resulting voltage will drive a current and energy will be
carried away. In the case of an ordinary circuit, the amount of current and power is fixed by the
resistance of the load. In the case of a conductor in plasma, one must self-consistently solve the
equations, from which an effective resistance can be determined.

In the framework of stationary, axisymmetric force-free magnetospheres, the boundary condition of
a rotating conductor is simple and intuitive: field lines meeting the conductor must rotate with it.
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This may be seen by recalling that the electric field in a frame with four-velocity uα is given by
Fαβu

β. For a conductor rotating with angular velocity ω the four-velocity (field) is uα = γ(1, 0, 0, ω)
in cylindrical coordinates. Plugging into Eq. (2.2), we see that Fabu

b = 0 requires that Ω(ψ) = ω
for any field line ψ that intersects the conducting surface.12 This leads to the intuitive picture of
field lines being anchored to the conductor.

In light of the preceding discussion, it is straightforward to use our solution to model unipolar
induction by a star of radius R < b rotating at constant angular velocity Ω? in the field of a
magnetized disk. We use the force-free solution outside the star and demand that field lines meeting
the star co-rotate with it,

Ω(u) = Ω?H(R− bu), (3.1)

where H(x) again denotes the Heaviside function, defined to equal zero for x < 0 and one for
x > 0. Second, we must impose the boundary condition that no energy comes in from infinity, by
selecting the lower sign in the northern hemisphere and the upper sign in the southern hemisphere,
± → −sign(θ − π/2) in Eq. (2.10) (and Eq. (2.8)). Thus the self-consistent model of unipolar
induction by a rotating star in plasma in a magnetic field provided by a thin disk is

F =
(ψ0/2π)√

1− b2Ω(u)2u4

(
u du√
1− u2

∧ [ dφ− Ω?H(R− bu) dt]− sΩ?H(R− bu)
u2

ρ
dρ ∧ dz

)
, (3.2)

where

s ≡ sign
(
θ − π

2

)
. (3.3)

The model is symmetric under reflection about the equatorial plane, and for simplicity we shall
henceforth consider solely the northern hemisphere, 0 ≤ θ ≤ π/2. The flux function is given by13

ψ = ψ0

∫
u du√

(1− u2) [1− b2Ω2
?u

4H(R− bu)]
≈ ψ0(1−

√
1− u2), R� b. (3.4)

Thus the total magnetic flux on the star is

Ψ? = ψ0

∫ R/b

0

u du√
(1− u2) [1− b2Ω2

?u
4H(R− bu)]

≈ ψ0

2

(
R

b

)2

, R� b. (3.5)

If R 6� b, these integrals are given by elliptic functions (App. A).

12In general only the tangential components of the electric field must be continuous across a surface layer, whereas
here we have demanded that all components be continuous (and hence vanish). If one considers only the tangential
components, then Ω = ω is still required provided that the field line intersects the conductor non-tangentially.
Furthermore, this makes all components vanish, so that there is no induced surface charge in the conductor frame.
For further discussion, see Sec. 8.1 of [11].

13Since the star cannot rotate faster than the speed of light we have RΩ? < 1 and hence bΩu < 1, making
b2Ω2u4 � 1 when R� b.
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3.1 Star Jet Properties

The model contains current and energy flux only within the last field line touching the star, u ≤
R/b. Since the field lines are asymptotically radial, this may be called a conical jet. In spherical
coordinates we have u ≈ sin θ for large r from Eq. (2.15), so the (half-)opening angle is just

θ?jet = arcsin
R

b
≈ R

b
, R� b. (3.6)

From Eqs. (2.14) and (2.15) the outgoing power per unit angle θ in the asymptotic jet is

dP

dθ
=
ψ2

0

2π

Ω2
? sin3 θ

1− b2Ω2
? sin4 θ

, r →∞, (3.7)

which is concentrated towards the edge of the cone. (This formula includes only the contribution
from one hemisphere; the total power is a factor of two larger.) Recall that RL(u) ≡ Ω(u)−1 and
hence bΩ? = b/RL is the ratio of the disk radius to the light cylinder radius.

Using Eq. (3.7) we can compute the total power from a slowly rotating star (bΩ? � 1),

P ?
jet =

ψ2
0 Ω2

?

2π

∫ θ?jet

0

sin3 θ =
ψ2

0 Ω2
?

3π

[
1−

√
1− R2

b2

(
1 +

R2

2b2

)]
. (3.8)

If in addition R� b, then

P ?
jet ≈

ψ2
0 Ω2

?

8π

(
R

b

)4

=
(Ψ?Ω?)

2

2π
. (3.9)

3.2 Circuit Model

The net current flowing in the bulk of the jet is given by I(u = R/b),

Ibulk = −ψ0
Ω?(R/b)

2√
1− (RΩ?)2(R/b)2

, (3.10)

while an equal and opposite remainder flows along the current sheet at u = R/b. (This “return
flow” is required by current conservation, and may also be computed directly from the jump in ?F
caused by the discontinuous choice of Ω(u).) The voltage drop from the pole to the equator (or
equivalently, to the end of the jet) is just Ω?ψ

∣∣
u=R/b

and hence can be expressed in terms of elliptic

functions (see App. A). To leading order in bΩ? it is simply

V = Ω?ψ
∣∣
u=R/b

=
ψ0 Ω?

2π

[
1−

√
1− (R/b)2

]
+O

(
b2Ω2

?

)
. (3.11)

This is the approximation that the light cylinder radius 1/Ω? is well outside the disk edge b. Since
R < b this approximation also entails RΩ? � 1 small as well, i.e. that the surface velocity of the
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star is much less than the speed of light. Taking this into account we have for the effective resistance
Reff of the plasma in the circuit,

Reff =
V

|Ibulk|
≈

1−
√

1− (R/b)2

(R/b)2
, bΩ? � 1. (3.12)

Here Reff varies from 1/2 to 1 as R/b varies from 0 to 1. The value Reff = 1 is the “impedance
of free space” (4π in cgs-Gaussian units), often used as the effective resistance of the plasma for
rough estimates (e.g. [31]). Thus for our setup in the slow rotation approximation, the true effective
resistivity of the plasma differs from that of “free space” by at most a factor of two. For rapidly
rotating stars one may use the expressions in App. A. The effective resistance never exceeds 1 and
changes order of magnitude only when both Ω?R and R/b are near 1, where it drops to zero. This
is the limit where the star nearly touches the disk and has surface velocity nearly equal to the speed
of light.

In we instead assume R/b � 1 then from Eq. (3.5) we have V = Ω?Ψ? = 1
2
ψ0 Ω?(R/b)

2. The
effective resistance is thus

Reff =
1

2
, R� b. (3.13)

This equation does not assume bΩ? � 1 nor RΩ? � 1.

4 Black Hole with a Disk

In their original paper [3], Blandford and Znajek derived the stream equation in the Kerr spacetime
(the analogue of Eq. (2.4)) and laid out a perturbative method for solving it. One begins by
expanding the flux function, current, and angular velocity14 in the spin of the black hole as follows,15

ψ = X(r, θ) +O
(
a2

M2

)
, (4.1)

I =
a

M2
Y (X) +O

(
a3

M3

)
, (4.2)

Ω =
a

M2
W (X) +O

(
a3

M3

)
, (4.3)

where X, Y , and W are independent of the spin a.16 (We work in Boyer-Lindquist coordinates
(t, r, θ, φ).) Since the current and angular velocity vanish at a = 0, the leading-order flux function

14In Kerr, or more generally any stationary axisymmetric (circular) spacetime, these quantities are invariantly
defined in the same way as in flat spacetime [11].

15The leading scalings follow from the fact that no energy can be extracted from a non-rotating black hole. (Note
that Eq. (2.3) holds in Kerr.) The scaling of the error terms may be seen from the Znajek condition (e.g. Eq. (104)
of [11]).

16Our notation differs slightly from BZ who use Aφ ≡ ψ − 1 = X +O(a/M)2.

12



X must be a vacuum Maxwell solution in the Schwarzschild spacetime. At next order O(a), the
equations are automatically satisfied by the form of Eqs. (4.1)–(4.3)—the entire content of the
force-free equations is the statement that Y and W are functions of X alone. The Kerr force-free
stream equation appears first at O(a2), which we do not consider in this paper.

To find force-free solutions to O(a), then, one needs a vacuum Schwarzschild solution X as well as
two further equations to fix Y and W . The first comes from a universal relationship that always
holds on the black hole horizon, the so-called Znajek condition [36],

Y =

(
W − 1

4

)
sin θ ∂θX at r = rH , (4.4)

which we present here to the relevant order in the spin. This condition guarantees that the fields
are regular at the horizon and also follows from the stream equation (e.g. [11]). Note that 1

4
is

the value of W corresponding to the horizon angular frequency. The second equation, according
to a key idea of the BZ approach, is to be determined from an analogous force-free solution in flat
spacetime. If the goal is simply to satisfy the force-free equations to O(a), then any postulated
second relationship between X, Y , and W will do. But this is an extremely large freedom, and may
correspond to spurious linearized solutions that arise from no family of exact solutions. In order
to eliminate this freedom BZ postulated that a second relationship should be determined from an
exact flat spacetime solution that agrees with the linearized solution at large r, where the Kerr
spacetime becomes approximately flat. In our case this second relationship will be Eq. (2.18) with
the lower sign appropriate to outgoing flux in the northern hemisphere,

Y = −W sin θ ∂θX as r →∞. (4.5)

Here and below we work in the northern hemisphere 0 ≤ θ ≤ π/2, with the southern fields deter-
mined by reflection.

4.1 Flux Function X

The first step of the BZ method is to find a vacuum (I = Ω = 0) flux function X in Schwarzschild
that corresponds to the “same” physical configuration as the flat spacetime hyperbolic force-free
solution ψ evaluated at I = Ω = 0. In the cases treated by BZ, there was an obvious “same”
solution, but here we must exercise more care. In general there is no canonical mapping between
field configurations on different spacetimes, but in this case we have just enough structure to make
one. Using the facts that (i) the flux functions must satisfy the vacuum Maxwell equation in their
respective spacetimes (flat and Schwarzschild), and (ii) these spacetimes both exhibit spherical
symmetry, we can make a unique identification mode-by-mode in an expansion in angular harmonics.
In App. B we follow this general approach and derive a family of solutions parameterized by the
Schwarzschild coordinate radius b◦ of the disk, expressed in series expansions valid for r ≤ b◦ and
r ≥ b◦. The flux function for this family is given by Eqs. (B.22), (B.24), and (B.25).
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For the discussion here we need only the following properties of the solution,

X(r = rH , θ) ≈ XH sin2 θ, (4.6)

X(r →∞, θ) = X0(1− cos θ). (4.7)

These indicate that the field is approximately vertical on the black hole and approximately radial
(monopolar) at infinity. We have multiplied the solution (B.22) by an overall constant X0 repre-
senting the magnetic flux in one hemisphere. Eq. (4.7) follows from (B.22b) as r → ∞, noting
that R>

` (r) ∼ r−`. Eq. (4.6) follows from (B.22a) keeping only the leading k = 1 term, noting that
R<

1 (r) = r2. Dropping the higher order terms is an excellent approximation provided that the disk
does not extend too close to the black hole. For example, for b◦ ≥ 6M the subleading term is at
least a factor of 10−3 smaller. The constant XH is the total flux on one hemisphere of the black
hole horizon, and is given by

XH = CX0
8M2[

b◦ −M +
√
b◦(b◦ − 2M)

]2 , (4.8)

where C(M, b◦) is a constant of order unity given in Eq. (B.25) (see also Eqs. (B.39)–(B.40)). For
b◦ = 6M (the ISCO radius) C ≈ .735, while for b◦ �M (disk very far) C = 1. Thus,

XH

X0

∣∣∣∣
b◦=6M

≈ .060,
XH

X0

∣∣∣∣
b◦→∞

≈ 2M2

b2
◦
. (4.9)

At b◦ = 6M the b◦ →∞ expression gives XH/X0 ≈ .056, quite close to the true value of .060.

4.2 Current Y and Angular Velocity W

Plugging Eq. (4.6) into (4.4) gives a condition at the horizon, while plugging Eq. (4.7) into (4.5)
gives a condition at infinity. These respectively are

Y = 2XH

(
W − 1

4

)
sin2 θ cos θ at r = rH . (4.10)

Y = −X0W sin2 θ as r →∞. (4.11)

These equations hold at different radial coordinates and cannot yet be compared. However, we may
use Eqs. (4.6) and (4.7) to eliminate θ in favor of X,

Y = 2
(
W − 1

4

)
X
√

1−X/XH (from the horizon; X < XH), (4.12)

Y = −WX(2−X/X0) (from infinity; all X). (4.13)

Since Y and W are functions only of X the equations may now be combined, giving

Y (X) = −WX(2−X/X0), (4.14)

W (X) =
1

4

√
1−X/XH

1−X/(2X0) +
√

1−X/XH

, (4.15)
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which hold on the overlapping domain of validity, X < XH . For X > XH we take Y = W = 0, as
required by reflection symmetry and smoothness. Note that this does not entail any current sheet
since Y = W = 0 at X = XH from Eqs. (4.14) and (4.15). Recall that 1/4 is the value of W
corresponding to the horizon angular frequency.

A similar procedure was performed previously by [25] (see also [26]), who arrived at Eqs. (4.14)
and (4.15) in the distant-disk limit b◦ � M (equivalently XH � X0). In this limit the terms
with X/X0 disappear, since X < XH in those expressions. They postulated Eq. (4.13), which we
derived here from the corresponding flat force-free solution (2.8) according to the BZ method. They
found the vacuum flat solution (B.18) in generality and used it to find the near-horizon behavior
of the Schwarzschild vacuum solution when b◦ � M . (In this limit C = 1 and b = b◦, and the
many subtleties discussed in App. B do not arise.) We have found the vacuum solution everywhere
outside the horizon and for arbitrary b◦, an effort which reveals that the b◦ → ∞ expression in
Eq. (4.9) in fact works well even at the ISCO radius b◦ = 6M . Eqs. (4.14) and (4.15) without the
X/X0 terms were also obtained in [37] by considering strictly vertical field lines and imposing an
integrability condition for the second-order perturbation.

4.3 Black Hole Jet Properties

As in the exact flat solution, the approximate Kerr solution produces a conical jet. The boundary
of the jet is the last field line touching the black hole, labeled by X = XH . From Eq. (4.7) this has
an asymptotic θ-angle of

θ•jet = arccos

(
1− XH

X0

)
≈

{
20◦ b◦ = 6M,
2M
b◦

b◦ �M.
(4.16)

At large r, the power per unit θ in the jet is

dP

dθ
=
X2

0 Ω2
H

2π
w(θ)2 sin3 θ, (4.17)

where

w(θ) =

√
cos θ − cos θ•jet√

1− cos θ•jet cos2 θ
2

+
√

cos θ − cos θ•jet

, (4.18)

and ΩH = a/(4M2) at this order of approximation.

The total power may also be computed from Eq. (2.3), which holds in any stationary, axisymmetric,
circular spacetime [11]. We can compute numerically for all finite values of b◦ or get an analytic
expression when b◦ �M (equivalently XH � X0),

P •jet ≈


7× 10−5X2

0 Ω2
H ≈ .02X2

H Ω2
H b◦ = 6M,

Ω2
H

π

∫ XH

0

X

( √
1−X/XH

1+
√

1−X/XH

)2

dX =
17− 6 log 16

6π
X2
H Ω2

H b◦ �M,
(4.19)
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where we have used Eq. (4.9). Note that (17− 6 log 16)/(6π) ≈ .02, so that the large-b◦ expression
in fact gives an excellent approximation for the b◦ = 6M answer. These expressions for the power
include only one jet; the total power is a factor of two larger.

4.4 Circuit Model

The voltage drop across the jet is the integral of Ω dψ. We can compute this analytically in the
limit b◦ �M (equivalently XH � X0),

V =

∫
Ω dψ = ΩH

∫ XH

0

√
1−X/XH

1 +
√

1−X/XH

dX = (log 4− 1)XH ΩH , b◦ �M. (4.20)

In this limit the net outward current −I reaches a maximum value of 1
2
XH ΩH at X = 3

4
XH . We

regard X < 3
4
XH as the “bulk” flow and X > 3

4
XH as the return flow, and write

Ibulk = −XH ΩH

2
. (4.21)

This is the current in the circuit, and hence the effective resistance is

Reff =
V

|Ibulk|
= 2(log 4− 1) ≈ .77. (4.22)

This analysis holds for b◦ �M , but provides a good approximation even for b◦ = 6M .

5 Stars vs. Black Holes

We conclude with a side-by-side comparison of the star (Sec. 3) and black hole (Sec. 4) solutions.
The main qualitative difference is that the star’s jet is surrounded by a current sheet, while the
black hole’s jet is not. To compare more quantitatively we must specify how the parameters are to
be chosen in each case, make the same approximations in both compact object (CO) solutions, and
compare only invariantly defined quantities. On the one hand, the star solution is parameterized
by radius R, disk edge b, and angular velocity Ω?. On the other hand, the black hole solution is
parameterized by black hole mass M (also proportional to its size), Schwarzschild coordinate disk
edge b◦, and angular velocity ΩH . We will take ΩCO ≡ ΩH = Ω? and assume that the disk edge
is far from the compact object, b � R and b◦ � M ; then we may take bCO ≡ b = b◦ without
any coordinate ambiguity. There is no unambiguous way to compare the stellar radius R with the
black hole mass M . Instead we will demand that the opening angles of the jets are the same. From
Eqs. (3.6) and (4.16) we have θ?jet = R/b and θ•jet = 2M/b◦. Hence setting them equal gives

θ•jet = θ?jet =⇒ R = 2M, (5.1)
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Figure 4: Comparison of jets from stars and black holes immersed in the magnetic field of a thin
disk. On the left, field line angular velocity as a function of magnetic flux, normalized by the
compact object velocity ΩCO and the magnetic flux on the compact object ΨCO, respectively. In
the star case the field angular velocity equals that of the star, while in the black hole case it is
variable, peaking at half the black hole frequency on the pole and vanishing on the equator. The
star current and field velocity do not vanish at the edge of the jet, indicating the presence of a
current sheet there. To make a direct comparison we have assumed that the compact objects are
slowly spinning and that the the disk is far away. More generally, the current in the star’s jet is a
nonlinear function of magnetic flux, as indicated in Eq. (2.8).

which happens to be the Schwarzschild coordinate radius of the event horizon. This also makes
the total magnetic flux ΨCO ≡ Ψ? = XH = 1

2
ψ0(R/b)2 on the objects equal—see Eqs. (3.5) and

(4.9)—while identifying X0 = ψ0. With these identifications we have

P ?
jet =

(ΨCOΩCO)2

2π
, P •jet =

17− 6 log 16

6π
(ΨCO ΩCO)2 =⇒ P ?

jet ≈ 10× P •jet. (5.2)

The total power of the star is approximately ten times larger than the black hole’s power. In this
limit we have the simple expressions (3.12) and (4.22) for the effective resistance of the circuit,

R?
eff = .5, R•eff = 2(log 4− 1) ≈ .77. (5.3)

In analytical estimates one sometimes assigns the impedance of free space Rfree = 1 (≈ 377 Ohms)
to the ambient space and to the black hole. This would suggest R?

eff = 1 and R•eff = 2, which is off
by a factor of about two. However, the basic intuition that the black hole provides extra resistance
is supported by the exact solution.

Since the black hole solution is valid only for MΩH � 1, we should similarly assume RΩ? � 1
in the star case. With all these approximations, Fig. 4 plots the angular velocity and current
functions of the star and the black hole. The physical setup is nearly identical and the compact
objects are effectively vanishingly small in the approximations taken. Nevertheless, the distant jet
has dramatically different properties in each case. In this way the force-free magnetosphere carries
information about the nature of the central object to observers located at infinity.
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A Flux Function for Constant Ω

We now evaluate the integral in Eq. (2.8) for ψ in the case that Ω(u) = Ω is a non-zero constant.
We must then require that |bΩ| ∈ (0, 1), and find

ψ(u) =
ψ0√

bΩ (bΩ + 1)
E

(
arcsin

√
bΩu2 + 1

2
,

2

bΩ + 1

)
+D, (A.1)

where E(φ,m) is the elliptic integral of the first kind. The integration constant D must be fixed
such that ψ vanishes on the pole, ψ(0) = 0. This gives

ψ(u) =
ψ0√

bΩ (bΩ + 1)

[
E

(
arcsin

√
bΩu2 + 1

2
,

2

bΩ + 1

)
− E

(
π

4
,

2

bΩ + 1

)]
. (A.2)

B Vacuum Solution in Schwarzschild

In this seven-part appendix we discuss general procedures for identifying vacuum (source-free)
Maxwell solutions in flat spacetime with corresponding solutions in Schwarzschild spacetime and
present an explicit construction for the hyperbolic case of relevance to this paper.

B.1 Overview

In the vacuum case (I = Ω = 0) the stream equation (2.4) in flat spacetime reduces to

r2 ∂2
rψ + ∂2

θψ − cot θ ∂θψ = 0, (B.1)

where now we work in spherical coordinates (r, θ). The corresponding equation in Schwarzschild
spacetime (with Schwarzschild coordinates) is

r(r − 2M) ∂2
rψ + 2M ∂rψ + ∂2

θψ − cot θ ∂θψ = 0, (B.2)

where M is the black hole mass.17 These equations are separable, have the same angular part at all
r, and agree entirely as r → ∞. These facts allow one to make a canonical identification between
solutions in the M = 0 and M 6= 0 cases, as we now explain.

17Eqs. (B.1) and (B.2) are equivalent to the vacuum Maxwell equations, in their respective spacetimes, for an
axisymmetric vector potential Aµ in a gauge where only Aφ = ψ is non-vanishing. They differ from the equations
for the magnetostatic scalar potential used in [38] and many other references.
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A physical flux function ψ must vanish at both poles. As discussed in App. B.2 below, a sufficiently
regular solution of (B.2) vanishing at both poles can be expanded, at least locally in r, as

ψ(r, θ) =
∞∑
`=1

[C<
` R

<
` (r) + C>

` R
>
` (r)] Θ`(θ), (B.3)

where C<
` and C>

` are (real) constants. The angular harmonics Θ` vanish at the poles, while R<
` is

regular at the horizon (but not at infinity) and R>
` is regular at infinity (but not at the horizon).

Solutions of the M = 0 equation (B.1) admit an expansion analogous to that in Eq. (B.3), with
identical angular harmonics Θ`(θ). The radial harmonics are different, but may be identified with
corresponding M 6= 0 radial harmonics by demanding that they agree as r → ∞, where the
equations agree. Thus one may associate solutions of Eqs. (B.1) and (B.2) by expressing them in
the form (B.3) and demanding that the coefficients C≷

` be the same.18

While general, this procedure is not particularly convenient for force-free magnetospheres. Physical
magnetosphere models typically contain a current sheet, which appears as a cusp in the flux function.
(For example, the split monopole has ψ = 1−|cos θ|.) While such functions can be expanded in the
series (B.3), the representation is not intuitive, and the cusp limits the convergence. Furthermore,
computing the coefficients C≷

` involves evaluating integrals of the form (B.9), a difficult task in
general. To overcome these difficulties, we will use a method appropriate for magnetospheres with
equatorial reflection symmetry, where we work only on the northern hemisphere θ ∈ [0, π/2], with
the southern fields to be determined by reflection. This frees us to consider functions ψ that vanish
only on one pole, which means the ` = 0 harmonic Θ0(θ) = 1 − cos θ is now admissible. The
corresponding radial harmonic is R0(r) = 1, with the other linearly independent solution divergent
at both the horizon and at infinity.

The method takes advantage of the fact that the flat space radial harmonics are pure powers of
r, R<

` = r`+1 and R>
` = r−`, making Taylor expansion equivalent to mode expansion. We Taylor

expand the flat solution about r = 0 and r = ∞ to produce expansions valid for r ≤ b and
r ≥ b, respectively. We then promote each expansion to a solution in Schwarzschild by the above
procedure. The series converge on either side of a Schwarzschild coordinate radius r = b◦(M, b)
that we compute explicitly. The overall normalization of the outer solution is fixed by demanding
that the flat and Schwarzschild solutions agree asymptotically where both spacetimes are flat, while
the overall normalization of the inner expansion is fixed by demanding continuity at r = b◦. The
remainder of this appendix follows this procedure.

B.2 Angular and Radial Harmonics

The separation of Eq. (B.2) has been discussed previously by [25, 39, 40]. Our treatment establishes
notation for this paper, provides some additional details, and finds the normalization of the radial
harmonics required to properly reduce to the canonical normalization in flat spacetime.

18While this can always be implemented in a sufficiently small (but finite) domain, in typical problems C<` and
C>` will be chosen differently on different domains (e.g. matched at some radius). In this case there remains the
ambiguity of how to choose the domains. This ambiguity does not arise in the related method we use in this appendix.
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The product solutions R`(r)Θ`(θ) of Eq. (B.2) satisfy

d

dθ

(
1

sin θ

dΘ`

dθ

)
+
`(`+ 1)

sin θ
Θ` = 0 (B.4)

d

dr

[(
1− 2M

r

)
dR`

dr

]
− `(`+ 1)

r2
R` = 0, (B.5)

where we name the separation constant `(` + 1). Since the angular equation (B.4) is of Sturm-
Liouville form with weight csc θ, we can expect19 a discrete, infinite set of eigenvalues whose eigen-
functions are complete and orthogonal with respect to csc θ dθ. We find that the solutions vanishing
at both poles are given (in a convenient normalization) by the hypergeometric function,

Θ2k−1(θ) = 2F1

[
−k, k − 1

2
;
1

2
; cos2 θ

]
, (B.6)

Θ2k(θ) = 2F1

[
−k, k +

1

2
;
3

2
; cos2 θ

]
cos θ, (B.7)

where k (and hence `) is a positive integer. The Θ` are proportional to the Gegenbauer polynomials

G(m)
n (x),

Θ`(θ) =


2F1

[
`

2
,−`+ 1

2
;
1

2
; cos2 θ

]
= −

Γ
(
− `

2

)
Γ
(
`+1

2

)
2
√
π

sin2 θ G(3/2)
`−1 (cos θ) ` odd,

(B.8)

2F1

[
− `

2
,
`+ 1

2
;
3

2
; cos2 θ

]
cos θ = −(−1)`/2

√
π Γ
(
`
2

)
4 Γ
(
`+3

2

) sin2 θ G(3/2)
`−1 (cos θ) ` even.

From the known orthogonality properties of those polynomials one can directly check that the Θ` are
orthogonal with the expected weight csc θ dθ. Given a sufficiently regular function T (θ) vanishing
at the poles, a series representation can now be computed as

T (θ) =
∞∑
`=1

T`Θ`(θ), T` =

∫ π
0
T (θ)Θ`(θ) csc θ dθ∫ π
0

Θ`(θ)2 csc θ dθ
. (B.9)

We will also find it useful to consider the ` = 0 solution, which is α+ β cos θ for constants α and β.
We can make this function vanish at one pole, and hence use it in a single hemisphere. We work
with the choice

Θ0(θ) = 1− cos θ. (B.10)

This function is not orthogonal to the functions Θ`≥1 defined in Eqs. (B.6) and (B.7), and we do
not regard it as part of that set, which is expected to be complete only for functions vanishing at
both poles.

19The function csc θ = 1/ sin θ is not sufficiently regular for the standard theorems to directly apply.
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In a convenient normalization, the solutions of the radial equation (B.5) regular at the horizon and
infinity, respectively, are given for ` ≥ 1 by

R<
` (r) =

r2

2
(−2M)`−1 Γ(`+ 2)2

Γ(2`+ 1)
2F1

[
`+ 2, 1− `; 3;

r

2M

]
, (B.11)

R>
` (r) = − 2√

π

(r
4

)−` Γ
(
`+ 3

2

)
(`+ 1)Γ(`)

{
2F1

[
`+ 2, `; 1; 1− 2M

r

]
log

(
1− 2M

r

)
+ P`

( r

2M

)}
, (B.12)

where the P` are the polynomials recursively defined by

P1(x) = x2 +
x

2
, (B.13)

P2(x) = 4x4 − x3 − x2

6
, (B.14)

P`(x) =
(2`− 1)[`(`− 1)(2x− 1)− 1]xP`−1(x)− `2(`− 2)x2P`−2(x)

(`+ 1)(`− 1)2
. (B.15)

Note that the leading term in P` is

P`(x) =
4``√
π

Γ
(
`+ 1

2

)
Γ(`+ 2)

x2` +O
(
x2`−1

)
. (B.16)

The normalization of R≷
` is chosen so that as r → ∞ fixing M (or equivalently M → 0 fixing r),

we reduce to the simple form

R<
` (r) = r`+1, R>

` (r) = r−` as r →∞ or M → 0. (B.17)

This makes the M 6= 0 normalization of Eq. (B.11) the “same” (in the sense discussed in Sec. B.1)
as the natural M = 0 normalization R<

` (r) = r`+1 and R>
` (r) = r−`. When M 6= 0, R<

` (r) diverges
logarithmically on the event horizon r = 2M .

Note that the M = 0 eigenfunctions in Eq. (B.17) differ from the usual r` and r−(`+1) that arise in
solutions of the Laplace equation. The reason is that we work with the flux function rather than
the magnetostatic scalar potential (see discussion in the footnote below Eq. (B.2)).

For ` = 0 the general solution is α + β[r + 2M log(r − 2M)] for some constants α and β. Unlike
the ` ≥ 1 cases, the ` = 0 solution is either everywhere regular (β = 0) or divergent at both the
horizon and infinity (β 6= 0).

B.3 Mode Expansion of the Flat Solution

Setting ψ0 = 1 for simplicity, the flat vacuum solution ψ, Eq. (2.9), is given in spherical coordinates
by

ψ(r, θ) = 1−

√√√√1

2

[
1−

(r
b

)2
]

+

√
1

4

[
1−

(r
b

)2
]2

+
(r
b

)2

cos2 θ. (B.18)
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In principle one could proceed by integrating ψ against the angular harmonics Θ` from Eq. (B.9)
to determine the coefficients C≷

` in Eq. (B.3), but this approach is intractable. We will take an
alternative approach based on the observation that the radial eigenfunctions in flat spacetime are
r`+1 and r−` exactly, and therefore correspond to terms in a Taylor expansion around r = 0 and
r =∞, respectively. Thus by Taylor expanding we can expect each term to come with an angular
function Θ` and a coefficient that can easily be read off. For example, expanding (B.18) near r = 0,
we find

ψ(r, θ) =
sin2 θ

2

(r
b

)2

− sin2 θ

16
(3 + 5 cos 2θ)

(r
b

)4

+
sin2 θ

128
(15 + 28 cos 2θ + 21 cos 4θ)

(r
b

)6

+ . . . ,

(B.19)

each term of which has θ-dependence proportional to an angular function Θ`. The full series is

ψ(r, θ) =
1

2
√
π

∞∑
k=1

Γ
(
k − 1

2

)
Γ(k + 1)

(r
b

)2k

Θ2k−1(θ), r ≤ b. (B.20)

We may similarly expand around r =∞, and read off the complete Taylor series as

ψ(r, θ) = 1− cos θ −
∞∑
k=1

Γ(2k + 1)

Γ(k + 1)2

(
b

2r

)2k

Θ2k(θ), r ≥ b. (B.21)

Here and hereafter we work in the northern hemisphere 0 ≤ θ ≤ π/2. Notice that the near series
(B.20) involves only odd multipoles ` = 2k + 1, while the far series (B.21) involves even multipoles
` = 2k. (Note that 1− cos θ is the ` = 0 harmonic.) These series do not match term by term, and
must be summed for comparison at r = b.

We have established the radii of convergence of these series by using the ratio test at the special
value of θ = π/2 and confirming numerically that the radius is θ-independent. This procedure is
described in Sec. B.5 below. Eqs. (B.20) and (B.21) provide a dual series representation of the exact
flat solution (B.18).

B.4 Schwarzschild Solution

To promote the flat solution to Schwarzschild spacetime we send r`+1 → R<
` (r) and r−` → R>

` (r)
in Eqs. (B.20) and (B.21) and also allow for a relative normalization C,

ψ(r, θ) =


C

2
√
π

∞∑
k=1

Γ
(
k − 1

2

)
Γ(k + 1)

(
1

b

)2k

R<
2k−1(r)Θ2k−1(θ), r ≤ b◦, (B.22a)

1− cos θ −
∞∑
k=1

Γ(2k + 1)

Γ(k + 1)2

(
b

2

)2`

R>
2k(r)Θ2k(θ), r ≥ b◦. (B.22b)

In Sec. B.6 below we determine the radius of convergence b◦ to be

b◦ = b+M +
M2

4b
. (B.23)
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This indicates that the disk terminates at the Schwarzschild coordinate r = b◦. That b◦ 6= b
should not be surprising, since there is no canonical identification betwen coordinates on different
manifolds. (Note however that b◦ → b as M → 0, as required.) Inverting Eq. (B.23) gives

b =
b◦ −M +

√
b◦(b◦ − 2M)

2
. (B.24)

We regard b◦ as a free parameter in the Schwarzschild solution.

In principle the normalization C may be determined by summing both series at r = b◦. This is
tractable at the special value of θ = π/2 where the angular harmonics simplify. The even harmonics
vanish, showing that ψ(r ≥ b) = 1. The odd harmonics are equal to unity, so we have

1

C
=

1

2
√
π

∞∑
k=1

Γ
(
k − 1

2

)
Γ(k + 1)

(
1

b

)2k

R<
2k−1(b◦). (B.25)

This series converges excruciatingly slowly, making direct computation with Eq. (B.25) impractical.
Its terms only fall off like k−3/2, so it is necessary to sum the first ∼ 2, 600 terms to get to within 1%
accuracy. In Sec. B.7 we derive an equivalent, more practical representation using series acceleration
techniques, Eq. (B.39).

To complete the proof that Eq. (B.22) is a smooth solution in Schwarzschild one should in principle
check that the series match at all angles θ using the expression (B.25) for C determined at θ = π/2.
We have verified this numerically in broad brush, but it is difficult to be conclusive because of the
slow convergence of at least one of the series at every value of θ. One can expect the series to match
because of the unique, natural association between solutions in Schwarzschild and solutions in flat
spacetime discussed in Sec. B.1. This association acts over finite neighborhoods and up to overall
normalization. Thus, we can expect only a relative normalization when we promote our single flat
solution in the two different neighborhoods.

B.5 Flat Radius of Convergence

We now discuss the radius of convergence of the series representations (B.20) and (B.21) of the flat
solution. We will need the asymptotic approximation for the hypergeometric function given on p77
of [41]

2F1

[
a+ λ, b− λ; c;

1− z
2

]
λ→∞∼ Γ(1− b+ λ)Γ(c)

Γ
(

1
2

)
Γ(c− b+ λ)

2a+b−1
(
1− e−ξ

)−c+1/2 (
1 + e−ξ

)c−a−b−1/2

× λ−1/2
[
e(λ−b)ξ + e±iπ(c−1/2)e−(λ+a)ξ

] [
1 +O

(∣∣λ−1
∣∣)] , (B.26)

where the upper or lower sign is taken according as =z ≷ 0, while ξ is defined by eξ ≡ z+
√
z2 − 1.

(Note that e−ξ = z −
√
z2 − 1.) For real arguments z = a + 0i one considers z = a ± iε and lets

ε→ 0, where the result is independent of the choice of ±.
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This formula allows us to find the asymptotic behavior as k → ∞ of (B.6) by setting a = −1/2,
b = 0, c = 1/2, λ = k and z = 1− 2 cos2 θ, resulting in

Θ2k−1(θ)
k→∞∼ Γ(k + 1)

Γ
(
k + 1

2

)√1− e2iθ

8k

[(
−e−2iθ

)k
+
(
−e−2iθ

)−k+1/2
]
. (B.27)

Hence, we may rewrite the sum (B.20) in the asymptotic form

ψ(r, θ) =
∞∑
k=1

ak, ak
k→∞∼

Γ
(
k − 1

2

)
Γ
(
k + 1

2

) (r
b

)2k
√

1− e2iθ

32πk

[(
−e−2iθ

)k
+
(
−e−2iθ

)−k+1/2
]
. (B.28)

This expression is real at all θ, but involves a delicate cancelation of complex phases at generic
values of θ. The ratio ak+1/ak in general oscillates wildly on account of these phases and the ratio
test only gives weak bounds on the domain of convergence. However, at the special value of θ = π/2,

L ≡ lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣2k − 1

2k + 1

√
k

k + 1

(r
b

)2

∣∣∣∣∣ =
(r
b

)2

. (B.29)

Thus the ratio test shows that the series converges for all r < b. The test is inconclusive for r = b,
but the technical convergence of the series there is unimportant for our purposes, since the value
can always be computed by working at r = b− ε and letting ε→ 0. For this reason we write r ≤ b
as the domain of validity of the series (B.20). We have not proven that the radius is r = b for all θ,
but this is straightforward to verify by numerical experiment. Similarly, one may check numerically
that the outer series converges for r ≥ b.

B.6 Schwarzschild Radius of Convergence

Finding the radii of convergence of the Schwarzschild series (B.22) requires the asymptotics of the
radial functions (B.11), which also follows from Eq. (B.26). For the inner series we take a = 1,
b = 2, c = 3, λ = 2k and z = 1− r/M to find

R<
2k−1(r)

k→∞∼
√

32

πk

Γ(2k − 1)

Γ(2k + 1)

e2kξ + ie−(2k−1)ξ

(1− eξ)2
√

1− e−2ξ
, eξ = 1−

r −
√
r(r − 2M)

M
. (B.30)

Hence we may rewrite the sum as

ψ(r, θ) = C
∞∑
k=1

bk, bk ≡
1

2
√
π

Γ
(
k − 1

2

)
Γ(k + 1)

(
1

b

)2k

R<
2k−1(r)Θ2k−1(θ), (B.31)

and use Eqs. (B.27) and (B.30) to obtain the asymptotic behavior of bk,

bk
k→∞∼ (−1)k

2π

(r
b

)2 Γ(2k + 1)2

Γ(4k − 1)

(
2M

b

)2(k−1)
√

1− e2iθ

1− e−2ξ

(
e2kξ + ie−(2k−1)ξ

) (
e−2kiθ + ie(2k−1)iθ

)
k2(2k − 1)2 (1− eξ)2 .

(B.32)
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As in the asymptotic formula (B.27) for the angular functions, the ratio test gives only weak bounds
for generic values of θ, on account of complex phases. At the special value of θ = π/2, however, we
have

L ≡ lim
k→∞

∣∣∣∣bk+1

bk

∣∣∣∣ =

(
M

2b

)2 ∣∣e2ξ
∣∣ =

(
M

2b

)2
[

1−
r −

√
r(r − 2M)

M

]2

, (B.33)

where the last step follows from Eq. (B.30). Demanding L = 1 gives the formula (B.23) for b◦,
where L < 1 for all r < b◦ so that convergence is assured there. In the same spirit as the discussion
below Eq. (B.29), we regard r ≤ b◦ as the domain of validity. Similarly, we expect r ≥ b◦ to be the
domain of validity of the outer series, which is straightforward to confirm numerically.

B.7 Series Acceleration for Matching Coefficient

To facilitate numerical evaluation of the normalization C in Eq. (B.22a), we partially resum the
series (B.25) to produce a more rapidly convergent expression. The series may be written as

1

C
=
∞∑
k=1

ck, ck =
1

2
√
π

Γ
(
k − 1

2

)
Γ(k + 1)

(
1

b

)2k

R<
2k−1(b◦). (B.34)

The ck are equal to the bk defined in Eq. (B.31) evaluated at r = b◦ and θ = π/2. From the
asymptotic behavior (B.32) we have

ck
k→∞∼ 1

π
√

2π

b b2
◦√

2b−M (2b+M)5/2

26kΓ
(
k − 1

2

)
Γ
(
k + 1

2

)
Γ(2k − 1)

√
k Γ(4k − 1)

, (B.35)

where we used the fact that at r = b◦,

eξ = 1−
b◦ −

√
b◦(b◦ − 2M)

M
= −M

2b
, (B.36)

with b a function of b◦ as in Eq. (B.24). This large-k asymptotic behavior is not yet exactly

summable, so we appeal to Stirling’s approximation Γ(z)
λ→∞∼

√
2π zz−1/2e−z in order to further

simplify it to

ck
k→∞∼ dk, dk ≡

4√
π

b b2
◦√

2b−M (2b+M)5/2

1

k3/2
. (B.37)

We now recognize the weak k−3/2 fall-off as the reason behind the slow convergence of the series.
But the sum of k−n is the Riemann zeta function ζ(n), so we have

∞∑
k=1

dk =
4√
π

b b2
◦√

2b−M (2b+M)5/2
ζ

(
3

2

)
. (B.38)
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Thus we may instead write

1

C
=

4√
π

b b2
◦√

2b−M (2b+M)5/2
ζ

(
3

2

)
+
∞∑
k=1

(bk − ck) . (B.39)

The series of correction terms converges quite quickly. If we keep only the first term k = 1, the
estimate of C is

1

C
=

b2
◦

2b2
+

4√
π

b b2
◦√

2b−M (2b+M)5/2

[
ζ

(
3

2

)
− 1

]
. (B.40)

This truncated expression is generally accurate to within about five percent. For example, if the disk
extends to the ISCO, b◦ = rISCO = 6M , we get an exact value of C−1 = 1.3603... from Eq. (B.39)
and an approximate value of C−1 ≈ 1.289 from Eq. (B.40). For b�M we know that C = 1 exactly,
and Eq. (B.40) gives C−1 ≈ .955.

References

[1] M. Faraday, “Experimental Researches in Electricity,” Royal Society of London Philosophical
Transactions Series I 122 (1832) 125–162.

[2] P. Goldreich and W. H. Julian, “Pulsar electrodynamics,” ApJ 157 (Aug., 1969) 869.

[3] R. D. Blandford and R. L. Znajek, “Electromagnetic extractions of energy from Kerr black
holes,” MNRAS 179 (May, 1977) 433–456.

[4] R. M. Wald, “Black hole in a uniform magnetic field,” Phys. Rev. D 10 (Sept., 1974)
1680–1685.

[5] M. A. Ruderman and P. G. Sutherland, “Theory of pulsars: Polar caps, sparks, and coherent
microwave radiation,” ApJ 196 (Feb., 1975) 51–72.

[6] R. Penrose, “Gravitational collapse: The role of general relativity,” Riv.Nuovo Cim. 1 (1969)
252–276.

[7] R. Penrose, ““Golden Oldie”: Gravitational Collapse: The Role of General Relativity,”
Gen.Rel.Grav. 34 (July, 2002) 1141–1165.

[8] R. Penrose and R. M. Floyd, “Extraction of rotational energy from a black hole,” Nature
Physical Science 229 (Feb., 1971) 177–179.

[9] T. Uchida, “Theory of force-free electromagnetic fields. I. General theory,” Phys. Rev. E 56
(Aug., 1997) 2181–2197.

26

http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1103/PhysRevD.10.1680
http://dx.doi.org/10.1103/PhysRevD.10.1680
http://dx.doi.org/10.1086/153393
http://dx.doi.org/10.1023/A:1016578408204
http://dx.doi.org/10.1038/physci229177a0
http://dx.doi.org/10.1038/physci229177a0
http://dx.doi.org/10.1103/PhysRevE.56.2181
http://dx.doi.org/10.1103/PhysRevE.56.2181


[10] S. S. Komissarov, “On the properties of time dependent, force-free, degenerate
electrodynamics,” MNRAS 336 (Nov., 2002) 759–766, arXiv:astro-ph/0202447
[astro-ph].

[11] S. E. Gralla and T. Jacobson, “Spacetime approach to force-free magnetospheres,” MNRAS
445 no. 3, (2014) 2500–2534, arXiv:1401.6159 [astro-ph.HE].

[12] T. D. Brennan, S. E. Gralla, and T. Jacobson, “Exact Solutions to Force-Free
Electrodynamics in Black Hole Backgrounds,” Class.Quant.Grav. 30 (2013) 195012,
arXiv:1305.6890 [gr-qc].

[13] T. D. Brennan and S. E. Gralla, “On the Magnetosphere of an Accelerated Pulsar,”
Phys. Rev. D D89 no. 10, (2014) 103013, arXiv:1311.0752 [astro-ph.HE].

[14] H. Yang and F. Zhang, “Stability of Force-Free Magnetospheres,” Phys. Rev. D 90 no. 10,
(2014) 104022, arXiv:1406.4602 [astro-ph.HE].

[15] F. Zhang, H. Yang, and L. Lehner, “Towards an understanding of the force-free
magnetosphere of rapidly spinning black holes,” Phys. Rev. D D90 no. 12, (2014) 124009,
arXiv:1409.0345 [astro-ph.HE].

[16] F. Zhang, S. T. McWilliams, and H. P. Pfeiffer, “Stability of exact force-free electrodynamic
solutions and scattering from spacetime curvature,” arXiv:1501.05394 [gr-qc].

[17] S. E. Gralla and T. Jacobson, “Nonaxisymmetric Poynting Jets,” arXiv:1503.03848

[astro-ph.HE].

[18] H. Yang, F. Zhang, and L. Lehner, “Magnetosphere of a Kerr black hole immersed in
magnetized plasma and its perturbative mode structure,” arXiv:1503.06788

[astro-ph.HE].

[19] A. Lupsasca, M. J. Rodriguez, and A. Strominger, “Force-Free Electrodynamics around
Extreme Kerr Black Holes,” arXiv:1406.4133 [hep-th].

[20] A. Lupsasca and M. J. Rodriguez, “Exact Solutions for Extreme Black Hole
Magnetospheres,” arXiv:1412.4124 [hep-th].

[21] F. C. Michel, “Rotating Magnetospheres: an Exact 3-D Solution,” ApJ 180 (Mar., 1973)
L133.

[22] R. D. Blandford, “Accretion Disc Electrodynamics – A Model for Double Radio Sources,”
MNRAS 176 (Dec., 1976) 465–481.

[23] S. Appl and M. Camenzind, “Self-collimated jets beyond the light cylinder,” A&A 270 (Mar.,
1993) 71–82.

[24] R. V. E. Lovelace and P. P. Kronberg, “Transmission Line Analogy for Relativistic
Poynting-Flux Jets,” MNRAS 430 (2013) 2828, arXiv:1212.0577 [astro-ph.HE].

27

http://dx.doi.org/10.1046/j.1365-8711.2002.05313.x
http://arxiv.org/abs/astro-ph/0202447
http://arxiv.org/abs/astro-ph/0202447
http://dx.doi.org/10.1093/mnras/stu1690
http://dx.doi.org/10.1093/mnras/stu1690
http://arxiv.org/abs/1401.6159
http://dx.doi.org/10.1088/0264-9381/30/19/195012
http://arxiv.org/abs/1305.6890
http://dx.doi.org/10.1103/PhysRevD.89.103013
http://arxiv.org/abs/1311.0752
http://dx.doi.org/10.1103/PhysRevD.90.104022
http://dx.doi.org/10.1103/PhysRevD.90.104022
http://arxiv.org/abs/1406.4602
http://dx.doi.org/10.1103/PhysRevD.90.124009
http://arxiv.org/abs/1409.0345
http://arxiv.org/abs/1501.05394
http://arxiv.org/abs/1503.03848
http://arxiv.org/abs/1503.03848
http://arxiv.org/abs/1503.06788
http://arxiv.org/abs/1503.06788
http://arxiv.org/abs/1406.4133
http://arxiv.org/abs/1412.4124
http://dx.doi.org/10.1086/181169
http://dx.doi.org/10.1086/181169
http://dx.doi.org/10.1093/mnras/176.3.465
http://dx.doi.org/10.1093/mnras/stt086
http://arxiv.org/abs/1212.0577


[25] V. S. Beskin, Y. N. Istomin, and V. I. Pariev, “On pair creation in a black hole
magnetosphere,” in Extragalactic Radio Sources. From Beams to Jets, J. Roland, H. Sol, and
G. Pelletier, eds., pp. 45–51. 1992.

[26] V. S. Beskin, MHD Flows in Compact Astrophysical Objects. Springer, 2010.

[27] D. MacDonald and K. Thorne, “Black-hole electrodynamics - an
absolute-space/universal-time formulation,” MNRAS 198 (Jan., 1982) 345–382.

[28] K. S. Thorne, R. H. Price, and D. A. Macdonald, “Black Holes: The Membrane Paradigm,”.

[29] R. F. Penna, “Force-free black hole jet power from impedance matching,” arXiv:1504.00360

[astro-ph.HE].

[30] S. T. McWilliams and J. Levin, “Electromagnetic extraction of energy from black
hole-neutron star binaries,” ApJ 742 (Dec., 2011) 90, arXiv:1101.1969 [astro-ph.HE].

[31] D. Lai, “DC Circuit Powered by Orbital Motion: Magnetic Interactions in Compact Object
Binaries and Exoplanetary Systems,” ApJ 757 no. 1, (Aug., 2012) L3, arXiv:1206.3723
[astro-ph.HE].

[32] T. Uchida, “Theory of force-free electromagnetic fields. II. Configuration with symmetry,”
Phys. Rev. E 56 (Aug., 1997) 2198–2212.

[33] E. T. Scharlemann and R. V. Wagoner, “Aligned Rotating Magnetospheres. General
Analysis,” ApJ 182 (June, 1973) 951–960.

[34] I. Okamoto, “Force-free pulsar magnetosphere - I. The steady, axisymmetric theory for the
charge-separated plasma.,” MNRAS 167 (June, 1974) 457–474.

[35] G. Menon and C. D. Dermer, “A class of exact solutions to the force-free, axisymetric,
stationary magnetosphere of a Kerr black hole,” Gen.Rel.Grav. 39 (June, 2007) 785–794,
arXiv:astro-ph/0511661 [astro-ph].

[36] R. L. Znajek, “Black hole electrodynamics and the Carter tetrad,” MNRAS 179 (May, 1977)
457–472.

[37] Z. Pan and C. Yu, “Highly-collimated, magnetically-dominated jets around rotating black
holes,” arXiv:1406.4936 [astro-ph.HE].

[38] J. L. Anderson and J. M. Cohen, “Gravitational Collapse of Magnetic Neutron Stars,”
Ap&SS 9 (Oct., 1970) 146–152.

[39] P. Ghosh, “The Structure of black hole magnetospheres. 1. Schwarzschild black holes,”
MNRAS 315 (June, 2000) 89–97, arXiv:astro-ph/9907427 [astro-ph].

28

http://dx.doi.org/10.1007/978-3-642-01290-7
http://arxiv.org/abs/1504.00360
http://arxiv.org/abs/1504.00360
http://dx.doi.org/10.1088/0004-637X/742/2/90
http://arxiv.org/abs/1101.1969
http://dx.doi.org/10.1088/2041-8205/757/1/L3
http://arxiv.org/abs/1206.3723
http://arxiv.org/abs/1206.3723
http://dx.doi.org/10.1103/PhysRevE.56.2198
http://dx.doi.org/10.1086/152195
http://dx.doi.org/10.1007/s10714-007-0418-2
http://arxiv.org/abs/astro-ph/0511661
http://arxiv.org/abs/1406.4936
http://dx.doi.org/10.1007/BF00649960
http://dx.doi.org/10.1046/j.1365-8711.2000.03410.x
http://arxiv.org/abs/astro-ph/9907427


[40] A. Tomimatsu and M. Takahashi, “Black Hole Magnetospheres around Thin Disks Driving
Inward and Outward Winds,” ApJ 552 (May, 2001) 710–717, arXiv:astro-ph/0011185
[astro-ph].

[41] H. Bateman, Higher Transcendental Functions. Volume I. McGraw-Hill Book Company,
New-York, Toronto, London, 1953. http://opac.inria.fr/record=b1089585.

29

http://dx.doi.org/10.1086/320575
http://arxiv.org/abs/astro-ph/0011185
http://arxiv.org/abs/astro-ph/0011185
http://opac.inria.fr/record=b1089585

	Introduction
	Hyperbolic Magnetosphere
	Properties

	Star with a Disk
	Star Jet Properties
	Circuit Model

	Black Hole with a Disk
	Flux Function X
	Current Y and Angular Velocity W
	Black Hole Jet Properties
	Circuit Model

	Stars vs. Black Holes
	Flux Function for Constant 
	Vacuum Solution in Schwarzschild
	Overview
	Angular and Radial Harmonics
	Mode Expansion of the Flat Solution
	Schwarzschild Solution
	Flat Radius of Convergence
	Schwarzschild Radius of Convergence
	Series Acceleration for Matching Coefficient


