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We study the spin dynamics of individual black holes in a binary system. In particular we focus on
the polar precession of spins and the possibility of a complete flip of spins with respect to the orbital
plane. We perform a full numerical simulation that displays these characteristics. We evolve equal
mass binary spinning black holes for t = 20, 000M from an initial proper separation of d = 25M
down to merger after 48.5 orbits. We compute the gravitational radiation from this system and
compare it to 3.5 post-Newtonian generated waveforms finding close agreement. We then further
use 3.5 post-Newtonian evolutions to show the extension of this spin flip-flop phenomenon to unequal
mass binaries. We also provide analytic expressions to approximate the maximum flip-flop angle
and frequency in terms of the binary spins and mass ratio parameters at a given orbital radius.
Finally we discuss the effect this spin flip-flop would have on accreting matter and other potential
observational effects.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

In this first decade since the breakthroughs [1–3] that
allowed to numerically solve General Relativity’s field
equations for the evolution of black hole binaries (BHB),
we have gained many new insights on these systems. The
computation of theoretical gravitational waveforms from
these BHB systems is very important for first detection
and estimation of binary’s parameters [4–7]. It is also
of astrophysical interest to study the BHB orbital and
spin dynamics in precessing systems and how accreting
matter interacts with them.

The spin of each individual black hole (BH) can no-
tably affect its orbital motion as displayed, for instance,
by the hangup mechanism [8], which delays or prompts
the merger of the binary according to the sign of the spin-
orbit coupling, thus ensuring the formation of a horizon
(cosmic censorship hypothesis) at merger before the final
hole settles to a Kerr BH [9, 10] (no hair theorem).

One of the most notable predictions of numerical
relativity is that the remnant of the merger of two
highly spinning BHs may receive a recoil of thousands
of km/s [11–13] due to asymmetrical emission of grav-
itational radiation induced by the BH spins [14, 15].
This developed intense astronomical searches for such
fast moving BHs that may completely escape from their
host galaxies or produce observable disturbances to the
velocity field of stars in their cores [16].

New developments in numerical relativity allowed the
study of relatively far separated binaries, up to distances
of 100M in Ref. [17], and mass ratios of 100 : 1 in
Refs. [18, 19]. Very long term evolutions are now pos-
sible [20, 21] as well as the study of near maximally spin-
ning BHBs [22–24].

In Ref. [20], we have found that the spin of BHs can
completely reverse sign during its orbital stage. This
flip-flop of spins is due to a spin-spin coupling effect and

may have important observational consequences when
the binary system is accreting gas from a galactic en-
vironment [25]. In this paper we extend the analysis to
unequal mass binaries using 3.5 post-Newtonian (PN)
evolutions. Those proved a reliable description for this
scenario when compared to the long term full numerical
simulation of an equal mass binary [20].

This paper is organized as follows. In Sec. II we re-
visit the equal mass binary scenario providing further
detail and analysis of our full numerical simulation. We
also provide a simple vector analysis to understand the
mechanism behind the flip-flop and then a 2PN analytic
study to describe its spin dynamics. In Sec. III we study
the case of unequal mass binaries. We use 3.5PN evolu-
tions of the equations of motion coupled with the 2PN
spin dynamics to find the configurations that maximize
the flip-flop angle and the likelihood of a flip-flop an-
gle to occur given plausible astrophysical distribution of
binary parameters. We also provide 2PN analytic expres-
sions to approximate the flip-flop angle and frequency as
measured in the orbital frame and asymptotic frame de-
scribed in terms of projections with respect to the orbital

angular momentum ~L and total angular momentum ~J .
We end the paper with Sec. IV where we make some es-
timates of the effect this flip-flop phenomena could have
in realistic astrophysical scenarios and suggest that de-
tailed simulations involving the magnetohydrodynamical
description of accreting matter onto BHs are needed to
find the characteristic electromagnetic signatures of the
flip-flop. The appendix A provides details on the PN
computation of the flip-flop frequencies and angles.

II. EQUAL MASSES BINARIES

We first study the case of equal mass binaries since
they cleanly display the flip-flop effect on the spins of
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TABLE I. Initial data parameters and system details. The
punctures are located at ~r1 = (x1, 0, z) and ~r2 = (x2, 0, z),

with momenta ~P = ±(0, P, 0), spins ~S1 = (0, 0, S1z)

and ~S2 = (S2x, 0, S2z), mass parameters mp, horizon
(Christodoulou) masses mH , total ADM mass MADM, and
dimensionless spins α = a/mH = S/m2

H . The horizon masses
and spins are given after the gauge settles, and the errors in
those quantities, denoted as δmH and δα, are determined by
the drift in the quantity during the inspiral. Also provided
are the simple proper distance d, eccentricity at the start of
the inspiral ei, and eccentricity ef and the number of orbits
N just before merger.

x1/m x2/m z/m P/m d/m
10.73983 -10.76016 -0.01968 0.05909 25.37
mp

1/m mp
2/m S1z/m

2 S2x/m
2 S2z/m

2

0.48543 0.30697 0.05 0.19365 -0.05
MADM/m JADM/m

2 ei ef N
0.99472 1.2704344 0.0322 0.0006 48.5

mH
1 /m δmH

1 /m mH
2 /m δmH

2 /m
0.50000 0.00002 0.49974 0.00001
α1 δα1 α2 δα2

0.20003 0.00056 0.80088 0.00066

1

25M

mm

 L     =1.27M
2

2
α  =0.8

α  =0.2

FIG. 1. Initial configuration of the simulated binary.

the holes and allow for a simple approximate analytic
model of the process. In Sec. III we will study in detail
its mass ratio dependence.

A. Full Numerical Evolution

In order to verify the realization of the spin flip-flops in
the presence of gravitational radiation and the full non-
linearities of General Relativity during the final stages of
the inspiral, we consider a long-term full numerical sim-
ulation with initial configuration as described in Table I
and depicted in Fig. 1.

We evolve the following BHB data sets using the
LazEv [26] implementation of the moving puncture ap-
proach [2, 3] with the conformal function W =

√
χ =

exp(−2φ) suggested by Ref. [27]. For the run presented
here, we use centered, eighth-order finite differencing in
space [28] and a fourth-order Runge Kutta time integra-
tor (note that we do not upwind the advection terms).

Our code uses the EinsteinToolkit [29, 30] / Cac-

FIG. 2. Precession of the orbital plane as displayed by the

distance vector ~d = ~x1(t)− ~x2(t).

tus [31] / Carpet [32] infrastructure. The Carpet
mesh refinement driver provides a “moving boxes” style
of mesh refinement. In this approach, refined grids of
fixed size are arranged about the coordinate centers of
both holes. The Carpet code then moves these fine
grids about the computational domain by following the
trajectories of the two BHs.

We use AHFinderDirect [33] to locate apparent
horizons. We measure the magnitude of the horizon
spin using the isolated horizon (IH) algorithm detailed
in Ref. [34] and as implemented in Ref. [35]. Note that
once we have the horizon spin, we can calculate the hori-
zon mass via the Christodoulou formula

mH =
√
m2

irr + S2
H/(4m

2
irr) , (1)

where mirr =
√
A/(16π), A is the surface area of the

horizon, and SH is the spin angular momentum of the
BH (in units of M2). In the tables below, we use the
variation in the measured horizon irreducible mass and
spin during the simulation as a measure of the error in
computing these quantities. We measure radiated energy,
linear momentum, and angular momentum, in terms of
the radiative Weyl Scalar ψ4, using the formulas provided
in Refs. [36, 37]. However, rather than using the full ψ4,
we decompose it into ` and m modes and solve for the
radiated linear momentum, dropping terms with ` > 6.
The formulas in Refs. [36, 37] are valid at r = ∞. We
extract the radiated energy-momentum at finite radius
and extrapolate to r =∞, and find that the new pertur-
bative extrapolation described in Ref. [38] provides the
most accurate waveforms. While the difference of fitting
both linear and quadratic extrapolations provides an in-
dependent measure of the error.

Figure 2 highlights the important effects of precession
of the orbital plane during the whole evolution and the
three precession cycles occurring over the nearly 50 or-
bits.
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FIG. 3. The conservation of the individual masses and spin
magnitudes of the holes during the binary evolution.

Through evolution we track the horizon mass and mag-
nitude and components of the individual spins of the
BHs. Figure 3 displays the levels at which these quanti-
ties are conserved during the t = 20, 000M of full numer-
ical evolution and this provides a measure of the accu-
racy of the simulation, i.e., the variations in ∆mH

1 /m
H
1 ≈

4×10−5, ∆SH1 /S
H
1 ≈ 3×10−3, ∆mH

2 /m
H
2 ≈ 1.2×10−5,

and ∆SH2 /S
H
2 ≈ 9× 10−4.

The spin components in the simulation coordinate sys-
tem are displayed in Fig. 4. They show the polar compo-

nent of ~S1 from alignment at t = 0 to almost misalign-

ment at merger and the complementary behavior for ~S2.
From the variations with time of the (x̂, ŷ) components
of the spins one can also read-off the precessional effects.
While these are coordinate based periods, one can verify,
for instance from the oscillations in the amplitude of the
(` = 2, m = 1) mode of the gravitational waveform in a
gauge invariant way that those periods correspond to the
physical dynamics of spins (see Fig. 6 in this paper and
also Ref. [39]).

Another useful representation of the spins [20] is given

in Fig. 5 where the flip-flopping spin’s (Ŝ1) trajectory can
be described as a composition of the polar (flip-flop) and
azimuthal (precession) dynamics which resembles that of
an orange peeling. For the sake of future interpretations
and applications we also provide the spin trajectories as
seen in an (approximately) inertial frame where the direc-

tion of the total angular momentum Ĵ is conserved and
coincident (approximately) with the coordinate direction
ẑ.

The gravitational waveforms from spinning, precess-
ing BHB systems are of great interest for detection
and parameter estimation in the forthcoming observa-
tion of gravitational waves by Advanced LIGO [40] and
other laser interferometric gravitational wave observato-
ries. Our simulation produced one of the longest wave-
forms studied to date, starting from an initial configura-
tion with proper separation, d = 25M . This is well in
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FIG. 4. BH (1,2) spin components in the coordinate frame.
The top panel is BH1 and the bottom panel is BH2.

FIG. 5. Change in the spin direction (in blue) of the BH1

(with the smaller spin magnitude) in the orbital frame, L̂
(left), and the coordinate frame ẑ (right). Plotted also the

directions of ~L in red and ~J in green.

the post-Newtonian regime (see also the recent simula-
tion [21] for nonspinning, unequal mass binaries starting
at an initial separation d = 27M). In Fig. 6 the leading
modes (` = 2, m = 2) and (2, 1) are displayed [20] and
the first shows the well known chirp behavior with es-
sentially monotonic increase of amplitude and frequency
until merger. The second waveform, corresponding to the
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FIG. 6. The full numerical (` = 2, m = 2) waveform (above) and (` = 2, m = 1) waveform (below) as extracted by observers
at r = 175M .

(` = 2, m = 1) mode, displays a modulation in ampli-
tude that corresponds to the period of precession of the
orbital plane (and in this equal mass binary case this is

coincident with the precession of the spins). Thus this
waveform provides an independent and gauge invariant
measure of the precession period.

Of particular interest is to determine the precision of
this waveform. Due to the high computational demand of
this simulation, 2.5 million service units on 25 to 30 nodes
of our local cluster “Blue Sky” with dual Intel Xeon E5-
2680 processors nearing 100M of evolution per day, we
have not produced detailed convergence studies involving
several runs at different resolutions. Instead we compare
our full numerical waveforms with those produced with
3.5PN evolutions and found excellent agreement, partic-
ularly at early times, when 3.5PN is expected to be very
accurate, given the large initial separation of the holes.

Figures 7 and 8 display the differences of the numer-
ical and PN waveform for the (` = 2, m = 2) mode
phase and amplitude, respectively. Since the full numer-
ical waveforms are extracted at a finite observer loca-
tion (in this case at r = 175M) we extrapolate them to

null infinity with a recent O(1/r2) accurate perturbative
method [38, 41] to obtain further agreement, showing
reasonable errors until near the final merger.

Since this BHB simulation is relatively long-term it is
well suited to study the evolution of the eccentricity as
a function of the binary’s separation. Using the method
of Ref. [42] to determine eD, we measure the eccentric-
ity per orbit (we have not included the first two orbits,
contaminated by gauge settling, and last few orbits due
to strong radiative effects). As the binary’s separation
shrinks due to gravitational radiation the eccentricity re-
duces as shown in Fig. 9. We performed a fit to the mea-
sured eccentricity versus separation of the form a rb ob-
taining an exponent b = 1.73486±0.1495 to compare with
the lowest post-Newtonian prediction of Ref. [43] for ra-
diation of eccentricity, e ∼ r19/12. With 19/12 = 1.5833,
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FIG. 8. The amplitude difference between the full numer-
ically generated (` = 2, m = 2) waveform (NR) and the
3.5PN waveform. Differences are notably reduced when the
NR-waveform, extracted at r = 175M , is extrapolated to an
infinite observer location by the perturbative formulae (PE)
of 1st order, (1/r), and second order, (1/r2).

the post-Newtonian prediction is within the statistical
error bars of the fit.

After merger the binary forms a single final remnant
BH with characteristics given in Table II. Notably the
recoil velocity reaches 1500 km/s in agreement with the
empirical predictions [15, 44].

Figure 10 displays the settling of the final mass and
spin measures as the final BH radiates away its last dis-
tortions and becomes a quiet Kerr BH [9].
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FIG. 9. Evolution of the eccentricity versus coordinate sep-
aration of the BHB. Dots represent measurements of the ec-
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e ∼ r1.73486±0.1495. In comparison, the theoretical prediction
is e ∼ r1.5833.

TABLE II. Remnant properties and recoil velocity. The fi-
nal mass and spin are measured from the horizon, and the
recoil velocity is calculated from the gravitational waveforms.
The error in the mass and spin is determined by the drift in
those quantities after the remnant settles down. The error in
the recoil velocity is estimated by the difference between first
and second order polynomial extrapolation to infinity of the
waveforms.

Mrem/m |αrem| Vrecoil [km/s]
0.94904± 0.00000 0.70377± 0.00002 1508.49± 16.08

αx
rem αy

rem αz
rem

0.10815± 0.00003 −0.01986± 0.00000 0.69513± 0.00002

B. Vector Analysis

In order to visualize the origin of this flip-flop effect
we can use a simple vector addition model to represent

the total angular momentum of the system, ~J = ~L + ~S,

as the sum of the orbital angular momentum ~L and the

total spin ~S = ~S1 + ~S2. This total spin being the sum of

the individual spin of the holes ~S1 and ~S2 as represented
in Fig. 11.

In this picture, the six degrees of freedom of the spins
~S1 and ~S2 are shown as vectors in 3-space. These de-
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FIG. 10. The mass and spin of the final merged BH.
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FIG. 11. Flip-flop of ~S1 and ~S2 as they precess with ~L.

grees of freedom are constrained by the conservation of
the magnitude of the individual spins S1, and S2, the
magnitude of the total spin S, and its projection along

the orbital angular momentum, ~S · L̂. The conservation
of the magnitudes of the individual spins and the mag-
nitude of their sum S, can be seen in the 2PN evolution
of the spins in Eqs. (7) of Sec. II C. The conservation

of ~S0 · L̂ was shown in Ref. [45] using the orbit averaged
version of Eqs. (7). The conservation of these quantities
in full numerical simulations of BHBs has been observed
to be approximately true in Refs. [46] and [47]. Note
that in what follows to determine the flip-flop angle, we
do not use the PN (or full numerical) dynamics beyond
the referred conservation of the individual and total spin
magnitudes.

It follows hence that the following quantities are con-
served (see Fig. 12)

~S · ~S = S2 = S2
1 + S2

2 + 2S1S2 cosβ = constant ,
~S · ~S1 = SS1 cos γ = S2

1 + S2S1 cosβ = constant ,
~S · ~S2 = SS2 cos(β − γ) = S2

2 + S2S1 cosβ
= constant . (2)

This leads to the conservation of β and γ during the
evolution of the binary.

In particular we find that ~S1 oscillates around ~S be-

tween angles γ and −γ (when it is both coplanar to ~S

and ~L), where

cos γ =
S1 + S2 cosβ√

S2
1 + S2

2 + 2S1S2 cosβ
=
S2 + S2

1 − S2
2

2SS1
. (3)

BH2 also oscillates at the same flip-flop frequency Ωff ,
but with a smaller angle (since we consider S2 > S1)
given by ±(β − γ) where

cos(β − γ) =
S2 + S2

2 − S2
1

2SS2
. (4)

Thus both spins, ~S1 and ~S2, oscillate around ~S which in

turn precesses around ~L.

^
β
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^

^

S
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2
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θ
2

S

θ

1

λ

S

FIG. 12. The configuration of the spins in the orbiting frame.
Spin configurations ~S1 and ~S2 relative to the orbital angular
momentum ~L. Here ~S = ~S1 + ~S2.

The direction of oscillation of the spins can be seen

from the leading precession equation for d~L/dt =

(7/2r3)( ~J × ~L) indicating that ~L oscillates counterclock-

wise. Likewise the leading precession for d~S1/dt =

(1/r3)((7/2) ~J× ~S1−3~S× ~S1) indicates that ~S1 oscillates

clockwise around ~S (see Eqs. (9) for the precise expres-
sion). Thus Fig. 11, is represented as seen by an observer

located up (north) with respect to ~J direction.
We can define the flip-flop angle with respect to the po-

lar coordinates as measured from L̂ (analogous formulae

can be defined for Ĵ)

∆θffi = θmaxi − θmini , (5)

where i = 1, 2 labels either BH spin.
We have three cases to consider depending on θS ,

where cos(θS) = SL/S = (~S · L̂)/S,

∆θff1 =


θS + γ if 0 ≤ θS ≤ γ ,
2γ if γ ≤ θS ≤ π − γ ,
π − θS + γ if π − γ ≤ θS ≤ π ,

(6)

for 0 ≤ γ ≤ π/2, and similar for BH2, replacing γ by
β − γ. When π/2 ≤ γ ≤ π, we replace γ ↔ π − γ in the
equation above.

Hence, for instance, in order to maximize the flip-flop
angle, we can set γ = π/2, which leads to the vanishing
of cos γ on the left hand side of the above equation (3),
leading to the condition S1 + S2 cosβ = 0, for q = 1,
used in our full numerical configuration, as detailed in
Sec. II A.

This oscillation of the spins represent a genuine spin-
flip in the sense that it is the same object that completely
changes its spin orientation. This is different from the
simple case where the final remnant spin has flipped di-
rection compared to the spin of one of the individual or-
biting BHs [35]. It is also different from a classic analog
of the hyperfine transition of an electron in the Hydrogen
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atom flipping its spin and leading to the famous 21 cm
radio emission. Here the flip also occurs in a conservative
set up, with no emission of gravitational waves, and it is
compensated by an opposite flop from the other BH.

C. Post-Newtonian Spin Dynamics

The vector analysis is helpful to visualize the angles of
flip-flop but in order to determine their rate of oscillation
one has to resort to a dynamical computation. In order to
provide simple, approximate, expressions we will perform
a 2PN (conservative) study.

The precession equations for the spins ~S1 and ~S2 with a
mass ratio q = m1/m2 to leading spin-orbit and spin-spin
couplings in the (2PN) post-Newtonian expansion [48]
take the form

d~S1

dt
=

1

r3

[(
2 +

3

2q

)
~L− ~S2 +

3(~S0 · n̂)

1 + q
n̂

]
× ~S1 ,

d~S2

dt
=

1

r3

[(
2 +

3q

2

)
~L− ~S1 +

3q(~S0 · n̂)

1 + q
n̂

]
× ~S2 ,(7)

where ~n = (~r1 − ~r2)/|~r1 − ~r2| and

~S0 =

(
1 +

1

q

)
~S1 + (1 + q) ~S2 . (8)

For more details see, for instance, the reviews in Refs. [49,
50]. The averaging of Eqs. (7) over the orbital period
gives

〈 ~̇S1〉 =
1

r3

((
7

2
− 3

2

SL̂
`

)
~L+

1

2
~S2

)
× ~S1

=
1

r3

((
7

2
− 3

2

SL̂
`

)
~J − 3~S

)
× ~S1 ,

〈 ~̇S2〉 =
1

r3

((
7

2
− 3

2

SL̂
`

)
~L+

1

2
~S1

)
× ~S2

=
1

r3

((
7

2
− 3

2

SL̂
`

)
~J − 3~S

)
× ~S2 , (9)

where ` = |~L| = qM3/2r1/2/(1+ q)2 and we have ignored
cubic terms of spins in the most right hand side of each
equation.

By decomposing the spins along L̂ and perpendicular

to it with unit vectors λ̂ and n̂, as shown in Fig. 12, in
the fashion of Sec. IV.A of Ref. [44], we obtain the spin
evolution equations for q = 1 as

Ṡ1n̂ = S1λ̂

[
vλ
r
− 7`

2r3

(
1 +

S1L̂

`

)
+
S2L̂

r3

]
−

9S1L̂S2λ̂

2r3
,

Ṡ1λ̂ = −S1n̂

[
vλ
r
− 7`

2r3

(
1 +

S1L̂

`

)
+
S2L̂

r3

]
+

9S1L̂S2n̂

2r3
−

3S1L̂Sn̂
r3

(
1 +

SL̂
`

)
,

Ṡ1L̂ =
9S1n̂S2λ̂

2r3
−

9S1λ̂S2n̂

2r3
+

3S1λ̂Sn̂

r3

(
1 +

SL̂
`

)
, (10)

for ~S1 and similar equations for ~S2 by exchanging labels 1
and 2 from Eqs. (7). In the above expression, vλ = rΩorb
is the tangential velocity of the binary (in a quasicircular

orbit, see Eq. (13) for Ωorb), SiL̂ = ~Si · L̂, Sin̂ = ~Si · n̂,

Siλ̂ = ~Si · λ̂ and SL̂ = ~S · L̂.

We can then obtain equations of the form d2(~Si ·
L̂)/dt2 = Ω2

ff
~Si · L̂ + · · · for i = 1, 2 and analogously

for the perpendicular component of Si giving Ωp. From
where we can read-off the orbit averaged polar and az-

imuthal oscillations frequencies of the spin ~Si (see also

Ref. [45] for the equations projected along Ĵ)

Ωff = 3
S

r3

[
1− 2 ~S · L̂

M3/2r1/2

]
+ · · · , (11)

Ωp =
7`

2r3
+

2

r3
(~S · L̂) + · · · , (12)

that we identify with the flip-flop and precession frequen-
cies respectively. For the sake of completeness and fur-
ther reference, the orbital frequency of equal mass bina-
ries in quasicircular orbits is given by Ref. [51]

MΩorb =

(
M

r

)3/2

− 11

8

(
M

r

)5/2

+ · · · . (13)

In order to verify the accuracy of the above expressions
for the flip-flop frequency and angle we performed a series
of 3.5PN numerical integrations representing the merger
of BHBs from r = 100M down to r = 5M and measured
the flip-flop angle and the frequency of oscillation. The
results are presented in Figs. 13 and 14 as a color map
with the direct integration of the PN equations of motion
coupled to the spin evolutions and we superposed a few
curve levels based on the above analytic estimates. We
observe good agreement among them, in particular for
the maximum flip angle described by cosβ = −S1/S2.
Fig. 14 displays as a color map the frequency at the start
of the evolution, r = 100M where the term (3S/r3) in
Eq. (11) dominates. In this figure, the thin lines are the
contours from the measured flip-flop frequency, and the
bold lines are the analytic expression given by Eq. (11)
for quasicircular orbits at the corresponding r.

D. Statistics

Let us study first the simplest case of conservative pre-
cession for equal mass binaries. In Fig. 15, we display the
probability of a flip-flop angle ∆θff ≥ x assuming equal
masses with random spin orientations and magnitudes of
BH1 and 2. For the sake of simplicity, we used here spin
evolution equations (7) with no radiation reaction taken
into account. The line labeled ‘2D’ considers random an-
gular distribution of one spin and random distribution of
the ratio of spin magnitudes. It could represent the sce-
nario where accretion processes succeeded in aligning the
spin of one of the BHs, while the spin of the other has still
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FIG. 13. q = 1 binaries, inspiraling from r = 100M to r =
5M . Initial configurations having φ0

1 = 0 = φ0
2, θ01 = 0, and

varying θ02 = β and S1/S2. The central blue curve follows
cosβ = −S2/S1 and agrees with the maximum (yellow) of
the flip-flop angle of θ2. The other two blue lines represent
the 90-degrees flips level.

FIG. 14. Flip-flop frequency oscillation for q = 1 binaries,
inspiraling from r = 100M to r = 5M . Starting from initial
φ0
1 = 0 = φ0

2, θ01 = 0, for different choices of θ02 = β and
S1/S2. Different surface levels are represented in units of
10−7 for the initial frequency at r = 100M . Thin lines are the
measured flip-flop frequency during evolution and thick lines
their analytic approximation for quasicircular orbits, Eq. (11).

a random orientation due to a much larger time scale for
alignment. If we allow instead to vary all six parameters
of the BH spins (magnitude and both spin directions)
with q = 1, we observe the distribution labeled ‘6D’.

When either BH has its spin aligned or counteraligned
with the orbital angular momentum and the other spin
is chosen randomly we have a random angle β between
the directions of the BH1 and 2 spins. In this case one
can obtain from Eq. (3) that the probability of an angle
γ given a random distribution of cosβ is approximated

by

P (cos γ) = 1 +

(
S1

S2

)
(2 cos γ − 1) , (14)

which upon assuming random distribution of spin mag-
nitudes 0 ≤ (S1/S2) ≤ 1, leads to the probability for a
flip-flop angle larger than x

P (∆θff > x) =
1

2
cos
(x

2

)(
cos
(x

2

)
+ 1
)
. (15)

This probability distribution, represented in Fig. 15 by
the red continuous curve shows, for instance, that (for
equal mass binaries) there is nearly a 60% probability of
flip-flops of more than 90◦.

In the more general case, allowing for radiation re-
action to drive the BHBs towards merger and random
variation of all variables, we find the same qualitative
behavior as above plus a detailed ∆φ-dependence. From
the expressions for the flip-flop angle in Eq. (6), we ob-
serve they depend entirely on the two angles γ and θS ,
both being constants of motion (for equal mass binaries).
Thus once we express them in terms of initial data we can
predict the flip-flop angle. This can be achieved in terms
of four of the six spin components: θ1, θ2, ∆φ = φ2−φ1,
and S1/S2, from Eq. (3) for γ

cos γ =
S1/S2 + cosβ√

1 + S2
1/S

2
2 + 2S1/S2 cosβ

, (16)

and

cos θS =
S1/S2 cos θ1 + cos θ2√

1 + S2
1/S

2
2 + 2S1/S2 cosβ

, (17)

where

cosβ = cos θ1 cos θ2 + sin θ1 sin θ2 cos ∆φ . (18)

The largest flip-flop angles occurs when the two BH
spins started at (or pass through) some initial configu-
ration with ∆φ = π/2 as is displayed in the Fig. 16.
The curves in this figure represent the probability that
an equal-mass system with initial ∆φ will have a flip-flop
angle ≥ x given random spin orientations and spin mag-
nitudes of the primary and secondary BHs (here labeled
simply as 1 or 2). Each curve corresponds to a set of
203, 401 PN evolutions (|α1| × |α2| × cos(θ0

1) × cos(θ0
2)

= 11 × 11 × 41 × 41) starting from a separation of
r = 100M and evolved with 3.5PN radiation reaction
terms down to a separation of 5M . The color of the
curve is determined by the initial value of ∆φ.

III. UNEQUAL MASSES BINARIES

The flip-flop of BH spins in a binary system is an in-
teresting effect since it singles out a conservative dynam-
ical behavior that may produce important astrophysical
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FIG. 16. The probability of a flip-flop angle ∆θff ≥ x assum-
ing equal masses, (q = 1), and a random initial spin orien-
tations and magnitudes of both, the primary and secondary
spins. Evolutions from initial separation r = 100M down to
r = 5M are performed using 3.5PN equations of motion. The
dependence with the azimuthal orientation ∆φ = dφ is dis-
played. We observe the largest flip angles probabilities for
configurations with ∆φ = π/2 and smallest for ∆φ = 0 and
π.

phenomena. In order to further evaluate the relevance to
astrophysics we have to study BHBs with unequal masses
and the likelihood of a given flip-angle to occur as well
as the timescale (or flip-flop frequency) involved.

In the equal mass case, we have been able to discuss
the geometry of the flip-flop angles in Sec. II B based on
(to a good approximation) the conservation of the spin
magnitudes, S1, S2, and S as well as the component of

the total spin along the orbital angular momentum SL̂.
These four conserved quantities allowed us to express the
flip-flop angle in terms of the conserved quantities γ and
θS , i.e., Eq. (6). The conservation of γ and θS implies
that we are able to determine the flip-flop angle in terms
of the initial configuration of the binary, and hence by
specifying S1/S2, θ1, θ2, and ∆φ. Note that from the six
variables that are needed to specify the components of

the two vectors ~S1 and ~S2 only four are needed here due
to the fact we compute a dimensionless flip-flop angle,
hence the dependence on the ratio S1/S2 and the depen-
dence on ∆φ = φ2 − φ1 appears due to the fact that
for large separations a rotation of the angle φ is already

provided by the precession of ~S around ~L, spanning all
orientations relative to the orbital linear momentum, ~pi.

In retrospective, while the flip-flop angle for equal
masses can be determined geometrically, the frequency at
which spins flip-flop is a dynamical quantity that requires
information about the evolution of the spins as well as the
orbital evolution of the BHBs. At the lowest (2PN) post-
Newtonian approximation we can evaluate this frequency
using the spin-evolution equations (7) assuming that the
binary is separated far enough that the radial decay is
negligible during a flip-flop cycle (note that the gravita-
tional radiation frequency scales as ∼ r−4 compared to
the flip-flop one scaling as∼ r−3). The flip-flop frequency
thus depends on the orbital radius r, the total spin and
its projection along L̂ as given by expression (11).

Here, in the unequal mass binary case we can assume
to a certain degree of accuracy the conservation of both
spin magnitudes, S1 and S2. SL̂ is not conserved, but the

projection of the vector ~S0 (as given in Eq. (8)) along L̂,
denoted as S0L̂ is approximately conserved [45]. How-
ever, the total spin magnitude, S, is not conserved since
the angle between the two individual spins β is no longer
conserved. We will use a combination of analytic and
3.5PN numerical integrations to provide asymptotic ex-
pressions for the flip-flop angle, flip-flop frequency, and
estimates of the likelihood for them to arise in astro-
physical scenarios. Contemporary studies [52] could also
describe the spin flips in terms of the two extreme values
of the total spin.

Note that in generic binaries spin resonances of the
kind studied in Refs. [53, 54] bring the azimuthal angle
differences towards ∆φ = 0 and π when the spin polar
orientations are significantly different, and to ∆φ = π/2
when they are similar [55–57]; thus allowing a further
statistical reduction of the parameter space to explore.

A. Post-Newtonian Analysis

In the unequal mass binaries case the flip-flop angle will

be a function of not only the intrinsic spins, ~αi = ~Si/m
2
i ,

but also the radius r of the quasicircular orbit as well as
the mass ratio q.

By studying the spin evolution equations (7) projected
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along L̂ (or along Ĵ) we can obtain the maximum flip-flop
angle for a given set of binary parameters, α1, α2, q, and
r,

1− cos(∆θff1L) ≈ 2α2
2

(1− q)2

(
M

r

)
+

4α1α
2
2q

(1− q)3

(
M

r

)3/2

.

(19)
This maximum flip-flop angle of the smaller BH with
respect to L̂ is achieved when the smaller hole starts
(or pass during its oscillation) through an anti-alignment

with respect to L̂, i.e., θ0
1L = π and the larger BH spin

~S2 forms initially an angle θ0
2L with L̂ given by

cos θ0
2L≈

α2

(1− q)

√
M

r
+

3qα1α2

(1− q)2

(
M

r

)
. (20)

On the other hand, if we seek to maximize the flip-flop
angle of the larger BH, we find

1− cos(∆θff2L) ≈ 2α2
1q

2

(1− q)2

(
M

r

)
+

4α2α
2
1q

2

(1− q)3

(
M

r

)3/2

.

(21)
This maximum flip of the larger hole is achieved when the
spin of this hole goes through alignment with the orbital
angular momentum, i.e., θ0

2L = 0, then the smaller BH

spin forms an angle β0
1 with ~S2 given by

cos θ0
1L ≈

qα1

(q − 1)

√
M

r
− 3qα1α2

(q − 1)2

(
M

r

)
. (22)

In Fig. 17 we display the results of 3.5PN evolutions
from r = 100M for 10 choices for q, 41 choices for cos θ0

1,
41 choices for cos θ0

2, 11 choices for |α1|, 11 choices for
|α2|, and 37 choices for ∆φ by setting φ0

1 = 0 and choos-
ing different φ0

2. The systems are then evolved with ra-
diation reaction down to 5M . The color-bar in the fig-
ures denote the initial ∆φ. The highest values happen at
∆φ = π/2, but the results are very insensitive on this de-
pendence for almost every mass ratio below q ≈ 0.7. This
same property is observed in both the L- and J-frames.

We verified these analytic dependencies by performing
numerical integrations of the spin evolution equations (7)
for different radii, r/M = 30, 50, 100, 150, 200, 250, and
mass ratios q = 1/2, 2/5, 1/3, 1/4, 1/5 and display a
summary in Figs. 18 and 19. We compare in those
plots (not fit) the analytic form of the leading flip an-
gle (on the right-hand side of Eqs. (19) and (21)) ver-
sus the measured values as obtained from assuming the

forms 1− cos(θff1,2) = AL,S/r+BL,S/r
1.5 +CL,S/r

2, and

(Ωff1,2) = DL,S/r+EL,S/r
1.5 +FL,S/r

2. In order to make

explicit the 1 ↔ 2, q ↔ 1/q symmetry of the A and D
coefficients, we display the case of the larger BH flip-flop
on the left of Figs. 18 and 19 in terms of 1/q > 1 variable.

The maximum angle of flip-flop with respect to J-
frames is different than with respect to the L-frame due
to the fact that, even during conservative evolution, the

angle of precession of ~L around ~J is not preserved. In
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FIG. 17. The dependence of the probabilities of a flip-flop
larger than a given value as a function of the initial ∆φ an-
gle among spins in the L-frame. Evolutions from r = 100M
down to r = 5M are performed with 3.5PN including ra-
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q = 0.9, 0.8, 0.7, 0.6. We observe an insensitivity on ∆φ for
mass ratios of the binary below q = 0.7. Similar results are
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display the leading coefficient of Eqs. (19) and (21) for the
larger BH flip-flop angle (left) and smaller BH angle (right).

fact, because for unequal masses, unlike the equal mass

case, the projection of the total spin ~S along ~L, SL̂, is
not preserved,

Ĵ · L̂ =
(`+ SL̂)

j
, (23)

even if on average the magnitudes of the total angular
momentum, j, and the orbital angular momentum, `, are
preserved.

This leads to the possibility of having larger fluctua-
tions in the angles as “seen” in the J-frame, given by

1− cos(∆θff1J ) ≈ 2α2
2

q(1− q)2

(
M

r

)
+

2α1α
2
2(q − 3)

(q − 1)3

(
M

r

)3/2

, (24)

and

1− cos(∆θff2J ) ≈ 2α2
1q

3

(1− q)2

(
M

r

)
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−2α2α
2
1q

2(3q − 1)

(q − 1)3

(
M

r

)3/2

, (25)

for the maximum smaller and larger BH oscillations of
their spins respectively. The extreme values happen at a
initial coordinate ∆φ = π/2 and seem to correspond to
the Smax (and Smin) configurations in Fig. 2 of Ref. [58].

Note the q → 1/q symmetry of all the above expres-
sions corresponding to a 1→ 2 exchange in the labels of
the holes. Also at each moment of time, the conservation
of SL0 determines the angular location of the other BH
given the spin of the BH with larger flip-flop angle.

The initial angle of the small hole (and between the
spins) that maximizes the flip-flop as seen in the J-frame
is approximated by

cos θ0
1J ≈ −

1

2

(1 + q) qα1

(1− q)

√
M

r

−1

2

(q2 + 4q + 1)α1α2

(1− q)2

(
M

r

)
, (26)

for the larger BH spin initially pointing to

cos θ0
2J ≈ 1− 1

2
q2α1

2

(
M

r

)
+ qα1

2α2

(
M

r

)3/2

.(27)

While if we seek to maximize the flip-flop angle of the
smaller hole as seen in the J-frame, we find

cos θ0
1J ≈ −1 +

1

2

α2
2

q2

(
M

r

)
+
α2

2α1

q

(
M

r

)3/2

.(28)

In this case the spin of the larger hole points to

cos θ0
2J ≈

1

2

(1 + q)α2

q (1− q)

√
M

r

+
1

2

(q2 + 4q + 1)α2α1

(1− q)2

(
M

r

)
. (29)

The detailed derivation is shown in Appendix A.
The frequency of the flip-flop oscillation in all these

cases is given by (see Appendix A)

MΩff1,2 ≈
3

2

|1− q|
(1 + q)

(
M

r

)5/2

+3
SL1 − SL2
M2

(
M

r

)3

sign(1− q) . (30)

The origin of the additional term for unequal masses
scaling with ∼ r−5/2 is due to the non-conservation of
the angle β between the two spins (as opposed to its
conservation in the q = 1 case). These oscillations in β
are due to the differential precessional angular velocity of
~S1 and ~S2 for q 6= 1 and hence provides the (precessional)
scaling r−5/2.

For the sake of completeness and comparison of the
time-scales involved, we give here the leading terms of
the orbital frequency in a PN expansion [59]

MΩorb≈
(
M

r

)3/2

− 3 + 5q + 3q2

2(1 + q)2

(
M

r

)5/2
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−2αL2 (1 + 4q) + qαL1 (3 + 2q + 5q2)

2(1 + q)3

(
M

r

)3

.(31)

The leading terms of the precession or azimuthal fre-
quency are [45]

MΩpre≈
7

2

q

(1 + q)2

(
M

r

)5/2

+

[
7

2

(αL1 q
2 + αL2 )

(1 + q)2
− 3

4

(αL1 q + αL2 )

(1 + q)

](
M

r

)3

.(32)

If we now request that the flip-flop angle be exactly π in
an unequal mass configuration, this might only happen
for quasicircular orbits inside a critical separation rC .
In order to estimate this critical separation we may use
the analytic expression for the maximum flip-flop angle
of the smaller BH given in Eq. (19) and request that

∆θff1L = π for total flip-flop in the L-frame. This leads to
the condition

1 = u2 + 2 p u3 , (33)

where

u = uL =
α2

(1− q)

√
M

rC
, p = pL =

qα1

α2
. (34)

The exact solution to Eq. (33) is given by

u =
1

6p

(
f1/3 + f−1/3 − 1

)
, (35)

where

f =
(√

108
√

27 p2 − 1 p+ 54 p2 − 1
)
. (36)

It is useful though to estimate the best scenario for
large rC , which occurs in the small to intermediate p-
regime where u ∼ 1. Thus we obtain

rC ∼
Mα2

2

(1− q)2
, (37)

with a best scenario for highly spinning BHs we get that
q > 3/4 is needed for rC > 20M . Setting up a flip of
90-degrees moves the critical radii outwards by approx-
imately a factor two. This indicates that large flip-flop
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angles, as measured in the orbital frame, are mostly ex-
pected for comparable mass binaries.

Similarly, to achieve the total flip-flop angle as seen in
the J-frame, the above analysis applies with

u = uJ =
α2

(1− q)

√
M

qrC
, p = pJ =

α1(3− q)q3/2

2α2
.

(38)
This leads to similar bounds as above for comparable
masses, but gets a notable increase for small mass ratios
due to large precessional effects (see the bottom panel of
Fig. 22).

B. Statistics

In order to evaluate the probabilities of a flip-flop an-
gle to occur, we have performed numerical integrations of
the 3.5PN equations of motion [48, 60] coupled with the
spin evolution (7) for randomly varied spin magnitudes
and orientations (thus representing unbiased initial con-
ditions). This may correspond to ‘dry’ mergers of BHBs
or to the case of ‘chaotic accretion’ [61]. Other scenarios
involving spin alignment due to coherent accretion are
possible [62] as well as the effect of resonances [53], that
lead to two ‘attractor’ configurations, either ∆φ = 0 or
∆φ = π. We will study those two cases below.

We have thus performed a set of α1 × cos(θ0
1) × α2 ×

cos(θ0
2) = 20× 90× 20× 90 = 3, 240, 000 simulations per

q (we have masked the points that have one of the spins
0 or that have anti-aligned or aligned spins bringing the
number for the statistics down to 2, 859, 120).

Figure 20 displays the results of the probabilities (as
inferred from the occurring frequency of each value) of a
flip-flop angle larger than a given (by the abscissa) value
to occur for each mass ratio q in the range 0.1 ≤ q ≤ 0.9
(no resonances exists for the q = 1 case). We observe
that for some values of q > 0.7 the probabilities for large
angles can be larger than for q ≈ 1 indicating that the
leading term in Eq. (19) is preponderant as the binary
inspirals down to smaller separations. This is a phenom-
ena that we discussed in the context of maximal flip-flop
at the end of Sec. III A. We thus conclude that large flip-
flop angles are frequent in comparable masses binaries.

To further illustrate the probabilities of a given flip-
flop angle to occur, we consider a BHB system bearing
a mass ratio q = 1/2 at a relatively short distance, r =
20M . Figure 21 displays the results of a uniform initial
distribution of spin magnitudes and angles.

We observe that the distribution of a given flip-flop an-
gle has a peak at about 41◦ corresponding to the smaller
hole flip-flop and at around 17◦ for the flip-flop angle
of the larger hole. Flip-flop angles larger than 63◦ are
very unlikely, in agreement with the results displayed in
Fig. 20.

We mention that for unequal masses there is a differ-
ence in counting flip-flop angles in the J-frame (total an-
gular momentum) and the L-frame (orbital angular mo-
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FIG. 20. The distributions of the flip angles larger than a
given (abscissa) value for a binary evolved with 3.5PN from a
separation r = 100M to r = 5M for each 0.1 ≤ q ≤ 0.9 in the
L-frame. The upper panel assumes an initial φ1 = φ2 while
the lower panel assumes an initial φ1 = −φ2 as the resonant
attractors at larger separations.

mentum). In Fig. 22 we display the differences for a few
selected mass ratios. We observe in general that larger
angles are seen in the J-frame. Particularly for q = 0.1,
due to the effects of transitional precession [63], that may

reverse the orientation of ~J . But we also observe larger
angles for q > 1/4, configurations that exclude total tran-
sitional precession [44, 47]).

Both, the L- and J-frames are useful references to ac-
count for different astrophysical accretion scenarios.

IV. CONCLUSIONS AND DISCUSSION

The unequal mass component of the flip-flop frequency,
as given by Eq. (30), adds a leading term with a depen-
dence on the orbital separation as ∼ r−5/2. This term,
also proportional to (1−q), eventually becomes the domi-
nant time-scale at large enough separations. We can com-
pare this time-scale with that for the realignment of BH
spins via the Bardeen-Peterson torque effect produced by
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FIG. 21. The distributions of the flip angles for a binary at
a constant separation r = 20M and mass ratio q = 1/2. Spin
magnitudes and angles have been chosen uniformly and the
max(small, large) flip angles is evaluated. The peak at around
41◦ corresponds to the smaller hole spin flip. The larger hole
gives an additional peak (at around 17◦) towards low angles
and bulks up the middle region between peaks.

accreting matter. This alignment mechanism competes
with the spin flip-flop one.

The leading flip-flop period is now given by

Tff ≈ 2, 000 yr
(1 + q)

(1− q)

( r

103M

)5/2
(

M

108M�

)
, (39)

which is much shorter than the gravitational radiation
scale [51]

TGW ≈ 1.22× 106 yr
( r

103M

)4
(

M

108M�

)
, (40)

and hence can take over the Bardeen-Peterson alignment
mechanism [64] at an order of magnitude further sepa-
rations (i.e., 10, 000M) than the gravitational radiation
decay, used as reference time-scale in Ref. [65]. Thus, the
flip-flop of spins shortens the time available for accretion
to completely align the spins of the BH with the orbital
angular momentum. However, according to Eq. (19) the
angle of flip-flops gets notably reduced at large distances,
hence their statistical relevance can be focused to the lat-
est stages of merger, i.e., at closer separations or compa-
rable mass binaries.

While in this paper we point out the relevance of study-
ing accretion and torque exchange of matter with BHs
in a binary system rather than on single BHs, a defini-
tive account of these competing mechanisms should be
provided by full BHB simulations in a matter filled en-
vironment that incorporates all the needed elements of
a magnetohydrodynamical description of the accretion,
like in Ref. [66] with spinning BHB backgrounds.

Since this flip-flop phenomena relies on the spin-spin
coupling (fed by the relative spin-orbit precession in the
unequal mass case), one can predict that not only BHs
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FIG. 22. Probability distribution of unequal mass flip-flops
with respect to L-frame on top and with respect to J-frame
below. These results are for initial random spin distributions
evolved with 3.5PN form 100M of initial separation down to
5M (approximating the merger).

can see their spins flipped, but material bodies with
high spin, such as neutron stars, will as well, since they
have been observed to pair with comparable masses. A
simple evaluation of the flip-flop frequency and angles
from Eqs. (19) and (30) applied to the double pulsar
PSR J0737-3039 [67] with M = 2.587M�, q = 0.935,
M/r = 4.4 × 10−6, leads to a flip-flop period of 1, 230
years, i.e., the spin direction of the less massive neu-
tron star B would change by a degree every 3.4 years.
However, the total change, according to Eq. (19) will be
less than a degree if the highly spinning pulsar A has
an intrinsic spin α2 < 0.25, i.e., in order to produce ob-
servable effects nowadays its measured period should be
below a millisecond instead of the actual 23 milliseconds.
Notably, the spin precession frequency of pulsar B has
actually been observed to be around 4.77◦ per year [68].
Unfortunately this precession of pulsar B meant that
the highly beamed radio-emission is currently no longer
pointing towards the Earth and we lost the detection
of this one pulsar in 2008 [69]. Yet the spin-orbit pre-
cession of another pulsar has been measured. For the
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PSR B1534+12 (a 37.9 milliseconds pulsar) a precession
of 0.59◦ per year has been detected [70]. This under-
lines that other potentially observable neutron star bi-
nary systems, at closer binary separations, may lead to
larger observational flip-flop effects.
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Appendix A: Post-Newtonian Spin Evolution
Equations in the L- and J- frames

We discuss the spin evolutions in Eqs. (7) by decom-

posing the spins along L̂ and perpendicular to it, with

unit vectors λ̂ and n̂, as shown in Fig. 12. Here, we have
that this frame evolves as

˙̂
L =

2Seffλ̂

r3
n̂+

(
−2Seffn̂

r3
+

3 η S0n̂ S0L̂

`r3

)
λ̂ ,

˙̂n =
vλ
r
λ̂−

2Seffλ̂

r3
L̂ , (A1)

˙̂
λ = −vλ

r
n̂−

(
−2Seffn̂

r3
+

3 η S0n̂ S0L̂

`r3

)
L̂ ,

where η = q/(q+1)2, ~Seff = [1+3/(4q)]~S1 +[1+3q/4]~S2,

and ~S0 = [1 + 1/q]~S1 + [1 + q]~S2. Then, we obtain the
spin evolutions from Eqs. (7) as

Ṡ1n̂ = Ω1S1λ̂ −
3S1L̂S2λ̂

r3

(
1 +

q

2

)
,

Ṡ1λ̂ = −Ω1S1n̂ +
3 q S1L̂S2n̂

2r3

(
1−

2S0L̂

(1 + q)`

)
−

3S1L̂S1n̂

q r3

(
1 +

q S0L̂

(1 + q)`

)
, (A2)

Ṡ1L̂ =
3S1n̂

2 q (1 + q)r3

[
q(1 + q)(2 + q)S2λ̂

+2

(
1 + q + q

S0L̂

`

)
S1λ̂

]

+
3 q S2n̂ S1λ̂

2 (1 + q)r3

[
−(1 + q) + 2

S0L̂

`

]
,

where S0L̂ is a conserved quantity and

Ω1 =
vλ
r
− `

r3

(
2 +

3

2q

)(
1 +

S1L̂

`

)
+
S2L̂

r3
, (A3)

for ~S1 and similar for ~S2 exchanging labels 1 and 2 and

q → 1/q. In the above expression SiL̂ = ~Si·L̂, Sin̂ = ~Si·n̂,

and Siλ̂ = ~Si · λ̂; ` = |~L| = qM3/2r1/2/(1 + q)2, and

SL̂ = ~S · L̂.

1. Flip-flop frequency

The evolution of ~S1 and ~S2 along L̂ becomes

Ṡ1L̂ =
1

r3
(~S1 × (~S + 2~Seff)) · L̂

+
3

r3

S0n̂

1 + q
S1λ̂

(
1 +

q

1 + q

S0L̂

`

)
,

Ṡ2L̂ =
1

r3
(~S2 × (~S + 2~Seff)) · L̂

+
3

r3

qS0n̂

1 + q
S2λ̂

(
1 +

1

1 + q

S0L̂

`

)
. (A4)

Then, the averaging over the orbital period (denoted by
the brackets 〈〉) gives

〈Ṡ1L̂〉 =
3

2r3
(1 + q)

| ~J |
`

(
1− q

(1 + q)2

S0L̂

`

)
×(~S1 × ~S2) · Ĵ ,

〈Ṡ2L̂〉 = − 3

2r3

(
1 +

1

q

)
| ~J |
`

(
1− q

(1 + q)2

S0L̂

`

)
×(~S1 × ~S2) · Ĵ . (A5)

This shows the conservation of ~S0 · L̂, as we have 〈Ṡ1L̂〉+
q〈Ṡ2L̂〉 = 0.

On the other hand, the spin evolution projected along
~J can be derived from Eqs. (7) as

Ṡ1Ĵ = =
1

r3| ~J |

((
3 +

3

2q

)
(~S1 × ~S2) · ~L

+
3

1 + q
`S0n̂S1λ̂ +

3

1 + q
S0n̂(~S1 × ~S2) · n̂

)
,

Ṡ2Ĵ = =
1

r3| ~J |

((
3 +

3q

2

)
(~S2 × ~S1) · ~L

+
3q

1 + q
`S0n̂S2λ̂ +

3q

1 + q
S0n̂(~S2 × ~S1) · n̂

)
,

(A6)

and then the averaging over the orbital period gives

〈Ṡ1Ĵ〉 =
3

2r3

(
1 +

1

q

)(
1− q

(1 + q)2

S0L̂

`

)
(~S1 × ~S2) · Ĵ ,

〈Ṡ2Ĵ〉 = − 3

2r3
(1 + q)

(
1− q

(1 + q)2

S0L̂

`

)
(~S1 × ~S2) · Ĵ .

(A7)
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This shows the conservation of the quantity ~SN ·Ĵ , where,
~SN = q~S1 + ~S2, as we have q〈Ṡ1Ĵ〉+ 〈Ṡ2Ĵ〉 = 0.

Note that the factor `/(q| ~J |) (or q`/| ~J |) is different

from 〈Ṡ1L̂〉 (or 〈Ṡ2L̂〉). This difference can be expressed
as

〈Ṡ1Ĵ〉 −
`

| ~J |
〈Ṡ1L̂〉 =

1

| ~J |
( ~̇S1 · ~S − ~S1 · ~̇L)

=
1

| ~J |
( ~̇S1 · ~S2 − ~S1 · ( ~̇J − ~̇S2))

=
1

| ~J |

[
~S1 · ~S2

]·
. (A8)

Therefore, the time evolution of the angle between ~S1 and
~S2 creates the different q-behavior into the two projection
frames. This will affect the flip-flop angle, but not its
frequency as we see below.

To obtain the flip-flop frequency (measured along ~L or
~J will be the same) we first note that

Ṡ0L̂ =
3

2r3

(
1

q
− q
)

(~S1 × ~S2) · L̂

+
3

r3

S0n̂

q
S1λ̂

(
1 +

q

1 + q

S0L̂

`

)

+
3

r3
qS0n̂S2λ̂

(
1 +

1

1 + q

S0L̂

`

)
,

〈Ṡ0L̂〉 = 0 . (A9)

Therefore, the time dependent part of the orbital-
averaged first derivative of the spins, 〈Ṡ1L̂〉, 〈Ṡ2L̂〉, 〈Ṡ1Ĵ〉
and 〈Ṡ2Ĵ〉 is only (~S1 × ~S2) · Ĵ , on which we focus in the
following.

The first derivative of (~S1× ~S2) · Ĵ with respect to time
can be written as

d

dt
[(~S1 × ~S2) · Ĵ ] =

3

2r3

`

| ~J |

(
1− q

(1 + q)2

S0L̂

`

)
×
[

(1− q2)

q
((~L× ~S1)× ~S2) · L̂

−
(
~S0 × (~S1 × ~S2)

)
· L̂
]
. (A10)

Here, we are always using the averaged evolution equa-
tions.Taking one more time derivative of the above equa-
tion, we have

d2

dt2
[(~S1 × ~S2) · Ĵ ] = −

[
9

4

(1− q)2(1 + q)2`2

q2r6
+

9(1− q)(1 + q)`S1L̂

qr6
−

9(1− q)(1 + q)`S2L̂

qr6
− 9

4

(3 + 5 q) (1− q)S1L̂
2

q2r6

+
9

2

(1− q)2
S1L̂ S2L̂

qr6
+

9

4

(1− q) (5 + 3 q)S2L̂
2

r6
+

9

4

(1 + q)
2
(
S1

2 + 2 q ~S1 · ~S2 + q2S2
2
)

q2r6
+ · · ·

]
×(~S1 × ~S2) · Ĵ , (A11)

where (+ · ··) means higher PN order terms. This equation has the form of an harmonic oscillator (with slowly varying

frequency) and reaches the two extreme positions when ~S1, ~S2, and ~J (or equivalently at those points ~L) are all
coplanar (and hence the triple vector product vanishes).

Therefore, we can extract a frequency as

Ω2
ff =

9

4

(1− q)2
M3

(1 + q)
2
r5

(
1 + 4

M

r

)
+ 9

(1− q) (S1L̂ − S2L̂)M3/2

(1 + q)r11/2
− 9

4

(1− q) (3 + 5 q)S1L̂
2

q2r6

+
9

2

(1− q)2
S1L̂ S2L̂

qr6
+

9

4

(1− q) (5 + 3 q)S2L̂
2

r6
+

9

4

S2
0

r6
+ · · · , (A12)

where we have used ` = (q/(1 + q)2)M3/2r1/2(1 + 2M/r)
from Eq. (4.7) of Ref. [51], and (+ · ··) stands for
O(1/r13/2) which is higher PN order corrections. Here,
Ωff is constant at fixed r for q = 1. In the unequal
mass cases, this is not constant in time, but we may
treat it as a constant in the flip-flop time scale because
of Ω̇ff/Ωff = O(1/r7/2).

2. Maximum flip-flop angle

The maximum flip-flop angle is calculated as follows.
First, we obtain from Eq. (A11) as

(~S1 × ~S2) · Ĵ = A sin(Ωff t) , (A13)

where we have chosen the initial value by S1L̂(0) = −S1

(α1L̂(0) = −α1 where ~αi = ~Si/m
2
i ) to obtain the maxi-

mum flip-flop angle for the smaller hole. Using Eq. (A10),
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the amplitude A is determined from

ΩffA =
3

2r3

`

| ~J |

(
1− q

(1 + q)2

S0L̂

`

)
(1 + q)S1

×(S2
2 − S2L̂(0)

2
) , (A14)

at t = 0 as

A =

(
α2

2 − α2L̂(0)
2
)
α1 q

2M9/2

(1 + q)
4

(1− q)
√
r

+

(
α2

2 − α2L̂(0)
2
) (
−α1 q

3 + 2α1 q
2 + 2α2L̂(0) q − α2L̂(0)

)
α1 qM

5

(1 + q)
4

(1− q)2
r

+
1

2

(
α2

2 − α2L̂(0)
2
)
α1M

11/2

(1 + q)
4

(1− q)3
r3/2

(2α1
2q6 − 6α1

2q5 − 6α1 q
4α2L̂(0) + 6α1

2q4 + 20α1 q
3α2L̂(0) + 8α2L̂(0)

2
q2

−2α2
2q2 − 6α1 q

2α2L̂(0)− 8 qα2L̂(0)
2

+ 2α2
2q − α2

2 + 3α2L̂(0)
2
) , (A15)

where α2L̂(0) is derived later. Substituting this solution into Eqs. (A5) and integrating it with respect to time, we
obtain

α1L̂(t)

α1
= −1 +

(
α2

2 − α2L̂(0)
2
)
M

r (1− q)2 (1− cos(Ωff t)) + 2

(
α2

2 − α2L̂(0)
2
) (
α1 q + α2L̂(0)

)
M3/2

(1− q)3
r3/2

(1− cos(Ωff t))

+

(
α2

2 − α2L̂(0)
2
)(

3α1
2q2 + 10α1 qα2L̂(0)− α2

2 + 4α2L̂(0)
2
)
M2

r2 (1− q)4 (1− cos(Ωff t)) , (A16)

with α1L̂(0) = −α1. Therefore, we have the maximized
flip-flop angle at cos(Ωff t) = −1, and α2L̂(0) is fixed to
maximize the angle as

α2L̂(0)

α2
=

α2

√
M

(1− q)
√
r

+
3qα2α1M

(1− q)2r
. (A17)

Then, the solution becomes

α1L̂(t)

α1
= −1 +

[
α2

2M

(1− q)2r
+

2qα2
2α1M

3/2

(1− q)3r3/2

]
×(1− cos(Ωff t)) . (A18)

As the result, the maximum flip-flop angle becomes

α1L̂(tmax)

α1
+ 1 = 2

[
α2

2M

(1− q)2r
+

2qα2
2α1M

3/2

(1− q)3r3/2

]
.

(A19)

Here, we need a special treatment for the q = 1 case
because of the lack of the leading term in Eq. (A12).
Furthermore, since Ωff has only the leading order for q =
1, we focus on the leading order calculation. Using the
same initial configuration, α1L̂(0) = −α1, the solution

with the parameter α2L̂(0) is obtained as

α1L̂(t)

α1
= −

(
α2

2 − α2L̂(0)
2
)

α1
2 − 2α1 α2L̂(0) + α2

2
cos(Ωff t)

−
(
α2L̂(0)− α1

)2
α1

2 − 2α1 α2L̂(0) + α2
2
. (A20)

The maximum flip-flop angle is found for α2L̂(0) = α1

under an assumption α1 < α2, and the solution becomes

α1L̂(t)

α1
= − cos(Ωff t) . (A21)

Therefore, the maximum flip-flop angle is π.
On the other hand, in the case of S2L̂(0) = S2

(α2L̂(0) = α2), we can obtain the maximum flip-flop an-
gle for the larger hole. The amplitude A is derived from
Eq. (A10),

ΩffA =
3

2qr3

`

| ~J |

(
1− q

(1 + q)2

S0L̂

`

)
(1 + q)S2

×(S1
2 − S1L̂(0)

2
) . (A22)

at t = 0 as

A =

(
α1

2 − α1L̂(0)
2
)
α2 q

3M9/2

(1 + q)
4

(1− q)
√
r
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2
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(3α1L̂(0)
2
q6 − α1

2q6 − 8α1L̂(0)
2
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q4

−2α1
2q4 − 20α1L̂(0) q3α2 + 6α1L̂(0) q2α2 + 6α2

2q2 − 6α2
2q + 2α2

2) , (A23)

where α1L̂(0) is derived later. From a similar analysis in
the above, we have

α2L̂(t)

α2
= 1−

[
q2α1

2M

(1− q)2r
+

2q2α1
2α2M

3/2

(1− q)3r3/2

]
×(1− cos(Ωff t)) , (A24)
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and

α1L̂(0)

α1
= − qα1

√
M

(1− q)
√
r
− 3qα1α2M

(1− q)2r
. (A25)

Therefore, the maximum flip-flop angle is

1−
α2L̂(tmin)

α2
= 2

[
q2α1

2M

(1− q)2r
+

2q2α1
2α2M

3/2

(1− q)3r3/2

]
.

(A26)

In the J-frame, we find the maximum flip-flop of the
larger hole with α2L̂(0) = α2 and a parameter α1L̂(0).
The solution is

α2Ĵ(t)

α2
= 1 +

(
q3α1

2M

(1− q)2
r
− q2 (1− 3 q)α1

2α2M
3/2

(1− q)3
r3/2

)
× cos(Ωff t)−

1

2

q2
(
q2 + 1

)
α1

2M

(1− q)2
r

−
q
(
q3 + 2 q − 1

)
α1

2α2M
3/2

(1− q)3
r3/2

, (A27)

and the maximum flip-flop angle becomes

α2Ĵ(tmax)

α2
−
α2Ĵ(tmin)

α2
= 2

[
q3α1

2M

(1− q)2r

−q
2(1− 3q)α1

2α2M
3/2

(1− q)3r3/2

]
. (A28)

To obtain this flip-flop angle, the initial configuration is

α2L̂(0)

α2
= 1 ,

α2Ĵ(0)

α2
= 1− 1

2

q2α1
2M

r
+
qα1

2α2M
3/2

r3/2
,

α1L̂(0)

α1
= −1

2

(3− q) qα1

√
M

(1− q)
√
r

+
1

2

(q2 − 8q + 1)α1α2M

(1− q)2r
,

α1Ĵ(0)

α1
= −1

2

(1 + q) qα1

√
M

(1− q)
√
r

−1

2

(q2 + 4q + 1)α1α2M

(1− q)2r
. (A29)

For the smaller hole case, when we choose the initial
value by S1L̂(0) = −S1 and find α2L̂(0) to maximize the
flip-flop angle that is the same ansatz as the L-frame
analysis, the solution is derived as

α1Ĵ(t)

α1
= −1 +

(
− α2

2M

q (1− q)2
r
− (3− q)α2

2α1M
3/2

(1− q)3r3/2

)
× cos(Ωff t) +

1

2

(
q2 + 1

)
α2

2M

q2 (1− q)2
r

−
(
q3 − 2 q − 1

)
α2

2α1M
3/2

q (1− q)3
r3/2

, (A30)

and the maximum flip-flop angle becomes

α1Ĵ(tmax)

α1
−
α1Ĵ(tmin)

α1
= 2

[
α2

2M

q(1− q)2r

+
(3− q)α2

2α1M
3/2

(1− q)3r3/2

]
. (A31)

The above solution is obtained for the initial configura-
tion,

α1L̂(0)

α1
= −1 ,

α1Ĵ(0)

α1
= −1 +

1

2

α2
2M

q2r
+
α2

2α1M
3/2

qr3/2
,

α2L̂(0)

α2
= −1

2

(1− 3q)α2

√
M

q (1− q)
√
r

−1

2

(q2 − 8q + 1)α2α1M

(1− q)2r
,

α2Ĵ(0)

α2
=

1

2

(1 + q)α2

√
M

q (1− q)
√
r

+
1

2

(q2 + 4q + 1)α2α1M

(1− q)2r
. (A32)
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