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Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-
based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short
gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich material
ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar medium.
Simulations of these mergers with fully general relativistic codes are critical to understand the merger and
post-merger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we
employ the Spectral Einstein Code (SpEC) to simulate the merger of low-mass neutron star binaries (two 1.2M�
neutron stars) for a set of three nuclear-theory based, finite temperature equations of state. We show that the
frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained
from recent simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode
of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond
timescale in the simulated binaries. For such low-mass systems, the remnant is a massive neutron star which,
depending on the equation of state, is either permanently stable or long-lived (i.e. rapid uniform rotation is
sufficient to prevent its collapse). We observe strong excitations of l = 2, m = 2 modes, both in the massive
neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the
neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with
a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission,
also observed in previous simulations with neutrino leakage, and show explicitly the presence of important
differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage
and transport schemes.

PACS numbers: 04.25.dg, 04.40.Dg, 26.30.Hj, 98.70.-f

I. INTRODUCTION

Compact binary mergers, including binary neutron stars
(BNS), binary black holes (BBH), and neutron star-black hole
(NS-BH) mergers are the primary targets of ground based
gravitational wave detectors such as Advanced LIGO [1], Ad-
vanced VIRGO [2], and KAGRA [3]. In the presence of at
least one neutron star, the merger may also be accompanied by
bright electromagnetic emission, whose detection can provide
valuable complementary information on the properties of the
source, help characterize the merger environment, and pro-
vide better localization than available from the gravitational
wave signal alone (see e.g. [4] for a review). Two of the
most promising such counterparts are short gamma-ray bursts
(SGRBs) [5–8] and radioactively powered transients originat-
ing from r-process nucleosynthesis in the neutron-rich matter
ejected by the merger [9–13]. The latter would most likely
peak in the infrared about a week after merger [13–15]. It
could also result in the production of many of the heavy ele-
ments (A >∼ 90) whose origin remains poorly understood to-
day [11, 16, 17]. Finally, the ejecta could power long duration
radio emission as it interacts with the interstellar medium.

Numerical simulations of these mergers play an important
role in the efforts to model the gravitational wave signal, pre-

dict the properties of its electromagnetic counterparts, and es-
timate the production of various elements. In this work, we
focus on the outcome of BNS mergers. The simulation of
BNS mergers with general relativistic hydrodynamics codes
has now been possible for about 15 years [18]. Nevertheless,
and despite continuous improvements, current codes have not
yet reached the accuracy required to model the gravitational
wave signal at the level required to extract as much informa-
tion as possible from upcoming experiments (see e.g. [19]).
Additionally, most codes do not take into account all of the
physics relevant to the evolution of the post-merger remnant,
including at least a hot nuclear-theory based equation of state,
a neutrino transport scheme accounting for neutrino-matter
and neutrino-neutrino interactions [20, 21], and the evolution
of the magnetic fields with a high enough resolution to re-
solve the growth of magnetohydrodynamics (MHD) instabili-
ties [22, 23].

Many recent simulations have taken steps toward an im-
proved treatment of all relevant physics, and a better coverage
of the available parameter space of BNS configurations. Fully
general relativistic simulations of the merger of two 1.35M�
neutron stars with an approximate neutrino transport scheme,
but no magnetic fields [20], have shown that neutrino-matter
interactions can lead to the ejection of material with a broad
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distribution of temperature and composition, leading to the
production of elements with abundances compatible with so-
lar system observations [17]. The study of a similar merger at
an unprecedented resolution with ideal MHD but using a sim-
pler equation of state and no neutrinos [22] demonstrated mul-
tiple mechanisms for the growth of magnetic field in global
simulations of mergers – although, even at the highest resolu-
tion currently achieved, the amplification of the magnetic field
in the shear region between the two merging neutron stars is
not resolved [23], and the unresolved growth of magnetic field
in that region could be very significant [23, 24]. Lower res-
olution simulations including resistive MHD have shown that
deviations from ideal MHD have a relatively modest effect on
the evolution of the post-merger remnant [25]. With or with-
out resistivity, Dionysopoulou et al. [25] also find low-density,
magnetically dominated outflow regions which may lead to
the formation of a relativistic jet. The combined effect of ideal
MHD with a subgrid model for the growth of the magnetic
field, and a simple neutrino cooling scheme has also been in-
vestigated [26, 27]. These results suggest that the growth of
strong magnetic field could influence the mass and properties
of the outflows, and the dynamics of the post-merger remnant.

Large parameter space studies without microphysics [28–
33] have also greatly improved our understanding of the gen-
eral properties of the post-merger remnant. If the post-merger
remnant collapses to a black hole, the relevant timescale for
that collapse can be estimated from the total mass of the bi-
nary. Order of magnitude estimates are available for the mass
ejection from the merger, and we are beginning to understand
the main features of the post-merger gravitational wave sig-
nal. More exotic merger scenarios, leading to more extreme
mass ejection, merger results, and orbital evolution have also
been investigated, including eccentric binaries [34, 35], and
binaries with rapidly rotating neutron stars [36–40]. Finally, a
large number of simulations have also been performed using
approximate treatments of gravity, producing useful predic-
tions for the properties of the post-merger gravitational wave
signal [41, 42], as well as the long term evolution of the post-
merger remnant [43–47]. All of these, and many more earlier
results, provide us with a growing understanding of the be-
havior of neutron star mergers (see also [48–50] for reviews
of earlier results), but certainly do not yet draw a complete
picture.

In this paper, we focus on an often neglected portion of
the parameter space in general relativistic simulations: neu-
tron star binaries at the very low end of the expected mass
distribution [51]. We consider two 1.2M� neutron stars, and
evolve them using the SpEC code [52], a set of three different
hot, nuclear theory based equations of state, and either a neu-
trino cooling scheme or a gray two-moment neutrino trans-
port scheme capable of properly taking into account neutrino-
matter interactions [21]. A similar system has been evolved
using ideal MHD and a simpler equation of state (leading,
in particular, to an unrealistically large neutron star radius)
in [24], with the aim to study the growth of magnetic field,
and with similar equations of state but approximate gravity
and no neutrinos in [53]. Nuclear theory-based equations of
state and a neutrino cooling scheme have also recently been

used for higher mass systems in [26, 27], providing us with
a useful point of comparison for many of the qualitative fea-
tures observed in our simulations. The post-merger gravita-
tional wave signal can also be compared to numerical results
using nuclear theory-based equations of state but an approxi-
mate treatment of gravity [41, 42].

We describe our numerical methods in Sec. II, and initial
conditions in Sec. III. Our simulations allow us to address a
number of important questions. First, in Sec. IV, we study the
post-merger gravitational wave signal of low-mass BNS sys-
tems with hot nuclear-theory based equations of state. This al-
lows us to compare our results with predictions coming from
simulations using a more approximate treatment of gravity.
Those simulations found clearly marked peaks in the gravi-
tational wave signal at frequencies easily connected with the
neutron star equation of state [41, 42]. We can also compare
our results to differing predictions coming from general rela-
tivistic simulations using simpler equations of state and more
massive neutron stars [31, 32]. The post-merger signal is ex-
pected to depend on the equation of state of the neutron star,
and its qualitative properties vary with the total mass of the
system. Thus, our results using general relativistic simula-
tions, a nuclear-theory based equations of state, and low-mass
neutron stars usefully complement existing studies in general
relativity [29, 31, 32] and approximate gravity [42].

Second, in Sec. V, we study the qualitative features of the
remnant: its density, temperature, composition, rotation pro-
file, and the excitation of l = 2, m = 2 mode in the post-
merger neutron star and the accretion torus. We compare our
results with simulations of higher mass systems using a simi-
lar level of physical detail [27].

Third, in Sec. VI, we analyze neutrino emission, and for the
simulation in which a transport scheme is used, directly as-
sess the impact of using the simpler neutrino cooling method,
determine the changes in composition due to neutrino-matter
interactions, and estimate how these changes affect the prop-
erties of the outflows (Sec. VII). This is the first time that
such a comparison is possible in binary neutron star mergers
(we already performed a similar study on the accretion disk
formed in a NS-BH merger [21]). This provides us with bet-
ter insights into the limits of the simple cooling scheme. We
can also qualitatively compare our results with the small set of
existing neutron star merger simulations using a similar neu-
trino transport scheme [20].

II. NUMERICAL METHODS

A. Evolution equations

We evolve Einstein’s equations and the general relativis-
tic equations of ideal hydrodynamics using the Spectral Ein-
stein Code (SpEC) [52]. SpEC evolves those equations on
two separate grids: a pseudospectral grid for Einstein’s equa-
tions, written in the generalized harmonic formulation [54],
and a finite volume grid for the general relativistic equations
of hydrodynamics, written in conservative form. The latter
makes use of an approximate Riemann solver (HLL [55])
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and high-order shock capturing methods (fifth order WENO
scheme [56, 57]), resulting in a second-order accurate evo-
lution scheme. For the time evolution, we use a third-order
Runge-Kutta algorithm. Finally, after each time step, the two
grids communicate the required source terms, using a third-
order accurate spatial interpolation scheme. Those source
terms are the metric and its derivatives (from the pseudospec-
tral grid to the finite volume grid) and the stress-energy tensor
of the fluid (from the finite volume grid to the pseudospec-
tral grid). In our current scheme, the radiation stress-energy
tensor does not self-consistently feed back onto the evolution
of Einstein’s equations. Direct measurements of the energy
in the neutrino sector shows that the radiation energy density
is everywhere negligible as far as gravitational interactions
are concerned. The neutrino stress-energy tensor is, however,
fully coupled to the general relativistic equations of hydrody-
namics. More details about these numerical methods can be
found in [58, 59].

While the GR-hydrodynamics in SpEC was largely devel-
oped for the evolution of NS-BH mergers, most of the algo-
rithm carries over to the evolution of binary neutron star merg-
ers. The main differences are in the choice of the evolution
gauge, and in the grid structure (Sec. II B). In the generalized
harmonic formalism, the evolution of the coordinates follows
the wave equation

gab∇c∇cxb = Ha(x) , (1)

where gab is the spacetime metric, and Ha(x) an arbitrary
function. Before merger, we make the choice

Ha(xic, t) = Ha(xic, 0) exp

(
− t

2

τ2

)
, (2)

with τ =
√
d3

0/M , d0 the initial separation, and M the to-
tal mass of the binary at infinite separation. Here, xic are the
comoving spatial coordinates (which follow the rotation and
inspiral of the binary) and Ha(xic, 0) are the value of Ha at
the initial time, chosen so that ∂tα(xic, t) = ∂tβ

i(xic, t) = 0.
The lapse α and shift βi are obtained from the standard 3+1
decomposition of the metric,

gab = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (3)

where γij is the 3-metric on a slice of constant t. After a tran-
sient on the timescale τ , the gauge settles into the ”harmonic
gauge” Ha = 0 (see [60] for a discussion of the uses of that
gauge). During merger, we instead transition to the ”damped
harmonic” gauge condition [61],

HDH
a =

[
log

(√
γ

α

)]2 [√γ
α
ta − γai

βi

α

]
, (4)

where γ is the determinant of the 3-metric γij . We do this
according to

Ha(t) = HDH
a

[
1− exp

(
−(t− tDH)2

τ2
m

)]
, (5)

with tDH the time at which we turn on the damped harmonic
gauge, discussed in Sec. II B, and τm = 100M .

FIG. 1. Equatorial cut of the pseudospectral grid just before the two
neutron stars get into contact. The color scale shows the baryon den-
sity (logarithmic scale).

We choose Ha based on what we found most efficient in
NS-BH mergers, in terms of the resolution required to reach
a given accuracy. There, we find that the harmonic gauge is a
better choice for the evolution of neutron stars during inspiral.
The damped harmonic gauge, on the other hand, is favored
for the evolution of black holes and for very dynamical space-
times. For the collapse of a merger remnant into a black hole,
different gauge choices are necessary (R. Haas et al., in prep.).
However, we do not have to take this into consideration here,
since the low-mass systems that we study do not collapse to a
black hole within the duration of the simulation.

B. Grid setup

Before the two neutron stars enter into contact, the pseu-
dospectral grid on which we evolve Einstein’s equations
takes advantage of the approximate spherical symmetry in
the neighborhood of each star, and in the far-field region.
The evolved spatial slice is decomposed into two small balls
around the center of each neutron star, sets of spherical shells
around each star and in the far-field region, and distorted
cubes to connect the three spherically symmetric regions. The
grid decomposition used in our simulations is pictured in
Fig. 1. The inner ball is expanded into Zernike polynomi-
als [62, 63], the shells into Chebyshev polynomials (in radius)
and spherical harmonics (in angle), and the distorted cubes in
Chebyshev polynomials. The grid follows the centers of the
neutron stars, defined as the center of mass of the matter in the
x < 0 and x > 0 half planes, through a simple rotation and
scaling of the grid coordinates.1

We maintain this grid decomposition for the evolution of
Einstein’s equations up to the point at which the maximum

1 Here and in the rest of the paper, the center of mass is defined in the coor-
dinates of the simulation, and is clearly a gauge-dependent quantity. It is,
however, a convenient quantity to use to define the map between the grid
and physical coordinates and keep the neutron stars approximately fixed on
the grid.
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FIG. 2. Equatorial cut of the pseudospectral grid just after the change
to a grid centered on the post-merger neutron star remnant. The color
scale shows the baryon density (logarithmic scale).

density on the grid increases beyond the low-level oscillations
observed during the inspiral. This rise in the density signifies
the transition from two well-separated neutron star cores to a
single, more massive object. At that point, we switch to a grid
which is fully centered on the coordinate center of mass of the
system. This grid, pictured in Fig. 2, is made of a ball at the
origin of the coordinate system, surrounded by 59 spherical
shells extending to the outer edge of the computational do-
main. Both before and after merger, the outer boundary is lo-
cated at 40d0, with d0 the initial separation of the binary. For
the configurations considered here, the outer boundary is thus
at a coordinate radius of 400M−435M ∼ (1400−1530) km.

Both before and after merger, the resolution on the pseu-
dospectral grid is chosen adaptively, in order to reach a target
accuracy estimated from the convergence of the spectral ex-
pansion of the solution [59, 64]. As in NS-BH mergers, our
standard choice is to request a relative error of 10−4 in most of
the computational domain, with a smooth transition to 10−5

close to the center of each of the neutron stars before the neu-
tron stars get into contact (see [59, 64] for more detail on how
this is computed in practice). Larger and lower truncation er-
rors can be imposed for convergence tests, chosen in order to
converge faster than the expected second-order convergence
of the finite volume code.

The finite volume grid on which we evolve the general rel-
ativistic equations of hydrodynamics is very simple. Before
the two neutron stars get into contact, it is composed of two
cubes, each with 962 × 48 cells each and centered on one
neutron star. The lower number of cells in the vertical dimen-
sion is due to the assumption of equatorial symmetry before
merger. The initial extent of the boxes is listed for each sim-
ulation in Table I – it is chosen to cover a little more than the
original size of the neutron star. In the coordinate system co-
moving with the neutron star centers, the neutron stars expand
as the binary inspirals. To avoid losing matter to the outer
boundary of the finite volume grid, we expand the grid by
4.5% every time the flux of matter across the outer boundary
exceeds 0.015M�s

−1. As the inspiral lasts less than 10 ms,
this implies a mass loss well below 10−4M� before merger.

As the two neutron stars approach each other, the two finite

volume boxes will eventually get into contact. During merger,
we would like to follow the forming massive neutron star rem-
nant, the tidal tails, the accretion disk, and any ejected mate-
rial. We switch to a finite volume grid centered on the forming
remnant and with 2−3 levels of refinement. Each level has, at
our standard resolution, 2002 × 100 cells, with the finest grid
spacing listed in Table I and each coarser level increasing the
grid spacing by a factor of 2. The lower number of cells in
the vertical direction now reflects the fact that the remnant is
less extended in that direction, and thus that we do not need
the finest grid to extend as far vertically as horizontally. Dur-
ing merger, we no longer assume equatorial symmetry. This
numerical resolution, although insufficient to capture the evo-
lution of magnetic fields [22, 23], has been shown to be suf-
ficient to obtain reasonable accuracy in purely hydrodynamic
simulations [27]. We estimate the errors by performing a sim-
ulation with 2562 × 128 cells at each refinement level during
merger (1222 × 61 during the inspiral). These error estimates
will be discussed along the relevant results in the remainder
of this paper.

For these first simulations of neutron star mergers with mi-
crophysics and a neutrino leakage scheme in SpEC, we only
use two levels of refinement during merger. This is far from
ideal, as it allows us to follow material only up to slightly
more than 100 km from the central remnant (50 km in the ver-
tical direction). The reason for this choice is simply to keep
the simulations computationally affordable. With two levels
of refinement, the mergers use about 500 cores for 16 − 20
days, or about 200, 000 CPU-hours. Although not particu-
larly large compared to some of the most advanced general
relativistic magnetohydrodynamics simulations performed to
date [22, 23, 27], this reaches the limits of our computational
resources. An important part of this work is to demonstrate
the ability of the SpEC code to perform BNS mergers with mi-
crophysics, and to run efficiently on a larger number of cores
than used in previous studies (we typically use ∼ 50 − 100
cores for NS-BH mergers). With our relatively small finite
volume grid, we can follow the formation of the post-merger
neutron star remnant. We can also extract the characteristics
of the remnant and of the surrounding accretion disk, observe
the gravitational wave signal2, and study neutrino effects. The
mass of the outflows, on the other hand, is very approximate.

For the simulation using neutrino transport, we are how-
ever more interested in the properties of the outflows. And
the composition of the ejected matter varies as it moves away
from the disk, due to neutrino absorption. Accordingly, for
that simulation, we choose to use a third level of refinement
(i.e. we make the grid twice as large).

C. Neutrino treatment

Most simulations presented here are performed using a
leakage scheme to capture the cooling and composition evo-

2 The pseudospectral grid on which we evolve Einstein’s equation extends to
much larger distances.
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lution of the post-merger remnant due to neutrino emission.
Our leakage scheme is described in more detail in [65, 66],
and is based on previous work in Newtonian theory [67, 68]
and core-collapse supernovae [69]. Effectively, it is a pre-
scription for the energy and number of neutrinos leaving a
given point of the remnant as a function of the local proper-
ties of the fluid and the optical depth between that point and
the outer boundary of the computational domain (computed as
in [26]). The leakage scheme computes two rates of emission:
a free-emission rate, which only depends on the local proper-
ties of the fluid and is valid in the optically thin regime, and
an approximate, steady state diffusion rate which depends on
the optical depth and is accurate within an order of magnitude
in the optically thick regime. In regions of moderate opti-
cal depth, an interpolation formula between those two emis-
sion rates is used by the leakage scheme. For the emission
and absorption rates, we use the values derived by Rosswog
& Liebendorfer [67] for the charged-current reactions (which
only affect electron neutrinos and antineutrinos),

p+ e− ↔ n+ νe, (6)
n+ e+ ↔ p+ ν̄e, (7)

electron/positron pair creation and annihilation,

e+ + e− ↔ ν + ν̄, (8)

and plasmon decay,

γ ↔ ν + ν̄. (9)

We also use the rates of Burrows et al. [70] for nucleon-
nucleon Bremsstrahlung

N +N ↔ N +N + ν + ν̄. (10)

Finally, we use the rates of Rosswog & Liebendorfer [67] for
the scattering of neutrinos on protons, neutrons and heavy nu-
clei.

To determine the errors in the leakage scheme and obtain
more accurate information about neutrino effects, we also
perform a single simulation using a more advanced neutrino
transport method. We use the moment formalism, in which
the energy-integrated (gray) energy density and momentum
density of neutrinos is evolved on the grid [71? , 72]. An
analytical closure (M1) is then used to compute the neutrino
pressure tensor and close the system of equations. The details
of our M1 algorithm can be found in [21]. Beyond providing
more accurate results and information about the spatial distri-
bution of neutrinos, the transport scheme also allows us to take
into account the absorption of neutrinos and antineutrinos in
low-density regions, which strongly affects the composition
of the fluid, and particularly of the disk and ejecta. These ef-
fects were shown to be significant in black hole-neutron star
mergers [21]. By explicitly comparing leakage and transport
results, we will show here that using a transport scheme is also
critical for extracting the composition of the ejecta of binary
neutron star mergers. So far, only a few simulations have used
a similar transport scheme for neutron star mergers [17, 20].
The transport scheme used in [17, 20] could, however, dif-
fer significantly from our algorithm in optically thick regions.

Indeed, it relies partially on rates from the leakage scheme
to compute the evolution of the component of the neutrino
stress-energy tensor which is not trapped by the fluid. We in-
stead evolve both the trapped and non-trapped components of
the neutrino stress-energy tensor together within the moment
formalism (but rely on the leakage scheme to estimate the av-
erage energy of neutrinos in optically thin regions [21]).

For both neutrino schemes, we consider three separate neu-
trino species: the electron neutrinos νe, electron antineutri-
nos ν̄e, and a third species regrouping all heavy-lepton neutri-
nos and antineutrinos (νµ, ν̄µ, ντ , ν̄τ ), which we denote νx.
Grouping all heavy-lepton neutrinos and antineutrinos in one
species is justified in our simulations because the temperatures
reached in BNS mergers are low enough to suppress the for-
mation of the corresponding heavy leptons. Thus, we do not
have to take into account the charged-current reactions with
muon and tau leptons which would require us to differentiate
between the four species regrouped in νx.

Finally, we note that the computation of the average en-
ergy of the neutrinos differ from what was presented in our
previous simulations [21, 65, 66]. This is due to the discov-
ery of an error in the computation of the average energy of
neutrinos coming from optically thick regions in our leakage
code, and in the GR1D code upon which it is based. This er-
ror leads to an overestimate of the neutrino energies. Interest-
ingly, because the post-merger remnants in black hole-neutron
star and binary neutron star systems are in a quasi-equilibrium
state in which the neutrino luminosities and electron fraction
of the fluid are adapting to the evolving condition in the rem-
nant (density, temperature) on a timescale shorter than the dy-
namical timescale of the remnant, we find that correcting this
error does not significantly affect the composition evolution,
the neutrino luminosities, or the dynamics of the remnant. It
does not even noticeably affect the absorption rate of neutrinos
in optically thin regions when coupling our neutrino leakage
and transport schemes, because the computation of the neu-
trino temperature used to determine the absorption rate in the
transport scheme was previously corrected in optically thick
regions to match known test results in spherical symmetry (as
described in [21]). This error in the neutrino energies was
discovered after the completion of the simulations presented
here. We have performed significant portions of the simula-
tions anew (∼ 3 ms), to verify that, as stated, our results are
not significantly modified by the use of an improved estimate
of the neutrino energies. The neutrino energies quoted in this
work use the improved estimate of the neutrino spectrum in
optically thick regions, and are typically ∼ 50% lower than
before corrections. Updated estimates of the neutrino ener-
gies in the systems considered in previous publications using
the SpEC code [21, 65, 66] will be provided separately.

III. INITIAL CONDITIONS AND EQUATIONS OF STATE

We obtain quasi-equilibrium initial conditions for neutron
star binaries by solving the constraints in Einstein’s equations
using the spectral elliptic solver Spells [73]. The algorithm
used to generate initial data for BNS is similar to that previ-
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FIG. 3. Mass radius relationships for the three equations of state con-
sidered here, for cold neutron stars in neutrino-less β-equilibrium.
Horizontal dashed lines are provided at the initial mass of the indi-
vidual neutron stars (1.2M�) and total mass of the binaries (2.4M�)
considered here.

ously developed for NS-BH binaries [74], and spinning neu-
tron star binaries [40], and will be discussed in more detail in
an upcoming paper (Haas et al., in prep). We consider three
different physical configurations. Their main properties are
listed in Table I. In each case, the two neutron stars have equal
gravitational masses in isolation, MNS = 1.2M�, chosen to
probe the low-end of the expected mass distribution function
of neutron stars in compact binaries [51]. The neutron stars
are initially non-spinning, and on low eccentricity orbits: our
initial data solver generates binaries with eccentricities of a
few percents. Lower eccentricities can be achieved through
an iterative procedure requiring the evolution of the system
for 2-3 orbits in each iteration [75]. However, this procedure
would not perform well at the small initial separations consid-
ered here.

We consider three different, tabulated, temperature depen-
dent nuclear-theory based equations of state, obtained from
www.stellarcollapse.org (see [69] for a description of the
tabulated equations of state). These equations of state are
SFHo [76], DD2 [77], and LS220 [78]. All three were initially
constructed with the objective to satisfy the known theoretical
and experimental constraints from nuclear physics, although
the LS220 equation of state is now incompatible with some
recent results [79]. All three equations of state can support
neutron stars with MNS

>∼ 2M�, as required by astronomical
observations [80, 81]. The mass-radius relationships for these
equations of state are provided on Fig. 3 for cold, neutrino-
less β-equilibrium neutron stars. The radii seen on Fig. 3
for 1.2M� neutron stars are within the range deemed most
likely by studies incorporating information about both nuclear
physics and astrophysical observations of neutron stars in qui-
escent X-ray binaries [82, 83]. A different analysis of the
same astrophysical data however predicts significantly more
compact neutron stars [84], and the physical compactness

TABLE I. Initial conditions and grid settings for the binary neutron
star mergers studied here. “EoS” is the equation of state of the
neutron star matter, R1.2M�

NS the radius of a neutron star of gravi-
tational mass MNS = 1.2M�, M1.2M�

b the baryonic mass of the
same neutron star, κ1.2M�

2 is the tidal coupling constant (see text
and e.g. [85])a, d0 the initial coordinate separation, ∆xt=0

FD the initial
coordinate grid spacing on the finite volume grid, and ∆xmerger

FD the
grid spacing in the finite volume grid used after the formation of a
supermassive neutron star.

EoS R
1.2M�
NS M

1.2M�
b κ

1.2M�
2 d0 ∆xt=0

FD ∆xmerger
FD

LS220 12.8 km 1.309 271 35.2 km 252 m 306 m
LS220 12.8 km 1.309 271 35.2 km 198 m 234 m
DD2 13.2 km 1.295 307 36.6 km 277 m 322 m
SFHo 12.0 km 1.303 164 38.3 km 249 m 276 m

a The authors thank Jan Steinhoff for providing the values of κ2 for these
equations of state.

of neutron stars remains an important open question today.
Before merger, the binaries considered here go through 2.5
(LS220), 3 (DD2) and 4.5 (SFHo) orbits.

The stiffest equation of state, DD2, has a maximum mass
above 2.4M� even for cold, non-rotating neutron stars. The
merger of two 1.2M� neutron stars will thus result in a sta-
ble remnant. For the other two equations of state, the merger
remnant will eventually collapse into a black hole. We will
see that a massive neutron star remnant does, however, sur-
vive for at least 10 ms after the merger. Note that the maxi-
mum baryon mass of a cold, uniformly rotating neutron star
(as determined from mass-shedding sequences generated by
the code of Cook, Shapiro, and Teukolsky [86, 87]) is 2.83M�
for the LS220 equation of state, 2.86M� for the SFHo equa-
tion of state, and 3.45M� for the DD2 equation of state.
The total baryon masses of the systems under consideration
are 2.62M� (LS220), 2.61M� (SFHo), and 2.59M� (DD2).
Hence, for the LS220 and SFHo equations of state, the rele-
vant timescale for the remnant to collapse to a black hole is
the pulsar spin-down timescale, which is much longer than
the timescales relevant to the study of BNS mergers or of the
immediate post-merger remnant evolution (see also [88] for a
more detailed discussion of the fate of the post-merger rem-
nant in BNS systems).

IV. GRAVITATIONAL WAVES

We extract the gravitational wave signal from the sim-
ulations following the method presented by Boyle &
Mroue [89]: the gravitational waves are extracted on coordi-
nate spheres at 24 radii equally spaced in r−1 within the range
[140, 1325] km. We then extrapolate the signal to infinity by
fitting the finite-radius data with a second-order polynomial
in r−1. For the extrapolation, we use finite radius values at
the same retarded time (as defined in [89]), to account for the
finite propagation speed of gravitational waves. The extrap-
olation error can be estimated by comparing fits of different
polynomial order to the finite radius data.
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FIG. 4. Dominant (2,2) mode of the gravitational wave strain for all
three configurations, at 100 Mpc from the source. The simulation
with the stiffest equation of state (DD2) shows the fastest inspiral.
As opposed to other figures in this paper, we show the waveforms
extrapolated to infinity, which explains the short length of the post-
merger waveform.

A. Inspiral and tidal effects

The purpose of this work is to study the merger and post-
merger dynamics of neutron star binaries. The simulations
performed here are generally too short to perform detailed
studies of the gravitational waveform during inspiral. We
will focus more on the post-merger signal in the next section.
Qualitatively, however, we see that the late inspiral proceeds
as expected. Figure 4 shows the dominant mode of the gravita-
tional wave signal, approximately matched in time and phase
at the beginning of the LS220 simulation. We see that neu-
tron stars with larger radii (LS220, DD2) inspiral faster than
neutron stars with small radii (SDHo), and merge at a lower
frequency. The first effect is due to stronger tidal dissipation
for neutron stars of larger radii. Tides cause a phase differ-
ence in the gravitational wave signal proportional to the tidal
coupling constant κ2 (see Table II), which is strongly corre-
lated with the radius of the neutron star. The tidal coupling
constant is, for an equal mass binary, κ2 = k2/(8C

5
NS) with

CNS = GMNS/(RNSc
2) the compactness of an isolated neu-

tron star, and k2 the dimensionless Love number. The second
effect is due to the fact that the merger frequency depends on
the size of the individual neutron stars, with more compact
neutron stars merging at higher frequencies.

B. Post-Merger gravitational wave signal

The post-merger signal provides more useful information.
Previous studies have shown that the gravitational wave spec-
trum of the post-merger remnant of a neutron star binary
shows clear peaks at frequencies dependent on the equation

FIG. 5. Power spectrum of the merger and post-merger gravitational
wave signal for optimally oriented mergers at a distance of 100 Mpc,
multiplied by f1/2. For reference, we also plot the design sensitivity
of advanced LIGO (Zero-Detuned High Power detector strain noise
spectrum, dashed blue curve) [96]. Note the clear dominant peaks at
(2.3 − 3) kHz. All spectra are Fourier transforms of the dominant
(2,2) mode of the merger waveform in the time interval [tpeak −
2 ms, tpeak + 6 ms], with a tapering window of width 0.8 ms used at
the beginning and end of the interval.

of state of the neutron star [29, 31, 32, 36, 41, 53, 90–95].
The strongest of those peaks (fpeak) occurs at the frequency of
the fundamental quadrupole mode of the remnant. Recently,
Bauswein & Stergioulas [42] have associated the two largest
potential secondary peaks with rotating spiral structures in the
remnant (fspiral), and a coupling between the fundamental
quadrupole mode and quasi-radial oscillations in the remnant
(f2−0). They also provide a fitting formula for the location of
those peaks, based on simulations using an approximate treat-
ment of gravity. These simulations assume that the metric
is conformally flat, an assumption which can accommodate
exactly non-spinning, isolated black holes and neutron stars,
but not spinning compact objects or binary systems. In recent
simulation of BNS mergers for 1.35M� neutron stars, with a
general relativistic code and nuclear-theory based equations of
state, Palenzuela et al. [27] find deviations of∼ 0.1−0.3 kHz
from the fits for fpeak and fspiral provided in [42]. A minor
peak is sometimes also found close to the predicted location of
f2−0, but other features of similar amplitudes are also found
at other frequencies.

The spectra of the (2, 2) mode of the gravitational wave sig-
nals observed in our simulations are shown in Fig. 5. For all
equations of state, emission at the fundamental mode is clearly
visible. A number of secondary peaks are also observed. The
post-merger signals are weak when compared, for example, to
the design sensitivity of the Advanced LIGO detector: a very
close event is required in order to detect the post-merger sig-
nal [97]. In Table II, the frequencies of the fundamental and
strongest secondary peaks are compared with theoretical pre-
dictions. For the fundamental mode we use the fitting formula
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recommended by Bauswein et al. 2012 [53],

ffit
peak = (−0.2823R1.6 + 6.284)

√
2.4

2.7
[fpeak < 2.64 kHz]

= (−0.4667R1.6 + 8.713)

√
2.4

2.7
[fpeak > 2.64 kHz],

with R1.6 the radius of a neutron star of mass MNS = 1.6M�
[in kilometers], fpeak given in kHz, and we assume a total
mass of 2.4M�. Here, we used the proportionality relation
fpeak ∝

√
Mtot/R3

max [53], with Mtot the total mass of the
binary at infinite separation, and Rmax the radius of a neu-
tron star at the maximum mass Mmax allowed for this equa-
tion of state. We find disagreements of only ∼ (30 − 70) Hz
between the numerical results and the fitting formula, which
would translate to systematic errors of∼ (100−200) m in the
radius of a 1.6M� neutron star. We should also note that the
merger of two 1.2M� neutron stars with the LS220 equation
of state was studied with an approximate treatment of grav-
ity in [53]. The dominant frequency of the post-merger signal
was 2.55 kHz in that study. We find an extremely close value
for that dominant frequency, 2.56 kHz.

For the secondary peak, we compare our results to the lin-
ear fits to fspiral and f2−0 provided in Fig. 4 of Bauswein &
Stergoulias [42]. Bauswein & Stergoulias predict that the spi-
ral mode should be the dominant secondary mode for mergers
in which a stable or long-lived hypermassive neutron star is
formed. This is in good agreement with our results as the first
subdominant peak observed in our spectra agrees well with
the frequency of fspiral. The SFHo equation of state wave-
form also shows a peak close to f2−0 and the LS220 equation
of state waveform has some extra power at f2−0. For the DD2
equation of state waveform, the predicted location of the f2−0

peak is too close to the merger frequency for any clear feature
to be observed. We should note, however, that the predic-
tions provided in [42] for fspiral and f2−0 are not as powerful
as the unique fitting formula provided for fpeak. This is be-
cause a different linear relation between the frequency of the
mode and the compactness of the star has to be determined
for each choice of neutron star masses. A universal relation
between the secondary peak of the post-merger waveform and
the neutron star compactness has been proposed by Takami et
al. [31, 32]. This universal relation would predict that the sec-
ondary peak is at∼ 1.6 kHz for the LS220 and DD2 equations
of state and at ∼ 1.7 kHz for the SFHo equation of state. The
SFHo has its third strongest peak at that frequency, and that
peak is not much weaker than the secondary peak. The other
two equations of state show a difference of (100 − 200) Hz
between the theoretical predictions and the location of the sec-
ondary peak, which would translate into (0.5−1.0) km errors
in the determination of the neutron star radius. Using the uni-
versal formula from [31, 32] to infer the compactness of the
neutron stars considered in this paper would thus lead to sig-
nificant errors in the determination of neutron star radii. Simi-
lar differences were observed by Bauswein & Stergoulias [42]
for low-mass binaries. Like Takami et al. [31, 32] (but as op-
posed to Bauswein & Stergoulias [42]), our code is fully gen-
eral relativistic. The observed differences are thus not due
to the treatment of gravity. A more likely explanation is the

use of a lower mass system combined with the use of nuclear-
theory based equations of state. The choice of equation of
state may also explain why Takami et al. [31] find significant
differences between the frequency of the fundamental mode
and ffit

peak, while we do not. The largest differences in [31]
were observed for the simple Γ = 2 polytrope, while more
realistic equations of state performed better. The general rel-
ativistic simulations of Palenzuela et al. [27], performed for
higher mass systems, found ∼ 10% disagreement between
the numerical results and ffit

peak – a larger difference than in
our simulations, but one that would still allow the recovery of
the neutron star radius with systematic errors � 0.5 km. It
is quite likely that the fitted frequency ffit

peak is not universal,
but nonetheless practically applicable to realistic neutron star
equations of state.

More insight can be gained in those post-merger features
by considering a spectrogram of the gravitational wave signal,
shown in Fig. 6. The quantity plotted there is

h̃(t0, f) =
|
∫
h2,2(t)W (t− t0)eiftdt|∫

W (t− t0)dt
, (11)

where we choose for the window functionW the exact Black-
man window,

W (t) =
7938

18608
− 9240

18608
cos

(
π

(
1 +

t

∆t

))
+

1430

18608
cos

(
2π

(
1 +

t

∆t

))
(12)

for |t| < ∆t, and W (t) = 0 otherwise. The choice of the
window size ∆t is a trade-off between high time resolution
(small ∆t) and high spectral resolution (large ∆t). For Fig. 6,
we use ∆t = 6 ms, which causes a noticeable smoothing of
the spectrogram in time but is necessary to start resolving the
secondary peaks of emission.

In the spectrograms, the fundamental peak is clearly visible,
and strongest for the softest equation of state (SFHo). It is
only mildly damped over the short duration of the simulations,
but varies in frequency as the structure of the remnant evolves.
This shift can be as large as 200 Hz in the case of the DD2
equation of state, and mostly occurs in the first ∼ 5 ms after
merger. Fig. 6 also clearly shows that the gravitational wave
emission at the secondary peaks is extremely short-lived, with
a decay timescale of ∼ 1 ms − 3 ms. The emission at the
secondary peak is both weaker and shorter-lived for the softest
equation of state (SFHo). For low-mass systems, we thus see
that only the fundamental mode remains significantly excited
in the post-merger remnant. Gravitational wave emission at
lower frequencies is largely coincident with the merger itself,
and the secondary peaks are naturally broad in spectral space
as the signal decays over only a few oscillation periods. For
the low-mass systems studied here, there is thus a significant
difference between the strong, long-lived peak corresponding
to the fundamental mode, and the weak, broad and short-lived
peaks at lower frequencies, which would naturally make the
latter difficult to observe or disentangle from detector noise.

The interpretation of the emission of gravitational waves
at frequency fspiral as the result of rotating spiral structures
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FIG. 6. Spectrograms of the gravitational wave signal for the simulations using the SFHo (left), LS220 (middle) and DD2 (right) equations of
state, for an optimally oriented binary at 100 Mpc. The dashed horizontal black curves show the location of the peaks predicted in [42]. The
time is calculated as the difference between the center of the window function used to compute the spectrogram (see text) and the peak of the
gravitational wave amplitude. The dominant peak is clearly visible at (2.3− 3) kHz. Secondary peaks in the (1.3− 2.1) kHz range are poorly
resolved, and quickly damped. The strong emission at frequencies f <∼ 1.3 kHz is the merger signal itself.

TABLE II. Frequency of the two strongest peaks in the spectrum of
the post-merger gravitational wave signal, f0, and f1. The prediction
from [42] for the dominant peaks, obtained from simulations using
an approximate treatment of gravity, are listed as ffit

peak, ffit
spiral and

ffit
2−0. The prediction from [85] for f0 is fB

peak.

EoS f0 f1 ffit
peak ffit

spiral ffit
2−0 fB

peak

SFHo 2.96kHz 2.1kHz 3.03kHz 2.1kHz 1.7kHz 2.66kHz
LS220 2.56kHz 1.8kHz 2.59kHz 1.9kHz 1.4kHz 2.27kHz
DD2 2.35kHz 1.7kHz 2.39kHz 1.8kHz 1.2kHz 2.18kHz

within the core of the remnant is partially supported by visu-
alizations of the rest mass density in the equatorial plane (see
Fig. 8). Right after merger, when the emission at fspiral is the
strongest, the LS220 and DD2 simulations show clear spiral
arms, including in high-density regions. In the SFHo simula-
tion, the spiral arms are significantly weaker. Later on, 3 ms
after merger, lower density spiral structures remain visible in
the LS220 and DD2 simulations, and are stronger in the lat-
ter simulation. Again, this is in agreement with the observed
difference in the damping timescale of the emission at fspiral

observed in the spectrograms (Fig. 6). Finally, 10 ms after
merger, extended spiral structures remain visible, but they are
confined to low-density regions and are unlikely to signifi-
cantly contribute to gravitational wave emission. Our results
thus appear consistent with the interpretation of fspiral pro-
posed by Bauswein & Stergoulias [42].

An alternative universal relation, this time between the

strongest peak of the post-merger gravitational wave signal
and the tidal coupling constant κ2, has been proposed by
Bernuzzi et al. [85]. Bernuzzi et al. [85] predict

fB
peak = 4.341

1 + 0.00167κ2

1 + 0.00656κ2
kHz . (13)

We compare fB
peak to our results in Table II. fB

peak is system-
atically (0.2 − 0.3) kHz below the peak frequency measured
in our simulations. The magnitude of the error is compara-
ble to the scatter observed within the simulations presented
in Bernuzzi et al. [85]. It is unclear whether the system-
atic underestimate of the peak frequency comes from our use
of a hot nuclear theory based equation of state, the applica-
tion of (13) to a low mass system, or the intrinsic scatter
around (13). Bernuzzi et al. use piecewise polytropic equa-
tions of state with a Γ-law thermal component for the pres-
sure, and fB

peak is only fitted to mergers with total mass within
the interval [2.45M�, 2.9M�], so that comparison with our
results requires extrapolation of their fitting formula to lower
mass systems.

Comparing the standard and high resolution simulations for
the LS220 equation of state does not reveal any significant
resolution dependence in the spectrum of the gravitational
wave signal. Fig. 5 shows mild differences in the shape of
the secondary peaks, which are however also observed when
changing the exact interval over which we perform the Fourier
transform, and excellent agreement in the location and am-
plitude of the primary peak. Even in the time domain, the
low-resolution and high-resolution waveforms appear to only
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FIG. 7. Dominant (2,2) mode of the gravitational wave strain for
the LS220 waveform at the standard and high resolution, at 100 Mpc
from the source. We find excellent agreement even in the post-merger
signal.

differ by a small time shift (see Fig. 7). We note that for
both Fig. 6 and Fig. 7, we use waveforms extracted at finite
radius (r ∼ 130M ) to have access to a longer post-merger
signal. However, Fig. 6 shows that only a few milliseconds
of post-merger signal are actually necessary to study the sec-
ondary peaks in the post-merger spectrum, since the gravita-
tional wave emission at those frequencies decays on a very
short timescale.

V. MERGER AND POST-MERGER REMNANT

We now consider the qualitative properties of the merger
and post-merger remnants. Figure 8 shows snapshot of the
density profile in the equatorial plane of the binary 0.5 ms,
3 ms and 10 ms after the peak of the gravitational wave am-
plitude for all 3 equations of state, which we define as the time
of merger. Initially, the properties of the system are largely de-
termined by the compactness of the pre-merger neutron stars.
With the SFHo equation of state, i.e. for the most compact
neutron stars, a compact core forms rapidly. For the other
equations of state (LS220, DD2), more strongly developed
tidal features appear at merger. 0.5 ms after merger, we still
observe two well-defined cores whose size and tidal distor-
tion directly correlates to the pre-merger size of the individual
neutron stars.

After 3 ms, the cores start to merge. The less compact neu-
tron stars (LS220, DD2) produce clearly defined, high den-
sity tidal tails. Finally, 10 ms after merger, the properties
of the remnant are dominated by the high-density behavior
of the equation of state. For high neutron star masses, the
LS220 equation of state is nearly as compact as the SFHo
equation of state - and neither of them is able to support a sta-
ble, non-rotating, cold 2.4M� neutron star. The LS220 and

SFHo equations of state now have similarly compact cores,
with central density rising slowly as the neutron star evolves.
Since both post-merger remnants have baryon masses well be-
low the maximum mass of a uniformly rotating cold neutron
star (at the mass-shedding limit), we expect the post-merger
neutron star to survive for much longer than the duration of
the simulation. Collapse to a black hole should occur on the
timescale necessary for the post-merger neutron star to loose
angular momentum through magnetically-driven spin-down.
On the other hand, the DD2 equation of state forms a massive
neutron star which will remain stable even in the non-rotating
limit. We see that the post-merger neutron star evolves only
slowly at late times (see Fig. 9). All three configurations re-
main far from axisymmetry. Strong spiral waves are driven
in the forming accretion disk, and a rapidly rotating bar mode
remains present in the post-merger neutron star (see Fig. 10).
Figure 9 also shows that for all three configurations, the peak
of the gravitational wave emission is coincident with the core
bounce of the merging neutron stars, i.e. the time at which the
two cores touch. The core bounce causes a sharp increase in
the density and pressure of the cores, as well as strong shocks,
shears, and heating at the interface between the merging neu-
tron stars.

The excitation of the post-merger remnant, shown in
Fig. 10, is consistent with the fundamental quadrupole mode,
both in terms of the density and velocity patterns, and in terms
of the measured gravitational wave frequency. Because of
this excitation, the spatial variation of the instantaneous or-
bital angular velocity, defined in the coordinates of the sim-
ulation and with respect to the center of mass of the orig-
inal binary, is fairly complex. We show the instantaneous
orbital frequency of the fluid in Fig. 11. Although on aver-
age the rotation frequency is higher at smaller radii, we ob-
serve regions in which dΩ/dr > 0. There are thus regions
of the post-merger neutron star which may not be subject to
the axisymmetric magnetorotational instability (MRI) [98], at
least shortly after merger. However, all regions with densi-
ties ρ0

<∼ 1013 g cm−3 follow a typical disk profile for the
orbital frequency, and should see rapid growth of the mag-
netic field. The typical timescale for the growth of the ax-
isymmetric MRI is τMRI ∼ 4/(3Ω) ∼ 1 ms [98]. Magnetic
field should thus grow significantly in the disk over even the
short timescale of our simulation. So far, simulations have
only been able to resolve the growth of the MRI in lower-
density regions (<∼ 1012 g/cm3) [22], and indeed find rapid
growth of the magnetic field at early times due to a combi-
nation of magnetic instabilities and winding of the magnetic
field. We should also note that the angular velocity in the rem-
nant varies significantly when comparing a vertical slice along
the direction of the bar mode in the remnant (as in Fig. 11),
with a slice orthogonal to that direction (see, e.g., the az-
imuthal dependence of the velocity on Fig. 10). Figure 11
may give the impression that the bar mode is rotating at fre-
quencies much lower than the expected fpeak/2. In fact, we
can check that the pattern speed of the bar mode is consistent
with fpeak/2. In the LS220 simulation, we measure a rota-
tion of the bar of ∼ 45◦ over the last 0.1 ms of evolution, or a
frequency fbar ∼ 1.25 kHz ∼ fpeak/2. We also find that the
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FIG. 8. Density in the equatorial plane of the post-merger remnant at three characteristic times: 0.5 ms after the peak of the gravitational wave
emission (top), 3 ms after the peak (middle), and 10 ms after the peak (bottom). We show results for the SFHo (left), LS220 (center) and DD2
(right) equations of state. In each of those plots, we show density contours at (1, 3, 5, 7, 9) × 1014 g cm−3 (solid blue lines). Here and in
subsequent figures, the coordinates are those of the simulation, as evolved in the generalized harmonic formulation of Einstein’s equations.

orbital frequency in the core of the post-merger neutron star is
higher than the mass-shedding limit for a uniformly rotating
neutron star of the same baryon mass. Considering that the to-
tal baryon mass of the system is below the maximum mass of
a cold, uniformly rotating neutron star (at the mass-shedding
limit), this suggests that rotational support is initially suffi-
cient to prevent the collapse of the remnant to a black hole.
This should be true even if the differential rotation is rapidly
erased by angular momentum transport within the remnant.

The properties of the post-merger remnant are strongly af-
fected by the presence of a non-linear l = 2 perturbation. Vis-
ible shock fronts remain in the disk at the end of the simu-
lation, while a clear bar mode is observed in the post-merger

neutron star. In Fig. 12 and Fig. 13, we plot the density, tem-
perature, composition and entropy of the fluid in the equa-
torial plane and in a meridional slice along the major axis
of the bar observed in the post-merger neutron star. For all
three simulations, the neutron star remains neutron rich and,
although hotter than the disk in terms of absolute temperature,
with T ∼ (15 − 25) MeV, remains entirely supported by nu-
clear forces and rotation [88]. The entropy per baryon in the
neutron star is only S ∼ 1kB . The neutron star is thus colder
than the 30 − 50 MeV temperatures observed in higher mass
systems [29], presumably due to the fact that lower mass stars
are less compact, and thus that shock heating of the neutron
star during the merger is not as important of an effect in the
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FIG. 9. Maximum value of the baryon density on the grid as a func-
tion of time for all three equations of state. tpeak is the time at which
the amplitude of the gravitational wave signal is maximal

FIG. 10. Density and velocity in the equatorial plane for the sim-
ulation with the LS220 equation of state, 10 ms after merger. The
excited quadrupole mode is still clearly visible at that time.

low-mass systems considered here. This interpretation is par-
tially confirmed by the fact that the softer equation of state
(SFHo) has a core temperature significantly above the stiffer
equations of state (DD2, LS220). All three simulations how-
ever show significant heating at the interface between the bar
and the disk, with T ∼ (30−40) MeV. At the lower densities
observed in that region, the thermal pressure now becomes
important.

The maximum density in the accretion disk remains high,
ρdisk

>∼ 1012 g cm−3. The shock front associated with the
l = 2 perturbation of the disk heats the disk, causing tempera-
tures of (8−10) MeV right at the shock. Accordingly, the disk
is thick, with a scale height H ∼ R, and thermally supported,
with P (ρ0, T, Ye) � P (ρ0, 0, Ye): for ρ = 1012 g cm−3,
P (ρ0, T, Ye) ≈ 2P (ρ0, 0, Ye) for T = 2 MeV, and most of
the disk is much hotter than that.

We test the post-merger stars and disks for axisymmetric
convective instability using the relativistic Solberg-Hoiland-

Ledoux condition ([99] generalized to include Ye gradient
terms). This condition assumes an axisymmetric, stationary
background, which is only approximately present, so we use
density-weighted azimuthal average profiles. Consider the
LS220 case, which is evolved both in leakage and M1. Con-
centrating on the region near the equator, where the radial con-
dition is most important, we find that the star and disk are
stable everywhere except for a small region around cylindri-
cal radius of 55 km, where the angular momentum gradient
is Rayleigh unstable, an indication that matter at this distance
has not yet acheived equilibrium. The star and bulk of the disk
are convectively stable even though the Ye gradient is unsta-
ble through much of the star. This effect is counteracted by
the much larger stabilizing shear and entropy gradient terms.

We can compare our results with recent simulations using
nuclear-theory based equations of state at similar compactness
and higher mass [26], similar radii and higher mass [20, 27],
and simulations approximating the thermal dependence of the
equation of state by a Γ-law for a wide range of systems of
higher mass [29], and a single system with a large neutron star
of similar mass [100]. The temperature of the remnant and
tidal features are closest to those found by Neilsen et al. [26],
confirming the correlation of those features with the compact-
ness of the neutron star. More compact neutron stars generally
show stronger shock heating in the post-merger neutron star,
stronger excitation of the bar mode in the core, and weaker
l = 2 features in the disk. The first two are due to smaller
neutron stars merging at closer separation and thus higher ve-
locities, causing a more violent merger event. The third is
presumably due to stronger tidal effects in less compact stars.
The main features of the merger in our simulations are in fact
remarkably similar to those observed in [26, 27], especially
when one takes into account the expected dependence of the
results on the compactness of the star. The agreement between
our results and [26, 27] is reassuring considering the use of
similar equations of state and a mostly identical neutrino leak-
age scheme.

This agreement does not, however, preclude systematic er-
rors due to the limited physics included in the simulations.
One such limitation is the use of a leakage scheme to treat
neutrino cooling, and the absence of any treatment of neu-
trino absorption. We can test the effect of these assumptions
by using a neutrino transport scheme. To do this, we evolved
the merger with the LS220 equation of state using our M1
transport scheme, which evolves the energy density and mo-
mentum density of the neutrinos [21]. Figures 12-13 show
that the qualitative evolution of the neutron star remnant is
largely unaffected by the treatment of the neutrinos. This is
not at all surprising, given that at the large densities exist-
ing within the neutron star, the neutrinos are trapped and in
equilibrium with the fluid (see also Sec. VI). As already ob-
served in the disks resulting from NSBH mergers [21], the
inclusion of neutrino transport causes a smoothing of the tem-
perature profile. This is particularly visible in the equatorial
plane at the bar-disk interface. Neutrino absorption also natu-
rally causes cold low-density regions in the disk to be heated:
most of the disk is∼ 1 MeV hotter when using neutrino trans-
port. The mild smoothing of the temperature profile, heating
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FIG. 11. Instantaneous orbital frequency of the fluid, in the coordinates of the simulation and 10 ms after merrger, in a slice orthogonal
to the orbital plane and along the major axis of the bar in the post-merger neutron star. The black lines are density contours at ρ0 =
(1012, 1013, 1014) g/cm3.

FIG. 12. Hydrodynamic variables (in the equatorial plane) 10 ms after the peak of the gravitational wave signal. From top to bottom, we show
the density, temperature, and electron fraction for the four simulations considered in this paper – from left to right, SFHo, LS220 with neutrino
leakage, LS220 with neutrino transport, and DD2.

of the outer disk, and shocked tidal arms can also be observed
in the one-dimensional density and temperature profiles pre-
sented on Fig. 14.

These are fairly minor effects, with some impact on
the neutrino luminosity and neutrino-matter interactions (see

Sec. VI), but not on the hydrodynamic properties of the post-
merger remnant. The treatment of the neutrinos really begins
to matter when one considers the composition of the disk, as
measured by its electron fraction Ye = np/(np + nn), with
np and nn the number density of protons and neutrons respec-
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FIG. 13. Hydrodynamic variables 10 ms after the peak of the gravitational wave signal in a slice along the major axis of the remnant and
orthogonal to the equatorial plane. From top to bottom, we show the density, entropy per baryon, temperature, and electron fraction for the
four simulations considered in this paper – from left to right, SFHo, LS220 with neutrino leakage, LS220 with neutrino transport, and DD2.

FIG. 14. Density (left) and temperature (right) profiles in the equa-
torial plane along the major axis of the merger remnant. We show
results for the merger using the LS220 equation of state and the neu-
trino transport (solid lines) or neutrino leakage (dashed line) scheme.
The two simulations are very similar, with a slightly smoother tem-
perature profile and hotter outer disk when using neutrino transport.
The hot shocked tidal arms are clearly visible around 40 km from the
center in both plots.

tively. In leakage simulations the neutrino emission, and thus
the composition of the disk, is set only by the local properties
of the fluid and an estimated neutrino optical depth. The trans-

port scheme, on the other hand, takes into account the irradi-
ation of cold regions of the disk by the hot neutrino-emitting
regions. Most of the neutrino emission occurs either at the
core-disk interface or at the tidal shocks in the disk, and the
composition of the disk is largely set by the relative position
of a fluid element with respect to these two defining features.
We will see in Sec. VI that the disk is mostly irradiated by
electron antineutrinos. Accordingly, the regions immediately
adjacent to the neutrino-emitting regions, i.e. just next to the
hot shock front in the disk or the surface of the post-merger
neutron star, are forced towards a very low electron fraction
Ye ∼ 0.05 − 0.1. Farther away from those emitting regions,
we get Ye ∼ 0.15 − 0.2. The leakage scheme, which does
not take into account the absorption of electron antineutrinos
in the disk, predicts an electron fraction Ye ∼ 0.2 − 0.3 in
most of the high-density regions of the disk, with smaller Ye
in the corona and at low radii. There is thus a very significant
difference in the composition of the disk between leakage and
transport simulations, due to the fact that the composition of
most of the disk is strongly affected by neutrino absorption.
This can be contrasted with the remnant of NSBH mergers,
where only the low-density corona is significantly affected by
neutrino absorption [21]



15

FIG. 15. Total neutrino luminosity for the three simulations using the
leakage scheme and the LS220, SFHo, and DD2 equations of state
(solid curves) as well as the simulation using the LS220 equation of
state and neutrino transport (dashed red curve).

We also note that neutrino absorption in the transport sim-
ulation causes the shocked regions in the tidal arms of the
disk to be about 0.5 MeV hotter than predicted by the leak-
age scheme (see Fig. 14). The shock front is energized by
neutrinos emitted in the inner disk or in the core.

Despite these effects, our simulations indicate that neutrino
leakage is a reasonable approximation as long as the exact
composition of the fluid is not required, i.e. except when at-
tempting to make predictions for r-process nucleosynthesis in
the dynamical ejecta and disk winds, and for the associated
radioactively powered electromagnetic signal.

Finally, we note that for all the variables discussed in this
section, the low and high resolution simulations with the
LS220 equation of state give results well below the differ-
ences between simulations using different equations of state.
We thus expect the results to be only mildly affected by the
numerical error in the simulations.

VI. NEUTRINO EMISSION

When studying the neutrino emission in simulations using
the leakage scheme, we can consider only the total energy and
number of emitted neutrinos, as well as the predicted loca-
tion of emission. We list the luminosity and average energy
of neutrinos in all three simulations in Table IV, and provide
the time dependence of the total luminosity in Fig. 15. For the
average energy, we compute the energy-weighted root-mean-
square energy, which is the important quantity when estimat-
ing the energy deposited in optically thin regions through neu-
trino absorption. For a blackbody spectrum, as assumed here,
it is a factor of ∼ 1.5 larger than the number-weighted aver-
age energy of the neutrinos. We find results similar to sim-
ulations of higher mass neutron star mergers using leakage

FIG. 16. Density (colour scale) and location of the surfaces of optical
depth τ ∼ 1 for νe (solid black line), ν̄e (dashed red line), and νx
(dot-dashed black line) at the end of the simulation using the LS220
equation of state and a neutrino transport scheme.

schemes [26, 27] and leakage-transport hybrid [20] schemes.
The electron antineutrinos have the highest luminosity, with
Lν̄e ∼ (2− 3)× 1053 erg s−1 about 10 ms after merger. They
dominate the electron neutrinos by a factor of 1.4− 2.

To understand the geometry of the neutrino radiation, it is
useful to determine which regions of the remnant are optically
thick to neutrinos, and which are not. To do so, we show on
Fig. 16 the location of the surface of optical depth τ ∼ 1 for all
species of neutrinos, as computed by the leakage scheme. The
remnant neutron star is naturally optically thick to all neutri-
nos. For the electron neutrinos and antineutrinos, this is also
the case for most of the inner disk, up to or even further than
the location of the shocked tidal arms.

The electron neutrinos and antineutrinos are emitted from
different regions of the remnant (see also [26]): as will be
made clearer when considering the results of the simulation
using neutrino transport, most electron neutrinos come from
the polar regions of the core of the remnant, but most elec-
tron antineutrinos are emitted in the hot shocked regions of
the disk. This is largely due to the fact that these shocked re-
gions are surrounded by material which has low optical depth
to ν̄e, but is optically thick to νe (see Fig. 16). The heavy lep-
ton neutrinos, whose emissivity is more sensitive to the tem-
perature of the fluid, are mostly emitted in the hottest regions
of the core. Accordingly, the luminosity in ν̄e scales with the
temperature of the shocked regions of the disk while the lumi-
nosity in νe and heavy-lepton neutrinos scales with the tem-
perature of their respective neutrinosphere in the core (i.e. the
region of optical depth of order unity, which is closer to the
surface for νe than for the heavy-lepton neutrinos). For all
species, the highest luminosity is naturally reached in the case
of the most compact neutron stars (SFHo equation of state),
given the stronger heating of the remnant occurring in that
case. The LS220 equation of state, which forms a relatively
cold core (see e.g. Fig. 13), shows a particularly large differ-
ence between the emission of electron antineutrinos and elec-
tron neutrinos.

The average energy of the electron antineutrinos is set by
the equilibrium spectrum in the shocked regions of the disk,
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TABLE III. Neutrino luminosities and rms energy of the neutrinos
according to the leakage scheme, 10ms after merger. The νx values
are for all heavy-lepton neutrinos and antineutrinos combined.

EoS Lνe Lν̄e Lνx
√
〈ε2νe〉

√
〈ε2ν̄e〉

√
〈ε2νx〉

Units 1053erg s−1 MeV
SFHo 1.9 3.0 2.2 14 21 29
LS220 1.2 2.1 1.2 13 20 26
DD2 1.6 2.2 0.9 13 20 24

since they are emitted there and then largely free-stream away
from the disk. The average energy of the other species is set
by the temperature of the core at the point at which the neu-
trinos decouple from the fluid, which occurs at higher density
(and temperature) for the heavy-lepton neutrinos than for the
electron neutrinos.

At the high luminosities observed here, we expect neutrino
absorption in low-density regions to be important to the evo-
lution of the composition of the disk and of the outflows. The
geometrical properties of the neutrino distribution and the im-
pact of the neutrinos on the evolution of the system may not
be suitably captured by the leakage scheme. We estimate the
impact of the use of the approximate leakage scheme by con-
sidering the results of the simulation using the neutrino trans-
port scheme. In that simulation, we evolve the neutrino energy
and momentum density on our numerical grid, and take into
account neutrino absorption and scattering in low-density re-
gions.

Figures 17 and 18 show the energy density Eν of electron
neutrinos and antineutrinos on the surface of matter density
ρ0 = 1011 g/cm3, together with the neutrino ”transport” ve-
locity viT,ν = αF iν/Eν − βi, i.e. the velocity such that in the
absence of source terms ∂t(

√
gEν)+∂i(

√
gEνv

i
T,ν) = 0, and

the energy density Eν is simply transported through the grid
at velocity viT,ν . Here, Fν is the neutrino momentum den-
sity. We confirm that most of the emission of ν̄e comes from
the tidal arms in the disk (dark blue regions in Fig. 18), while
most νe escaping the system are emitted in the polar regions of
the massive neutron star remnant (center of Fig. 17). We note,
however, that even in the polar regions the electron neutrinos
are outnumbered by the electron antineutrinos. Emission from
the tidal arms is significantly beamed, due to fluid velocities
v ∼ 0.3c. The emission coming from the polar regions has a
wider opening angle.

Figures 19 to 21 offer a different view of the same variables,
through slices orthogonal to the equatorial plane and parallel
to the major axis of the bar in the remnant. The differences
between the electron neutrinos, the electron antineutrinos, and
the heavy-lepton neutrinos are clearly visible. From the small
fluxes seen in Fig. 19, we can see that the electron neutrinos
are trapped not only in the post-merger neutron star, but also
in most of the disk – up to the second, weaker tidal shock at
r ∼ 55 km (also visible on Fig. 13). Electron neutrinos mostly
escape through the polar regions. Most of the electron neutri-
nos emitted by the hot central neutron star toward the disk
will be absorbed in the disk, due to disk optical depth τ � 1
(see Fig. 16). The optical depth of the fluid to electron an-

FIG. 17. Energy density (color scale) and normalized fluxαF iν/Eν−
βi (black arrows) of the electron neutrinos on the density isosurface
with ρ0 = 1011 g/cm3. The region of brightest νe emission, at the
center of the plot, coincides with the polar region of the neutron star
remnant.

FIG. 18. Energy density (color scale) and normalized fluxαF iν/Eν−
βi (black arrows) of the electron antineutrinos on the density isosur-
face with ρ0 = 1011 g/cm3. The regions of brightest ν̄e emission
(dark blue) are in the hot, shocked tidal arms.

tineutrinos is smaller. Only the regions inside of the first tidal
shock in the disk are optically thick, as visible from the large
radial fluxes observed at radii r >∼ 40 km in Fig. 20 (but not
in Fig. 19). Electron antineutrinos emitted from the shocked
regions at r ∼ 40 km are nearly free-streaming through the
outer disk. Nearly all heavy-lepton neutrinos are emitted in
the hot regions of the core, and are free-streaming in most of
the disk. Finally, we note that the core of the remnant is more
neutron rich than the equilibrium value at the temperature of
the core (Y eq

e ∼ 0.11 − 0.12 at the center of the remnant,
where we observe Ye ∼ 0.05−0.1). This results on a negative
equilibrium electron neutrino chemical potential, and leads to
a suppression of the electron neutrino density compared to the
electron antineutrino density in the core. This is opposite to
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FIG. 19. Energy density and normalized flux αF iν/Eν − βi of the
electron neutrinos in the same vertical slice as in Fig. 13. The vertical
stripes with higher neutrino energy in the polar regions are an artifact
of the M1 closure.

FIG. 20. Energy density and normalized flux αF iν/Eν − βi of the
electron antineutrinos in the same vertical slice as in Fig. 13. The
vertical stripes with higher neutrino energy in the polar regions are
an artifact of the M1 closure.

the situation found in the cores of protoneutron stars in a core-
collapse supernova (see e.g. [101]).

Figures 19 and 20 also show a known limitation of the M1
transport scheme: its inability to handle crossing beams (see
e.g. the code tests presented in [21]). Artificial shock fronts
develop in the neutrino evolution in the regions in which neu-
trinos from the disk and from the core converge. There, neutri-
nos coming from different directions start to propagate in their
average direction of motion instead of crossing each others.
This reduces the opening angle of electron neutrinos and an-
tineutrinos leaving through the polar regions, and could plau-
sibly affect the composition of matter outflows in those re-
gions.

From these observations, we can understand better the dif-
ferences between the leakage and transport results discussed
in Sec. V. In the post-merger neutron star and in the inner
parts of the disk, neutrinos are either in equilibrium with the
dense matter or slowly diffusing through it without much of
an effect on its composition over the short timescales consid-
ered here. Accordingly, transport and leakage results are very
similar. In the outer disk and in the polar regions, low-density
material is strongly irradiated by neutrinos. If neutrino irra-
diation was the only driver of composition evolution (i.e. ex-
cluding neutrino emissions and the advection of trapped neu-
trinos), we would expect the fluid to have composition (as-

FIG. 21. Energy density and normalized flux αF iν/Eν − βi of the
heavy-lepton neutrinos in the same vertical slice as in Fig. 13.

FIG. 22. Expected equilibrium electron fraction of the fluid Y irr
e if

the composition was set solely by neutrino absorption. The white
region has Y irr

e > 0.4.

suming absorption cross-sections proportional to ε2ν)

Y irr
e ∼ 〈ενe〉Eνe

〈ενe〉Eνe + 〈εν̄e〉Eν̄e
, (14)

a quantity plotted in Fig. 22 for our simulation. Otherwise, the
effect of absorption is at least to push the composition closer
to Y irr

e than what one would expect when neglecting absorp-
tion.

The impact of neutrino absorption can be observed by com-
paring Fig. 22, which shows the electron fraction towards
which the fluid is driven by neutrino absorption, and Fig. 13,
which shows the actual electron fraction in the simulations
(with both the leakage and the transport scheme). We see
that in the disk and right outside of the innermost shocked
region, neutrino absorption drives Ye down (electron antineu-
trinos strongly dominate electron neutrinos). The closer to the
shocked region a fluid element is, the more neutron-rich it be-
comes. In the polar regions, on the other hand, there remain
enough electron neutrinos to drive the composition to a higher
Ye, at least close to the surface where the irradiation is the
strongest. Finally, outside of the weaker shock at r ∼ 55 km
(seen on Fig. 13), where the electron neutrinos decouple from
the disk, the effect of neutrino absorption is also to raise Ye.

Finally, we note that there are significant differences be-
tween the leakage and transport simulations even in terms of
the total neutrino luminosity in each species. Figure 23 shows
the total luminosity as a function of time for each species for
the LS220 simulation, either with neutrino leakage or with
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FIG. 23. Neutrino luminosities for the simulations using the LS220
equation of state and the neutrino leakage scheme (solid curves), or
the neutrino transport scheme (dashed curves). We show the lumi-
nosity in electron neutrinos (black), electron antineutrinos (red), and
all heavy-lepton neutrinos and antineutrinos combined (green).

neutrino transport. We observe differences of as much as a
factor of two. The electron neutrino luminosity, which was
already particularly low for the LS220 equation of state when
using the leakage scheme (see Table IV), is a factor of four
smaller than the electron antineutrino luminosity when using
the transport scheme. This can be explained by the fact that a
large fraction of the neutrinos, which the leakage scheme pre-
dicts are escaping from the core, are emitted in the direction
of the accretion disk. The disk is optically thick to electron
neutrinos, and when using the transport scheme those neutri-
nos are reabsorbed in the disk. Our leakage scheme does not
account for this effect, because it allows neutrinos to move
along the path of smallest optical depth (in this case, along
the polar axis), instead of following null geodesics when free-
streaming.

We also note that, even though the electron antineutrino lu-
minosity appears to agree well in the leakage and transport
simulations, this is a mere coincidence. There are indeed
two potential sources of disagreement between the leakage
and transport results. The first is the error in the estimates of
the leakage scheme for given physical conditions in the post-
merger remnant. The second is that the physical properties of
the post-merger remnant themselves evolve differently in the
leakage and transport simulations. One important such differ-
ence is that the disk is hotter in the simulation using neutrino
transport, due to neutrino absorption. So the predicted emis-
sion rate of ν̄e is larger in the transport simulation. But the
leakage scheme neglects neutrino absorption, which causes
it to overpredict the total luminosity of ν̄e (albeit not by as
much as for νe). In this specific case, the two effects appear to
largely cancel each other. But one can check that they are not
negligible by using the leakage scheme to predict the neutrino
luminosity at a given time in the simulation using a transport

TABLE IV. Properties of the outflows measured within the first
10 ms following the merger. The three simulations using the LS220
equation of state are the leakage simulation at our standard resolution
(LS220-L0), the leakage simulation at high resolution (LS220-L1),
and the simulation using the two-moment transport scheme (LS220-
M1). Mejecta is the amount of mass which is flagged as unbound
(hut < −1) when leaving the computational grid, 〈S〉 and 〈Ye〉 are
density-weighted averages of the entropy and electron fraction, and
Mpolar is the mass of unbound material escaping through the upper
and lower boundaries of the computational domain.

Name Mejecta 〈S〉 〈Ye〉 Mpolar/Mejecta

Units 10−4M� kB baryon−1

SFHo 5 10 0.11 0.13
LS220-L0 2 12 0.11 0.01
LS220-L1 13 10 0.10 0.07
LS220-M1 5 21 0.20 0.56
DD2 13 11 0.11 0.20

scheme. The resulting ν̄e luminosity is a factor of two larger
than when using the transport scheme.

In conclusion, it appears that using a neutrino transport
scheme is necessary for reliable predictions regarding the
composition of the outflows, the composition of the disk, or
the neutrino luminosity. The latter is particularly important
in the post-merger evolution of BNS mergers because of the
complex geometry of neutrino emission, and the impact of
neutrino absorption on the evolution of the temperature and
composition of the disk.

VII. OUTFLOWS

As discussed in Sec. II, the simulations performed here use
too small a numerical grid to accurately measure the mass of
unbound material leaving the system. For reference, however,
we provide in Table IV the main properties of the material
which satisfies the approximate unbound condition hut < −1
as it crosses the outer boundary of our grid, with uµ the 4-
velocity of the fluid. The quantity hut is conserved along a
fluid line if ∂t is a Killing vector (see e.g. [102]), which we
assume to be approximately true far from the remnant and af-
ter merger. In Table IV and the rest of this section, all averages
refer to density weighted averages, i.e.

〈X〉 =

∫
ρ0
√
−gutXdV∫

ρ0
√
−gutdV

, (15)

with g the determinant of gµν and dV the flat-space volume el-
ement. We note that for the total mass ejected the low and high
resolution simulations with the LS220 equation of state give
very different results. The difference is due to variations in the
small amount of mass which is ejected at the time of merger.
This is the only quantity in our simulations for which the two
resolutions disagree, and a clear indicator that the mass of the
dynamical ejecta is unreliable.

The other notable result is that in all leakage simulations
the ejected material has very similar properties: average spe-
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FIG. 24. Rate at which material flagged as unbound leaves the com-
putational grid in the simulation using the LS220 equation of state
and the neutrino leakage scheme. We also show the flow of unbound
material at the same location in the simulation using the transport
scheme. Note that due to neutrino absorptions at larger distances
(the transport simulation uses a larger numerical grid), the true mass
outflows in the simulation using a transport scheme are higher at late
times, with Ṁ ∼ 0.04M� s

−1. The oscillations in the outflow rates
are largely due to the use of a rectangular outer boundary and the
asymmetry of the outflows.

cific entropy 〈s〉 ∼ 10kB baryon−1, average electron frac-
tion 〈Ye〉 ∼ 0.1, matter ejection occurring mostly close to the
equatorial plane, and no outflows at late times in the simu-
lations. By comparison, the transport simulation ejects ma-
terial with a higher electron fraction, twice the average en-
tropy, and shows the ejection of material in the polar regions at
late times in the evolution (see Fig. 24). This neutrino-driven
wind has Ṁ ∼ 0.04M� s

−1. If maintained for 50 − 100 ms,
it could be the dominant source of ejecta in the merger (see
also [103]). The wind is generally more proton rich and
hotter than the earlier dynamical ejecta, with 〈Ye〉 ∼ 0.25
and 〈s〉 ∼ 35kB baryon−1. In the M1 simulation, we find
〈Ye〉 ∼ 0.18 and 〈s〉 ∼ 18kB baryon−1 for the dynami-
cal ejecta (material ejected in the first ∼ 2 ms following the
merger).

The composition and entropy of the ejecta is important for
two main reasons. The first is that neutron-rich material un-
dergoes strong r-process nucleosynthesis, producing mostly
heavy elements with number of nucleons A > 120, while
less neutron-rich material will produce a larger fraction of
lower mass elements with 50 < A < 100 [17]. The late-
time wind observed here has an electron fraction which is at
the limit between the two regimes. Lippuner & Roberts [15]
predict that, for the entropy seen in our simulations, the lim-
iting composition is Ye ∼ 0.23. This suggests the production
of a broad range of elements in the neutrino-driven wind, in
agreement with what has been observed in higher mass neu-
tron star mergers [17], and in the evolution of post-merger ac-
cretion disks [45]. The second consequence is that the heavy-

elements produced in neutron-rich material, particularly the
lanthanides, have very high photon opacities. Their presence
causes the electromagnetic transients powered by r-process
nucleosynthesis to peak on a timescale of a week instead of
a few days, and in the infrared instead of the optical [14]. If
there existed a lanthanide free region in the outflows, emission
from that region could power an earlier, optical signal [104].
However, the conditions observed in our simulations do not
favor such a scenario.

Finally, the strong wind generated in our simulation with
neutrino transport also causes significant baryon loading of
the polar regions, with a measured wind of Ṁ ∼ 0.04M� s

−1

during the last 5 ms of the simulation. This could hamper
the production of short-gamma ray bursts, at least until the
collapse of the post-merger neutron star to a black hole, which
will not happen for the DD2 equation of state since the post-
merger neutron star is stable in that case.

VIII. CONCLUSIONS

We present a first set of simulations of neutron star merg-
ers using the SpEC code, nuclear-theory based equations of
state, and either a simple neutrino cooling prescription (leak-
age) or a two-moment grey neutrino transport scheme. For
this first study, we focus on equal mass neutron stars with
MNS = 1.2M�, at the low end of the expected range of neu-
tron star masses. So far, only a few studies with fully gen-
eral relativistic codes have included the effects of neutrinos
with leakage [26, 27] or transport schemes [20]. All have fo-
cused solely on equal mass systems with MNS = 1.35M�.
These simulations allow us to study the properties of the post-
merger gravitational waveform for BNS mergers with realistic
equations of state, the qualitative properties of the post-merger
remnant, the effects of neutrinos on the post-merger evolution,
and the impact of the choice of neutrino treatment on the re-
sults of the simulations.

The post-merger gravitational wave signal is known to be
dominated by strong peaks at frequencies dependent on the
neutron star equation of state, although there is some disagree-
ment on the interpretation of the peaks and predicted emission
frequency. The strongest post-merger peak, which is associ-
ated with the fundamental l = 2 excitation of the post-merger
neutron star, largely dominates the post-merger signal in our
simulations. We find that the location of that peak is in good
agreement (to better than ∼ 100 Hz) with the predictions of
Bauswein et al. [53], which were based on a large number of
simulations using an approximate treatment of gravity. Other
general relativistic simulations have recently found large de-
viations from those predictions [31], but for choices of equa-
tion of state incompatible with the expected properties of neu-
tron stars. General relativistic simulations with nuclear-theory
based equations of state of higher mass neutron star merg-
ers [27] found agreement at the 10% level ([200 − 300] Hz
differences) with the fitting formula provided by Bauswein et
al. [53]. Although the accuracy of that fitting formula remains
an open question, our simulations tend to confirm that they
perform well for nuclear-theory based equations of state.
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We are less optimistic when it comes to the determination
of the secondary peaks of the post-merger signal in low-mass
systems. Although we do observe peaks at frequencies close
to those recently predicted by Bauswein & Stergoulias [42],
and corroborated by the simulations of Palenzuela et al. [27],
we find that their emission is limited to a very short time pe-
riod of∼ (1−3) ms, which causes the peaks to be very broad
in frequency space. Their detectability when mixed with real-
istic detector noise may be debatable.

The properties of the post-merger remnant appear to fol-
low the trends observed at higher mass when considering low-
compactness neutron stars. The post-merger neutron star is
not as strongly heated as in higher mass, more compact sys-
tems, but strong l = 2 modes survive for the entire duration
of the simulation, up to 10 ms past merger. When treating the
neutrinos through the simple leakage scheme, we find good
agreement in the basic properties of the remnant (density, tem-
perature, composition) and the observed neutrino luminosity
with recent results for higher mass systems with a similar level
of physical realism [26, 27].

We also note that the neutron star remnants observed in our
simulations are differentially rotating, and that the surround-
ing disks have rotation profiles close to equilibrium. The post-
merger disk is unstable to the axisymmetric magnetorotational
instability, while the neutron star remnant has a complex rota-
tion profile in which parts of the neutron star have an angular
frequency profile satisfying dΩ/dr > 0. These regions are
stable to the magnetorotational instability, at least in the first
10 ms following the merger.

The inclusion of a more realistic neutrino transport method
significantly modifies the composition of the disk and out-
flows. Neutrino energy deposition also powers sustained out-
flows with moderate electron fraction (on average 〈Ye〉 ∼
0.25) up to the end of the simulations. These outflows are ex-
pected to produce a wide range of elements through r-process
nucleosynthesis, as their properties are right at the limit be-
tween neutron-rich material producing mostly heavy elements
(A > 120), and less neutron-rich material producing lower
mass elements. Finally, absorption of electron neutrinos and
antineutrinos in the optically thick disk causes heating in the
disk. It also leads to a disagreement in the predicted neu-
trino luminosity between the leakage scheme, which does not
account for absorption, and the transport scheme. None of
these differences significantly affect the hydrodynamic of the
remnant, but they show the importance of neutrino transport
when assessing the mass, composition, and geometry of the
outflows, the resulting properties of radioactively powered
electromagnetic transients, and the result of r-process nucle-
osynthesis in the outflows. The fact that neutron star mergers
can produce a wide range of elements when neutrino trans-
port is taken into account has been discussed in more detail
by post-processing the results of a higher mass neutron star
merger simulation [17, 20], and of simulations of post-merger
accretion disk models [45]. Our present simulations confirm
these results in low-mass neutron star mergers. Additionally,
they explicitly show the difference between simulations us-
ing a simple leakage scheme, and simulations using neutrino
transport.

The results presented here are limited by a number of im-
portant assumptions in our simulations. The first is the study
of equal mass binaries. Indeed, we know that unequal and
equal mass BNS mergers show significant differences. In par-
ticular, unequal mass mergers eject a larger amount of mate-
rial [28]. The second is the fact that we ignore magnetic fields.
Over the short time scales considered here, magnetohydrody-
namics effects are not expected to affect the evolution of neu-
tron star remnant, but could drive additional outflows from the
disk [22, 27] . Over longer time scales, magnetic fields would
be critical to the spin evolution of the remnant neutron star, an-
gular momentum transport, heating in the disk, and possibly
the formation of relativistic jets and magnetically-driven out-
flows. Finally, the relatively small numerical grid on which
we evolve the equations of general relativistic hydrodynam-
ics limits our ability to measure the mass and properties of
the outflows accurately. We expect to address these issues in
the future. However, we do not expect these assumptions to
significantly affect the main results of this work, i.e. the prop-
erties of the post-merger gravitational wave signal and the im-
portance of the neutrino-matter interactions in the first 10 ms
following the merger.
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D. A. Brown, B. Szilágyi, J. D. Kaplan, J. Lippuner, C. D.
Muhlberger, F. Foucart, and M. D. Duez, ArXiv e-prints
(2015), arXiv:1509.05782 [gr-qc].

[20] Y. Sekiguchi, K. Kiuchi, K. Kyutoku, and M. Shibata, Phys.
Rev. D 91, 064059 (2015), arXiv:1502.06660 [astro-ph.HE].

[21] F. Foucart, E. O’Connor, L. Roberts, M. D. Duez,
R. Haas, L. E. Kidder, C. D. Ott, H. P. Pfeiffer, M. A.
Scheel, and B. Szilagyi, Phys. Rev. D 91, 124021 (2015),
arXiv:1502.04146 [astro-ph.HE].

[22] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and
T. Wada, Phys. Rev. D 90, 041502 (2014), arXiv:1407.2660
[astro-ph.HE].
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