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Scalar-tensor (ST) theories of gravity are natural phenomenological extensions to general rela-
tivity. Although these theories are severely constrained both by solar system experiments and by
binary pulsar observations, a large set of ST families remain consistent with these observations.
Recent work has suggested probing the unconstrained region of the parameter space of ST theories
based on the stability properties of highly compact neutron stars. Here, the dynamical evolution of
very compact stars in a fully nonlinear code demonstrates that the stars do become unstable and
that the instability, in some cases, drives the stars to collapse. We discuss the implications of these
results in light of recent observations of the most massive neutron star yet observed. In particular,
such observations suggest that such a star would be subject to the instability for a certain regime;
its existence therefore supports a bound on the ST parameter space.

PACS numbers: 04.25.-g,04.25.D-,04.30.-w

I. INTRODUCTION

Despite the tremendous success of general relativity
throughout its first hundred years as a description of
gravity, alternative theories remain attractive, although
they are severely constrained by observations [1]. One
particularly interesting class of theories are the scalar-
tensor (ST) theories of gravity in which gravity is medi-
ated by a metric and a scalar field. A primary advantage
of ST theories is that they are well-posed with a char-
acteristic structure similar to that of GR, but they offer
additional degrees of freedom with which to explore phe-
nomena such as dark energy. Another advantage is that,
in an appropriate limit, GR is recovered.

If the universe allows for such degrees of freedom, then
perhaps we can find observational consequences using the
population of observed neutron stars (NS). Here we re-
strict ourselves to a particular set of ST theories, namely
the Damour-Esposito-Farese [2, 3] model which is charac-
terized by two constants, {ϕ0, β}. The first constant, ϕ0,
is the asymptotic value of the scalar field which is con-
strained by solar system observations to be quite small.
The second constant, β, measures the linear, effective
coupling between the scalar field and the regular matter
content (more detail and the precise form of the action
follows below). When both these constants vanish, one
recovers GR.

Previous work with neutron stars found significant dif-
ferences with respect to GR for β < −4.5, so that current
observations constrain β from below. However, the pos-
itive β region remains largely unconstrained, and it is
therefore important to find dynamics in this region with
which to compare to observations. For β above some crit-
ical value, βcrit, an instability for very compact neutron
stars has been found [4]. Although noticed quite some
time ago (i.e., see for instance Fig. 5 in Ref. [5] and also
in Ref. [6]), it was only recently realized that this insta-
bility could appear in the stable branch of equilibrium
configurations of realistic microphysical EoS. Although

linear perturbation analysis reveals the instability, such
an analysis does not indicate the end-state or whether
the instability could simply drive the system to a stable
configuration. This instability may occur in a wider class
of alternative gravity theories, such as f(R) gravity [7]
(also see Section IIIA of Ref. [8]), and so similar similar
bounds may be found for other theories.

In order to study this instability and its end state, we
perform fully non-linear dynamical evolutions of neutron
star solutions with different compactness C ≡ GM/Rc2

(M is the gravitational mass of the star and R its radius)
until they relax to their final stationary state. We find
that, for sufficiently large β, very compact stars become
unstable and collapse to a black hole. In addition, we
study non-spherically symmetric, rotating stars and find
similar behavior of the instability. We discuss the im-
plications of these results in the astrophysical context of
the existence of very massive neutron stars, suggesting
an upper bound of β ≈ O(1000).

II. PHENOMONELOGICAL CONSTRAINTS

We begin with a ST action with no potential given by

S =

∫
d4x

√
−g

2κ

[
φR− ω(φ)

φ
∂µφ∂

µφ

]
+SM [gµν , ψ] , (1)

where κ = 8πG (adopting c = 1 throughout this paper),
R is the Ricci scalar, g is the determinant of the metric,
φ is the gravitational scalar, and ψ collectively describes
the matter degrees of freedom.

One can re-express the (“Jordan-frame”) action (1)
in the so-called “Einstein-frame” through a conformal
transformation gEµν = φ gµν , which yields
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where this scalar field, ϕ, is defined in terms of φ by
(d log φ/dϕ)2 ≡ 2κ/[3 + 2ω(φ)]. In these families of ST
theories there is an indirect coupling between matter and
scalar field mediated by gravity.

In this work we focus on the Damour and Esposito-
Farese (DEF) family of ST theories [2, 3] (the simplest
family not generally excluded by solar system tests), de-
fined by the coupling function

1

2

d log φ

dϕ
= −(4πG)βϕ (3)

corresponding to the choice

ω(φ) = −3/2− 1/(2β log φ) , φ = exp(−4πGβϕ2). (4)

The DEF theories, characterized by the coupling con-
stant β and by the asymptotic value of the scalar field ϕ0,
have been shown to produce effects differing significantly
from GR in strong-field regimes such as the interior of
NS [2, 3]. These effects have led to a number of obser-
vational constraints. More specifically, if β is sufficiently
negative, the trivial vacuum of the scalar field becomes
unstable and it becomes energetically favorable for the
scalar field to settle down into a non-trivial configuration
inside the NS (“spontaneous scalarization”) [2, 3]. This
configuration with a large scalar field in the stellar inte-
rior affects not only NS mass and its radius, but also its
orbital motion if the star is in a binary. This modification
to orbital motion arises because scalarization enhances
the gravitational attraction between the components of
the binary and triggers the emission of dipolar scalar ra-
diation [9–11]. These effects lead to constraints on the
nondimensional constant β such that β & −4.5 using bi-
nary pulsar data [3, 12–14] while the Cassini experiment
constrains ϕ0 < 10−3G−1/2/|β|.

Much less constrained is the positive regime of β (see
e.g. Fig. 7 of Ref. [14]). Indeed, cosmological studies
have shown that in the β > 0 regime ST theory ap-
proaches GR exponentially (i.e. GR is an attractor in
the theory phase space) and that the parametrized post-
Newtonian (PPN) parameters are exponentially close to
their GR values [15, 16]. Thus the instability studied
in Ref. [4] represents an important opportunity to con-
strain the positive β regime. A significant observation of
Ref. [4] is that the high compactness required by this in-
stability could be reached at central densities that would
yield stable stars within GR (i.e. with masses less than
the maximum supported by the EoS). Here we there-
fore evolve high compactness stars within DEF gravity
to study nonlinear effects and the ultimate fate of stars
subject to this instability.

A. Equations of Motion

In the Einstein frame the ST field equations are quite
similar to the standard Einstein equations minimally cou-
pled to a scalar field but with a coupling between the

scalar field and the matter. The full system of equations
takes the form

GEµν = κ
(
Tϕµν + TEµν

)
, (5)

�Eϕ = −(4πG)βϕTE , (6)

∇Eµ T
µν
E = (4πG)βϕTEg

µν
E ∂µϕ , (7)

where

TµνE = [ρE(1 + εE) + pE ]uµEu
ν
E + pEg

µν
E and (8)

Tϕµν = ∂µϕ∂νϕ−
gEµν
2
gαβE ∂αϕ∂βϕ (9)

are the matter and scalar-field stress-energy tensors in
the Einstein frame and TE ≡ TµνE gEµν and ρE , pE , and uµE
describe the usual properties of the fluid (density, pres-
sure, and velocity, respectively) in the Einstein frame.
Baryon number conservation in the Jordan frame leads
to

∇Eµ j
µ
E = (4πG)βϕjµE∂µϕ , (10)

with jµE = ρEu
µ
E . In other words, neither the current as-

sociated with baryon number nor the stress-energy ten-
sor are generally conserved in the Einstein frame and in-
stead has source terms. Solving the system (5), (6), (7)
and (10) and transforming back to the Jordan frame pro-
vides a solution to the original problem.

B. Initial Data

We construct the initial data for our neutron stars as
follows. We begin by solving for a stellar configuration
that is at equilibrium in GR as described below. In ad-
dition, we specify the initial scalar field as a constant,
ϕ(xi, t = 0) = ϕ0. It is straightforward to show that
these initial data are also solutions to ST theory in the
Einstein frame. That is to say that the initial data solves
all the constraints, but the data do not represent a sta-
tionary configuration. This prescription follows that of
Refs. [4] and [5] in their perturbation analysis although
their coupling function is slightly different (the initial
data is only in equilibrium if ϕ0 = 0).

We use the Lorene code [17] to construct the initial
stellar models. The stars are described by a polytropic
equation of state, p/c2 = KρΓ

0 , which is a reasonable
approximation for cold stars. In our search for solutions
subject to the instability, we explore a range of values of
the adiabatic index Γ = 2 − 3, but only Γ = 3 is chosen
for our evolutions. The choice here of K is not important
since the solution can be rescaled to match the maximum
mass M ≈ 2.0M� of the most massive observed neutron
star [14].

We focus on configurations fulfilling two conditions:
(i) lying on the stable branch of solutions and (ii) having
compactness sufficient to achieve a region with T > 0
in its central interior (in contrast, stars generally have
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FIG. 1: Characterization of initial stellar models. Top: Mass
versus compactness of spherical, non-rotating neutron star
equilibrium configurations for different polytropic exponent
(e.g. stiffness) in the polytropic EoS p = KρΓ. The transition
between models with T everywhere negative to models with
T positive in a central region is marked (solid circles) for
each value of Γ. The stable branch lies on the left of the
maximum of the curve. Solutions for three microphysical EoS
are also included, showing that their structure lies between
that of the polytropes with Γ = 2.5 and Γ = 3. Bottom:
Mass versus compactness for rigidly rotating neutron stars
with fixed Γ = 3 but different rotational frequencies. Notice
that the transition in T lies at roughly the same compactness
as for the nonrotating models.

T < 0 everywhere). This second condition is crucial for
the existence of the instability, and we have verified that
no instability is apparent for configurations which lack
such a region.

We characterize a range of these solutions in Fig. 1.
The mass of nonrotating solutions is shown in the top
panel of Fig. 1 as a function of compactness. Where the
maximum mass is achieved represents a turning point
(marked with a square) in stability such that solutions
of smaller compactness are stable (in GR) whereas more
compact solutions are unstable. Three families of solu-
tions, each with a different EoS parameter Γ, are shown,
and it is apparent that larger values correspond to more
compact stars.

As these stars get more compact, the solutions even-
tually reach a point where T becomes positive in their
interior. The point at which solutions achieve T = 0 is
marked with a circle so that more compact stars have re-
gions with positive trace. It is important to note that for
small Γ, the circle is to the right of the square whereas
for large Γ one has the opposite. This note is important
because, for Γ = 3 for example, one has solutions on the
stable branch that nevertheless have regions of positive
trace. It is precisely the evolution of these solutions that
is of interest here.

Interestingly, for EoS that yield such compact stars

(approximately Γ > 2.5) and for various rotation rates,
the null point appears mostly independent of the value of
Γ, lying at a compactness of C ≈ 0.27. Indeed, these re-
sults are in agreement with the solutions found in Ref. [4]
with realistic EoS. We include the family of curves of
other realistic EoS in Fig. 1 showing that these EoS have
solutions similar to that of Γ = 3 despite spanning a wide
range of stiffness (e.g. resulting radii). A similar plot but
instead for rigidly rotating solutions is shown in the bot-
tom panel of Fig. 1. Here, instead of different values of Γ,
solutions rotating at different frequencies, f , are shown,
all for Γ = 3. Notice that the null point is roughly at the
same compactness C ≈ 0.27 for any frequency.

III. NUMERICAL SIMULATIONS

Our numerical code for evolving these configurations
has been described and tested previously [18, 19] finding
a dynamical scalarization effect in the evolution of binary
NS systems in ST [20, 21]. We employ an ideal gas EoS
p = (Γ− 1)ρε for our simulations choosing Γ = 3, so that
solutions containing T > 0 lie on the stable branch in GR.
We evolve initial data along this family parametrized by
the compactness.

We begin by discussing our evolutions of a configura-
tion with compactness C = 0.26. For this initial data,
the trace is everywhere negative and no instability is ex-
pected. Indeed, in our evolutions we increased β up to a
value of 8000 with no indication of instability. In partic-
ular, the central density and lapse remained unchanged
with increasing β. The scalar field demonstrated fast os-
cillations with an amplitude damped in time. For very
large values of β, the overall amplitude was diminished.

In stark contrast, the evolution of a high compactness
configuration (C = 0.29) is shown in Fig. 2. These evo-
lutions display two disparate behaviors depending on the
value of β. For β > βcrit (here βcrit ≈ 90), the cen-
tral density and scalar field grow more than an order of
magnitude while the star collapses to a black hole. For
β < βcrit these quantities just oscillate about either zero
or its initial value. These evolutions suggest that for
small β, the configurations evolve to a stable, ST equi-
librium solution. Because the scalar field is the most
dynamic aspect of the solution in this regime, we plot it
for a few times as it settles to its final state in Fig. 3. In-
cluded in the figure is the corresponding static star found
by integrating the analogous TOV-like system of equa-
tions. The evolution approaches the static star oscillating
with a damped amplitude within the central region. For
larger β, the instability drives the evolution to collapse.
One can estimate the survival time for any given β by
choosing a large, fiducial value of the scalar field and mea-
suring the time it takes the central scalar field to reach
this value. It is notable that both spherical and rotating
solutions (with frequency 400Hz) appear to demonstrate
the same scaling, namely that tf ∝ |β − βcrit|−0.65, and
that the scaling exponent, −0.65, is roughly comparable
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FIG. 2: Dynamics of a highly compact (C = 0.29), non-
rotating star. Top: Central value of the rest-mass density, ρc,
as a function of time. Bottom: Central value of the scalar
field, ϕc. Note that the β = 0 solution is stable whereas
the scalar field grows initially for nonvanishing β. However,
only for β > βcrit does the central density grow apparently
without bound, collapsing to a black hole. For β < βcrit, the
scalar field oscillates, sometimes transitioning to negative val-
ues. The solutions with β = 109 and 115 eventually collapse.
Here βcrit ≈ 90 ± 10 with the uncertainty arising due to late
time instability.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r/Rstar 

0.00003

0.00002

0.00001

0.00000

0.00001

0.00002

ϕ
 t=0

t=200
t=400
t=1200
t=1800
equilibrium

FIG. 3: Evolution of the scalar field for a highly compact (C =
0.29), non-rotating star with β = 80. The scalar field as a
function of radius at different times during the evolution is
shown. Also shown is the equilibrium configuration (solid
black) within ST with the same central density as the initial
data. At late times the solution relaxes to the equilibrium
configuration with a slowly damped, oscillating central region.

to the approximate value −0.5 presented in Ref. [5] [see
Eq. (5.3)].

For C = 0.28 we find an intermediate regime in β.
For such cases, we see the growth of the instability in
the center of the star. However, this growth ceases after
which the central region oscillates with an exponentially
decreasing amplitude. The solution appears to settle to
its corresponding ST equilibrium solution. The difference
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FIG. 4: Stability region as a function of compactness for non-
rotating solutions. The value of β at which our numerical
evolutions collapse to black hole are shown (blue dots) along
with a rough estimate of its uncertainty. The results from
the linearized analysis for the ENG case of Ref. [4] (because
of the similarity of that case with the Γ = 3 case) are also
shown (red dotted curve) for comparison. In the region be-
tween the two curves, the instability is quickly suppressed by
non-linear effects and the star settles into a stable state. A
vertical line (black solid line) indicates the compactness of the
most massive star observed assuming a radius of 10.5km [22].
The shaded region (green) around that vertical line indicates
the uncertainty in radius (i.e., assuming half of the maximum
error) leading to a range of 10 − 11km.

between this case and the small β cases would appear to
be the initial instability in the central region.

IV. CONCLUSIONS

Our simulations of the fully nonlinear system find that
very compact stars containing a central region with T > 0
become unstable for sufficiently large β, consistent with
the linear perturbation results. This instability, studied
in detail in [4] in spherical symmetry for different mi-
crophysical EoS, appears for values of βcrit ≈ 140 for a
compactness of C = 0.283. However, our evolutions show
that prompt collapse occurs for β > 700, and so estab-
lishing constraints from observational data may require
fully nonlinear solutions. Fig. 4 displays this difference
by showing the values of β for which the neutron star un-
dergoes prompt collapse together with the βcrit obtained
from the linear analysis. In addition, our evolutions ex-
tend to rotating solutions which break spherical symme-
try and which also demonstrate this same instability.

An important question left unanswered by the pertur-
bation analysis concerns the end-state of the instability.
Our evolutions find that these compact stars are driven
either to apparently stable ST equilibrium configurations
with non-constant profiles for the scalar field or to black
hole formation. In particular, we conjecture that when
starting with a GR solution of some particular mass that
it will be driven to a ST solution if such a solution on the
stable branch exists with roughly the same mass (or a bit
less). However, for large β, such an approach to stable
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solutions is more difficult since the maximum mass gets
smaller as β increases (see, e.g., Fig. 4 of Ref. [4]).

There are at least a couple of different ways of consider-
ing the astrophysical implications of this instability. Con-
sider the most massive neutron star ever observed, which
has mass MNS = 2.01 ± 0.04M� [14]. To compute its
compactness, consider different estimates which favor a
radius for neutron stars of roughlyRNS ≈ 10.5+1.2

−1.0km [22]
(see also [23]) for this mass, which would indicate a com-
pactness of 0.283 ± 0.030. Such a value places it within
the unstable regime for certain parameters of the ST the-
ory, although we acknowledge a number of uncertainties
that might affect the precise value of βcrit.

Perhaps, if gravity is described by DEF ST gravity, the
existence of this extreme star argues for an upper limit on
β. If β were higher, such a star might become unstable to
collapse. Of course, a precise value of our β awaits more
detailed knowledge of the star, but very likely β would
be bounded from above by β ≈ O(1000). However, an-
other interpretation, equivalent to that above, is that the

maximum observed NS mass is not set by the maximum
supported by the particular EoS describing neutron star
matter, but by the onset of this instability in ST gravity
(or in related, alternative theories such as f(R) grav-
ity [7]). Future observations of massive neutron stars
may elucidate this ambiguity and allow for more strin-
gent constraints.
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