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Light scalar fields such as axions and string moduli can play an important role in early-universe
cosmology. However, many factors can significantly impact their late-time cosmological abundances.
For example, in cases where the potentials for these fields are generated dynamically — such as
during cosmological mass-generating phase transitions — the duration of the time interval required
for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with
multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies
the resulting late-time abundances. Previous studies have focused on the effects of either the first
or the second timescale in isolation. In this paper, by contrast, we examine the new features that
arise from the interplay between these two timescales when both mixing and time-dependent phase
transitions are introduced together. First, we find that the effects of these timescales can conspire
to alter not only the total late-time abundance of the system — often by many orders of magnitude
— but also its distribution across the different fields. Second, we find that these effects can produce
large parametric resonances which render the energy densities of the fields highly sensitive to the
degree of mixing as well as the duration of the time interval over which the phase transition unfolds.
Finally, we find that these effects can even give rise to a “re-overdamping” phenomenon which causes
the total energy density of the system to behave in novel ways that differ from those exhibited by
pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for
early-universe phenomenology and cosmological evolution. They also highlight the importance of
taking into account the time dependence associated with phase transitions in cosmological settings.

I. INTRODUCTION

Light scalar fields are a common feature in many
cosmological scenarios and thus frequently play an im-
portant role in early-universe cosmology. Such scalars
include, for example, the QCD axion [1–4] and other
axion-like particles [5], supersymmetric partner particles
such as sneutrinos and staus [6–9], string moduli such
as the dilaton and other geometric moduli [10–12], Q-
balls [13, 14], quintessence fields [15] and chameleons [16–
18], familons [19] and Majorons [20, 21], certain degrees
of freedom within inert Higgs-doublet models [22], ad-
ditional scalars present in little-Higgs theories [23], and
others [24–27]. Some of these fields may even serve as
candidates for dark matter or as significant contributors
to dark energy. Moreover, the number of such scalars can
be relatively large; indeed, the recent Dynamical Dark
Matter framework [28, 29] posits a dark sector containing
an entire ensemble of such fields which together conspire
to produce a number of phenomenological, astrophysi-
cal, and cosmological effects which differ markedly from
those arising from more traditional dark sectors. Like-
wise, string-inspired models typically involve significant
numbers of moduli — and frequently a large number of
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light axions and axion-like fields as well [30–33].

When a scalar field is light, the reason is usually that
a mass term for this field is forbidden by a symme-
try of the full, high-temperature theory. Such a mass
term must therefore be generated at a lower tempera-
ture scale through some dynamics which violates these
symmetries — dynamics typically associated with a cos-
mological phase transition. For example, masses for ax-
ions or axion-like particles can be generated by non-
perturbative instanton effects which become significant
at temperatures near the confining temperature of the
corresponding gauge group. Indeed, dynamical mass gen-
eration through cosmological phase transitions provides
a natural mechanism for engineering mass-scale hierar-
chies.

However, dynamical mass generation can also have po-
tentially significant ramifications for the cosmology of the
particles involved. First, cosmological phase transitions
are never instantaneous. In the case of a second-order
phase transition, the transition between the high- and
low-temperature phases is smooth but nevertheless time-
dependent. Even in the case of a first-order transition, a
rapid epoch of bubble nucleation and expansion interpo-
lates between the two phases. As a result, scalar masses
which are dynamically generated during either kind of
phase transition do not “turn on” instantaneously every-
where in the universe; rather, these masses depend non-
trivially on time and evolve continuously over the course
of the phase transition towards whatever asymptotic val-
ues they will have at late times. It turns out that this
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time-dependence — and the existence of an associated
timescale or “width” over which the phase transition un-
folds — can have a significant impact on the cosmology of
light scalars. For example, in the case of an axion receiv-
ing its mass via non-perturbative instanton effects, the
non-trivial consequences of this time-dependence on the
resulting axion cosmological abundance were assessed in
Ref. [34].

Another important consequence of dynamical mass
generation is that it can give rise to mixing amongst
scalars sharing the same quantum numbers. Indeed, if
multiple such scalars couple to the same source of dynam-
ical mass generation, there is no guarantee that the mass
eigenstates of the theory will be the same before and af-
ter the corresponding phase transition. The phenomeno-
logical consequences of such mixing were investigated in
Refs. [29, 35, 36] for an ensemble of light axion-like fields.
Mixing can also be induced amongst light scalar fields at
low energies through a variety of other dynamical pro-
cesses, including the integration out of massive fields to
which our light scalars are coupled. For example, the
phenomenological implications of such mixings amongst
axion-like fields have been studied in Ref. [37]. Regard-
less of the source, however, we find that dynamically-
induced mixing generally results in a non-trivial modi-
fication of the coupling structure of the fields involved
and can thus have a significant impact on the resulting
energy densities of the fields at late times.

The effects of mixing and of a non-trivial time-
dependence for scalar mass generation have historically
been studied separately. In this paper, by contrast, we
shall examine the effects that arise when the mass matrix
for a set of multiple light scalar fields includes both mixing
and a non-trivial time-dependence. As we shall demon-
strate, the interplay between the different timescales as-
sociated with these effects can, in the presence of a time-
dependent background cosmology, give rise to a number
of qualitatively new features which are not seen when
these effects are each considered in isolation.

These new features generally concern the late-time cos-
mological abundances (energy densities) associated with
the scalar fields in our coupled multi-scalar system. For
example, we shall demonstrate that the total late-time
energy density of our system can be altered — often by
many orders of magnitude — compared with traditional
expectations. This includes situations in which the late-
time energy density is enhanced to greater values as well
as situations in which it is strongly suppressed. Second,
we shall demonstrate that not only can the total energy
density be altered, but so can the distribution of this to-
tal energy density across the different fields in our system
— often in dramatic ways. Indeed, these effects can even
completely change which field carries the largest abun-
dance. Third, we shall demonstrate that under certain
circumstances, the combined effects of our two timescales
can give rise to large parametric resonances which ren-
der the energy densities of the fields highly sensitive to
the degree of mixing as well as the duration of the time

interval over which the phase transition unfolds. As a
result of this heightened sensitivity, any effects which
modify the mixing slightly or which change the rate at
which our mass-generating phase transition unfolds can
have a huge influence on the corresponding late-time
cosmological abundances. Finally, we shall demonstrate
that mixing in conjunction with a time-dependent phase
transition can even give rise to a “re-overdamping” phe-
nomenon which causes the field values and total energy
density of the system to behave in novel ways which differ
from those normally associated with pure dark matter or
vacuum energy.

Taken together, we see that all of these features give
rise to new possibilities for the phenomenology of the
early universe and cosmological evolution. In particu-
lar, many new possibilities for model-building emerge.
However, our results can also serve as warning: in the
presence of multiple mixed scalar fields, it is essential to
treat mass-generating phase transitions rigorously, with
the proper time-dependence included. Indeed, approxi-
mations in which such phase transitions are treated as in-
stantaneous can produce late-time energy densities which
differ from their true values by many orders of magni-
tude. This warning is particularly relevant in the case
of axions, where the mass-generating phase transition
is nothing but the instanton-induced QCD phase tran-
sition. This phase transition unfolds over a calculable
non-zero timescale, and we shall demonstrate explicitly
that ignoring this timescale (by setting it to be either
zero or effectively infinite) can lead to highly inaccurate
late-time axion abundances.

This paper is devoted to a general study of the new fea-
tures discussed above. Because these features are com-
mon to many systems of scalars which exhibit mixing
in conjunction with a time-dependent mass-generating
phase transition, in this paper we shall work within the
context of a general model of scalars φi whose identi-
ties remain unspecified. We shall likewise make no as-
sumptions about the nature of the mass-generating phase
transition except that it unfolds over a certain timescale.
Moreover, quite remarkably, we shall find that a simple
toy model consisting of only two scalar fields is sufficient
to illustrate all of the features outlined above. This paper
will therefore focus on an analysis of this two-component
toy model, and we shall defer a study of more complex
scenarios to future work [38].

This paper is organized as follows. In Sect. II, we intro-
duce the two-component toy model which forms the basis
for all subsequent discussions in this paper. As outlined
above, this toy model contains both a mixing between our
two fields as well as a time-dependent mass-generating
phase transition. Along the way we also introduce all
needed definitions, conventions, and notation. We also
discuss some of the basic properties of this model. Then,
in Sect. III, we study the behavior of the total late-time
energy density of our two-component system, while in
Sect. IV we study how this total late-time energy density
is distributed between the two fields of our model. In
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Sect. V we discuss the parametric resonance which ap-
pears in the energy density, while in Sect. VI we turn our
attention to the “re-overdamping” phenomenon.

Although our analysis up to this point is completely
general, our results have many immediate phenomeno-
logical applications. In Sect. VII, we therefore focus on
a special case by considering the effects on the standard
QCD axion that emerge when a second axion is incorpo-
rated into the theory. In Sect. VIII we then sketch some
of the additional features that emerge when more than
two fields are considered. These features will ultimately
be explored more fully in Refs. [38]. Finally, in Sect. IX,
we conclude with a discussion of our main results and
possible avenues for extension and generalization.

This paper also contains two Appendices. Although
most of the results of this paper are obtained through
numerical analysis, Appendix A provides exact analytical
results in certain tractable special cases. Appendix B
then discusses an alternative approach towards analyzing
some of the features presented in this paper.

II. A TOY MODEL

In this section we delineate the toy model which shall
be the basis of our analysis in this paper. This section
will also serve to establish our notation and conventions.

A. Motivation: A one-component warm-up

As a prelude to the presentation of our model, we be-
gin with a short discussion of the one-component case.
Along the way we will also review some basic facts about
scalar fields in an FRW cosmology and provide motiva-
tion for the particular construction of our eventual multi-
component toy model.

Towards this end, let us consider a single scalar field φ
of mass m evolving in a flat FRW universe. If all spatial
variations in φ are assumed to be negligible, such a field
evolves according to the standard equation of motion

∂2φ

∂t2
+ 3H(t)

∂φ

∂t
+m2φ = 0 (2.1)

where the Hubble parameter H(t) scales as 3H(t) ≈ κ/t
with κ = 2 (respectively κ = 3/2) during a matter-
(radiation-) dominated epoch. As a result, the field
behaves as a damped oscillator with a time-dependent
damping ratio ζ(t) ≡ 3H(t)/2m. Since H(t) falls with
time, a field which is initially overdamped will inevitably
become underdamped and experience decaying oscilla-
tions.

For simplicity, the energy-momentum tensor for such a
field can be modeled as a perfect fluid with energy density

ρ and pressure p given by

ρ =
1

2

[
(∂φ/∂t)

2
+m2φ2

]
,

p =
1

2

[
(∂φ/∂t)

2 −m2φ2
]
. (2.2)

If φ is initially in an overdamped phase with ∂φ/∂t = 0,
then ρ = −p: the energy density ρ associated with such
a field in this phase behaves as vacuum energy. By con-
trast, after φ transitions to an underdamped phase, the
field eventually experiences oscillations which are approx-
imately virialized: in this phase p = 0 and the corre-
sponding energy density ρ can be associated with massive
matter. Of course, there is also an intermediate time in-
terval during the transition from the overdamped to un-
derdamped phase within which the behavior of the field
exhibits transient features that eventually dissipate.

The equation of motion (2.1) can be simplified by defin-
ing a dimensionless time variable τ ≡ mt. The solutions
can then be expressed analytically in terms of Bessel
functions of the first and second kind. The exact evo-
lution of the corresponding energy density ρ is shown
in Fig. 1, where τζ denotes the critical damping time
at which ζ = 1. The different phases of the system are
clearly evident in Fig. 1. For early times τ � τζ , the
system is overdamped and the energy density ρ is essen-
tially constant: ρ ∼ ρ0. For late times τ � τζ , by con-
trast, the system is underdamped and the energy density
ρ scales as ρ ∼ τ−κ. Finally, during the intermediate
times τ ∼ τζ , the energy density ρ exhibits a correspond-
ing transition between the two limiting behaviors above,
punctuated by small transient oscillations. Although the
specific dynamics of the field during this transitional pe-
riod does not affect the late-time asymptotic scaling of
ρ with time, these transients are nevertheless important
in determining the overall scale of the late-time energy
density.

In this example, we have taken the mass m to be a
constant, non-zero for all time. However, in many cosmo-
logical situations, masses are generated by phase transi-
tions. In such cases, the masses of such fields can be time-
dependent. A well-motivated example of this is case of
the QCD axion: the axion potential is flat (i.e., m = 0) at
temperatures T � ΛQCD, but this flat potential is mod-
ified at lower temperatures by instanton effects which
generate an effective mass.

Time-dependent masses m(τ) can significantly modify
the evolution of such scalar fields. In this paper, we are
primarily interested in cases in which at least a portion
of the contributions to the scalar masses are generated as
the result of phase transitions. We shall therefore gener-
ally consider cases in which m(τ) has one (smaller) value
at early times, a second (larger) value at asymptotically
late times, and a smooth time-dependent transition be-
tween the two. Indeed, we shall let τG represent the
“central” time at which this mass-generating phase tran-
sition occurs, and imagine that this transition unfolds
over a time interval of duration or width ∆G. We then
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FIG. 1: The energy density ρ, normalized to its initial value
ρ0, for a solution to Eq. (2.1) in a radiation-dominated (RD)
universe, i.e., κ = 3/2 (red), or a matter-dominated (MD)
universe, i.e., κ = 2 (blue). In the overdamped phase, the en-
ergy density remains nearly constant at ρ = −p > 0, behav-
ing as vacuum energy. By contrast, once the critical damp-
ing ζ = 1 threshold is crossed at τζ (a critical time which is
slightly different for RD and MD universes), the energy den-
sity begins to dissipate, asymptotically exhibiting the simple
power-law scaling behavior ρ ∼ τ−κ expected for matter.

obtain the situation illustrated schematically in Fig. 2.
The introduction of a non-zero time interval ∆G dur-

ing which our phase transition unfolds can have a signif-
icant effect on the time-evolution of φ. When ∆G = 0,
there are essentially two regimes which one can consider,
each with its own distinctive phenomenology: τζ < τG
and τζ > τG. However, a non-zero width ∆G opens up
a third possibility, with τζ ∼ τG. Indeed, more gener-
ally, the introduction of a non-zero ∆G introduces a new
timescale into the problem, and we shall see that this can
have dramatic effects. We shall explore the phenomenol-
ogy of this region as part of our larger general study. We
emphasize, however, that phenomenon of having τζ ∼ τG
is completely different from having τG during the “damp-
ing transition” region of Fig. 1. Indeed, while ∆G may be
considered to represent a width around τG, the “damp-
ing region” of Fig. 1 can instead be considered a width
around τζ , a width which exists — as shown in Fig. 1 —
even if the mass is constant .

B. Defining our toy model

The introduction of non-zero time interval ∆G for our
phase transition is just one feature we wish to study in
this paper. The other concerns the possibility of mix-
ing between different field components φi, i = 1, . . . , N .

τ

m(τ)

3H
(τ)/2

∆G

τζτG

FIG. 2: Two time-dependent mass scales: a growing mass
function m(τ) and a falling Hubble friction scale 3H(τ)/2.
Their intersection determines the transition time τζ . We as-
sume that the growth of m(τ) takes place during an interval
of approximate duration ∆G centered at τG. As we shall see,
the introduction of a non-zero ∆G can have many dramatic
effects on the late-time energy densities of those fields which
(either directly or indirectly) are sensitive to this change in
mass. For example, one new possibility is that the transition
between overdamped and underdamped phases can occur dur-
ing the mass-generating phase transition.

The phenomenological effects stemming from each can
certainly be studied in isolation. However, as we shall
find, these two features can conspire to produce a num-
ber of remarkable effects that transcend what is possible
with either alone. For this reason, we shall study the
implications of both features together. The effects of ei-
ther feature in isolation can then be extracted through
the limiting cases in which the effects due to the other
feature are gradually turned off.

In this paper, we shall explore these effects within the
context of a simple toy model involving only two compo-
nents, φ0 and φ1. As we shall see, our toy model is simple
enough to be tractable, yet rich enough to incorporate all
of the phenomena of interest.

Our model consists of two real scalar fields, φ0 and φ1.
If we again assume that the spatial variations in these
fields are negligible, their equations of motion in a flat
FRW universe take the form

∂2φi
∂t2

+ 3H(t)
∂φi
∂t

+
∑
j

M2
ij φj = 0 (2.3)

whereM2 is the corresponding squared-mass matrix. At
times t� tG, long before mass generation occurs, we
shall takeM2 constant and diagonal. In fact, for simplic-
ity, we shall further assume that φ0 is massless at such
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early times. Thus, at early times, we shall assume

M2 −−−−−→
t�tG

[
0 0

0 M2

]
(2.4)

where M 6= 0 is a general unfixed mass parameter. By
contrast, long after the phase transition has occurred, we
assume that new components m2

ij will have been gener-
ated in the squared-mass matrix:

M2 −−−−−→
t�tG

[
0 0

0 M2

]
+

[
m2

00 m2
01

m2
01 m2

11

]
, (2.5)

In order to connect these two asymptotic extremes, we
shall let m2

ij(t) denote time-dependent elements of the
mass matrix which interpolate between zero at early
times and mij at late times. We can then write

M2(t) =

[
0 0

0 M2

]
+

[
m2

00(t) m2
01(t)

m2
01(t) m2

11(t)

]
. (2.6)

Having specified the mass matrix, we can now intro-
duce a dimensionless time variable τ ≡Mt, as in the
single-component case. Our equations of motion then
take the form

φ̈i + 3H(τ)φ̇i +
∑
j

M2
ij(τ)φj = 0 (2.7)

where the dots indicate ∂/∂τ and where our mass matrix
is also dimensionless and takes the form

M2(τ) =

[
m2

00(τ) m2
01(τ)

m2
01(τ) 1 +m2

11(τ)

]
(2.8)

with each dimensionless mij now understood to be a frac-
tion of M . We shall adopt these conventions throughout
the rest of this paper.

In general, there is no reason to expect that the mass
generation occurs in the same basis as in Eq. (2.4). We
shall therefore allow for the possibility that m2

01 6= 0 —
i.e., the possibility that our phase transition induces a
mixing between our primordial field components φ0 and
φ1. However, we shall nevertheless make the simplify-
ing assumption that the time-dependence of each com-
ponent is identical, allowing us to focus on those effects
that come from a single common timescale for mass gen-
eration. Indeed, since the mass matrix is nothing but the
curvature matrix associated with the potential V (φ0, φ1)
induced by the phase transition, this assumption is tan-
tamount to assuming a single time-dependence for the
potential as a whole. As a result, we can write each of
the individual mass components in a factorized form

mij(τ) = mij · h(τ) , (2.9)

where h(τ) is a smooth function of time which describes
the time-development of the phase transition.

Our next step in specifying our toy model is to choose
a suitable function h(τ). As indicated above, we require
that h(τ)→ 0 as τ → 0 and h(τ)→ 1 as τ →∞. How-
ever, because one of our main interests in this paper con-
cerns the timescale associated with the mass-generating
phase transition, we would also like h(τ) to incorporate a
dimensionless parameter σ which controls how abruptly
the phase transition occurs. The limit σ → 0 might then
correspond to a phase transition which is effectively in-
stantaneous, while non-zero values of σ correspond to
phase transitions which occur increasingly slowly. It is
also desirable, regardless of the width of the transition,
that the midpoint at τG be a fixed point of reference.
We therefore include in our construction the requirement
that h(τG) = 1/2 for all σ. Indeed, this may be taken as
a definition of τG.

Beyond these constraints, the choice of h(τ) is com-
pletely arbitrary, and many functions may be chosen. For
concreteness, however, we shall take

h(τ) =
1

2

{
1 + erf

[
1

σ
log

(
τ

τG

)]}
, (2.10)

where the error function erf(z) is given by

erf(z) ≡ 2√
π

∫ z

0

e−x
2

dx . (2.11)

As illustrated in Fig. 3, this function satisfies all of our
requirements. Of course, many other choices for h(τ) are
possible. However, none of the qualitative results of this
paper will ultimately depend on the specific choice for
h(τ). Thus, any smooth, monotonic function h(τ) satis-
fying the above constraints will lead to similar results.

Corresponding to each non-zero value of the parameter
σ there exists a non-zero timescale ∆G over which the
phase transition occurs. In general, we may define ∆G

in terms of the slope of the h(τ) function at its midpoint
τG:

h(τG + δτ) ≈ 1

2
+

δτ

∆G
for δτ � ∆G . (2.12)

Adopting this definition for ∆G, we then find for our h(τ)
function that

∆G ≡
√
πστG . (2.13)

We thus see that ∆G → 0 as σ → 0, as expected. Indeed,
this limit corresponds to the case of an instantaneous
phase transition, with the h(τ) taking the form of the
Heaviside step function Θ(τ − τG).

In this paper, we shall consider the effects that arise
when σ is non-zero. There is, however, a critical value
σ∗ above which the behavior of h(τ) changes in an im-
portant way. To see this, let us first consider the limit
in which σ →∞. In this limit, we find that h(τ) is es-
sentially constant and τG-independent: h(τ) ≈ 1

2Θ(τ) for
all τ . This limit may therefore be interpreted as one in
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,τ
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FIG. 3: The general form of the h-function in Eq. (2.10),
plotted for several choices of the parameter σ. In all cases we
see that h(τ) rises smoothly from h = 0 to h = 1 and crosses
h = 1/2 at τ = τG. Large values of σ correspond to more
gradual transitions, while for σ → 0 we find that h approaches
the Heaviside step function Θ(τ − τG).

which our original phase transition at τG effectively dis-
appears and is replaced by a new, infinitely sharp “phase
transition” at τ = 0. Note that this latter transition is
nothing but an artifact of our boundary condition that
h = 0 at τ = 0. As a result, dialing σ from 0 to ∞ has
the effect of slowing our original phase transition near τG
while simultaneously building up an artificial phase tran-
sition near τ = 0. Indeed, if σ grows too large, the most
rapid changes in the mass parameters of our system will
no longer be associated with our original phase transition
near τ = τG, but with the artificial one near τ = 0.

In this paper, we wish to maintain the notion that
increasing the value of σ corresponds to slowing the time-
development of our mass matrix. Even more importantly,
we also wish to ensure that the time period exhibiting the
most rapid time-development of our mass matrix is still
associated with our original phase transition near τG and
not the artifact near τ = 0. Therefore, in this paper, we
shall always restrict our attention to values 0 ≤ σ ≤ σ∗
where σ∗ is that value of σ for which maxτ (dh/dτ) is
minimized. For the h(τ) function given in Eq. (2.10), we

find that σ∗ =
√

2 for all τG. As a result, in what follows
we shall only consider values of ∆G in the range

0 ≤ ∆G ≤
√

2π τG . (2.14)

In order to gain insight into the values of σ that we
might expect for a well-motivated phase transition, let
us consider the case of the instanton-induced phase tran-
sition during which a mass is generated for the QCD
axion. Detailed lattice studies [39, 40] have yielded ap-

hQCD

h

10-2 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

t/tG

h

FIG. 4: The function hQCD describing the instanton-induced
time-dependent mass of the axion (solid blue line), plot-
ted as a function of t/tG. This curve is generated for
ΛQCD = 200 MeV, with tG defined as that location where
the curve crosses h = 1/2. For comparison purposes, our h-
function in Eq. (2.10) with σ ≈ 0.47 is superimposed (dashed
red line). We see that our h-function matches hQCD surpris-
ingly well throughout the entire range of values of plotted, and
fits particularly well near the “center” of the phase transition
at t = tG.

proximate expressions for the mass of the QCD axion
as a function of temperature T . However, the cosmologi-
cal time-temperature relation appropriate for a radiation-
dominated epoch is given by

T (t) =

(
5

2g∗

)1/4(
3MP

πt

)1/2

, (2.15)

where MP is the Planck mass and where g∗ is the
temperature-dependent effective number of relativistic
degrees of freedom. Use of this relation then allows us to
determine the axion mass as a function of cosmological
time t, with the results shown in Fig. 4. For comparison,
our h-function with σ ≈ 0.47 is also shown in Fig. 4. It is
clear that these two functions match quite well over the
entire range of times shown.

The only remaining ingredient to be specified as part of
our toy model is a set of initial conditions to be imposed
at some early time τ0. For the differential equations in
Eq. (2.7), this means specifying initial values for our two

fields φ0,1 and their first derivatives φ̇0,1. While many
possibilities exist, one particularly natural choice is to
consider a mere displacement for the φ0 field:(

φ0

φ1

)
τ=τ0

=

(
A0

0

)
,

(
φ̇0

φ̇1

)
τ=τ0

=

(
0

0

)
. (2.16)
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There are three special properties associated with this
initial configuration which make this choice especially ap-
pealing. First, as long as τ0 � τG, this configuration does
not introduce any initial energy into the system. Thus,
all of the energy that our system accrues will be solely
that injected through the phase transition. Second, as
long as τ0 � τG, the specific choice of the initial time
τ0 will be irrelevant. In other words, given our other as-
sumptions, the system is essentially time-independent for
all τ � τG and thus completely insensitive to variations
of τ0. As a result, we shall never need to refer to τ0 again,
understanding implicitly throughout this paper that τ0
has always been chosen to be sufficiently early that our
results are independent of τ0. Finally, the choice of A0

in Eq. (2.16) merely serves to set an overall mass scale
for our system. However, since we shall always be con-
sidering ratios of field values or energy densities in this
paper, our results will also be insensitive to A0.

This completes the specification of our toy model. It
contains only five free parameters: two (namely τG and
∆G ∼ σ) which describe the time-development of the
phase transition, and three (namely m2

00, m2
11, and m2

01)
which describe the effects of the phase transition and
the mixing it induces. Despite its simplicity, however, we
shall find that this toy model is not only of sufficient gen-
erality to accommodate a wide variety of physical systems
but also of sufficient richness to give rise to a number of
surprising phenomena.

C. Preliminary analysis: Constraints on mixing

In subsequent sections, we shall analyze the behavior
of our fields and of their corresponding energy densities
within different regions of our five-dimensional parameter
space. However, even before proceeding, there are a num-
ber of preliminary observations that hold more generally
and which serve to significantly constrain the allowed pa-
rameter space.

These constraints all ultimately stem from the obser-
vation that not every choice of the masses m2

ij can be
made independently. Requiring that the eigenvalues of
M2 be real is tantamount to demanding that M2 be
Hermitian. However we must further demand that these
eigenvalues be non-negative, which requires that M2 be
positive-semidefinite. This requires that all m2

ij be real
and satisfy the three constraints

• m2
00 ≥ 0

• m2
11 ≥ −1

• m2
00(1 +m2

11) ≥ m4
01 .

(2.17)

These constraints provide a set of intrinsic limits on
the magnitude of the mixing that may occur within our
toy model. Indeed, these constraints imply that∣∣m2

01

∣∣ ≤ [m2
01]max ≡

√
m2

00(1 +m2
11) . (2.18)

However, for many purposes it will prove useful to intro-
duce the variables

m2
sum ≡ M2

11 +M2
00 = 1 +m2

00 +m2
11

∆m2 ≡ M2
11 −M2

00 = 1−m2
00 +m2

11 (2.19)

in terms of which our squared-mass matrix M2 in
Eq. (2.8) takes the more symmetric form

M2 =

[
1
2

(
m2

sum −∆m2
)

m2
01

m2
01

1
2

(
m2

sum + ∆m2
)] . (2.20)

Note while the individual m2
ij quantities each carry the

same time-dependence [proportional to h(τ)2], the same
is no longer true for m2

sum and ∆m2. In terms of these
variables, the constraints in Eq. (2.17) then take the form

• m2
sum ≥ 0

• |∆m2| ≤ m2
sum

• |m2
01| ≤ 1

2

√
(m2

sum)2 − (∆m2)2 ,

(2.21)

whereupon we find from Eq. (2.18) that

[m2
01]max =

1

2

√
(m2

sum)2 − (∆m2)
2
. (2.22)

Finally, perhaps the most useful way to parametrize
the mixing in our toy model is in terms of a rotation
angle θ which relates the mass eigenstates φλ0 and φλ1

at any instant of time to the original mass eigenstates
prior to the onset of the phase transition:(

φλ0

φλ1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
φ0

φ1

)
, (2.23)

from which it follows that

tan(2θ) =
2m2

01

∆m2
. (2.24)

Indeed, while θ generally populates the range
−π ≤ θ ≤ π in Eq. (2.23), we see from Eq. (2.24)
that it is sufficient to focus on −π/2 ≤ θ ≤ π/2 for the
purpose of calculating mixing angles, since these are
invariant under the mapping (φλ0

, φλ1
)→ −(φλ0

, φλ1
).

The same will also be true for calculating energy
densities — our main interest in this paper — because
these energy densities will depend only quadratically on
the fields in Eq. (2.23). However, we further observe
that in the {φλ0

, φλ1
} basis introduced in Eq. (2.23), the

equations of motion in Eq. (2.7) now take the form

φ̈λ0
+ 3Hφ̇λ0

+
(
λ2

0 − θ̇2
)
φλ0

= − 2θ̇φ̇λ1
−
(
θ̈ + 3Hθ̇

)
φλ1

φ̈λ1
+ 3Hφ̇λ1

+
(
λ2

1 − θ̇2
)
φλ1

= + 2θ̇φ̇λ0
+
(
θ̈ + 3Hθ̇

)
φλ0

. (2.25)
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These equations of motion exhibit an invariance
under the simultaneous correlated transformations
(φλ0

, φλ1
)→ (φλ0

,−φλ1
) and θ → −θ. Since this is also

an invariance of our initial conditions in Eq. (2.16), our
toy model will exhibit this invariance at all points during
its time-evolution. Note that this invariance is also tan-
tamount to the simultaneous correlated transformations
(φ0, φ1)→ (φ0,−φ1) and m2

01 → −m2
01. We can hence-

forth truncate our attention to m2
01 ≥ 0 and 0 ≤ θ ≤ π/2

without loss of generality, and we shall do so through-
out the rest of this paper. The region 0 ≤ θ < π/4 then
corresponds to ∆m2 > 0, while the region π/4 < θ ≤ π/2
corresponds to ∆m2 < 0.

It then follows from Eq. (2.24) that for any values of
m2

sum and ∆m2, the allowed mixing angles θ are those
for which

| tan(2θ)| ≤ | tan(2θmax)| ≡

√(
m2

sum

∆m2

)2

− 1 (2.26)

where θmax is defined as the value of θ which maximizes
| tan(2θ)|. Thus θ ≤ θmax for θmax ≤ π/4, while θ ≥ θmax

for θmax ≥ π/4. These angles are illustrated in Fig. 5.
Note that for ∆m2 = ±m2

sum (corresponding to m2
00 = 0

or m2
11 = −1, respectively), the corresponding values of

θ are restricted to 0 or π/2. Indeed, any other values
would lead to a squared-mass matrix M2 with at least
one negative eigenvalue, corresponding to a tachyonic
mode. Finally, for ∆m2 = 0, we have θ = π/4 for all
m2

01 > 0, while the angle θ is in principle undetermined
for m2

01 = 0.
We conclude this section with some further definitions

that shall also prove useful in what follows. Quite often,
we shall be evaluating a quantity X which is a function
of the time τ . For example, such quantities might include
the mass parameters mij(τ), the mixing angle θ(τ), the
field values φλ(τ), or the total energy density ρ(τ). For
any such quantity X(τ), we shall define

X ≡ lim
τ→∞

X(τ) . (2.27)

In other words, X shall denote the asymptotic late-time
value of X(τ), where in practical terms the notion of a
“late” time can be taken as referring to a time at which
both fields φλ have reached the asymptotic underdamped
regime, with corresponding energy densities ρλ exhibiting
the virialized damped scaling behavior ρλ ∼ τ−κ shown
in Fig. 1. Finally, we shall also find that a crucial mea-
sure for the degree of mixing that might be present in
a given system is not the absolute value of the mixing
parameter m2

01 (or θ), but rather the value of this pa-
rameter as a fraction of the total degree of mixing that
would have been allowed for that system, given the con-
straints discussed above. The same is often true for the
splitting parameter ∆m2. Towards this end, we define
the mixing saturation

ξ ≡ m2
01

[m2
01]max

=
|tan(2θ)|
|tan(2θmax)|

=
m2

01√
m2

00(1 +m2
11)

(2.28)

Δm2
<0

Δm2
>0

-1.0 -0.5 0.0 0.5 1.0
0

π/8

π/4

3π/8

π/2

Δm2
/msum

2

θ

FIG. 5: Allowed ranges for the mixing angle θ (blue shaded
region), plotted as a function of ∆m2/m2

sum. Note that
θ is restricted to 0 or π/2 when ∆m2 = ±m2

sum — i.e.,
when m2

00 = 0 or m2
11 = −1, respectively. By contrast, when

∆m2 = 0, the allowed range for θ depends on the value of
m2

01: for m2
01 6= 0, the only allowed θ-value is θ = π/4 (blue

dot), while for m2
01 = 0 we find that tan(2θ) is indeterminate

and any value for θ is allowed (red line), depending on how
relevant limits are taken.

as well as the analogous splitting saturation

η ≡ ∆m2

[∆m2]max
=

∆m2

m2
sum

=
1−m2

00 +m2
11

1 +m2
00 +m2

11

. (2.29)

Note that in terms of these variables1 we have

tan(2θ) =
ξ

η

√
1− η2 . (2.30)

We emphasize, however, that a maximally saturated mix-
ing configuration with ξ = 1 does not necessarily imply
that the mixing itself is maximal or even large on an
absolute scale. For this reason, we shall usually specify
the degree of mixing in a given configuration by quoting
both ξ and θmax. Indeed, for many quantities, it will be ξ

1 We caution the reader that unlike the other variables we
have thus far introduced, neither ξ nor η has a unique time-
dependence. In other words, knowledge of the value of either ξ
or η at a given time does not fix the value of ξ or η at other
times without knowledge of the values of the more primordial
m2
ij variables from which ξ and η are derived. Thus, when we

write a relation such as that in Eq. (2.30), we are illustrating
the functional dependence of θ on ξ and η and asserting that
θ does not depend on the more primordial variables except in
these combinations. However, the time-dependence of θ cannot
be determined from such an expression and must be calculated
directly in terms of the primordial variables themselves.
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rather than θ or θmax which characterizes the behavior of
interest and which allows us to compare across systems
with different values of θ or θmax.

Note that for ∆m2 = 0, ambiguities can arise when
defining ξ. In particular, the middle expression in
Eq. (2.28) is formally indeterminate in such situations.
In this paper, for ∆m2 = 0, we shall therefore define ξ
through the final expression in Eq. (2.28). Thus ξ can
vary even though θ may be fixed at π/4. Moreover, again
following the final expression in Eq. (2.28), in this paper
we shall define

X
∣∣
∆m2=0

ξ=0
≡ lim

m2
01→0

(
X
∣∣
∆m2=0

)
(2.31)

for any quantity X. Thus the ξ → 0 limit will always be
a smooth one with θ = π/4, even for ∆m2 = 0.

D. Temporal properties of the model:
Basic features

Given the definition of our toy model, it is now rel-
atively straightforward to study the corresponding dy-
namics. Indeed, this can be done numerically if not an-
alytically, and certain features are entirely as expected
and relatively easy to understand. However, many other
features are surprising and will play a significant role in
what follows. In the remainder of this section, therefore,
we shall discuss general features of the time-evolution of
this model. In particular, we shall focus on the time-
dependence of the mass eigenvalues, mixing angles, and
mass eigenstates — quantities upon which our future re-
sults will rest.

We begin by studying the mass eigenvalues in our
model. At any moment in time, these masses are given
by

λ2
0,1 = 1

2 m
2
sum

[
1∓

√
η2 + (1− η2)ξ2

]
= 1

2 m
2
sum (1∓ η sec 2θ) . (2.32)

The late-time values of these masses are shown in Fig. 6,
while the evolution of these masses from early to late
times is shown in Fig. 7. Numerous features are imme-
diately apparent. First, as predicted from Eq. (2.32), we
see that the eigenvalues at early and late times (τ � τG
and τ � τG, respectively) are independent of the sign of
∆m2 (or η). [In this connection we recall from Fig. 5 that
sec(2θ) < 0 when η < 0.] Thus, the early- and late-time
values of λ2

0,1 are identical in the left and right panels of
Fig. 7. However, we see that the time-evolution of the
eigenvalues between these two endpoints is highly sensi-
tive to the sign of ∆m2. For ∆m2 > 0, the eigenvalues
evolve from initial to final values without any tendency
towards level-crossing. For ∆m2 < 0, by contrast, the
eigenvalues initially head towards each other as if to ex-
perience a level-crossing. However, whether this level-
crossing actually occurs depends on the value of the mix-
ing. For ξ > 0, the non-zero mixing between mass eigen-
states induces a level repulsion which ultimately prevents

λ_

12
λ_

02

| η |=0.0

| η |=0.3

| η |=0.5

| η |=0.7

| η |=1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ξ

λ_
2
/
m_

su
m

2

FIG. 6: The asymptotic (late-time) eigenvalues λi plotted as
functions of the late-time splitting and mixing parameters η

and ξ. For all values of η, we see that λ
2
0 → 0 and λ

2
1 → m2

sum

as ξ → 1.

a direct level-crossing. As a result, the eigenvalues veer
away from each other, and ultimately assume the same
late-time values that they had for ∆m2 > 0.

The case with ∆m2 < 0 and ξ = 0 is more subtle, and
deserves special discussion. As ξ → 0, we see from the left
panel of Fig. 7 that our eigenvalues λ0 and λ1 actually
meet near τG before bouncing off each other. [Note, in
this connection, that λ0 is always defined as the lighter
eigenvalue, consistent with Eq. (2.32).] In this sense, no
actual level-crossing occurs, even for ξ = 0; instead, each
eigenvalue develops a “kink” — i.e., a discontinuous slope
— at their meeting point near τ = τG.

Finally, for ∆m2 = 0, we see from Fig. 7 that there is
no tendency towards level-crossing. However, for ξ = 0,
the two eigenvalues approach each other asymptotically.

We can also study the mixing angle θ as a function of
time. The result is shown in Fig. 8. As we see, for ξ > 0
the mixing angle begins at zero, as expected, and rises
to a non-zero late-time value θ; this corresponds to ∆m2

transitioning from its initial value ∆m2 = m2
sum = 1 to

its final value ∆m2. Once again, however, the behavior of
the angle θ is highly sensitive to the sign of the late-time
value ∆m2. For ∆m2 > 0, the angle θ remains below
π/4 (i.e., within the lower right “lobe” of Fig. 5). For
∆m2 < 0, by contrast, the angle θ eventually grows above
π/4, moving from the lower right lobe of Fig. 5 to the
upper left. The case with ∆m2 = 0 will be discussed
below.

It is natural to define the time τθ at which θ crosses its
midpoint value θ/2; in general, this is the time for which

h(τθ) =
1√

1 + λ
2

1 − λ
2

0

. (2.33)
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FIG. 7: The time-evolution of the two mass eigenvalues λ2
0,1 as the phase transition unfolds, plotted for different mixing

saturations. Typical behaviors are shown for ∆m2 < 0 (left panel), ∆m2 = 0 (middle panel), and ∆m2 > 0 (right panel). In
all cases, the eigenvalues begin at {0, 1}, as expected. For ∆m2 > 0, the eigenvalues slowly transition to their late-time values
without any tendency towards level-crossing. For ∆m2 < 0, by contrast, the eigenvalues meet and rebound off each other in the
case of zero mixing (ξ = 0) but such a meeting is thwarted by level repulsion for all non-zero mixing. In general, the strength of
the level repulsion increases with degree of mixing ξ. Despite these different features at intermediate times, we observe that the
eigenvalues ultimately arrive at the same late-time values regardless of whether ∆m2 is positive or negative, in accordance with
Eq. (2.32). Finally, for ∆m2 = 0, we see that there is no tendency towards level-repulsion, but for ξ = 0 the two eigenvalues
approach each other asympotically.

Likewise, for ∆m2 < 0, we find that the transition be-
tween lobes at θ = π/4 occurs at the time τ∗ for which

h(τ∗) =
1√

1−∆m2
. (2.34)

In general, this “lobe-crossing” time τ∗ is distinct from
τG and τθ. However, τ∗ and τθ coincide when θ = π/2.
As we see from Fig. 8, this happens only when ∆m2 < 0
and ξ = 0.

Once again, this case with ∆m2 < 0 and ξ = 0
deserves special mention. At early times we have
∆m2 = m2

sum = 1, and our mixing angle θ begins at zero.
This angle then remains at zero all the way until the
eigenvalue meeting time shown in the left panel of Fig. 7;
note that this eigenvalue meeting time is indeed nothing
but τ∗ = τθ. At this time, θ changes instantaneously to
θ = π/2, consistent with the fact that after τ∗ we have
∆m2 < 0. Thus we see that θ behaves as a step func-
tion in this limit, with an effectively instantaneous field
rotation. Note that this “instantaneous” behavior in the
ξ → 0 limit applies only for ∆m2 < 0.

The situation with ∆m2 = 0 also deserves special at-
tention. As usual, we have θ = 0 at early times. For all
ξ 6= 0, this mixing angle θ then transitions to θ = π/4 at
late times. Moreover, as discussed above, it follows for-
mally from Eq. (2.31) that θ = π/4 even for ξ = 0. How-
ever, there is an important subtlety in the latter case. As
ξ → 0 with ∆m2 = 0, it turns out that h(τθ) = 1. This
in turn implies that τθ →∞! Thus, even though θ = π/4
in this case, we never actually reach the point at which
the corresponding mixing occurs. Rather, our two origi-
nal states φ0 and φ1 remain unmixed at all finite times.

Indeed, in some sense, the transition to θ = π/4 occurs
only when the two corresponding eigenvalues λ0 and λ1

actually meet. Note, in this connection, that even though
the field rotation does not occur at any finite time, the
mass eigenvalues λ2

0,1 nevertheless experience their nor-
mal evolution in the neighborhood of τG, a result which
follows directly from the time-dependence of the origi-
nal mass matrix and which is independent of mixing. In
other words, in this special case, the two timescales τG
and τθ are maximally separated.

Our discussion thus far has focused on the eigen-
value/mixing structure of the mass matrix as a function
of time. However, the corresponding field values also gen-
erally behave as one might expect, at least as far as their
grossest features are concerned. For times τ � τθ, our
two fields φλ0,1 are effectively uncoupled: φλ0 evolves in-
dependently of φλ1 , and indeed φλ1 remains vanishing.
For times τ ∼ τθ, by contrast, the phase transition gen-
erates a non-zero, time-dependent mixing which couples
the two fields together and thereby causes φλ1

to accrue
a non-zero value as well. Finally, for times τ � τθ, our
mixing angle θ is non-zero but essentially constant. This
means that a similar decoupling exists during this period
as well, except that our decoupled fields are now those lin-
ear combinations which are rotated relative our original
fields by θ. In general, each of these linear combinations
will have a non-zero field value, and will evolve inde-
pendently according to whether it is individually over-
damped or underdamped.

The limiting case with ∆m2 < 0 and ξ = 0 is again
worthy of special note. In this case, φλ0

retains its origi-
nal amplitude until the eigenvalue meeting time τ∗ = τθ.
The entire amplitude of φλ0

then transfers instanta-
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FIG. 8: The mixing angle θ, plotted as a function of time for
∆m2 = ±2 and different values of ξ. For early times τ � τG,
we generally have ∆m2 = m2

sum = 1 and θ = 0. The subse-
quent time dependence then depends critically on the sign
of the late-time value ∆m2. If ∆m2 < 0, then ∆m2 eventu-
ally switches from positive to negative values; this occurs at
τ = τ∗, where τ∗ is defined in Eq. (2.34). At this point, the
mixing angle θ passes from the lower “lobe” of Fig. 5 to the
upper lobe through the only allowed transition point between
the two lobes at ∆m2 = 0 and θ = π/4. For ∆m2 > 0, by
contrast, the mixing angle stays entirely within the lower lobe
of Fig. 5 and thus remains below π/4. Finally, for ∆m2 = 0,
the angle θ moves to the central point between the two lobes,
consistent with our expectation that θ = π/4. However, as
discussed in the text, it takes infinite time to do this as ξ → 0.

neously to φλ1
, where it remains for all later times. (This

follows from the observation that in this limit we have
an instantaneous rotation of our fields from θ = 0 to
θ = π/2.) This rapid amplitude transfer is consistent

with the instantaneous infinite value of θ̇ at τ∗ = τθ. As
a result of this amplitude transfer, quantities which de-
pend on the field amplitudes (such as the associated en-
ergy densities) transfer instantaneously from φλ0

to φλ1

at this time. In other words, they “ride” smoothly across
the eigenvalue collision in the left panel of Fig. 7, transi-
tioning from φλ0

to φλ1
. Of course, this is completely as

expected, reflecting nothing more than the fact that the
energy density began in our original field φ0 and remains
there when ξ = 0. All that has suddenly changed at the
eigenvalue collision time is the identification between this
field φ0 and our mass-eigenstate fields φλ0,1

.

One could, in principle, continue along this line of
inquiry. For example, one could proceed to study the
phase-space trajectories of our mass-eigenstate fields φλ0

and φλ1
, and map out how these trajectories depend on

the different defining parameters of our model. However,
an exhaustive study of this toy model is not our purpose

in this paper. Rather, as stated in the Introduction, in
this paper our interest in this toy model stems from the
fact that — despite its simplicity — it gives rise to cer-
tain features which have the potential to transcend our
typical expectations when interpreted in a cosmological
setting. It is therefore to these new features that we now
turn.

In keeping with the above observations, in the rest
of this paper we shall mostly concentrate on those re-
gions of parameter space in which our fields are already
underdamped — or are in the process of becoming un-
derdamped — during the mass-generating phase tran-
sition. This is important, since the time-dependent ef-
fects of our mass-generating phase transition tend to be
washed out if our fields remain overdamped while it oc-
curs. Thus, in this way, we shall be focusing on precisely
those parameter-space regions of interest: those which
are likely to exhibit a non-trivial interplay between the
width of the mass-generating phase transition, the tran-
sition between overdamped and underdamped regimes,
and the mixing between all of the fields experiencing
these effects.

III. TOTAL LATE-TIME ENERGY DENSITY

The total energy density ρ is the quantity of central
interest in this paper. The role it plays as a cosmologi-
cal observable gives it direct importance in any analysis
of our toy model — particularly at late times, after our
phase transition has been completed. In general, we are
interested not only in the total late-time energy density
ρ, but also in its distribution between the two individual
components ρλ. Moreover, in each case, we are particu-
larly interested in knowing the extent to which our mass-
generating phase transition might leave imprints on these
late-time energy densities. These are the issues that we
shall study in this section.

Calculating the energy density of the system proceeds
directly from the equations of motion for our two fields
and their derivatives. In the original {φ0, φ1} basis, the
total energy density is given by

ρ =
1

2

∑
i

φ̇2
i +

∑
ij

φiM2
ijφj

 . (3.1)

By contrast, in the mass-eigenstate basis {φλ0
, φλ1
} in-

troduced in Eq. (2.23), the total energy density is given
by

ρ =
1

2

∑
λ

[
φ̇2
λ +

(
λ2 + θ̇2

)
φ2
λ

]
+ θ̇

∑
λλ′

φ̇λελλ′φλ′ ,

(3.2)
where ελλ′ is the Levi-Civita symbol with ελ0λ1

≡ +1.
The first thing we observe is that in neither case can

we express our total energy density as a sum of individ-
ual contributions. Indeed, we cannot write ρ in the form
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ρ =
∑
i ρi or ρ =

∑
λ ρλ. The reason for this, as most

evident from Eq. (3.2), is ultimately that our fields ex-

perience a time-dependent mixing, with θ̇ 6= 0. Without
mixing — or even with only a constant mixing — such a
decomposition could have been done and individual con-
tributions identified. Thus, in this paper we shall never
refer to the individual contributions to the total energy
density except at late times when the mixing has essen-
tially stabilized and θ̇ = 0. Indeed, at late times, we can
then identify

ρλ =
1

2

(
φ̇2
λ + λ

2
φ2
λ

)
, (3.3)

where the overbar indicates late-time values in accor-
dance with Eq. (2.27).

As already discussed at the end of Sect. II, the effects
of the mass-generating phase transition are washed out
if our fields are still overdamped when it occurs. Like-
wise, given the formulation of our toy model, there is
no meaningful way for the mass-generating phase tran-
sition to occur very much later than the critical over-
damped/underdamped transition for either of our two
fields: the lighter field is massless prior to the mass-
generating phase transition and as such remains over-
damped during this entire period, while the heavier field,
either formally overdamped or underdamped, has no am-
plitude of its own until the mass-generating phase tran-
sition. For this reason, in this section we shall focus
on those regions of parameter space in which our fields
become underdamped near the time at which the phase
transition begins.

The most complete way of surveying physics within
this regime is to vary both τG and ∆G, with τG limited

to the range τG >∼ τ
(i)
ζ , where each τ

(i)
ζ is implicitly de-

fined (as in Fig. 2) as the time at which 3H = 2λi. This
method, which by construction surveys all possibilities,
thus involves variations in two independent parameters.
However, another way of surveying many aspects of the
physics within this regime is to fix τG, and instead to vary
the width of the phase transition ∆G. By considering
fiducial values of τG which are carefully chosen with re-
spect to the m2

ij values, we can reach situations in which

τ
(i)
ζ are near τG or just prior to it. These values of τ

(0)
ζ

are illustrated in Fig. 9, and we see that this method also

allows us to reach the desired values of τ
(0)
ζ . It is there-

fore this latter approach that we shall follow in the next
two sections.

Given our choices for τG and ∆G, we can then cal-
culate the late-time total energy density ρ for different
values of the m2

ij parameters — i.e., for different values

of m2
sum, ∆m2, and (ξ, θmax). Our goal is to understand

the effects on the total late-time energy densities ρ that
emerge when a non-zero mixing, parametrized by ξ, and
a non-zero width ∆G for our mass-generating phase tran-
sition are present simultaneously.
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FIG. 9: The critical damping time τ
(0)
ζ for the lighter field

φλ0 in a matter-dominated universe, expressed as a number
of widths ∆G prior to the central phase-transition time τG
and plotted as a function of ∆G/τG for different values of τG.
For τG ∼ 1, the critical damping transition essentially occurs
during the central portion of the mass-generating phase tran-
sition for all ∆G; for large τG, by contrast, the critical damp-
ing transition occurs just prior to the mass-generating phase
transition. These two cases thus survey our main regions of
interest in this paper.

Our results are shown in Figs. 10 through 12: In
Figs. 10 and 11 we assume τG = 1 (for radiation-
and matter-dominated universes respectively), while in
Fig. 12 we assume τG � 1 (for which matter- and
radiation-dominated universes yield the same results).
In each of these figures we survey values of the late-time
mixing saturation ξ within the range 0 ≤ ξ < 1; note that
we refrain from considering the actual limiting case with
ξ = 1 when discussing late-time quantities such as the
late-time energy density ρ because the lighter field φλ0

remains massless at late times when ξ = 1 (as evident
from Fig. 6) and therefore never technically enters the
asymptotic underdamped region which characterizes our
definition of “late” times. We also note that although
the left, center, and right panels within each figure cor-
respond to different values of the maximum allowed mix-
ing angle θmax, we see that it is only in terms of the
mixing saturation ξ that we can make sensible compar-
isons across the different panels. Indeed, although a fixed
change in ξ within a panel with large θmax corresponds
to a much larger change in the absolute mixing angle θ
than it does within a panel with small θmax, we see that
it is only the changes in ξ rather than θ which can be
compared meaningfully across panels. For this reason,
even though the value of θmax is important in order to
express our results in terms of absolute mixing angles,
in the following we shall simply describe our mixings as
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FIG. 10: Behavior of the total late-time energy density
ρ(∆G, ξ) when mixing effects, parametrized by ξ, are com-
bined with a non-zero width ∆G for the mass-generating
phase transition. For these plots we adopt a relatively small
fiducial time τG = 1.0 and assume a radiation-dominated uni-
verse; we also hold m2

sum = 4 and take ∆m2 = −3, 0,+3 for
the left, center, and right panels, respectively. In each case
we plot the late-time energy density ρ as a function of the
phase-transition width ∆G for different values of the mixing
saturation ξ, where in each panel ρ is normalized to its value
for ∆G = 0 and ξ = 0.
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FIG. 11: Same as Fig. 10, but for a matter-dominated uni-
verse.

small or large depending on the corresponding values of
ξ.

These figures illustrate the effects of turning on a fi-
nite width ∆G for the mass-generating phase transition in
conjunction with non-zero mixing between our two fields.
For the small-τG regime plotted in Figs. 10 and 11, we ob-
serve that small mixing actually enhances the late-time
energy density ρ. By contrast, we see that large mix-
ing actually suppresses the late-time energy density ρ.
Indeed, we see from Figs. 10 and 11 that these effects
(in both directions) are more pronounced for matter-
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FIG. 12: Same as Figs. 10 and 11, except that we now adopt
a relatively large fiducial time τG = 104. For such large values
of τG, the results are nearly the same for both radiation- and
matter-dominated universes. Note that unlike Figs. 10 and
11, the vertical axes here are logarithmic.

dominated universes than radiation-dominated universes
and for situations in which ∆m2 is positive rather than
zero or negative.

For the large-τG regime plotted in Fig. 12, by contrast,
we see that matter- and radiation-dominated universes
give rise to identical results. All late-time energy den-
sities ρ, regardless of the mixing saturation ξ, share a
common value when ∆G = 0. However, unlike the small-
τG case, the late-time energy densities experience no en-
hancement at all, even in the absence of mixing (ξ = 0).
Indeed, ρ experiences only a suppression for non-zero

∆G — a suppression which, given the logarithmic ρ axes
within Fig. 12, grows much more severe than it was for
small τG. Moreover, we see that this suppression of the
late-time energy density ρ is stronger for negative ∆m2

(i.e., for negative η) than for zero or positive — a feature
which is completely reversed relative to the small-τG case!
Finally, we observe the emergence of a non-monotonic
“oscillatory” behavior for ρ as a function of ∆G when τG
is large and when the mixing saturation ξ grows close to
1. This feature is most pronounced when ∆m2 is pos-
itive, but exists for all ∆m2. These oscillations will be
discussed in Sect. V, and indicate a strong sensitivity of
the suppression factor relative to even small variations in
the phase-transition width ∆G.

All of these results illustrate the dramatic conse-
quences that ensue when we consider the timescales
associated with both our mass-generating phase tran-
sition and the mixing it generates. For example, we
see from the ∆m2 > 0 plot in Fig. 11 that mixing has
no effect on the total late-time energy density ρ when
the mass-generating phase transition is rapid (i.e., when
∆G = 0). Thus, it is only the existence of a non-zero
phase-transition timescale which allows the mixing to
leave a non-trivial imprint at late times! Moreover,
we see from these figures that the enhancements and
suppressions experienced by ρ are typically quite large,
stretching from 20% or 30% in the case of enhancements
all the way to many orders of magnitude in the case of
suppressions! These effects can thus have dramatic im-
plications for the relative size of the corresponding slice
of the “cosmic pie” — i.e., for the overall composition of
the total late-time energy budget of the universe.

It is also instructive to understand those limits of the
above results in which one or the other of our two vari-
ables ξ and ∆G is taken to zero. We begin by focus-
ing on the effects that emerge solely due to the presence
of a non-zero width ∆G for the mass-generating phase
transition (i.e., the effects that occur when ξ = 0). Re-
sults are shown in Fig. 13, where we plot contours of
the total normalized late-time energy density ρ(σ)/ρ(0)
within the (τG, σ) plane, where σ ≡ ∆G/(

√
πτG) as in

Eq. (2.13). Generally, we see from Fig. 13 both suppres-
sion and enhancements in the late-time energy density
are possible, depending on whether τG >∼ 5 or τG <∼ 1 re-
spectively. These results therefore explain the behaviors
of the ξ = 0 curves in Figs. 10, 11, and 12. Furthermore,
we see from Fig. 13 that ρ(∆G) is largely insensitive to
σ, and instead depends almost exclusively on the value of
τG. Indeed, for τG >∼ 1, we see from Fig. 13 that ρ(∆G)

scales approximately as τ−1
G . This in turn implies that

ρ(∆G) ∼ ∆−1
G in this region. This observation will be

discussed further in Sect. IV.

Conversely, we can also study the effects that arise due
to mixing alone (i.e., with ∆G = 0). It turns out that
when ∆G = 0, the late-time energy density ρ can actu-
ally be calculated analytically for arbitrary mixing; the
general result is given in Eq. (A8). In Fig. 14, we choose
values ∆m2 = 3 and m2

sum = 4, and plot the correspond-
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FIG. 13: Contours of the total late-time energy-density en-
hancement/suppression factor ρ(∆G)/ρ(0), plotted in the
(τG, σ) plane, assuming a matter-dominated universe with-
out mixing (ξ = 0) and m2

00 = 1. The thick black line running
vertically and along the σ = 0 axis is the contour for which we
have neither enhancement nor suppression. The correspond-
ing contours for a radiation-dominated universe are similar.
We observe that in the absence of mixing, a finite width for
the mass-generating phase transition tends to modify the late-
time energy density ρ(σ) compared to what it would have
been for an instantaneous phase transition; this suppresses
ρ(σ) rather significantly for τG >∼ 5, but enhances ρ(σ) for

τG <∼ 1. Remarkably, these results are generally insensitive

to σ as long as σ >∼ 0.1, and follow an approximate scaling

behavior ρ ∼ ∆−1
G in this region.

ing late-time energy density ρ(ξ) as a function of the
late-time mixing saturation ξ, normalized to its unmixed
value ρ(ξ = 0), for a variety of different τG. For ξ = 0,
this corresponds to a situation in which our two original
unmixed fields φ0,1 remain uncoupled, with all of the en-

ergy density remaining in φ0; by contrast, as ξ increases,
increasing amounts of energy density are shared between
our two fields during the mass-generating phase transi-
tion. Surprisingly, we see from Fig. 14 that increasing
ξ results in an enhanced dissipation of the total energy
density, so that the total late-time energy density ρ(ξ)
is suppressed relative to what it would have been in the
absence of mixing. Indeed, we see from Fig. 14 that this
suppression is strongest for relatively small τG and rela-
tively large mixing saturations ξ. Moreover, as evident
from the calculation in Appendix A, this effect exists in
all cases except for a matter-dominated epoch. This ef-
fect was first observed in Ref. [35] within the context of an
infinite tower of Kaluza-Klein axion modes, where it was
exploited in order to permit a higher-dimensional loosen-
ing of the usual four-dimensional overclosure bounds on
the Peccei-Quinn scale fPQ. However, we now see that
this effect is completely general, and persists even when
only two modes are involved.
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FIG. 14: Suppression of the late-time energy density ρ due to
mixing effects alone, with ∆G = 0, in a radiation-dominated
universe. We assume an instantaneous phase transition at
τ = τG, and plot the corresponding late-time energy density
ρ(ξ) as a function of the late-time mixing saturation ξ, nor-
malized to its value at ξ = 0, for different choices of τG. We
see that in all cases the late-time energy density ρ(ξ) ex-
periences a suppression which grows increasingly severe as
the mixing saturation is increased. As discussed in the text,
the magnitude of this effect increases as η ≡ ∆m2/m2

sum → 1
(i.e., as m2

00 → 0), and is entirely absent if the phase transi-
tion instead occurs during a matter-dominated epoch or more
generally if τG � 1.

We thus conclude that for phase transitions occurring
during a radiation-dominated epoch, mixing alone in-
duces a significant suppression in the late-time energy
density. Indeed, this is true even if the phase transition is
treated as instantaneous. This effect grows in significance
as ∆m2 → m2

sum and ξ → 1. This effect is also largest

when τG ∼ τ (i)
ζ , and ultimately vanishes for τG � τ

(i)
ζ .

Note that all of these observations are consistent
with the plots shown in Figs. 10, 11, and 12. For
∆G = 0, we see that all of the plotted curves begin at
ρ(∆G, ξ)/ρ(0, 0) = 1 except for those in Fig. 10, where
the mere fact of having ξ 6= 0 induces a suppression of
the late-time energy density, even for ∆G = 0.

Finally, along the same lines, it is interesting to con-
template what happens for more general universes be-
yond those that are radiation-dominated. The corre-
sponding results for universes with general values of κ
are shown in Fig. 15. We see that mixing alone indeed
produces a suppression of the late-time energy density for
universes with κ < 2, but this suppression actually be-
comes an enhancement for universes with κ > 2! More-
over, as expected, both effects become stronger as the
mixing saturation ξ increases — strong enough to change
the late-time energy density by factors of two or three or
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FIG. 15: Suppression of the late-time energy density ρ due
to mixing effects alone, with ∆G = 0, for arbitrary universes
parametrized by κ. As in Fig. 14, we assume an instantaneous
phase transition at τ = τG, but we now plot the corresponding
late-time energy density ρ(ξ) as a function of κ, normalized
to its value at ξ = 0, for different choices of ξ. We see that
mixing causes a suppression of the late-time energy density
within κ < 2 universes but an enhancement within κ > 2 uni-
verses — indeed, these effects disappear only in the special
case of a matter-dominated universe. These effects can there-
fore produce significant modifications of the final late-time
energy density, even for instantaneous mass-generating phase
transitions.

even more. Indeed, it is only for a matter-dominated
universe (corresponding to κ = 2) that this effect disap-
pears.

IV. INDIVIDUAL LATE-TIME ENERGY
DENSITIES

In the previous section, we focused on only one quan-
tity: the total late-time energy density ρ. However, an-
other important feature is the actual distribution of this
total energy density ρ amongst the two fields of our sys-
tem. We shall now proceed to study this issue.

In Fig. 16, we show the behavior of the individual late-
time energy densities associated with φλ0

(the lighter
field) and φλ1

(the heavier field) for a mass-generating
phase transition occurring at τG = 104. It is therefore
the sum of these two energy densities which produces
the results in Fig. 12; recall that these results are the
same for matter- and radiation-dominated universes. It
turns out that there are many features illustrated within
Fig. 16 which will be important for our future results.
We shall therefore step through these features, one by
one.

We begin by concentrating on the special case without

mixing (i.e., with ξ = 0). This will allow us to study the
effects of the non-zero phase-transition width ∆G for a
single component alone without the complications due to
mixing. For ∆m2 ≥ 0, all of the energy density arising
due to the mass-generating phase transition accrues to
the lighter field φλ0 . For ∆m2 < 0, by contrast, all of
the late-time energy density is associated with the heavier
field φλ1 , as discussed at the end of Sect. II.

In either case, we observe from Fig. 16 that the cor-
responding late-time energy density ρλ remains essen-
tially constant (i.e., independent of ∆G) for ∆G

<∼ 2π/λ.
This makes sense, as the effects of introducing a non-zero
width for our phase transition will be essentially invisi-
ble if the mass generation occurs more rapidly than the
natural timescale of oscillations of our (underdamped)

field φλ. In other words, for ∆G
<∼ 2π/λ, the process

of pumping energy density into our system occurs with
what may be considered to be maximum efficiency, since
the phase transition appears to be effectively instanta-
neous with respect to the natural oscillation timescale.
However, for ∆G

>∼ 2π/λ, the field oscillations tend to
compete against the process of mass generation. As a re-
sult, the mass-generating phase transition is less efficient
in pumping energy density into our system, thereby in-
ducing a suppression in the late-time energy ρλ which
ultimately scales as an inverse power of ∆G:

ρλ(∆G, 0) ∼ 1/∆G for ∆G � 2π/λ . (4.1)

Thus, once ∆G exceeds the natural oscillation period of
our mass eigenstate, increasing the width of the phase
transition has the effect of introducing a power-law sup-
pression of the corresponding late-time energy density.

These results hold for the unmixed scenarios with
ξ = 0. However, for the lighter fields φλ0 (correspond-
ing to the top row of Fig. 16), we see that the above
asymptotic behavior continues to hold regardless of the
value of the mixing :

ρλ0
(∆G, ξ) ∼ 1/∆G for ∆G � 2π/λ0 . (4.2)

Thus, we see that increasing the width of the phase tran-
sition continues to be associated with a power-law sup-
pression of the late-time energy density of the lighter field
— even in the presence of non-zero mixing.

Turning on a mixing between our two fields also has
a number of other important effects on their individual
late-time energy densities. For the lighter fields φλ0

(as
considered along the top row of Fig. 16), the most promi-
nent effect is of course the set of very strong oscillations
which are induced for very large mixing saturations ξ <∼ 1

and “intermediate” widths 1 <∼ ∆G
<∼ 100. We shall defer

our discussion of these oscillations until the next section,
but we see from Fig. 16 that these oscillations are rel-
atively large, occasionally enhancing the corresponding
late-time energy densities above what they would have
been in the absence of mixing by several orders of mag-
nitude! Indeed, this enhancement of the corresponding
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FIG. 16: Behavior of the individual late-time energy densities ρλ0,1
(∆G, ξ) when mixing effects, parametrized by ξ, are combined

with a non-zero width ∆G for the mass-generating phase transition. For these plots we adopt the large fiducial time τG = 104

utilized for Fig. 12, which leads to identical results for radiation- and matter-dominated universes. The top row shows results
for ρλ0

(associated with the lighter state in all cases), while the bottom row shows results for ρλ1
(associated with the heavier

state); we have also held m2
sum = 4 and take ∆m2 = −3, 0,+3 for the left, center, and right columns, respectively. In each

case we plot the late-time energy density ρλ as a function of the phase-transition width ∆G for different values of the mixing
saturation ξ, normalized to its value for ∆G = 0. Note that we refrain from plotting curves for ξ = 0 (and instead plot curves
for ξ = 0.05) in cases where the corresponding energy densities vanish.

late-time energy densities above their ξ = 0 values per-
sists even for values of ∆G which lie beyond the actual
oscillations themselves.

As a result, we see that in the presence of a non-zero
width for the phase transition, mixing has a general ten-
dency to enhance the late-time energy density of the
lighter field — all without disturbing the power-law sup-
pression discussed above. Indeed, for the lighter fields
φλ0

, the effects of the non-zero transition width ∆G and
the non-zero mixing saturation ξ tend to pull in opposite
directions: the width tends to suppress the correspond-
ing late-time energy density while the mixing tends to
enhance it. As evident from the plots along the top row
of Fig. 16, the nature of the net result (either an overall
enhancement or overall suppression) therefore depends
non-trivially on the precise values of ∆G and ξ involved.

By contrast, for the heavier fields φλ1
(for which the

corresponding energy densities are plotted along the bot-
tom row of Fig. 16), the effects of non-zero mixing are
quite the opposite: the enhancement discussed above is

gone, and instead there is now an additional suppression
which helps to drive the corresponding energy densities
to even smaller values, as functions of ∆G, than we had
for the lighter fields!

It is important to understand the origins of this ad-
ditional suppression. Unlike the lighter field φλ0 , which
obtains its energy density directly from the phase tran-
sition through the generation of a non-zero mass, the
heavier field φλ1

actually gains its energy density when
it gains an overall field amplitude through mixing with
the lighter field. The magnitude of the resulting energy
density is then governed by two factors: the magnitude
of the field amplitude generated, and the masses that are
also generated by the phase transition.

Thus, while the natural timescale governing the rate at
which the energy density is originally pumped into the
lighter field is given directly by ∆G — and thus by the
function h(τ) plotted in Fig. 3 — the natural timescale
governing the rate at which the energy density is pumped
into the heavier field is governed not only by ∆G but also
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FIG. 17: The ratio of the two timescales ∆G and ∆θ, plotted
as a function of η for different mixing saturations ξ. In all
cases, we see that ∆θ < ∆G, with ∆θ � ∆G for η < 0 and
ξ � 1. The dots represent the approximate analytical result
in Eq. (4.4). The distinction between ∆θ and ∆G has impor-
tant implications for the energy density associated with the
heavier field φλ1 , since ∆G governs the rate at which the mass
of this field is modified during the phase transition while ∆θ

governs the rate at which the amplitude of this field is gener-
ated as a result of its mixing with the lighter field.

by the rate of change of the mixing angle θ plotted in
Fig. 8. In analogy with Eq. (2.12), we may even define
a corresponding width ∆θ for the mixing angle θ via the
slope of θ(τ) at its midpoint θ/2:

∆θ ≡ (θ/θ̇)
∣∣∣
τθ

; (4.3)

here τθ, as defined in Eq. (2.33), is defined analogously
to τG as the time at which θ = θ/2. A rough analytical
approximation for ∆θ when η < 0 is given by

∆θ ≈
ξ

3|η|
∆G for η < 0 . (4.4)

The magnitudes of ∆G and ∆θ are compared in Fig. 17,
from which we see that ∆θ never exceeds ∆G. Indeed,
we see from Fig. 17 that ∆θ can be much smaller than
∆G for η < 0 and ξ � 1. We thus see that during our
mass-generating phase transition, the mixing angle θ al-
ways changes at least as rapidly as do the eigenvalues λi,
and can in fact under certain circumstances change even
more rapidly, the latter despite the fact that both sets of
changes arise due to the same phase transition.

This observation is directly relevant for the manner in
which the heavier field accrues its energy density from the
mass-generating phase transition. As such, this feature
is thereby directly relevant for the resulting behavior of

the late-time energy density ρλ1
. There are three distinct

cases to consider.

• ∆G � 2π/λ1: In this case, the oscillations of the
heavier field are so slow during the phase transi-
tion that all aspects of the phase transition appear
effectively instantaneous. This is true for the gener-
ation of the amplitude of the heavier field as well as
the change in its mass. Energy density is thereby
delivered to the heavier field with maximum effi-
ciency, in a manner which is completely insensitive
to the non-zero timescales ∆θ and ∆G associated
with the phase transition and which is thereby pro-
tected against all of their associated dissipating ef-
fects. This behavior is evident for sufficiently small
∆G within the plots along the lower row of Fig. 16.

• ∆θ . 2π/λ1 . ∆G: In this case, the oscillations of
the heavier field are sufficiently slow that the gener-
ation of its field amplitude appears to be effectively
instantaneous; these oscillations are nevertheless
sufficiently rapid that full oscillations can occur
during the change in field mass. The net result is
that the heavy-field energy density ρλ1

experiences
the same suppression as does the light-field energy
density ρλ0

, with both depending non-trivially on
∆G and ultimately scaling inversely with ∆G. Note
that this case exists only for situations in which ∆θ

is significantly smaller than ∆G, which according
to Fig. 17 tend to emerge only for ∆m2 < 0 and
relatively small mixing.

• 2π/λ1 . ∆θ: In this case, the field oscillations of
the heavier field are sufficiently rapid that full os-
cillations are occurring not only during the change
in its mass but also during the generation of its am-
plitude. This latter feature leads to an additional
source of suppression for the late-time energy den-
sity beyond what the lighter field experiences, and
causes ρλ1

to exhibit an even more dramatic sup-
pression as a function of ∆G than that exhibited by
ρλ0

. This behavior is clearly evident for sufficiently
large ∆G in the plots along the lower row of Fig. 16.

The above discussion describes the behaviors of the in-
dividual components ρλ as functions of ∆G and ξ. How-
ever, our final task is to determine how much each of
these individual components contributes to the total en-
ergy density ρ. Of course, to do so requires that we under-
stand not just the intrinsic behaviors of these individual
components as functions of ∆G and ξ, but also the rela-
tive sizes of these individual components. In other words,
we need to understand the relative normalization of the
curves for ρλ0

in the top row of Fig. 16 relative to those
for ρλ1

in the bottom row. However, this relative normal-
ization may easily be determined in the ∆G = 0 limit, for
which analytical results are given in Appendix A. Indeed,
use of the virial approximation λiτG � 1, which is valid
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for the plots in Fig. 16, yields the ratio

ρλ0
(0, ξ)

ρ(0, ξ)
=

λ
2

0 cos2 θ

λ
2

0 cos2 θ + λ
2

1 sin2 θ
= cos2 θ

(
1− η sec 2θ

1− η

)
(4.5)

as the fraction of the total late-time energy density re-
maining in the lighter field. As expected, this quan-
tity evolves monotonically from unity at θ = 0 to zero
at θ = θmax [where θmax is defined in Eq. (2.26)]. It
may thus be greater or less than 50%, depending on the
eigenvalues and mixing angles in question. Note that in
the limit of small mixing (which corresponds to θ ≈ 0
or θ ≈ π/2), the result in Eq. (4.5) implies that whether
the bulk of the energy density winds up at late times
associated with the lighter or heavier field depends sim-
ply on the sign of η rather than its magnitude. (Re-
call, in this connection, that η → −η implicitly changes
θ → π/2− θ.)

The result in Eq. (4.5) holds only for ∆G = 0. How-
ever, as ∆G grows larger, this ratio will change. For the
total energy densities plotted in Fig. 12, the correspond-
ing fractional results are shown in Fig. 18 as a function
of ∆G. It is easy to understand the behavior shown in
Fig. 18. Regardless of the fraction of the total late-time
energy density associated with the lighter field φλ0 when
∆G = 0, we have already seen that the energy densities
associated with the heavier fields are typically more sup-
pressed as a function of ∆G than are the energy densi-
ties associated with the lighter fields. Thus, regardless of
the late-time energy-density configuration when the phase
transition is instantaneous, we see that increasing the
width of the phase transition has the effect of throwing
an increasingly large share of the total late-time energy
density into the lighter field. Indeed, in some cases, we
see that we can entirely reverse the distribution of the
total energy density from the heavier field to the lighter
field, simply by adjusting the timescale over which the
phase transition occurs!
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FIG. 18: The fraction of the total late-time energy density ρ(∆G, ξ) which is associated with the lighter field φλ0 , plotted as
functions of ∆G for different values of ξ, with τG = 104. Regardless of the small-∆G values of this fraction [as given analytically
in Eq. (4.5)], we see that increasing the width ∆G of the phase transition generally has the net effect of transferring more and
more of the total energy density into the lighter field. Thus, simply by adjusting the width of the phase transition, we see that
we can often entirely reverse the distribution of the late-time energy density.
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V. PARAMETRIC RESONANCE

We now turn to what is perhaps the most prominent
feature within the plots shown in Figs. 12, 16, and 18:
the appearance of non-monotonicities in the late-time en-
ergy densities ρλ associated with the lighter fields φλ0

as functions of the phase-transition width ∆G. As in-
dicated in Sect. III, these oscillations grow particularly
large when τG is large and when the mixing saturation
ξ grows close to 1. These non-monotonicities indicate
that within this region of parameter space there exists an
extremely strong sensitivity of the late-time energy den-
sity ρλ0

to even small variations in the phase-transition
width ∆G. Moreover, as evident from Fig. 16, these non-
monotonicities can often enhance ρλ0

by several orders
of magnitude!

These non-monotonicities are yet another consequence
of the interplay between the width of our phase tran-
sition and the mixing it induces. It is not difficult to
understand the origin of these oscillations: ultimately
they are parametric resonances triggered by our mass-
generating phase transition. Recall that a parametric
resonance generically occurs when the mass of an oscilla-
tor itself exhibits an oscillatory behavior whose frequency
is approximately twice the natural frequency of the oscil-
lator. (An example of this is a child “pumping” a swing
by alternatively standing and squatting on the swing seat
at the correct moments during the period of the swing.)
In such systems, the amplitude of oscillation grows expo-
nentially and without bound unless the oscillator also has
a frictional damping term. A similar behavior can also
emerge if the friction term (rather than the mass term)
experiences the oscillatory behavior.

At first glance, it may seem that our system of coupled
scalar fields has no means of experiencing a parametric
resonance. The equations of motion of our model are
given in Eq. (2.7), and although both the Hubble damp-
ing term H(τ) and the mass matrix M2

ij in our model
are time-dependent, the Hubble term is monotonically
falling. Likewise, the h(τ)-function — which governs the
time-development of our mass matrix, as in Eq. (2.9) —
is also monotonic.

However, this is where the mixing plays a critical role.
Because of the non-zero mixing inherent in this sytem,
the aspects of the mass matrix which are important are
not its individual components m2

ij but rather its eigen-
values λi. Indeed, even though the mass-matrix compo-
nents m2

ij(τ) are all monotonic as functions of time τ , the
eigenvalues λi need not be. These eigenvalues were plot-
ted as functions of time in Fig. 7, and we see that for the
smaller eigenvalue λ0 the mixing induces a level-repulsion
that often results in a non-monotonic “pulse”. This pulse
is more prominent for ∆m2 < 0 than for ∆m2 > 0, but it
is ultimately a generic feature of the behavior of the lower
eigenvalue for sufficiently saturated mixing. Indeed, this
pulse grows increasingly dramatic as ξ → 1, and has a
width governed by ∆G. In general, it is straightforward
to show that a pulse will always appear for the lightest

eigenvalue if the extra contribution to the squared-mass
matrix that comes from the mass-generating phase tran-
sition has negative determinant — i.e., detm2

ij < 0.
Strictly speaking, a single pulse does not oscillatory

behavior make. However, during the relevant time inter-
val near τG, this pulse may be regarded as one oscillation
within a full sinusoidal pattern. This situation is illus-
trated schematically in Fig. 19. Of course, variations in
∆G directly affect the width of this pulse, and thereby
change the effective pulse frequency. As a result, there
will exist a single value of ∆G for which this frequency
is exactly twice the natural frequency of our oscillator,
and for which our primary parametric resonance emerges.
Even greater values of ∆G then correspond to the higher
harmonics of this resonance.

This, then, is the origin of the parametric oscillations
apparent in the plots shown in Figs. 12, 16, and 18.
As such, this entire phenomenon is a prime example of
the interplay between the mixing ξ and the width of
the mass-generating phase transition: the non-zero mix-
ing produces the level repulsion that leads to the pulse,
while the non-zero width of the phase transition endows
this pulse with the specific width/frequency needed for
it to potentially trigger an actual resonance. Moreover,
with this explanation, we now understand why these res-
onances occur only for certain values of ∆G, and only
for the lighter field. This also explains why these reso-
nances grow stronger as ξ → 1. Furthermore, although
this pulse exists for both ∆m2 < 0 and ∆m2 > 0 (as ev-
ident in Fig. 7), we have already learned in the previous
section that for the intermediate values of ∆G relevant
for the parametric resonance, the energy density of the
lighter field contributes a greater fraction of the total
energy density for ∆m2 > 0 than it does for ∆m2 < 0.
This behavior is illustrated, for example, in Fig. 18. It
is for this reason that the total energy density ρ exhibits
a stronger parametric resonance for ∆m2 > 0 than for
∆m2 < 0 (as evident in Fig. 12), even though the in-
dividual component ρλ0

exhibits a stronger parametric

resonance for ∆m2 < 0 than for ∆m2 > 0 (as evident in
Fig. 16).

In general, it is easy to determine the values of ∆G for
which such parametric resonances occur. As indicated
above, we imagine that λ2

0(τ) experiences a “pulse” cen-
tered at τ = τp, as sketched in Fig. 19. Within the region
of the pulse, we then approximate the behavior of the
pulse as part of a sinusoidal function with an effective
frequency ωeff :

λ2
0(τ) ≈ 1

2λ
2
0(τp)

{
1 + cos[ωeff(τ − τp)]

}
(5.1)

for τ ≈ τp. From Eq. (5.1) we then find that

ω2
eff = − 4

(
λ̈0

λ0

)∣∣∣∣∣
τ=τp

. (5.2)

A pulse with this frequency will lead to an nth-order
parametric resonance only if ωeff is (2/n) times the nat-
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FIG. 19: A schematic illustration of the “pulse” (solid blue
curve) experienced by the smaller eigenvalue λ0(τ) near
τ ≈ τp and a full sinusoidal function (dashed red curve) to
which it may be approximated in the vicinity of the pulse.
As discussed in the text, this approximation allows us to ex-
tract the effective frequency ωeff associated with the pulse and
thereby determine the mathematical condition under which
an nth-order parametric resonance occurs.

ural oscillation frequency of our system. The case with
n = 1 produces the primary parametric resonance, while
the cases with n ∈ Z > 1 produce its higher-order har-
monics. However, near τ ≈ τp, the natural oscillation
frequency associated with the lightest field is nothing but
λ0(τp), since it is the mass of the field which drives its
oscillations. We thus must demand

ωeff =
2

n
· λ0(τp) . (5.3)

In other words, a parametric resonance will occur only
when two timescales are balanced: the timescale 1/ωeff

of the pulse, and the timescale 1/λ0(τp) of the field oscil-
lations in the vicinity of the pulse. Combining this with
Eq. (5.2), we then obtain a condition for an nth-order
parametric resonance:(

λ̈0

λ3
0

)∣∣∣∣∣
τ=τp

= − 1

n2
, n ∈ Z+ . (5.4)

Variations in ∆G will modify the value of the left side of
this equation. Thus, there exist a discrete set of values

∆
(n)
G for which this equation can be satisfied, one for each

value of n. These are then the phase-transition widths
for which parametric resonances exist.

The solutions for ∆
(n)
G can be obtained numerically,

and our results are shown in Fig. 20. We see that the

values of ∆
(n)
G generally increase with n, as expected.

Likewise, these critical widths also increase as functions
of η and ultimately diverge as η → 1. Moreover, super-
imposed on this plot are contours showing the values of
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FIG. 20: The phase-transition widths ∆
(n)
G (n = 1, 2, 3) at

which the first three parametric resonances occur, plotted as
functions of η. Contours showing 2π/λ1 in relation to ∆θ are
also superimposed. The region with large η is thus one in
which our parametric resonances occur while ∆θ � 2π/λ1 —
i.e., a region in which the total late-time energy density ρ is
dominated by the contribution from the lighter field experi-
encing the parametric resonance.

2π/λ1 in relation to ∆θ. As noted in Sect. IV, the smaller
2π/λ1 is in relation to ∆θ, the more suppressed is the
energy-density contribution of the heavier field relative
to that of the lighter field and hence the more the lighter
field (which feels the parametric resonance) dominates
the total energy density. This then confirms our previ-
ous expectation that the parametric resonance, through
stronger within ρλ0

when ∆m2 < 0, is nevertheless more

pronounced within ρ when ∆m2 > 0.
Thus, we conclude that parametric resonances not only

occur, but can also dominate the total energy density of
our system. Such parametric resonances can distort the
resulting late-time energy densities by several orders of
magnitude, and thus may play an important role in early-
universe cosmology.

VI. RE-OVERDAMPING

We now turn to another novel feature which results
from the confluence between mixing and a finite phase-
transition width: a phenomenon which we refer to as
“re-overdamping”.

As discussed at the beginning of Sect. II, any scalar
field φ with mass λ(t) will experience overdamped behav-
ior (and thus function as vacuum energy) at times t for

which 3H(t)/2 >∼ λ(t). By contrast, such a field will expe-
rience underdamped behavior (and thus function as mat-
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ter) when 3H(t)/2 <∼ λ(t). Of course, H(t) ∼ 1/t in any
post-inflationary epoch. Thus, in situations for which
λ(t) is either constant or monotonically increasing, as il-
lustrated in Fig. 2, there exists a single, relatively short
era of times t for which 3H(t)/2 ≈ λ(t). Indeed, this
is the period, as discussed in Sect. II, during which our
scalar field φ is transitioning from overdamped to under-
damped behavior. After this transition, our field then
remains underdamped for all future times.

This is the standard situation, and assumes that λ(t) is
either constant or monotonically increasing. However, as
we discussed in Sect. V, this need not be true when multi-
ple fields mix in the presence of a mass-generating phase
transition of non-zero width. Indeed, as we have seen in
Sect. V for our two-component toy model, the mass of
our lighter field can experience a “pulse”, as illustrated
in Fig. 19; this is the phenomenon underlying the para-
metric resonances discussed in Sect. V. In the presence of
a pulse, however, the 3H(t)/2 curve may cross the λ(t)
curve not just once but three times, resulting in a field
which begins overdamped, then becomes underdamped,
but then experiences a re-overdamped phase before even-
tually settling back into a final underdamped state. This
behavior is illustrated in Fig. 21. Moreover, as sketched
in Fig. 21, the period during which the field exists in a
re-overdamped phase can be of extremely long duration
— even relative to the width of the pulse that produced

τ

λ0(τ)

3H(τ)/2

∆G

τG

overdamped re-overdamped

FIG. 21: A schematic illustrating the behavior of the lower-
mass eigenvalue λ0(t) in the presence of a “pulse”, plotted as a
function of time with the Hubble parameter 3H(t)/2 superim-
posed. The corresponding field φλ0 therefore experiences not
just the usual transition from overdamped to underdamped
behavior, as in Figs. 1 and 2, but also a novel re-overdamping
transition. As shown, this re-overdamped phase can persist
for considerably longer than the width ∆G of the pulse that
produced it, and thus can have a significant impact on the
resulting cosmological history.

it. Indeed, as we shall discuss below, this duration can
become arbitrarily long, depending on the values of the
underlying input parameters of our model. As a result,
the re-overdamped phase can persist throughout a sizable
portion of cosmological history.

It is important to stress that unlike the original over-
damped phase, this re-overdamped phase of the theory
should not be associated with vacuum energy. Indeed, at
the moment of transition into the re-overdamped phase,
oscillatory behavior ceases but our field value re-enters
the overdamped phase carrying a non-zero velocity φ̇.
Thus, the re-overdamped phase is one in which our field
value has a non-zero but steadily decreasing first deriva-
tive. In this sense, then, the re-overdamped phase rep-
resents a truly different behavior for our field values —
one which is neither vacuum energy (constant field val-
ues) nor matter (oscillatory field values), but something
completely different which transcends our traditional ex-
pectations for scalar fields in an expanding universe.

The re-overdamped phase tends to emerge in systems
in which the mixing is close to its maximum allowed
value, with ξ → 1 (or ε ≡ 1− ξ → 0). The resulting be-
havior for field values and energy densities in this limit
are illustrated in Fig. 22. As expected, we see that the re-
overdamped phase has a phenomenology which is quite
distinct from those of the traditional overdamped or un-
derdamped phases.

On the one hand, this re-overdamped phase can be con-
sidered to be a mere “transient”. After all, it cannot last
forever: as long as the field φ has non-zero mass at late
times, this phase must always give way to a final under-
damped phase. In other words, the re-overdamped phase
can never represent the eventual end-state for our system
as t→∞. Moreover, even within this phase, the non-
zero initial field velocity φ̇ which characterizes its unique
properties always eventually dissipates to φ̇ ≈ 0 as long
as this phase has sufficient duration. In such cases, this
phase eventually comes to resemble vacuum energy. On
the other hand, however, this attitude can be viewed as
unnecessarily stringent. Even though the re-overdamped
phase must always eventually give way to one which is
underdamped, we have seen that it can, depending on
the specific model under study, be made to persist for
arbitrarily long duration. Likewise, this phase can begin
with arbitrarily large initial velocity φ̇. Thus, in purely
practical terms, this phase can be considered alongside
“vacuum energy” and “matter” as an equally valid new
behavioral phase that a scalar field can experience during
a significant portion of cosmological evolution.

As a final comment, we remark that this re-
overdamping phenomenon also leads to a resonance-like
behavior wherein quantities such as the late-time energy
density experience a non-monotonic sensitivity to quanti-
ties such as ∆G. This is because the behavior of our field
φ during the re-overdamped epoch depends very sensi-
tively on the particular field velocity φ̇ that happened
to exist at the precise moment the re-overdamping tran-
sition occurs. This gives rise to a periodic sensitivity
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FIG. 22: The lighter field φλ0 (top row) and corresponding total energy density ρ (bottom row), plotted as functions of time
for situations (left to right) in which ξ → 1 (or ε ≡ 1− ξ → 0). Note that the fields and corresponding energy densities are
normalized so that φλ0 = 1 for τ � τG. Time intervals during which the system is overdamped are shaded (blue), while the
width ∆G of the original mass-generating phase transition is also indicated (red). As the mixing saturation increases towards
its maximum value (a point of enhanced symmetry for the system), we see that a re-overdamped phase emerges with increasing
duration. For comparison purposes, superimposed on each plot are the field values and/or total energy densities that our system
would have exhibited in the ∆G → 0 limit (green); recall that in this limit it is the energy density of the heavier field which
dominates the total energy density. We thus see that the re-overdamped phase can easily persist throughout a large period of
cosmological history, with a phenomenology that is quite different from those of the traditional overdamped or underdamped
phases.

of the final energy density to any quantity which affects
the positioning of the re-overdamping transition moment.
However, it turns out that the mathematical conditions
underlying this periodicity are essentially the same as
those underlying the parametric resonance discussed in
Sect. V; this makes sense as both concern the fitting
of (half-)integral numbers of field oscillations within the
same eigenvalue pulse. Moreover, it turns out that the
parametric resonance necessarily exists for all situations
in which re-overdamping exists (even though the converse
is not true). As a result, in such situations both features
are inherent in the solutions to our equations of motion
and the effects of this re-overdamping-induced oscillation
are difficult to disentangle from those of the parametric
resonance.

VII. PHENOMENOLOGICAL EXAMPLE:
A SECOND AXION

As a phenomenological example of some of the main
results of this paper, let us consider the effects that might
come from adding a second axion to the standard QCD
axion theory. As we shall see, the introduction of a
second possible axion can severely distort the physics
normally associated with the ordinary QCD axion, even
if the second axion is itself associated with a relatively
heavy Peccei-Quinn scale or is only mildly coupled to the
first.

Our theoretical set up is as follows. We assume that φ0

and φ1 are both axion-like particles — i.e., the pseudo-
Nambu-Goldstone bosons associated with the breaking of
global symmetries U(1)0 and U(1)1 at energy scales f0

and f1, respectively. We assume that both fields are cou-
pled to the QCD gauge fields via the chiral anomaly, with
O(1) model-dependent coefficients ξ0 and ξ1. Moreover,
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in keeping with the assumptions of our toy model, we
assume that at early times φ0 is massless while φ1 has
a non-zero mass M which possibly arises due to some
earlier dynamics. Eventually, non-perturbative QCD in-
stanton effects give rise to a temperature-dependent ef-
fective potential V (φ1, φ2) which takes the form

V (T ) = µ4
Λ h

2
QCD(T )

[
1− cos

(
ξ0φ0

f0
+
ξ1φ1

f1
+ Θ

)]
(7.1)

where µ4
Λ ≡ g2

sΛ4
QCD/(32π2), where hQCD(T ) describes

the temperature-dependence of this effective potential as
it turns on (as illustrated in Fig. 4), and where Θ is
the QCD theta-angle. Thus we see that the instanton-
induced QCD confining phase transition plays the role of
our mass-generating phase transition: it occurs at time
tG = tQCD with width ∆G = ∆QCD =

√
πσtQCD, and

gives rise to an additional contribution to the squared-
mass matrix of our axion-like fields which at late times
takes the form

m2
ij ≡

∂2V

∂φi∂φj

∣∣∣∣
〈φ〉

=
µ4

Λ

fifj
(7.2)

where we have set ξ0 = ξ1 = 1 for simplicity.
Given this setup, we thus have two mass eigenstates,

φλ0
and φλ1

, with late-time masses λ0 and λ1 respec-
tively. As we survey the range from M = 0 to M =∞,
we find that these late-time masses increase monotoni-
cally within the ranges

0 ≤ λ0 ≤ µ2
Λ/f0 (7.3)

and

µ2
Λ

√
1

f2
0

+
1

f2
1

≤ λ1 ≤ ∞ . (7.4)

For reasons to be discussed shortly, we shall identify the
lighter mass eigenstate as our QCD axion, which means
that we shall identify λ0 as the axion mass ma. We shall
also define x ≡ λ0f0/µ

2
Λ; thus 0 ≤ x ≤ 1. Note that in

this section we are keeping M explicit in our expressions;
thus, all quantities such as λi have their true physical
mass dimensions. Our goal is then to understand how
the late-time energy density associated with this field is
influenced by the presence of the additional axion.

Note that there are two physically distinct ways in
which to realize a limit in which the second axion decou-
ples from the first: either we can take M →∞ and leave
f1/f0 arbitrary, or we can take f1/f0 →∞ and leave M
arbitrary. In the first case, we find that x = 1 regardless
of the value of f1. In the second case, by contrast, we
find that x = 1 for all M ≥ µ2

Λ/f0, but x = Mf0/µ
2
Λ < 1

for all M < µ2
Λ/f0. Of course both decoupling limits

smoothly merge together in the region for which both
M and f1/f0 are taken to infinity.

In order to quickly survey the expected phenomenolo-
gies of this two-axion system as functions of {M,f0, f1}

— and also to understand the properties of these differ-
ent decoupling limits — let us calculate the correspond-
ing values of η and ξ. In terms of {M,f0, f1}, these are
given by

η =
1 + (f1/f0)2

[
2(Mf0/µ

2
Λ)2 − 1

]
1 + (f1/f0)2 [2(Mf0/µ2

Λ)2 + 1]
(7.5)

and

ξ =
1√

1 + 2(f1/f0)2(Mf0/µ2
Λ)2

. (7.6)

These quantities are shown in Fig. 23. Although both de-
coupling limits result in ξ → 0 (the absence of mixing), as
expected, we immediately see that the decoupling limit
with f1 � f0 and arbitrary M generally gives rise to all
possible values of η in the range−1 ≤ η ≤ 1. By contrast,
the decoupling limit with M →∞ gives rise to η = 1 re-
gardless of the value of f1/f0.

This is an important distinction because we have al-
ready seen in Sect. IV that η > 0 is the regime in which
the majority of the energy density is found in the lighter
field at late times, whereas η < 0 is the regime in which
the majority of the energy density is transferred to the
heavier field at late times. This behavior was in fact dis-
cussed explicitly below Eq. (4.5) in the limit of an instan-
taneous phase transition. Thus, it is only the decoupling
limit with M →∞ and arbitrary f1/f0 for which the en-
ergy density actually remains in the lighter field where
it started, as we would expect for a proper decoupling
limit.

We shall therefore adopt the limit with M →∞ and
arbitrary f1/f0 as our benchmark against which to mea-
sure the effects that come from the presence of the second
axion. Note that in the M →∞ limit, the physics of our
system actually becomes independent of f1/f0; we have
already seen this behavior for the specific quantities η and
ξ in Fig. 23, but this feature indeed holds more generally
for all properties of the system.

Although we have been considering the lighter mass
eigenstate φλ0 as our QCD axion, it is important to re-
alize that the entire notion of a “QCD axion” no longer
strictly applies. For example, there is no mass eigen-
state in our model whose mass is inversely proportional
to f0 or f1, as might be taken to characterize a QCD ax-
ion. Likewise, there is no mass eigenstate in this model
which solves the strong CP problem; in particular, we
see from Eq. (7.1) that it is only the linear combina-
tion φ0/f0 + φ1/f1 which dynamically relaxes against the
strong CP angle Θ. However, in the M →∞ decoupling
limit, our model reduces to the standard single-axion
model: the lighter mass eigenstate remains massless prior
to the instanton-induced phase transition, gathers a mass
µ2

Λ/f0 after this transition, and solves the strong CP
problem. For this reason we shall continue to refer to
the lighter mass eigenstate as our “QCD axion”, even in
the presence of mixing.
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FIG. 23: The quantities η (left panel) and ξ (right panel), plotted as functions of M for different values of f1/f0. Superimposed
on each plot are contours of x (dashed black lines). The decoupling regions in each case correspond to taking f1/f0 →∞
for any M as well as taking M →∞ for any f1/f0; these smoothly connect to form the curves labeled “decoupling limit” on
each plot. Note that we have ξ = 0 along the entire decoupling-limit line, as expected since the decoupling limit is one in
which there is no mixing between the two axions. By contrast, the decoupling-limit line surveys all possibilities of η. We also
observe from either panel that x = 1 along the decoupling line for all M ≥ µ2

Λ/f0, while x < 1 along the decoupling line for all
M < µ2

Λ/f0; this is easier to see in the right panel but is true as a general statement about the relationship between M and x
in the decoupling limit. Thus, an infinite M implies that x = 1 but x = 1 implies only that M ≥ µ2

Λ/f0.

Given this, we now calculate the late-time energy den-
sity associated with the lighter (QCD) axion as a func-
tion of the lighter (QCD) axion mass x ≡ λ0f0/µ

2
Λ, nor-

malized to our decoupled benchmark limit with M =∞
(for which x = 1). (As a technical point, note that we
describe this benchmark through the condition M =∞
rather than the condition x = 1, since the former implies
the latter regardless of f1/f0 whereas the latter fails to
imply the former when f1/f0 →∞.) In all cases we take
tG = tQCD and ∆G = ∆QCD to have the specific fixed val-
ues that correspond to the instanton-induced QCD phase
transition, as plotted in Fig. 4.

Our results are shown in Fig. 24. We see from Fig. 24
that the late-time energy density associated with the
QCD axion is suppressed relative to what would have
been expected in the M →∞ decoupling limit. In-
deed, this suppression is significant, occasionally stretch-
ing over many orders of magnitude, and arises regard-
less of the mass x of the QCD axion, its correspond-
ing Peccei-Quinn scale f0, or the Peccei-Quinn scale f1

associated with the second axion. Indeed, none of this
would have occurred were it not for the non-zero width of
the instanton-induced QCD phase transition. This then
demonstrates the phenomenological relevance of this non-
zero width, and the need to incorporate these kinds of
effects in studies of multi-axion theories.

Note that this suppression of the late-time energy den-
sity due to the presence of the second axion field persists
even in the limit for which f1 � f0. However, this some-

what counter-intuitive result should not come as a sur-
prise. As we know, the limit f1/f0 →∞ corresponds to
one in which ξ → 0 — i.e., one in which the late-time
mixing vanishes. However, this does not imply that the
mixing is small throughout the time evolution — in fact,
both θ and its time derivative can be quite sizable dur-
ing the mass-generating phase transition. Indeed, this
is particularly true for the relatively small values of x
which correspond to η < 0. Thus, it is during the mass-
generating phase transition that the bulk of the energy
density can be transferred to the second axion — even
when f1 � f0! This is therefore an effect that arises
as a direct consequence of the non-zero width of the
instanton-induced QCD phase transition and its associ-
ated timescale.

Interesting as these results are, they only address the
issue of how our late-time energy density compares with
what would arise in the decoupled case — i.e., the case
with no mixing (ξ = 0). In this paper, however, we have
also repeatedly studied another comparison, namely to
the case of an instantaneous phase transition — i.e.,
the case in which we imagine our phase transition to
have ∆QCD = 0. The corresponding results are shown
in Fig. 25.

Once again, it is not difficult to understand the features
in these plots. First, let us discuss the endpoints at x = 1.
Of course, these endpoints correspond to the decoupling
limit (because x = 1 implies ξ = 0, as we have seen in
Fig. 23); thus the physics at these endpoints includes the
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effects from only the lighter (QCD) axion itself. As we see
from Fig. 25, even in this limit the resulting late-time en-
ergy density is significantly suppressed by factors ranging
from 5 to 500 as f0 ranges from 1015 GeV to 1013 GeV.
Thus the effects of properly accounting for the non-zero
width ∆QCD of our instanton-induced phase transition
are extremely important, even for a single QCD axion!

Moving away from the decoupling limit towards
smaller values of x, we now begin to incorporate the ad-
ditional effects of the mixing with the second axion field.
As we see from Fig. 25, these effects enhance the result-
ing late-time energy density above what it would have
been in the decoupling limit. In so doing, they can even
possibly overcome the above suppression completely —
a prospect that depends on the value of f1/f0 — and
thereby potentially increase the late-time energy den-
sity above what it would have been for an instantaneous
phase transition! This enhancement ultimately reflects
the same physics that we have already seen in Figs. 10

and 11 for small mixing saturations in the tG ≈ t(0)
ζ re-

gion. Indeed, we see from Fig. 23 that larger values of
f1/f0 correspond to smaller mixing saturations ξ.

Finally, we can also understand why these curves all
begin at 1 for x = 0. At this endpoint of these plots,
our axion fields remain overdamped during the mass-
generating phase transition. They thus remain insen-
sitive to the transition width ∆QCD.

We can also consider the fraction of the total energy
density of our two-axion system which is associated with
the lighter axion field. These results are shown in Fig. 26.
In general, we see that as f1/f0 increases, an increasing
fraction of the total energy density is associated with
the heavier axion field. However, as x→ 1, we see that
virtually all of the total energy density can be associated
with the lighter axion field.

As a final comment, we remark that it is the combina-
tion φ0/f0 + φ1/f1 which not only solves the strong-CP
problem but which also couples to gluons. Depending
on the particular model under study, this combination
may also couple to photons and other Standard-Model
(SM) particles. We can therefore decompose this com-
bination into our late-time mass eigenstates in order to
determine the effective mass scales fλ0 and fλ1 that gov-
ern the relevant SM couplings of our mass eigenstates at
any moment in time:

φ0

f0
+
φ1

f1
≡ φλ0

fλ0

+
φλ1

fλ1

. (7.7)

The late-time values of these effective coupling scales are
plotted in Fig. 27.

Several features of these plots are worthy of note. For
example, we observe that in all cases the fλi coupling
scales associated with our mass eigenstates are never sig-
nificantly smaller than the fi coupling scales associated
with our original unmixed states. Thus neither of our
mass eigenstates will decay too rapidly to SM states, a
situation which might potentially have resulted in phe-
nomenological difficulty. Likewise, combining the results

in Fig. 27 with those of Figs. 23 and 26, we see that
there are a variety of different phenomenological situ-
ations which can emerge, depending on the underlying
parameters in our model.

For example, let us consider the case with
Mf0/µ

2
Λ ≈ 0.4 and f1 ≈ 5f0. We immediately learn

from Fig. 27 that our QCD axion coupling scale is
fλ0 ≈ 1015 GeV, which is a full order of magnitude higher
than the value that it would have had in the decou-
pling limit. This implies that the QCD axion has an
enhanced invisibility as assessed through its interactions
with SM states. However, we see from Fig. 23 that these
parameter combinations correspond to x ≈ 0.4, where-
upon we see from Fig. 26 that this in turn corresponds
to an energy-density fraction ρλ0

/ρ ≈ 80%. This is thus
a situation in which our QCD axion is invisible but nev-
ertheless carries the bulk of the total late-time energy
density.

A somewhat different situation emerges if we keep
f1 ≈ 5f0 but now take Mf0/µ

2
Λ ≈ 0.1. In this case, we

learn from Fig. 27 that our QCD axion coupling scale
is even higher — fλ0

≈ 1017 GeV — which suppresses its
couplings to SM states by three orders of magnitude com-
pared with the decoupling limit. However, we see from
Fig. 23 that these parameter combinations now corre-
spond to x ≈ 0.1, whereupon we see from Fig. 26 that
this in turn corresponds to an energy-density fraction
ρλ0

/ρ ≈ 3%. This is thus a situation in which our QCD
axion is invisible and carries almost none of the total
energy density — all because of its mixing with the sec-
ond axion in the presence of a non-zero phase transition
width!

The opposite situation, of course, emerges for large M .
For example, with Mf0/µ

2
Λ ≈ 10 we find that the physics

of this model is roughly insensitive to the value of f1/f0;
we find x ≈ 1 and ρλ0

/ρ ≈ 100%. This, of course, sig-
nifies nothing but the approach to our decoupling limit.
However, as long as we are not precisely at the decou-
pling limit, we still find from Fig. 24 that the energy
density associated with this lighter axion field remains
considerably suppressed compared with what we would
have found at the full decoupling limit. Thus in this sense
our QCD axion has regular couplings to SM states but
nevertheless carries relatively little total energy density.

Needless to say, our goal in this section has not been
to propose a complete phenomenological model of ax-
ion physics. Rather, it has merely been to illustrate the
rich implications that can emerge for a QCD axion in
the presence of mixing with a second axion when the
non-zero width of the QCD phase transition is properly
taken into account. As we have seen, the total energy
density of such a two-axion system can be significantly
suppressed relative to what might have been expected in
the decoupling limit, and the individual energy densities
associated with each axion can be severely distorted. In-
deed, this lesson has been one of the primary themes of
this paper.
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FIG. 24: The late-time energy density ρλ0
(∆QCD,M) associ-

ated with the QCD axion field φλ0 , plotted as a function of the
late-time axion mass x ≡ λ0f0/µ

2
Λ and normalized to what it

would have been in the decoupling limit in which the second
axion plays no role. These plots thus illustrate the effects of
the non-zero mixing between our two axion fields in the pres-
ence of a non-zero QCD phase transition width ∆QCD. Note
that although each normalization factor ρλ0

(∆QCD,M →∞)
is in principle different for each different f1/f0 curve, physics
in the decoupling limit M →∞ is insensitive to the value of
f1/f0. Thus all curves in each panel share the same normal-
ization factor.
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FIG. 25: Same as Fig. 24 except that the late-time energy
densities ρλ0

(∆QCD,M) are now normalized to the values that
they would have had if the QCD phase transition had been
treated as instantaneous. These plots thus illustrate the ef-
fects that emerge due to the actual non-zero width of the QCD
phase transition — effects which survive even in the M →∞
decoupling limit (for which x→ 1). Note that unlike the plots
in Fig. 24, here the normalization factors ρλ0

(0,M) are dif-
ferent for each f1/f0 curve and in fact even vary with x along
each curve.
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FIG. 26: The late-time fraction ρλ0
/ρ of the total late-time

energy density which is associated with lighter axion field,
plotted as a function of x. We see that this fraction generally
decreases as f1/f0 increases, and also increases as a function
of x.



30

f0=10
14GeV

f1=f0
f1=5f0
f1=10f0

f1=10
2f0

f1=10
3f0

10-2 10-1 1 101 102
1013

1014

1015

1016

1017

1018

Mf0/μΛ
2

f λ
0
[G
e
V
]

f0=10
14GeV

f1=f0
f1=5f0
f1=10f0

f1=10
2f0

f1=10
3f0

10-2 10-1 1 101 102
1013

1014

1015

1016

1017

1018

Mf0/μΛ
2

f λ
1
[G
e
V
]

FIG. 27: The effective coupling scales fλ0 and fλ1 associated with our axion mass eigenstates φλ0 and φλ1 , plotted as functions
of Mf0/µ

2
Λ. We see that these scales are never significantly smaller than the fi coupling scales associated with our original

unmixed states, and that either one or the other typically takes a value which significantly exceeds this when f1/f0 � 1.
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VIII. BEYOND TWO FIELDS

In Sect. II, a toy model was constructed in order to
study the effects that arise in multi-scalar models due to
the simultaneous presence of two key ingredients: mass-
generating phase transitions with finite widths, and non-
zero mixing between the different components. For the
sake of simplicity, our toy model consisted of only two
scalar fields, as this is the minimum number that could
be chosen for our purposes. However there is no reason
that we are limited to two fields, and indeed the number
of fields may be extended arbitrarily. Therefore, in order
to gain a quick sense of what possibilities might emerge
with an increased number of fields, we shall now briefly
consider several aspects of the case with three fields. A
more general study of the N -field case will be presented
in Ref. [38].

In analogy with Eq. (2.8), we shall begin by assuming a
rescaled (dimensionless) mass matrixM2(t) which takes
the form

M2(τ) =

m2
00(τ) m2

01(τ) m2
02(τ)

m2
01(τ) 1 +m2

11(τ) m2
12(τ)

m2
02(τ) m2

12(τ) 4 +m2
22(τ)

 . (8.1)

Here τ ≡Mt (where M is the overall mass parameter
which has been scaled out, as in Sect. II), and we assume
that all components have a common time-dependence as-
sociated with a mass-generating phase transition whose
properties are exactly those of our two-component model.
Note that the diagonal components of this matrix im-
ply that our three fields have masses 0, M , and 2M at
early times prior to the phase transition. These values
are chosen for simplicity, and are also motivated by the
Kaluza-Klein masses that might result in a theory with
a flat extra dimension (in which case we would identify
M as the inverse length of this dimension).

Inherent in this mass matrix are now three independent
mixing angles which correspond to m2

01, m2
02, and m2

12.
However, just as in the two-field case in Sect. II, there
are ultimately constraints on these mixing parameters
which ensure that our mass matrixM2 remains positive-
semidefinite. Such constraints are illustrated in Fig. 28
for the case with m2

00 = 5, m2
11 = 5, and m2

22 = 1 — a
fixed parameter choice we shall adopt for all of the plots
in this section.

In our two-component toy model, we have seen that the
lighter field can occasionally develop a “pulse” which is
ultimately responsible for the parametric-resonance and
re-overdamping phenomena in Sects. V and VI respec-
tively. However, in a three-component model, it turns
out that the two lightest fields can each develop a pulse.
This is illustrated in Fig. 29. Indeed these two pulses
need not have the same effective frequencies or corre-
spond to the same values of ∆G. As we shall see, this can
then give rise to multiple resonances which can reinforce
or interfere with each other and thereby produce new ef-
fects which transcend those realizable with only a single

-5

0

5
m01

2

-5

0

5m02
2

-5

0

5

m12
2

FIG. 28: The region within the three-dimensional mixing
space parametrized by {m2

01,m
2
02,m

2
12} for which the mass

matrix M2 in Eq. (8.1) is positive-semidefinite. For this plot
we have taken m2

00 = 5, m2
11 = 5, and m2

22 = 1.

pulse. We also note that the pulse of our second mass
eigenvalue λ2

1 can leave this eigenvalue with a smaller
magnitude at late times than at early times — a phe-
nomenon which was not possible for λ2

0 in the two-field
case. This has the effect of allowing a further elongation
of the time interval during which this field can remain in
a re-overdamped or parametrically resonant state.

To illustrate the interplay between the different res-
onances, we can consider the late-time energy densities
of this system. Since we now have three individual con-
tributions to the total energy density, we shall highlight
their separate effects by considering the partial sums

P` ≡
∑̀
i=0

ρλi . (8.2)

In Fig. 30 we have plotted these partial sums, with
each normalized to the value that it would have had if
the mass-generating phase transition had been instanta-
neous. This demonstrates the combined effects of the
mixing and the finite phase-transition width. The left
panel of Fig. 30 illustrates the behavior of P 0 ≡ ρλ0

alone: this behavior is similar to what we have already
seen in our two-field toy model, for which the pulse
in the evolution of λ2

0 produces resonant peaks in the
corresponding energy-density component at late times.
These peaks grow stronger for larger m2

02, with the en-
ergy density in this field dissipating inversely with ∆G

once ∆G & 2π/λ0. However, the center panel shows the
combined contribution to the total energy density from
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FIG. 29: The two smaller mass eigenvalues λ2
0 and λ2

1 in our
three-field model, plotted as a function of time for different
values of m2

02 = m2
12. As in Fig. 28, we have taken m2

00 = 5,
m2

11 = 5, and m2
22 = 1. We see that each field can now sepa-

rately have its own pulse with its own effective frequency, re-
sulting in the possibility of two parametric resonances which
can either reinforce or interfere with each other.

the two lighter fields and thus exhibits something new:
the contributions of the two separate parametric reso-
nances combine to reinforce each other and even produce
an effective enhancement plateau which stretches over an
extended interval in ∆G. Indeed, all along this plateau,
the energy densities of our system can be enhanced by
as much as nearly an order of magnitude! Finally, the
right panel of Fig. 30 illustrates the behavior of the to-
tal energy density ρ. Note that in this case, the heaviest
field effectively dominates the energy density for ∆G . 5,
thereby washing out those parametric resonances that
appear in that range, while leaving those that appear for
∆G & 5.

The purpose of this section has merely been to pro-
vide several short examples of new phenomena that can
arise when more than two scalar fields are involved. We
shall defer a more detailed study of these general cases
to Ref. [38].
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FIG. 30: The partial-sum energy densities P `(∆G), ` = 0, 1, 2, plotted as functions of the phase-transition width ∆G and
normalized to the values P `(0) that they would have had for an instantaneous phase transition. As in Figs. 28 and 29, we have
again taken m2

00 = 5, m2
11 = 5, and m2

22 = 1. We observe many features familiar from our two-component toy model, including
parametric resonances which enhance the corresponding energy densities as well as suppressions by many orders of magnitude
that develop for sufficiently large ∆G. However, there are also new features which arise due to the fact that we now have more
than two fields in our system. The center panel, in particular, illustrates the manner in which the separate resonances from
the two lighter fields reinforce each other and produce a plateau along which the partial-sum energy density P 1 is enhanced by
nearly an order of magnitude over a significant ∆G-interval.
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IX. CONCLUSIONS

In this paper we have examined some of the novel ef-
fects that emerge when multiple scalars mix with each
other and experience a time-dependent mass-generating
phase transition within the context of a time-dependent
background cosmology. As we have explicitly demon-
strated within a relatively simple two-field toy model,
these effects include both enhancements and suppressions
of the total late-time energy density of the system as well
as the late-time energy densities of the individual scalar
components. These enhancements and suppressions need
not be mere O(1) effects; indeed, we have seen that the
resulting late-time energy densities can often be altered
by many orders of magnitude. These alterations are even
sufficient to produce wholesale shifts in the identity of
the field carrying the bulk of the late-time cosmological
abundance.

We also found that our late-time energy densities can
exhibit large parametric resonances which make them ex-
tremely sensitive to relatively small changes in the degree
of mixing or in the width of the phase transition. Thus,
any effects which might change — even slightly — the
rate at which the phase transition unfolds can have a
significant impact on the late-time abundances of our
fields. We also demonstrated that our system can en-
ter a so-called “re-overdamped” phase in which the field
values and energy densities behave in a manner quite
different from what would normally be associated with
pure dark matter or vacuum energy. Indeed, we saw that
the system can remain in this re-overdamped phase for a
considerable length of time, suggesting that this phase be
considered alongside “vacuum energy” and “matter” as
an equally valid new behavioral phase that a scalar field
can experience during a significant portion of cosmolog-
ical evolution. Finally, we illustrated the importance of
some of these effects within the context of a simple model
in which a second axion is incorporated into the standard
QCD axion theory.

As indicated in the Introduction, our results can be
taken as an explicit demonstration of how critical it
can be to properly incorporate the non-zero but finite
widths of mass-generating phase transitions when dis-
cussing late-time energy densities in cosmological settings
involving multiple mixed scalars. Indeed, treating these
widths as being either zero or infinite (the latter corre-
sponding to a so-called “adiabatic” approximation in the
axion case) can lead to results for late-time quantities
such as cosmological abundances which are significantly
distorted from their true values, often by many orders of
magnitude! Given the sensitivity with which the differ-
ent slices of the so-called “cosmic pie” have already been
measured, such effects will inevitably play critical roles in
determining whether a particular cosmological scenario is
viable or ruled out.

Needless to say, the features we have discussed in this
paper give rise to many new possibilities for the phe-
nomenology of the early universe and cosmological evo-

lution. As such, new approaches to model-building can
readily be imagined. For example, many extensions to
the Standard Model involve scalar fields which are mass-
less (or effectively massless) at high scales, but for which
masses are generated dynamically at lower scales. Ex-
amples include string moduli, string axions, and other
axion-like particles. However, these particles can be cos-
mologically problematic if these dynamically-generated
masses are sufficiently large because they can overclose
the universe once they begin oscillating and act as mas-
sive matter. Indeed, this is the crux of the cosmological
moduli problem [41–43]. Moreover, particles of this sort
are often produced through mechanisms such as vacuum
misalignment which are completely decoupled from the
dynamics of inflation. In such cases, spatial fluctuations
in the energy density of these particles therefore give rise
to isocurvature perturbations, the observational limits on
which are quite severe [44].

Fortunately, mechanisms such as those we have dis-
cussed in this paper can suppress the resulting late-time
energy densities by many orders of magnitude. This en-
hanced energy dissipation can therefore provide a novel
way of alleviating such constraints on models of new
physics, and may represent an alternative solution to the
moduli and isocurvature problems. They may also allow
a general weakening of the cosmological bounds on the
energy scales associated with the new physics (such as
the Peccei-Quinn scale associated with axions).

As we have discussed, the features explored in this pa-
per can lead not only to a reduction in the total late-
time energy density of our system, but also to changes
in the late-time partitioning of that total energy density
amongst the fields in our theory. In new physics sce-
narios which involve multiple scalar fields, this too can
have observable phenomenological consequences. For ex-
ample, certain classes of string models are generically
expected to give rise to large numbers of light axion-like
particles [30–33], the masses of which must be generated
dynamically via non-perturbative effects. In situations
in which the same dynamics contributes to the genera-
tion of mass terms for multiple such particles, the relative
cosmological abundances of those particles can be signif-
icantly altered by the effects we have studied here.

There are many ways in which the analysis in this pa-
per might be extended and generalized. For example,
in this paper we have focused primarily on scalar fields
which have a negligible back-reaction on the background
cosmology, at least during the epoch of dynamical mass
generation. In other words, we have assumed that our
scalars do not contribute significantly to the total energy
density of the universe until well after their masses have
settled into their late-time values. However, in principle,
we could relax this assumption and broaden this study
to include scalars which do have a significant impact on
the background cosmology. This would then establish a
non-linear back-reaction which could possibly enrich the
dynamics of this system even further, with the evolution
of the Hubble parameter H(t) itself depending on the



35

behaviors of the scalar energy densities as functions of
time.

This possible extension of our work could be partic-
ularly important if the scalars involved are those which
are directly responsible for triggering periods of rapid
cosmological expansion, including cosmic inflation. In-
deed, a wide variety of inflationary models involving mul-
tiple scalar fields exist in the literature; these include
hybrid inflation [45, 46], assisted inflation [47–50], N -
flation [51], and multi-field stochastic inflation [52]. Like-
wise, several constructions have been proposed through
which a potential for the fields responsible for cosmic in-
flation is generated dynamically [53–56]. Such construc-
tions are typically motivated by the possibility of real-
izing a viable inflationary potential without the intro-
duction of extremely small couplings or arbitrary mass
scales. It would therefore be extremely interesting to ex-
plore the cosmological consequences of a time-dependent,
dynamically-generated inflaton potential in the context
of multi-field inflation.

In this connection, it is perhaps worth emphasiz-
ing that the parametric resonance we have discussed in
Sect. V is entirely unrelated to the parametric resonance
which gives rise to an epoch of explosive production
of light scalars in inflationary models with a preheat-
ing phase [57, 58]. Indeed, the effect we have discussed
in this paper involves a resonance between the oscilla-
tion frequency of the light scalar, as given by its mass
λ0, and the effective modulation frequency ωeff of that
mass. As such, this parametric resonance is ultimately
driven by the dynamics of the mass-generation mecha-
nism and leads to an enhancement in the amplitude for
coherent oscillations of the zero-momentum mode of φλ0

.
By contrast, the effect discussed in preheating scenar-
ios involves a resonance between the frequency of the
coherently-oscillating inflaton field and the frequency as-
sociated with a given momentum mode of the lighter
scalar field into which it decays. Such a resonance is
ultimately driven by inflaton dynamics and results in
particle-like excitations of this lighter scalar.

Other extensions and generalizations of our work are
also possible. For example, our original dynamical equa-
tions in Eq. (2.1) assume that there are no significant
spatial variations in our field values, but in general it is
possible to allow our field values to vary not only in time
but also in space. This could then give rise to distinctly
different physics in different spatial regions, with domain
walls potentially separating different regions experienc-
ing different phases and different energy densities. Such
spatial variations and domain walls would inevitably in-
troduce additional length scales into the problem, and
thereby likely give rise to new complex dynamical be-
haviors for our system as a whole.

In a similar vein, we could likewise imagine that our
fundamental dynamical equations in Eq. (2.1) are modi-
fied by the inclusion of source terms reflecting possible in-
teractions with more complex cosmological environments
(e.g., with other fields). Such source terms could then

give rise to additional features which effectively modify
our mass eigenvalues and eigenstates, trigger enhance-
ments or suppressions of late-time energy densities, and
produce additional kinds of resonances. Indeed, such
effects would be analogous to the well-known “matter
effects” (i.e., MSW effects) that arise when neutrinos
propagate through matter rather than through a pure
vacuum.

Another possible generalization of our toy model is to
consider more than two scalar fields. Indeed, as briefly
discussed in Sect. VIII, there is no limit to the number
of scalar fields which may be considered. These models
can therefore grow in both complexity and sophistica-
tion compared with the two-component model we have
studied here.

One natural possibility along these lines is to con-
sider the case in which the different fields φi are noth-
ing but the Kaluza-Klein (KK) modes of a single higher-
dimensional field Φ. This is indeed a well-motivated
possibility, as string theory naturally gives rise to many
scalars (axions, geometric/gravitational moduli, gauge-
neutral singlets, and so forth) that populate the “bulk”
volume transverse to the brane on which gauge inter-
actions reside. As such, the different KK modes of
such bulk fields are natural dark-matter candidates, even
though they might be unstable — an observation which
has motivated the Dynamical Dark Matter framework
of Refs. [28, 29, 36]. In this case, the masses that we
have assumed to exist prior to the phase transition would
be nothing but the corresponding KK masses, while
the extra time-dependent contributions mijh(τ) are pre-
sumably generated by a phase transition which breaks
the higher-dimensional symmetries that would otherwise
have aligned our mass eigenstates with KK eigenstates.
The resulting mixing structure is therefore determined
according to the intrinsically higher-dimensional geomet-
ric symmetries of the theory and the manner in which
these symmetries might be broken by the phase transi-
tion. (For example, in the five-dimensional axion scenario
of Refs. [29, 35, 36] the instanton-induced phase transi-
tion takes place purely on the brane and thereby breaks
a translation symmetry that otherwise existed along the
extra dimension.) In general, the cosmological properties
of such KK systems can be extremely rich, and will be
discussed in more detail in Ref. [38].

Given these observations, it might at first glance seem
that the two-component toy model we have studied in
this paper — while illustrative for pedagogical purposes
— might not have been worthy of the detailed attention
we have afforded it. However, this model can always be
viewed as the low-energy limit of a more complete model
(such as the model of Kaluza-Klein cosmology discussed
above) in which only the contributions from the lightest
two modes are considered. Indeed, in many cosmolog-
ical settings, the contributions of the lightest fields are
likely to dominate the resulting phenomenology and/or
carry the largest abundances. Thus, in this sense, our
two-component toy model can be viewed as the common
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root underlying a variety of much more general models
— a “kernel” which gives rise to rather universal features
and behaviors that will continue to appear (perhaps with
further embellishments) in more complete or realistic set-
tings. As such, then, this toy model can be viewed as rep-
resenting a universal low-energy limit of a wide class of
models of this type whose leading-order phenomenologies
will be exactly those we have investigated in this paper.
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Appendix A: Narrow-width behavior of the
late-time energy density: Analytical results

As we have seen, the presence of a non-zero width ∆G

for the mass-generating phase transition prevents us from
obtaining analytical results for most of our quantities of
interest. However, in the case with ∆G = 0 (correspond-
ing to an instantaneous phase transition), the resulting
dynamics can be treated analytically. In this Appendix
we provide analytical results for the late-time energy den-
sity ρ.

For ∆G = 0, the behavior of each of our two fields is
relatively simple. Prior to the phase transition at τG,
only the massless field has a non-zero value A0, as in
Eq. (2.16); this field is necessarily overdamped, however,
and thus remains effectively constant until the phase
transition at τG. At that point, the mass matrix receives
the extra contribution which mixes the two fields with
an angle θ; the initial massless field value is thus redis-
tributed at τ = τG such that

φλ0
(τG) = A0 cos θ , φλ1

(τG) = A0 sin θ . (A1)

Each field then evolves forward in time independently.

At first glance, motivated by the behavior illustrated
in Fig. 1, we might try to estimate the total late-time
energy density ρ using a virial approximation in which we
assume that the energy density associated with each field

φλi remains constant until τ
(i)
ζ ≡ κ/2λi [where κ ≡ 2 (or

3/2) for a matter- (radiation-) dominated universe], after
which it scales as ∼ τ−κ. Defining τλ ≡ max {τG, κ/2λ},

we would then write

ρ ≈
∑
λ

ρλ(τλ)

(
τ

τλ

)−κ
=

1

2

∑
λ

λ2 [φλ(τG)]
2

(
τ

τλ

)−κ
.

(A2)
Unfortunately, this approximation breaks down for any
fields φi for which the threshold of critical damping

τ
(i)
ζ = κ/2λi is close to the phase transition time τG.

For this reason, we shall instead evaluate our field val-
ues and corresponding energy densities exactly. In the
limit of an instantaneous phase transition occurring at
τG, the exact solution for each field is given by

φλ(τ) =
π

2
[φλ(τG)] λτG

(
τ

τG

)−κ−
×[

Jκ+
(λτG)Yκ−(λτ)− Yκ+

(λτG)Jκ−(λτ)
]
(A3)

where κ± ≡ (κ± 1)/2, where λ refer to the mass eigen-
values for τ ≥ τG, and where Jν(z) and Yν(z) are Bessel
functions of the first and second kind, respectively. From
this result we may directly calculate the corresponding
energy densities for all τ ≥ τG, obtaining

ρλ(τ) =
π2

8
[φλ(τG)]2 λ4 (τGτ)

(
τ

τG

)−κ
Jλ(τ) (A4)

where

Jλ =
[
Jκ+

(λτG)Yκ−(λτ)− Yκ+
(λτG)Jκ−(λτ)

]2
+
[
Jκ+(λτG)Yκ+(λτ)− Yκ+(λτG)Jκ+(λτ)

]2
.

(A5)

Given these exact results, we can now extract the late-
time behavior of ρλ through the asymptotic expansions

Jα(z) ∼
√

2

πz
cos
(
z − απ

2
− π

4

)
+ ...

Yα(z) ∼
√

2

πz
sin
(
z − απ

2
− π

4

)
+ ... (A6)

which hold for z � 1. With this approximation we find
that

J λ ≈
2

πλτ

[
J2
κ+

(λτG) + Y 2
κ+

(λτG)
]

+ ... , (A7)

whereupon use of Eq. (A1) yields the total late-time en-
ergy density

ρ =
π2

8
A2

0 (τGτ)

(
τ

τG

)−κ
×(

λ4
0 J λ0

cos2 θ + λ4
1 J λ1

sin2 θ
)
. (A8)

The result in Eq. (A8) is an exact expression for the
late-time energy density ρ in the ∆G → 0 limit. Given
this result, several things are immediately clear. First,
we observe that in the case of matter-dominated universe
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(corresponding to κ = 2), the total late-time energy den-
sity simplifies to

ρ =
A2

0

4τ2

[
2 + (λ2

0 + λ2
1)τ2

G + (λ2
0 − λ2

1)τ2
G cos(2θ)

]
=

A2
0

2τ2
(1 + m2

00τ
2
G) , (A9)

where in passing to the second line we have used the re-
sults in Eq. (2.32). As a result, all θ-dependence drops
out of the final result for the total late-time energy den-
sity. In other words, for a matter-dominated universe, the
corresponding late-time energy density is independent of
mixing !

Second, we see that the virial approximation in
Eq. (A2) corresponds to the limit in which τGλi � 1 for
both fields. Indeed, in this limit we see that τλ = τG
for each field (since both fields are already significantly
underdamped when the phase transition occurs), and we
can likewise apply the asymptotic expansions in Eq. (A6)
to the remaining Bessel functions in Eq. (A7), thereby
reproducing the result in Eq. (A2). Further use of the
results in Eq. (2.32) then gives the total late-time energy
density

ρ ≈ A2
0

2
m2

00

(
τ

τG

)−κ
, (A10)

which is again independent of the mixing — now regard-
less of the value of κ! However, comparing this result
with the exact result in Eq. (A9) for the case of a matter-
dominated universe illustrates the imperfect nature of the
virial approximation.

Appendix B: Late-time energy densities: An
alternative approach

In the main body of this paper, we have consistently
viewed the matrix elements m2

ij as our independent vari-
ables. These have been reparametrized in other forms,
giving rise to variables such as m2

sum, ∆m2, η, θ, and ξ,
but in all cases these independent variables have served
as inputs. We then calculated the values of dependent
quantities such as the eigenvalues λi, energy densities ρ,
and so forth. Thus, when we have studied how a certain
dependent variable such as a late-time energy density ρ
depends on the mixing, we have implicitly held the diag-
onal matrix elements m2

00 and m2
11 (or equivalently m2

sum

and η) fixed, and varied the off-diagonal matrix element
m2

01 (or equivalently the mixing angle θ or mixing satu-
ration ξ).

However, another possibility is to study the mixing-
dependence of quantities such as ρ when we hold the
late-time eigenvalues λi fixed instead. This approach
can be useful in situations where the masses of our states
are known and it is only the mixing between such states
that we wish to vary.

In order to implement this approach, we must first in-
vert our usual algebraic relations and express {m2

00,m
2
11}

in terms of {λ2
0, λ

2
1}. However, we must also recognize

that our previous assumption of holding {m2
00,m

2
11} fixed

is also implicitly buried within the definition of another
variable: the mixing saturation ξ. Although m2

01 or θ
parametrize the mixing in absolute terms and are thus
independent of such assumptions, the mixing saturation
ξ defined in Eq. (2.28) describes the mixing as a frac-
tion of the maximum allowed mixing, and this maximum
allowed mixing has always been determined relative to
a fixed {m2

00,m
2
11}. What we now need, by contrast, is

a new variable ξλ which describes the mixing as a frac-
tion of the maximum mixing allowed for a given fixed
{λ2

0, λ
2
1}. Indeed, this is an entirely different quantity.

Thus, we seek to express {m2
00,m

2
11, ξ} in terms of

{λ2
0, λ

2
1, ξλ}. Equivalently, defining

λ2
sum ≡ λ2

0 + λ2
1 (B1)

and

ηλ ≡
∆λ2

λ2
sum

≡ λ2
1 − λ2

0

λ2
0 + λ2

1

(B2)

in analogy with m2
sum and η, we would like to express

{m2
sum, η, ξ} in terms of {λ2

sum, ηλ, ξλ}. Surprisingly,
these relations ultimately take a relatively simple form:

m2
sum = λ2

sum

η2 = η2
λ

(
1− ξ2

λ

1− η2
λξ

2
λ

)
ξ = ηλξλ . (B3)

These relations in turn imply that

m2
01 = 1

2 (∆λ2) ξλ

(
1− η2

λ

1− η2
λξ

2
λ

)
. (B4)

Likewise, following Eq. (2.30), we can also determine the
absolute mixing angle θ via

tan2(2θ) =
ξ2

η2
(1− η2) = ξ2

λ

(
1− η2

λ

1− ξ2
λ

)
. (B5)

Note that 0 ≤ ηλ ≤ 1, whereas −1 ≤ η ≤ 1. Also note
that the eigenvalues λ2

i are independent of the sign of η
(as evident from Fig. 6). It is for this reason that our
inverse relations in Eq. (B3) determine η [and likewise
tan(2θ)] only up to an overall sign. Thus, strictly speak-
ing, our variable map really trades {η, ξ} for {ηλ, ξλ, ε}
where ε ≡ sign(η) = ±1 is a discrete Z2 phase. Having
ε > 0 corresponds to η > 0 and tan(2θ) > 0. However,
we shall avoid writing ε in what follows, understanding
the proper phase choice to be implicit.

In principle, given this variable map, we could now
work our way through this entire paper again using
the variables {λ2

sum, ηλ, ξλ} rather than the variables
{m2

sum, η, ξ}. Indeed, every curve in every plot which



38

has been labeled in terms of certain numerical values
for the first set of parameters could now equivalently be
relabeled in terms of different numerical values for the
second set of parameters. In cases where these curves
describe the behavior of a certain quantity such as an
energy density as a function of time, or the behavior of
a quantity such as a late-time energy density as a func-
tion of a phase-transition width ∆G, these curves would
themselves remain intact and continue to take the same
shapes as before because our time and ∆G parameters
are independent of our variable change. All that would
change are the labels associated with each such curve.
Indeed, every feature that appears in our plots for cer-
tain fixed values of {m2

sum, η} (such as the oscillations
due to parametric resonances or the re-overdamping of

certain fields) would continue to exist when {λ2

sum, ηλ}
are held fixed instead. As a result, nothing we have
said in this paper concerning the parametric-resonance
or the re-overdamping phenomena would be affected by
this change in variables.

The only changes that could potentially occur due to
this variable exchange concern the effects of mixing as
discussed in Sects. III and IV. Of course, each individ-
ual curve within the plots in Figs. 10, 11, 12, 16, and 18
would remain exactly as before and would merely be rela-
beled using {λ2

sum, ηλ, ξλ} rather than {m2
sum, η, ξ}. How-

ever, what would change is the resulting grouping of these
curves into distinct panels in which all curves share com-
mon values of, say, ηλ rather than η. Indeed, although the
space of all possible curves is not changed, these curves
would experience a reshuffling into differently-grouped
subsets. As a result, the only physics questions whose
answers might change in this process are those which
rely on comparisons between the different curves within
a given grouping. Clearly, questions pertaining to the ef-
fects of mixing (i.e., the effects of changing the values of
ξ or ξλ while holding η or ηλ fixed) are in this category.

Rather than provide an exhaustive study of such re-
groupings and their outcomes, we shall here content our-
selves with providing a concrete example of the effects
that can emerge by focusing on a single pair of curves
which we shall call A and B. These curves can be taken
to show, for example, a late-time energy density ρ as
a function of ∆G, but they will differ in their absolute
mixing by an angle ∆θ when {m2

sum, η} are held fixed.
We will then calculate a third curve B′ which also differs
from the curve A by the same absolute angle ∆θ when

{λ2

sum, ηλ} are held fixed instead. In this way, comparing
curves B and B′ will then give us an idea of the difference
that can come from the choice of which variables to hold
fixed.

For concreteness, we select curves A and B to be
the ξ = 0.9 and ξ = 0.5 curves within the right panel
of Fig. 11. Within this panel, ∆m2 = 4 and η = 0.75
for both curves. Use of Eq. (B3) then provides us

with the corresponding {λ2

sum, ηλ, ξλ} values for each of
these curves: we find {4.0, 0.96, 0.94} for curve A and

{4.0, 0.82, 0.61} for curve B. Likewise, use of Eq. (B5)
with either the {η, ξ} or {ηλ, ξλ} variables then tells us
that θA ≈ 19.22◦ and θB ≈ 11.90◦. [The fact that these
values emerge in each case using either set of variables
is a useful cross-check that the absolute mixing angle
θ is indeed invariant across the mapping in Eq. (B3).]
We now wish to define a third curve B′ such that ηλ is

held fixed relative to curve A (i.e., η
(B′)
λ = η

(A)
λ ≈ 0.96)

while the mixing-angle shift ∆θAB′ ≡ θB′ − θA matches
∆θAB ≡ θB − θA. This latter condition implies that
θB′ = θB ≈ 11.90◦, whereupon use of Eq. (B5) tells us

that ξ
(B′)

λ ≈ 0.84. Use of Eq. (B3) then tells us that
{m2

sum, η, ξ} ≈ {4, 0.88, 0.80} for curve B′. These param-
eter values for curves A, B, and B′ are summarized in
Table I.

η ξ ηλ ξλ θ
A 0.75 0.90 0.96 0.94 19.22◦

B 0.75 0.50 0.82 0.61 11.90◦

B′ 0.88 0.80 0.96 0.84 11.90◦

TABLE I: Parameters defining the curves A, B, and B′ shown

in Fig. 31. All curves correspond to m2
sum = λ

2
sum = 4 and

ε = +.

In Fig. 31 we plot Curves A, B, and B′. The left panel
of Fig. 31 shows these curves for a matter-dominated
universe, while the right panel shows these same curves
for a radiation-dominated universe. Thus, while curves A
and B in the left panel of Fig. 31 respectively correspond
to the ξ = 0.9 and ξ = 0.5 curves in the right panel of
Fig. 11, curves A and B in the right panel of Fig. 31
respectively correspond to the ξ = 0.9 and ξ = 0.5 curves
in the right panel of Fig. 10.

As evident from Fig. 31, there are significant differ-
ences between curves B and B′. Indeed, these curves
are sufficiently distinct in the radiation-dominated case
(right panel) to turn what would have been an overall
enhancement of the normalized late-time energy density
(curve B) into an overall suppression (curve B′)! We
thus conclude that the question of which variables to
hold fixed can indeed be a critical one for certain types
of physics questions within certain regions of parame-
ter space. This also highlights the need to be extremely
careful about specifying which parameters are held fixed
when making statements concerning the effects of vary-
ing some parameters relative to others. In this paper,
in order to study the effects of mixing, we have consis-
tently held our diagonal mass-matrix elements m2

00 and
m2

11 fixed while varying m2
01 (or equivalently varying θ or

ξ). This ultimately represents a choice which stems from
our desire to perturb the potential generated by our un-
derlying mass-generating phase transition as minimally
as possible. However, this issue will be explored further
in Ref. [38].



39

τG=1.0
msum

2
=4.0

MD

A

B

B'

0.1 0.2 0.5 1 2
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

ΔG

ρ_

(Δ
G
,ξ_

)/
ρ_

(0
,0
)

τG=1.0
msum

2
=4.0 RD

A

B

B'

0.1 0.2 0.5 1 2
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

ΔG

ρ_

(Δ
G
,ξ_

)/
ρ_

(0
,0
)

FIG. 31: The late-time energy density ρ, plotted as a function of ∆G in a matter-dominated universe (left panel) or radiation-
dominated universe (right panel) and normalized to its value for an instantaneous phase transition with zero mixing. In each
case, the curves A, B, and B′ correspond to the parameter choices in Table I: curves A and B differ by a fixed ∆θ = θB − θA
while holding η fixed, while curves A and B′ differ by the same ∆θ but instead hold ηλ fixed. Thus, the difference between
curves B and B′ in each case illustrates the impact of holding η fixed versus holding ηλ fixed when performing a shift of the
mixing angle ∆θ relative to the common curve A.
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