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We explore the physics and observational consequences of tidal compression events (TCEs) of
dark-matter clumps (DMCs) by supermassive black holes (SMBHs). Our analytic calculations
show that a DMC approaching a SMBH much closer than the tidal radius undergoes significant
compression along the axis perpendicular to the orbital plane, shortly after pericenter passage. For
DMCs composed of self-annihilating dark-matter particles, we find that the boosted DMC density
and velocity dispersion lead to a flaring of the annihilation rate, most pronounced for a velocity-
dependent annihilation cross section. If the end products of the annihilation are photons, this
results in a gamma-ray flare, detectable (and possibly already detected) by the Fermi telescope for a
range of model parameters. If the end products of dark-matter annihilation are relativistic electrons
and positrons and the local magnetic field is large enough, TCEs of DMCs can lead to flares of
synchrotron radiation. Finally, TCEs of DMCs lead to a burst of gravitational waves, in addition
to the ones radiated by the orbital motion alone, and with a different frequency spectrum. These
transient phenomena provide interesting new avenues to explore the properties of dark matter.

PACS numbers:

I. INTRODUCTION

In the quest for the nature of dark matter (DM), cos-
mologists have set increasingly stringent limits on its
properties, shrinking ever further the parameter space
in which it is allowed to exist. Yet, despite decades of re-
search, the only characteristics of DM that are robustly
measured to date are its mean cosmological abundance
and the amplitude of primordial density perturbations
on scales larger than a few comoving Mpc. Identifying
the DM is a fundamental problem of modern physics;
it is therefore important to explore every possible phe-
nomenon that could help characterize it.

Dark matter is expected to be clumpy on small scales
[1, 2], even in the simplest scenario where one extrap-
olates to very small scales the primordial power spec-
trum measured on large scales by cosmic microwave back-
ground (CMB) experiments [3]. Since the amplitude
and character of primordial fluctuations on scales smaller
than a few Mpc are very poorly constrained, it is also pos-
sible that there exists a population of very dense dark-
matter clumps (DMCs). These could have formed shortly
after matter-radiation equality from adiabatic perturba-
tions with overdensity δ . 0.3. They could also have
formed earlier on as a result of accretion onto primordial
black holes [4], the collapse of primordial isocurvature
perturbations [5], topological defects or phase transitions
[6]. Analytic self-similar solutions for radial infall pre-
dict a cuspy power-law density profile [4, 7]. Of course
the collapse is never perfectly radial and the density does
not increase to arbitrarily large values in the center, so
DMCs are expected to have cores of a small fraction of
their virial radii [8]. If they are sufficiently dense and
gravitationally bound, these cores can survive destruc-
tion due to interactions with stars and the tidal field of

the galaxy that harbors them [8, 9].

Various predicted signals have been proposed to test
the properties of DMCs, such as the gamma ray emission
resulting from annihilating DM [10, 11] or microlensing
events [12]. In this paper, we explore for the first time
the observational consequences of a phenomenon that is
likely to bring the demise of some DMCs: strong tidal
interaction with a supermassive black hole (SMBH).

The centers of most galaxies are believed to harbor a
SMBH, cf. [13]. It is well known that stars whose tra-
jectories pass close enough to a SMBH can be tidally
disrupted, leading to bright transient events that are ac-
tively being studied [14]. A perhaps less known phe-
nomenon is the tidal compression of stars by SMBHs
[15, 16]. The physical mechanism is rather simple: while
tidal forces stretch the star along the axis joining its cen-
ter of mass to the SMBH, they compress it along the two
perpendicular directions.

In this paper, we study, for the first time, the conse-
quences of the equivalent phenomenon for DMCs. We
compute the net compression of a DMC approaching a
SMBH beyond the Roche radius. We find that for orbits
penetrating deep inside the Roche radius Rt, the DMC
is compressed shortly after pericenter passage by a fac-
tor of order β = Rt/Rp � 1, where Rp is the distance
to the black hole at pericenter. The compression takes
place on a timescale of order β−2 times the DMC dy-
namical timescale. Tidal compression events (TCEs) of
DMCs therefore lead to flares, either of gamma rays if the
final products of DM annihilation are photons, or of syn-
chrotron radiation if DM particles annihilate via leptonic
channels into relativistic electrons and positrons and the
local magnetic field is strong enough. Such events also
lead to bursts of gravitational waves.

A prediction of the rate of TCEs of DMCs from
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first principles is highly model-dependent and would re-
quire treating a chain of complex processes. First, one
would need to predict or parameterize the abundance,
mass function and profiles of primordial DMCs. Second,
one would have to compute the survival rates of DMCs
through hierarchical structure formation and tidal inter-
actions with the galactic field and passing stars. Finally,
one would need to estimate the rate at which their or-
bits are deflected into the SMBH “loss cone”, i.e. close
enough that they can be tidally compressed [17, 18]. This
problem may be complicated by the fact that DMCs may
be less dense than stars, and more likely to be disrupted
by close interactions than to be deflected. In this first
exploratory study, we study TCEs from a phenomeno-
logical point of view, taking the DMC mass, density and
pericenter distance as free parameters, and defer an es-
timation of the event rate to future work. We hope that
our results motivate more detailed follow-up, especially
using appropriate numerical simulations.

The structure of this paper is as follows. In Section II,
we lay out our model for DMCs and compute their net
compression during a TCE. In Section III, we calculate
the predicted flux and duration of gamma-ray or syn-
chrotron flares resulting from dark matter annihilation,
and compare them with some existing observations. We
also estimate the gravitational wave signal. In Section
IV we discuss possible improvements and generalizations
of the model. We conclude in Section V.

II. THEORY

A. Dark matter clump properties

The density profile of a DMC depends on the details
of its formation process [5, 19]. As shown for example
in Ref. [5], if the DMC forms from a primordial adia-
batic density fluctuation with δ . 0.3 (larger adiabatic
fluctuations would form primordial black holes [20]), and
then collapses at the earliest at matter-radiation equality,
its final density is typically ∼ 100 times the background
density at collapse, ρDM . 10−18 g/cm3, which is rather
small.

However, a generic outcome of analytic and numeri-
cal calculations is that DMCs have a cuspy power-law
profile [4, 7]. This power law does not continue to arbi-
trarily small radii: at some point the density is expected
to flatten out to a constant value, which we denote by ρcl.
Existing dark-matter-only1 simulations do not have suf-
ficient resolution to capture the transition from a cuspy
power-law profile to the core (see e.g. [21, 23]). The
core size and central density are therefore highly uncer-

1 Of course hydrodynamic simulations including baryons can re-
solve a core [21, 22], but the DMCs we consider are too small to
retain any baryons.

tain [24]. Several processes can prevent the density from
reaching arbitrarily high values at the center [19]. If the
DM particles have some initial random velocities, either
thermal or turbulent, the decrease of the coarse-grained
phase-space density imposes a lower bound on the core
radius [25]. If the dark matter self-annihilates, one can
set an upper limit to the core density by requiring that
it does not entirely self-annihilate within a Hubble time
[26], or, more realistically, within a dynamical time as the
core should be refilled on that time-scale [2]. The latter
requirement implies

ρcl
〈σv〉
mχ

. T−1
cl , (1)

where 〈σv〉 is the velocity-averaged annihilation cross sec-
tion times velocity, mχ is the mass of the DM particle,
and Tcl is the dynamical timescale of the self-gravitating
DMC,

Tcl ≡
√

3

4πGρcl
≈ 0.5 hour

(
ρcl

1 g cm−3

)−1/2

. (2)

The maximum clump density for self-annihilating DM is
therefore

ρcl .
4πG

3

(
mχ

〈σv〉

)2

≈ 10 g cm−3

( 〈σv〉
3×10−26cm3s−1

)−2 ( mχ

100 GeV

)2

,(3)

of order the mean Earth density for a characteristic ther-
mal relic velocity-averaged cross section [27] and 100 GeV
dark-matter particle. We note, however, that unless the
DM annihilates through an s-wave interaction (σv = con-
stant), the value of 〈σv〉 for the considered DMC depends
on its internal velocity dispersion and need not be equal
to the thermal relic value.

Clearly, a minimum core density is required for the
DMC to survive disruption by stellar encounters or galac-
tic tides before reaching the immediate vicinity of the
SMBH. The survival rate of DMCs is a subject of active
work and debate [9, 24, 28, 29], and we shall not ven-
ture an estimate of the minimum DMC density here. We
shall instead keep ρcl as a free parameter, bounded from
above as in Eq. (3) (when considering self-annihilating
DM), and defer a detailed study of allowed values for
future work.

In what follows we shall only focus on the DMC’s core.
We denote by Mcl the DMC’s mass (more precisely, its
core’s mass). The characteristic clump radius Rcl is de-
fined as

Rcl ≡
(

3Mcl

4πρcl

)1/3

≈ 6× 10−5(Mcl,�)1/3ρ
−1/3
10 pc, (4)

where from this point on, we use Mcl,� ≡ Mcl/M� and
ρ10 ≡ ρcl/(10−10 g/cm3). This particular normalization
is arbitrary, but all our expressions remain completely
general.
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B. Infall into a SMBH

If the DMC is orbiting a SMBH with mass MBH, then
the tidal radius, at which the tidal field of the SMBH
overcomes the DMC self gravity, is given by

Rt ≡
(

3MBH

4πρcl

)1/3

≈ 6× 10−3 M
1/3
BH,6 ρ

−1/3
10 pc, (5)

where MBH,6 ≡ MBH/(106M�). This is typically much
larger than the Schwarzschild radius of the SMBH,
RBH = 2GMBH/c

2 ≈ 10−7MBH,6 pc, as long as

ρcl � 2× 104 g cm−3 M−2
BH,6. (6)

We assume that the center of mass of the DMC is on a
parabolic orbit around the SMBH, with pericenter Rp.
Its distance from the SMBH is given by

R =
2Rp

1 + cos f
, (7)

where the angle f is the true anomaly. Following
Ref. [15], we define the penetration factor

β ≡ Rt
Rp

. (8)

Note that assuming Rp ≥ RBH imposes an upper bound
on the penetration factor β ≤ βmax, with

βmax ≈ 6× 104 M
−2/3
BH,6 ρ

−1/3
10 . (9)

Once the DMC is deep enough inside the tidal radius,
tidal forces dominate over its self gravity. The DMC
is then effectively gravitationally unbound, and all of
its particles are in free fall. The DMC is then tidally
stretched along the axis joining its center of mass to the
SMBH and tidally compressed along the perpendicular
directions. Unlike stars, for which internal pressure even-
tually halts tidal compression, the DMC can a priori be
compressed to arbitrarily large densities. Initial turbu-
lent velocities will however prevent the DMC from reach-
ing infinite densities, as they lead to a de-synchronization
of orbit crossings [16].

We shall restrict ourselves to penetration factors β ≤
(MBH/Mcl)

1/3 for which the DMC-SMBH separation is
always larger than the DMC size, Rcl � R. This allows
us to compute the tidal deformation of the clump pertur-
batively by Taylor-expanding the equations of motion of
its constituent mass elements around the trajectory R of
the center of mass. It would be interesting to generalize
our analysis to larger penetration factors, and we defer
this to future work.

We define r to be the distance of a mass element to
the center of mass, divided by Rcl. We also define v = ṙ,
where an overdot denotes differentiation with respect to
the normalized time t/Tcl. The linearized equation of
motion for the dimensionless separation r is then

r̈ =

(
Rt
R

)3 (
3(R̂ · r)R̂− r

)
. (10)

This can be transformed into a differential equation in f
by using

1

Tcl

dt

df
=
√

8β−3/2(1 + cos f)−2. (11)

By virtue of the linearity of Eq. (10), we may linearly
relate the phase-space coordinate (r,v) at true anomaly
f to the initial coordinates (r0,v0) at the crossing of
the tidal radius, which occurs at true anomaly f0 =
−arccos(2/β−1), assuming the transition from the dom-
ination of self-gravity to that of tidal forces is instanta-
neous. Since the system is deterministic, the transfor-
mation is invertible and we shall denote by (r0,v0)(r,v,f)

the unique initial conditions leading to (r,v) at f .
Liouville’s theorem ensures that the phase-

space density F(r,v) is conserved: F(r,v, f) =
F((r0,v0)(r,v,f), f0). This allows us to compute the
(normalized) density field ρ̃(r, f):

ρ̃(r, f) =

∫
d3v F(r,v, f)

=

∫
d3v F((r0,v0)(r,v,f), f0). (12)

To simplify calculations we assume that the initial phase-
space density is Gaussian and spherically symmetric,
both in position and velocity, and takes the form:

F(r0,v0, f0) = ρ∗ e−3r20/2

(
3

2π

)3/2

e−3v20/2, (13)

with ρ∗ ≡
√

6/π R3
cl ρcl. This form is in turn factorizable

in products of phase-space densities along each axis. Note
that the prefactor

√
6/π ≈ 1.38 is chosen so that the

simple relation Mcl = (4π/3)ρclR
3
cl holds.

We see from Eq. (10) that the evolution of r in the or-
bital plane (component r||) is decoupled from that in the
direction perpendicular to it (z-component). The inte-
gral in Eq. (12) is therefore factorizable into in-plane and
out-of-plane contributions, which we study separately be-
low.

C. Compression perpendicular to the orbital plane

The evolution perpendicular to the orbital plane takes
the form

z(f) = a(f)z0 + b(f)vz0, (14)

vz(f) = ȧ(f)z0 + ḃ(f)vz0, (15)

where a(f) and b(f) are given explicitly in Ref. [16] as
functions of the penetration fator β. We show some ex-
ample trajectories in Figs. 1 and 2.

Since the out-of-plane evolution is separately Hamilto-
nian, it also satisfies Liouville’s theorem, and conserves
the phase-space volume. The transformation (z0, vz0)→
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FIG. 1: Trajectories of test particles with respect to the center
of mass of the DMC, perpendicular to the orbital plane, for a
penetration factor β = 10. Specifically, we show trajectories
with initial height z/Rcl ∈ [−1, 1] and initial vertical velocity
from -1 to 1 times the virial velocity. The curves are started
and ended at entry and exit from the tidal radius.
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FIG. 2: Velocities of test particles with respect to the center
of mass of the DMC, perpendicular to the orbital plane, for
a penetration factor β = 10. For each curve, the initial con-
ditions match those of the line with identical color in Fig. 1

(z, vz) therefore has unit determinant (aḃ− ȧb = 1) and
its inverse is readily computed:

z0 = ḃ(f)z(f)− b(f)vz(f), (16)

vz0 = −ȧ(f)z(f) + a(f)vz(f). (17)

Assuming a 6= 0 we rewrite Eq. (14) as

z0 =
z

a
− b

a
vz0. (18)

The contribution of the z-axis to Eq. (12) is

ρ̃z(z, f) = ρ
1/3
∗

√
3

2π

∫
dvz e−3z20/2e−3v2z0/2

= ρ
1/3
∗

√
3

2π

∫
dvz0
|a| e−3(z/a−(b/a)vz0)2/2e−3v2z0/2,(19)

where in the second line we changed integration variables
from vz to vz0 at fixed z, hence the factor 1/|a|, obtained
from Eq. (17). Performing the Gaussian integral we ar-
rive at

ρ̃z(z, f) =
ρ

1/3
∗√

a2 + b2
exp

[
−3

2

z2

a2 + b2

]
. (20)

We see that the DMC’s density profile along the z-axis
remains Gaussian (if it was initially so) with a character-

istic extent
√
a2(f) + b2(f). We show the characteristic

compression factor ∆z ≡ 1/
√
a2(f) + b2(f) in Fig. 3.
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FIG. 3: Compression factor perpendicular to the orbital
plane, as a function of the true anomaly f (focusing on the in-
terval −π/4 < f < π/4), for several values of the penetration
factor β. Pericenter passage occurs at f = 0.

Ref. [16] gives explicit expressions for a(f) and b(f).
In the large-β limit, they are approximately

a(f) ≈ 2β−1

1 + cos f
(cos f −

√
β sin f), (21)

b(f) ≈ 2β−1

1 + cos f
(
√

2 cos f −
√
β/2 sin f). (22)

By Taylor-expanding the compression factor ∆z =
1/
√
a2 + b2 for f � 1, we arrive at

∆z(f, β) ≈ β√
3
2βf

2 − 4
√
βf + 3

, (23)

which peaks at true anomaly fmax = 4/(3
√
β) with max-

imum value

max[∆z] =
√

3 β, (24)

and width (measured between the two passages at half-
maximum)

∆f =
√

8/(3β). (25)

In order to convert this to a duration, we use the differen-
tial relation between time and the true anomaly, Eq. (11),
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and obtain the following time interval between the two
passages at half maximum:

∆ttce ≈
2√
3
Tclβ

−2 ≈ 6 hours ρ
−1/2
10 (102/β)2. (26)

D. Deformation in the orbital plane

The same steps can be followed for the DMC deforma-
tion in the orbital plane. Starting from the relation

r||(f) = A(f)r||0 + B(f)v||0, (27)

where A(f) and B(f) are two-by-two matrices, we show
in Appendix A that the contribution of the in-plane axes
to Eq. (12) is

ρ̃||(r||, f) =
ρ

2/3
∗√

det(AAT + BBT)

× exp

[
−3

2
rT
|| (AAT + BBT)−1r||

]
, (28)

where the superscript “T” denotes the transpose. We see
that the isodensity contours are deformed into ellipses.
The characteristic elongations are the square roots of the
eigenvalues of AAT + BBT.

Ref. [16] explicitly provides the components of A(f)
as a function of β, but not those of B(f). We compute
B(f) by numerically solving the ODE satisfied by r||(f).
As a sanity check we have verified that our numerical
solution for A reproduces that of Ref. [16] and that the
determinant of the bloc matrix with rows (A,B) and

(Ȧ, Ḃ) is unity, as it should.
In Fig. (4), we plot the trajectory of the DMC as it

moves around the SMBH, numerically solving for its de-
formation. We take β = 10.

We show the in-plane compression factor ∆|| ≡
1/
√

det(AAT + BBT) in Fig. 5. We see that the net

result of tidal forces is to stretch the DMC (∆|| < 1).
However, this stretching remains of order unity even for
large penetration factors, in qualitative agreement with
the results of Ref. [16]. We find that accounting for ran-
dom in-plane motions further reduces the net compres-
sion factor (i.e. increase the net stretching) by ∼ 25%.
The characteristic value of ∆|| near pericenter and for
large β is ∆|| ≈ 0.5.

III. OBSERVABLE SIGNATURES

A. Gamma-ray flares from dark-matter
annihilation

1. Annihilation rate

Self-annihilating WIMPs are among the most moti-
vated candidates for dark matter [27]. The observable

FIG. 4: Orbital plane deformation of the DMC, with a pen-
etration factor of β = 10. At any given moment, tidal forces
tend to stretch the DMC along the axis connecting it to the
SMBH and compress it in the perpendicular direction. This
figure illustrates the delayed response of the DMC as it moves
along its parabolic orbit.
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FIG. 5: Compression factor in the orbital plane, as a function
of the true anomaly f , for several β = 102 (red) and 104

(blue). The dashed lines illustrate the compression factor that
one would obtain if neglecting random velocities (or setting
B to zero).

signals resulting from their continuous annihilation near
the Galactic center have been studied by several groups
[30, 31]. The signal can be enhanced if the dark matter
is clumpy [10]. Here we consider a qualitatively new as-
pect: the transient flaring of the annihilation rate that
results from the tidal compression of DMCs.

We assume that to lowest order in the velocity, the
annihilation cross section has the form σv = αv2`, where
α is a constant. The indices ` = 0 and ` = 1 correspond
to s-wave and p-wave annihilation, respectively [27]. The
exponent ` = 2 corresponds to a d-wave annihilation [32].

We denote the mass of the dark-matter particle by
mχ. For s-wave annihilation the ratio pann ≡ 〈σv〉/mχ

is constrained by CMB anisotropy measurements to be
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less than pmax
ann ≡ 3.5 × 10−28 cm3 s−1 GeV−1 (up to an

efficiency factor of order unity) [3].
The rate of annihilation events is

Ṅann =

∫
d3r

ρ2(r)

m2
χ

〈σvrel〉, (29)

where 〈σvrel〉 is averaged over the relative velocity of two
DM particles. At any given position, the latter has a
Gaussian distribution with zero mean and covariance ma-
trix whose elements are (in units of the DMC virial ve-
locity dispersion V 2

cl ≡ GMcl/Rcl):

〈v2
rel,z〉 =

2

3

1

b2(f) + a2(f)
=

2

3
∆2
z, (30)

Cov(vrel,||) =
2

3

[
B̃

T
B̃ + D̃

T
D̃
]−1

, (31)

where the matrices B̃ and D̃ are defined in Eqs (A5) and
(A6), and the in-plane and out-of-plane relative velocities
are uncorrelated. We rewrite

〈σvrel〉 = 〈σv〉0 ×∆v, (32)

where 〈σv〉0 is the value of 〈σvrel〉 for the isolated DMC,
prior to its entry inside the tidal radius, and ∆v is a boost
factor due to the velocity dependence of the annihilation
rate. Integrating Eq. (29), the annihilation rate simplifies
to

Ṅann =

√
3

4π

〈σv〉0
m2
χ

ρclMcl ×∆z∆||∆v. (33)

The factor ∆z∆||∆v is the net boost of the annihilation
rate due to tidal compression of the DMC.

We find that near maximum compression the in-plane
relative velocity dispersion [the trace of Cov(vrel,||)] is

always much smaller than 〈v2
z〉 for large penetration fac-

tors. Near maximal compression, we therefore get

∆v ≈


1 s-wave
1
3∆2

z p-wave
1
5∆4

z d-wave

. (34)

Therefore, near maximum compression the annihilation
rate is enhanced by a factor ∼ β2`+1 with respect to that
of a quiescent (non-compressed) DMC.

The total number of annihilation events during the
flare is

Nflare
ann ≈ Ṅflare

ann ∆ttce

≈ 0.5
〈σv〉0
m2
χ

ρclMcl
Tcl

β
∆v, (35)

where we used ∆|| ≈ 0.5 and ∆z ≈
√

3β at maximum
compression, and ∆ttce is given by Eq. (26). Numerically,
we get, for β � 1, and ` = 0, 1 or 2 (up to a factor of
order unity),

Nflare
ann ≈ 1051〈σv〉28

(
GeV

mχ

)2

ρ
1/2
10 Mcl,� × β2`−1, (36)

where

〈σv〉28 ≡
〈σv〉0

10−28 cm3 s−1
. (37)

We note that for β = 1 Eq. (36) gives the number of
annihilation events during a DMC dynamical time.

As an aside, we note that the total time elapsed be-
tween entry in the tidal radius and passage at pericen-
ter can be simply obtained by integrating Eq. (11) from
f = f0 = −arccos(2/β − 1) to 0. In the limit β � 1, we

find that this time is ttot ≈ (
√

2/3)Tcl, of order the DMC
dynamical timescale, independently of β. Therefore as
long as the DMC density is below the maximum value
given by Eq. (3), it does not entirely annihilate before
reaching the pericenter. However, for p- and especially
d-wave annihilation, very dense DMCs could completely
annihilate in the flaring event even if their density is be-
low that given in Eq. (3). In this case the light curves
that we predict below would be truncated at the time of
full DMC annihilation.

2. Gamma-ray flux

The differential gamma-ray flux per energy interval (in
photons/s/cm2/GeV) from annihilating dark matter in-
side an unresolved DMC at distance d = 100 d100 Mpc
from the observer is

dφ̇

dE
=

dNγ
dE

Ṅann

4πd2
(38)

≈ 3× 10−8 m−2s−1 dNγ
dE
〈σv〉28

(
GeV

mχ

)2

×ρ10Mcl,�(d100)−2 ∆z∆||∆v, (39)

where dNγ/dE is the mean spectrum of gamma-ray pho-
tons per annihilation event. We show a few example light
curves in Fig. 6.

The total number of photons received per unit area
during the flaring event has an energy distribution(

dφ

dE

)flare

=
dNγ
dE

Nflare
ann

4πd2

≈ 10 m−2 dNγ
dE

Nflare
ann

1051
(d100)−2. (40)

From Eq. (36) we see that at equal values of 〈σv〉0 for
quiescent clumps, p-wave and d-wave annihilations pro-
duce larger flares than s-wave annihilations. They are
therefore more likely to be observable even if the back-
ground gamma ray flux of the possibly numerous quies-
cent DMCs orbiting the SMBH is undetected.

3. TCEs of DMCs as the origin of Fermi flares?

The Fermi All-Sky Variability Analysis (FAVA) de-
tected 215 flaring gamma-ray sources with photon en-
ergies E ≥ 100 MeV [33]. These sources were selected
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if their photon count over one week exceeded the ex-
pected number of events (rescaled from the total num-
ber of events observed over 47 months) by more than 5.5
standard deviations. While known Fermi-LAT sources
were found to be associated with the majority of these
flaring events, a few tens do not have any known coun-
terpart. Moreover, the associations are purely based on
positional coincidence within a broad radius of ∼ 1 de-
gree. There is therefore currently no certain explanation
for the origin of at least some of these flares, and here we
examine whether they could result from TCEs of DMCs.

At high latitudes the threshold for flare identifica-
tion corresponds to ∼ 100 photons per week at ener-
gies E ≥ 100 MeV. We assume Fermi’s effective area
is approximately 0.5 m2. Assuming a p-wave annihila-
tion with 〈σv〉28 ≈ 1, we see that the tidal compres-
sion of a DMC at a distance of 100 Mpc, with mass
Mcl ≈ 0.1M�, density2 ρcl ≈ 10−10 g/cm3 with pene-
tration factor β ≈ 100 could have been at the origin of
detected flares. With these parameters the timescale of
the flare is several hours, and if the DM particle has mass
mχ = 1 GeV and produces Nγ =

∫
dE(dNγ/dE) ∼ 10

photons of energy E ≥ 100 MeV per annihilation, the to-
tal number of photons received during the flaring event is
of order ∼ 1000. One may worry that for a TCE to occur
a large number of quiescent DMCs orbiting the SMBH
is required, and that their combined quiescent emission
could overshadow the flare. With the parameters chosen
above, we find from Eq. (39) that ∼ 104 − 105 quiescent
DMCs are required to produce ∼ 103 photons during
a week. These results depend strongly on the assumed
microphysical properties of dark matter. Considering d-
wave annihilation instead of p-wave, for instance, would
result in an enhancement factor larger by β2 for the re-
sulting gamma-ray flare from a TCE of DMC, in which
case it would take ∼ 108−109 quiescent clumps with the
same mass and density to produce a similar signal.

Given the large freedom allowed by the multiple pa-
rameters of the model, it is not surprising that TCEs of
DMCs are able to accommodate flares of virtually arbi-
trary duration and amplitude. However, if this model
is to explain some of the Fermi flares (or any other un-
explained gamma-ray flaring event), it also makes sev-
eral additional predictions that would be interesting to
check. First and foremost, the energy spectrum of the
flares should be universal, as they all arise from the same
DM annihilation process. Secondly, we expect flares on a

2 We note that a power-law primordial power spectrum with adia-
batic initial conditions and an amplitude extrapolated from CMB
anisotropy measurements cannot lead to DMCs as dense as 10−10

g/cm3. However, the primordial power spectrum at the relevant
very small scales is unconstrained by current observations, and
need not have the aforementioned properties. Other scenarios,
such as an adiabatic primordial spectrum with localized features
or isocurvature fluctuations [5], could potentially lead to such
large overdensities [19].
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FIG. 6: Gamma-ray light curves from DM annihilation in
tidally compressed DM clumps at a distance of 100 Mpc, as-
suming Mcl = 0.1M�, ρcl = 10−10 g cm−3, mχ = 1 GeV, and
a total number of 10 gamma-ray photons produced per anni-
hilation event. The assumed annihilation cross section is nor-
malized such that 〈σv〉0 = 3× 10−28 cm3s−1 before the DMC
enters the tidal radius. The three rightmost (blue) curves cor-
respond to a penetration factor β = 10, and the two leftmost
(red) curves to β = 100. The labels s, p, d indicate the type
of annihilation (s-wave, p-wave or d-wave, respectively).

variety of timescales, the statistics of which depends on
the distribution of β, which in turn is set by the loss cone
physics [34]. If the DMCs have a rather narrow distribu-
tion in mass and densities, then we expect a well-defined
mapping between the flare amplitude and duration, de-
pending on the type of annihilation: φ̇max ∝ (∆t)−1/2−`.
Thirdly, the flares should be isotropically distributed, as
expected if they take place at cosmological distances. Fi-
nally, the light curves of the flares should resemble Fig. 6,
though of course a more detailed computation ought to
be carried out for a more accurate prediction.

B. Synchrotron flares

If the end products of dark-matter annihilation are
electrons and positrons, they may produce synchrotron
radiation due to the magnetic field near the galactic cen-
ter [30, 31]. The synchrotron radiation may not nec-
essarily flare on the timescale of the TCE. Indeed, the
energy-loss timescale for relativistic electrons is [35]

tsyn =
E

Ėsyn

=

(
4

3
cσT

B2

8π

E

(mec2)2

)−1

≈ 1 year

(
B

1 G

)−2
10 MeV

E
, (41)

where σT is the Thomson cross section and B is the mag-
netic field strength. If tsyn < ∆ttce, a synchrotron flare
would result from the annihilation flare, on a timescale
∆ttce. In the opposite case, the burst of synchrotron ra-
diation would be spread over the timescale tsyn.
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The amplitude of the magnetic field a fraction of a
parsec away from SMBHs is poorly known. Following
Ref. [36], one may derive an equipartition value for the
magnetic field, obtained if the magnetic energy density
equals the kinetic pressure. Assuming a Bondi accretion
rate of 1022 g/s = 1.6 × 10−4M� /year, Ref. [36] arrive
at

B(R) ≈ 0.6 M
1/4
BH,6

(
R

10−3 pc

)−5/4

G, (42)

where R is the separation from the SMBH. Recent obser-
vations of a distant active galactic nucleus (AGN) sug-
gest that the magnetic field could be tens of Gauss, if not
significantly larger, 0.01 pc away from the central black
hole [37]. While AGNs may have significantly larger mag-
netic fields than quiescent SMBHs (which would be more
appropriate to look for signatures of TCEs of DMCs),
this suggests that it is possible that the magnetic field is
strong enough that the synchrotron emission could flare
on a short timescale.

To obtain a simple estimate of the synchrotron flux, let
us assume for definiteness that tsyn > ∆ttce. We denote
by dNe/dE the average electron–positron spectrum per
annihilation. Shortly after the TCE, and before the elec-
tron energies are significantly dissipated by synchrotron
radiation (i.e. if t < tsyn for the energies considered),
the total synchrotron flux received at a distance d per
frequency interval is

dF

dν
=
Nflare

ann

4πd2

∫
dE

dNe
dE

dP

dν
(E), (43)

where the power radiated by a single electron is, up to
angular factors of order unity, [35]

dP

dν
(E) ≈ e3B

mec2
F

(
ν

νs(E)

)
, (44)

where F (x) is a dimensionless function of order unity
peaking at x ≈ 0.3 and νs(E) is the characteristic fre-
quency of radiation given by

νs ≈
E2

(mec2)3

ecB

2π
≈ 1 GHz

(
E

10 MeV

)2
B

1 G
. (45)

For simplicity we assume a flat electron–positron spec-
trum: E(dNe/dE) = 2 for E ≤ mχc

2 (this normalization
ensures that the total energy is 2mχc

2). We then arrive
at

dF

dν
=
Nflare

ann

4πd2

e3B

mec2
G

(
ν

νs(mχc2)

)
, (46)

where G(x) ≡
∫∞
x
dy/y F (y). The function G is of order

unity and decays exponentially with characteristic decay
scale x ∼ 1. Numerically, we get

dF

dν
≈ 10 mJy (d100)−2N

flare
ann

1051

B

1 G
(47)

for frequencies ν . νs(mχc
2). This flux level is within

the reach of existing transient radio surveys (see e.g.
Ref. [38]). It would therefore be interesting to make a
more quantitative prediction for the time evolution of the
synchrotron spectrum for arbitrary ratios ∆ttce/tsyn and
more realistic models for the electron–positron spectrum.
We defer studying these issues to future work.

C. Gravitational wave bursts

A natural consequence of TCEs of DMCs is the emis-
sion of gravitational waves (GWs), which will be radiated
regardless of the microphysical properties of the dark
matter.

The first source of GWs is the orbital motion itself [39].
For large β a burst of GWs is emitted near pericenter
passage, with characteristic timescale

torb ∼
(
GMBH

R3
p

)−1/2

∼ Tcl × β−3/2. (48)

The GW strain due to orbital motion is

horb ∼
GMclR

2
p

c4d t2orb

∼ GMclR
2
p

c4d T 2
cl

β3, (49)

where d is the distance to the source.
The tidal compression of the DMC leads to an addi-

tional burst of GWs, on a timescale ∆ttce. As shown
in Ref. [16], GW emission can be significantly enhanced
for an object that is not perfectly symmetric about the
orbital plane. Whereas the asymmetry parameter is
expected to be small for stars considered in Ref. [16],
we expect DMCs to be generically triaxial objects [40].
Since our detailed treatment in Section II assumed a per-
fectly spherical DMC, we shall only use the characteristic
lengthscales and timescales derived there to estimate the
GW emission during a TCE.

We saw in Section II that the clump is not (yet) sig-
nificantly deformed in the orbital plane near pericenter
passage. We shall therefore assume that x ∼ y ∼ Rcl.
On the other hand, the clump is significantly compressed
perpendicular to the orbital plane, with z ∼ Rcl/β at
maximal compression. The components of the reduced
quadrupole moment tensor are therefore of order

Qxx ∼ Qxy ∼ Qyy ∼ MclR
2
cl, (50)

Qxz ∼ Qyz ∼ MclR
2
cl/β, (51)

Qzz ∼ MclR
2
cl/β

2. (52)

The timescale for compression in the z-direction is
∆ttce ∼ Tcl/β

2, while the evolution in the plane is much
slower (see Fig. 5). The second derivative of the reduced
quadrupole moment is therefore of order

Q̈xz ∼ Q̈yz ∼
MclR

2
cl

T 2
cl

β3, (53)

Q̈zz ∼
MclR

2
cl

T 2
cl

β2, (54)
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while the other components are subdominant for large
β. Note that the scalings with β are different than those
derived in Ref. [16] since in their study the star’s inter-
nal pressure causes a bounce at maximum compression,
whereas in our case it is the initial random velocities of
the virialized clump that prevent it from collapsing to a
point.

The observed gravitational wave amplitude depends of
course on the orientation of the detector with respect to
the orbital plane. For generic orientations and large β,
the terms Q̈xz and Q̈yz dominate. We therefore get a
characteristic GW strain

htce ∼
GQ̈

c4d
∼ GMclR

2
cl

c4 d T 2
cl

β3 (55)

This is a factor ∼ (Rcl/Rp)
2 smaller than the strain due

to the orbital motion itself. However, the timescale ∆ttce

for the GW flare from the TCE is shorter by a factor
∼ 1/

√
β than the time of pericenter passage (48). The

resulting GWs are therefore emitted at frequencies ∼ √β
higher. Numerically, the characteristic frequency of the
GW emission due to the TCE is

νtce ∼ 2π∆t−1
tce ∼ 30 Hz

(
ρcl

1 g cm−3

)1/2

(β/100)2, (56)

and the amplitude of the strain is of order

htce ∼ 10−23

(
Mcl

0.1 M�

)5/3(
ρcl

1 g cm−3

)1/3
(β/100)3

d100
. (57)

Consider for instance a 0.1 M� DMC with density 1 g
cm−3, tidally compressed by a 105M� SMBH. The tidal
radius is approximately 50 solar radii (3× 107 km), and
a penetration factor β = 100 corresponds to pericenter
Rp ≈ 0.5R� ≈ Rcl ≈ RBH. In this case the amplitude
of the GW burst generated by the TCE is as large as
that due to the orbital motion, though of course our cal-
culation breaks down both close to the SMBH horizon
and when the SMBH–DMC separation becomes compa-
rable to the size of the DMC. From Eqs. (56) and (57) we
see that with these parameters the burst of GWs from
the TCE could be detected by Advanced LIGO and Ad-
vanced Virgo [41], while that from the orbital motion
would remain beyond their reach due to its lower fre-
quency. A detailed computation of the total waveform
and its detectability by current or future GW detectors is
beyond the scope of this work. We therefore simply point
out that TCEs of DMCs ought to produce a unique GW
signal, that could make it possible to distinguish them
from signatures of other close encounters with SMBHs.

IV. DISCUSSION

In this paper we have outlined the essential physics
of TCEs of DMCs and predicted several observational

consequences. Our calculations rely on a rather simpli-
fied model, however, and we list below several points that
need to be explored in more detail to obtain more precise
quantitative estimates.

Different clump profiles. In our calculation of the DMC
compression, we have assumed a simple phase-space den-
sity, with a Gaussian density profile. Our results can in
principle be generalized to more realistic density profiles,
such as the isothermal profile ρ ∝ r−2 or the NFW profile
[42]. Since most profiles do not generally factor into inde-
pendent functions along each axis, the calculation would
not simplify as it did for a Gaussian profile, but the for-
malism remains identical. A more difficult aspect would
be to consistently follow different layers of the DMC as
their tidal radii are different. This is particularly im-
portant for a cusped profile. In this case one ought to
numerically solve for the trajectories of the clump parti-
cles under the combined gravitational pull of the DMC
at that of the SMBH. Simulations may provide a useful
tool to estimate the effect of different clump profiles.

Self-gravity. We have assumed that the DMC self grav-
ity can be entirely neglected immediately at the crossing
of the tidal radius, and that the later compression of the
DMC does not affect this result. In reality, of course,
the self-gravity of the DMC ought to be self-consistently
included, and may significantly affect our results. Near
pericenter passage where the DMC is highly elongated
and compressed, instabilities may develop due to self
gravity and the clump could fragment.

Self-interactions. We have only considered collisionless
DM in this work. The dynamical behavior of the DMC
under compression would be modified if the DM is self-
interacting [43].

Tidal approximation. We have restricted our calcula-
tion to the tidal approximation, for which the DMC ex-
tent is much smaller than its separation from the SMBH.
It would be interesting to generalize this calculation to
close encounters / extended DMCs.

Background star cluster. We have assumed that the
SMBH dominates the gravitational potential, neglecting
the effect of the background star cluster. This could have
an effect if the tidal radius is comparable to that of the
SMBH sphere of influence. As long as the stellar cluster is
spherically symmetric, the form of the equations derived
in this work should be unchanged: the center-of-mass or-
bit will still be planar, and the in- and out-of-plane devi-
ations should still be separable and linearizable provided
Rcl is much smaller than the characteristic lengthscale of
the potential.

Newtonian approximation. Throughout this calcula-
tion we have taken a Newtonian approximation, ignoring
general-relativistic effects. If the DMC approaches the
SMBH within a few Schwarzschild radii, a fully relativis-
tic treatment is required. Interesting effects may arise if
the SMBH is rapidly spinning [44].

Rate estimates. The obvious next step of this work is
to estimate the rates of TCEs of DMCs. This requires
(i) a prescription for the abundance and mass function
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of DMCs, accounting for their tidal destruction by stars
and galactic tides and (ii) a more detailed study of the
loss-cone problem of DMCs and the distribution of pen-
etration factors β. The rates may be significantly en-
hanced in binary SMBHs [45]. We leave these important
questions to future work.

V. CONCLUSION

We have calculated the tidal deformation and com-
pression of a DMC penetrating into the tidal sphere of
a SMBH. We found that this process results in extreme
compression in the direction perpendicular to the orbital
plane, with a duration and compression factor that de-
pend on the initial density of the DMC core, as well as
on the ratio between the pericenter radius of the DMC
orbit and the tidal radius of the SMBH. As a result of the
boost in density and velocity dispersion, a natural signa-
ture of this model is in the form of flares (of gamma-rays,
for example) from annihilating dark-matter particles in
the clump. The amplitude of these annihilation flares
relative to the quiescent DMC annihilation rate is par-
ticularly pronounced for p- and d-wave annihilation.

Under the WIMP scenario, we calculated the charac-
teristic amplitude and duration of gamma-ray flares, cov-
ering the full parameter space of DMC mass and core
density, dark-matter particle mass, and orbital penetra-
tion factors. Comparing our predictions with observa-
tions from Fermi LAT [33], we found that flares recently
detected in the data, some with no known counterparts
in the point-source catalogs, are consistent with those
expected from TCEs of DMCs for a range of model pa-
rameters. We emphasize that our model further predicts
that the flares should be distributed isotropically on the
sky, and exhibit a universal energy spectrum. Our results
therefore motivate a more exhaustive search for flares in
Fermi LAT data, including ones on shorter timescales,
the finding of which may enable a more detailed compar-
ison against the model presented here, as well as many
alternative scenarios.

We also addressed other possible signatures of TCEs of
DMCs. We derived the characteristic flux of synchrotron
radiation that would be produced if the products of dark
matter annihilation are relativistic positrons and elec-
trons. We also discussed the gravitational-wave signature
resulting from a TCE and argued that it is detectable by
Advanced LIGO for certain parameters.

We mentioned several caveats and discussed possible
generalizations and improvements to this model. Look-
ing forward, dedicated numerical simulations would be a
particularly interesting and useful follow-up.

While we have focused on the characteristics of TCEs
of DMCs given arbitrary clump parameters, more work
lies ahead before we can use these results to constrain the
properties of dark matter. The next steps are, first, to
derive the clump parameters and their distribution from
any particular model for the small-scale DM power spec-

trum, and second, to make predictions for the event rate,
accounting for stellar encounters and loss-cone physics.
It is our hope that the interesting new observables we
have introduced in this paper will stimulate more work
in this direction.
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Appendix A: Clump deformation in the orbital plane

Here we derive Eq. (28), following the same steps
as in Section II C but generalizing it to a two-by-two-
dimensional phase-space. We use standard linear algebra
results for the inverse and determinant of a block matrix.

The components of r and v in the orbital plane depend
linearly on initial conditions:

r||(f) = A(f)r||0 + B(f)v||0, (A1)

v||(f) = Ȧ(f)r||0 + Ḃ(f)v||0. (A2)

The initial positions and velocities can be obtained
with the inverse transform

r||0 = Ãr|| + B̃v||, (A3)

v||0 = C̃r|| + D̃v||, (A4)

with the following explicit expressions for B̃, C̃, D̃, if A
is non-singular (we will not need an expression for Ã):

D̃ ≡ (Ḃ − ȦA−1B)−1, (A5)

B̃ ≡ −A−1BD̃, (A6)

C̃ ≡ −D̃ȦA−1. (A7)

The determinant of the (r||0,v||0) → (r||,v||) linear
transformation is unity. Explicitly, this determinant is

det(A) det(Ḃ − ȦA−1B) = 1, (A8)

which implies that det D̃ = detA. We now rewrite
Eq. (A1) as

r||0 = A−1r|| −A−1Bv||0. (A9)

Using Eq. (A4) we obtain the determinant of the v|| →
v||0 change of variables at constant r||:

d2v|| =
d2v||0

|det D̃|
=

d2v||0

|detA| . (A10)
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The contribution of the in-plane axes to Eq. (12) is there-
fore

ρ̃||(r||, f) = ρ
2/3
∗

3

2π

∫
d2v||0

|detA|e
−3v2

||0/2 (A11)

e−3(A−1r||−A−1Bv||0)2/2. (A12)

After some linear algebra, we compute the Gaussian in-
tegral and arrive at Eq. (28).
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