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Abstract

We obtain the non-equilibrium effective action of an inflaton like scalar field –the system– by

tracing over sub Hubble degrees of freedom of “environmental” light scalar fields. The effec-

tive action is stochastic leading to effective Langevin equations of motion for the fluctuations of

the inflaton-like field, with self-energy corrections and stochastic noise correlators that obey a de

Sitter space-time analog of a fluctuation dissipation relation. We solve the Langevin equation

implementing a dynamical renormalization group resummation of the leading secular terms and

obtain the corrections to the power spectrum of super Hubble fluctuations of the inflaton field,

P(k; η) = P0(k) e
−γ(k;η) where P0(k) is the nearly scale invariant power spectrum in absence of

coupling. γ(k; η) > 0 describes the suppression of the power spectrum, it features Sudakov-type

double logarithms and entails violations of scale invariance. We also obtain the effective action for

the case of a heavy scalar field of mass M ≫ H, this case yields a local “Fermi” limit with a very

weak self-interaction of the inflaton-like field and dissipative terms that are suppressed by powers

of H/M . We conjecture on the possibility that the large scale anomalies in the CMB may originate

in dissipative processes from inflaton coupling to sub-Hubble degrees of freedom.
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I. INTRODUCTION

Precise observations of the cosmic microwave background anisotropies by the WMAP[1]

and PLANCK[2] missions support one of the main predictions of inflationary cosmology,

namely a nearly scale invariant power spectrum of adiabatic perturbations. A main paradigm

of inflationary cosmology posits that the inflationary stage is dominated by a scalar field

slowly rolling down a potential landscape leading to a nearly de Sitter inflationary stage.

Cosmological perturbations are generated by quantum fluctuations that are amplified when

their wavelengths become larger than the Hubble radius during inflation. Most models of

inflation rely on either a single scalar field or several scalar fields (which typically yield

isocurvature or entropy perturbations), however the effect of the interactions between the

inflaton field and the degrees of freedom that would populate a radiation dominated era

post inflation is neglected during the inflationary stage and assumed to switch-on at the

end of inflation during a period of “reheating”[3, 4]. However, such interaction between the

inflaton and other (fermionic, scalar) degrees of freedom cannot just switch-on at the end

of inflation, on physical grounds if the inflaton couples to other degrees of freedom, such

couplings should also influence the inflationary stage.

Interactions of quantum fields in de Sitter (or nearly de Sitter) space-time have been the

focus of important studies[5–25] which show strong infrared and secular effects.

Furthermore, non-Gaussianity is a manifestation of self-interactions of curvature per-

turbations and could leave an observable imprint on the cosmic microwave background,

although it is suppressed by small slow roll parameters in single field slow roll inflationary

models[26, 27].

Interactions with heavy fields with masses M ≫ H with H the Hubble parameter during

inflation have been treated in terms of effective field theory descriptions[28–31] mainly by

neglecting kinetic terms and correlations, treating the heavy degrees of freedom as auxiliary

fields that can be “integrated out” at tree level, or including correlations of the heavy fields

in powers of H/M ≪ 1[32].

In a non-equilibrium situation as is the case with cosmological expansion, integrating out

short wavelength degrees of freedom leads to an effective field theory description in terms of

a reduced density matrix for long wavelength fluctuations. Such a description is, fundamen-

tally, akin to a Wilsonian approach to an effective field theory[33] by coarse graining short
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distance degrees of freedom. At the level of a non-equilibrium effective action, the study

of the effects of tracing out degrees of freedom was pioneered with the study of quantum

Brownian motion[34–40], the degrees of freedom of interest are considered to be the “system”

whereas those that are integrated out (traced over) are the “bath” or “environment”. The

effects of the bath or environment are manifest in the non-equilibrium effective action via

an influence action which is in general non-local and describes dissipative processes. This

influence action is determined by the correlation functions of the environmental degrees of

freedom, and determines the time evolution of the reduced density matrix. An alternative

description of the time evolution of the reduced density matrix is the quantum master equa-

tion[41, 42] which includes the effects of coupling to the environmental degrees of freedom

via their quantum mechanical correlations. In ref. [43] the equivalence between the influ-

ence action and the quantum master equation was established in Minkowski space-time, and

shown that they provide a non-perturbative resummation of self-energy diagrams directly

in real time providing an effective field theory description of non-equilibrium phenomena.

A generic quantum master equation approach for a reduced density matrix describing

cosmological perturbations has been advocated in ref.[44] in terms of local correlations of en-

vironmental degrees of freedom. More recently the quantum master equation that describes

the non-equilibrium dynamics of an inflaton-like scalar field fluctuations upon tracing out

“environmental” sub-Hubble degrees of freedom was obtained[45]. This quantum master

equation yields the effective equations of motion for fluctuations of the inflaton field whose

solution represents a non-perturbative resummation of self-energy diagrams. The results of

this study reveals a suppression of the power spectrum of super Hubble fluctuations as a

consequence of the interaction with the “environmental” degrees of freedom.

Motivations and objectives: Although the inflationary paradigm has been successfully

supported by precise observations of the power spectrum of temperature anisotropies in the

cosmic microwave background (CMB), there remain puzzling anomalies at large scales[46],

such as the suppression of power at low l’s. The preliminary results of ref.[45] suggest that

the coupling of the inflaton field to sub-Hubble degrees of freedom may lead to dissipative

effects that yield a suppression of the power spectrum on large scales. The confirmation of

this suppression with the complementary framework of the non-equilibrium effective action,

including the influence action from integrating out sub-Hubble degrees of freedom is one of
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main the goals of this article.

The equivalence between the influence action and the quantum master equation estab-

lished in ref.[43] relies on a spectral representation of the correlation functions of the bath

which is not available in inflationary cosmology as a consequence of the explicit time de-

pendence of the gravitational background. In this article we obtain the non-equilibrium

effective action including the influence action that emerges from integrating out the “envi-

ronmental” fields. This approach leads directly to a stochastic description in terms of an

effective Langevin equation of motion[34, 37–39, 43, 47] it is complementary, and here shown

to be equivalent to, the density matrix formulation of ref.[45]. We seek to confirm and ex-

pand the results obtained in reference [45] directly from the non-equilibrium effective action

with the influence action, with the added bonus of making explicit the stochastic nature of

the non-equilibrium effective action. In the quantum density matrix this stochastic nature

of the dynamics is not manifest directly and requires an interpretation in terms of Wiener

processes[41, 42], whereas the influence action approach leads directly to a stochastic descrip-

tion of the non-equilibrium dynamics. This is an important feature of the non-equilibrium

effective action. The pioneering work of ref.[48] recognized that integrating out sub-Hubble

components of the inflaton scalar field during inflation yields a stochastic effective descrip-

tion. Several studies showed that decoherence and effective stochastic dynamics emerging

from tracing over short wavelength degrees of freedom are of fundamental importance in

cosmology[6, 9, 10, 48–52]. In this article we have two main objectives: i) To obtain the

effective field theory that describes the non-equilibrium time evolution of the reduced den-

sity matrix for the “system degrees of freedom” by tracing out environmental degrees of

freedom obtaining the influence action. This approach yields a stochastic description and

complements and extends the study in ref.[45], with the goal of confirming the large scale

suppression of the power spectrum as a consequence of dissipative effects. ii) To study the

emergence of a local “Fermi” effective field theory in the case when the environmental field

features a mass M ≫ H , by obtaining the non-equilibrium effective action in powers of

H/M and establishing the nature of the dissipative contributions to the effective action in

this case.

Brief summary of results: We obtain an effective field theory for an inflaton-like

scalar field by tracing out (integrating) out another scalar field –the environment– from the
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time evolved quantum density matrix. The effect of the environmental degrees of freedom

is encoded in an influence action that leads to a stochastic description of the dynamics

in terms of a Langevin equation that includes self-energy corrections and a colored noise.

The self-energy and the noise correlation function obey a de Sitter space-time analog of

the fluctuation-dissipation relation. The environmental fields are taken to be massless and

conformally coupled to gravity as a proxy for degrees of freedom that remain sub-Hubble

during inflation, but we also analyze the case of a nearly massless minimally coupled field.

We implement the dynamical renormalization group to solve the Langevin equation and

obtain the power spectrum of super Hubble inflaton fluctuations. The power spectrum is

suppressed as a consequence of the dissipative processes arising from the coupling to the

environmental fields. For a nearly massless inflaton field for which the unperturbed power

spectrum is scale invariant, we find

P(k; η) = P0(k) e
−γ(k,η) ; γ(k; η) =

g2

12π2

[
ln2
(
−kη

)
− 2 ln

(
−kη

)
ln
(
−kη0

)]
(1.1)

where P0(k) is the power spectrum in absence of environmental coupling, g is the effective

coupling to the environmental fields and η0 is a renormalization scale chosen as the beginning

of the de Sitter stage when modes of cosmological relevance today were deeply sub-Hubble.

The power spectrum is suppressed at large scales with a concomitant violation of scale

invariance. This result confirms those obtained with the quantum master equation in ref.[45]

in an independent and complementary framework. The coupling of the inflaton field to sub-

Hubble degrees of freedom may be responsible for dissipative effects and may provide an

explanation for the large scale suppression of the power spectrum in the CMB. The case

of nearly massless environmental scalar fields minimally coupled to gravity yield stronger

corrections enhanced by infrared effects, although these environmental fields may be severely

constrained by CMB observations.

In the case of environmental fields with masses ≫ H we obtain a local “Fermi” limit of

the effective action to leading order in H/M leading to a very weakly self-coupled inflaton,

and show that dissipative effects arise at next to leading order.
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II. THE MODEL:

We consider a spatially flat Friedmann-Robertson-Walker (FRW) cosmological space-time

and two interacting scalar fields φ, ϕ with a generic interaction of the form λφm ϕn. The

field φ is an inflaton-like scalar field minimally coupled to gravity, this is the “system”,

and the field ϕ is the “environment”, this field is traced out (integrated over) in the time

evolution of the density matrix and its correlation functions determine the influence action

contribution in the non-equilibrium effective action. We study the following relevant cases

: i) m = 1, n = 2 and ϕ is massless and conformally coupled to gravity, this case models

degrees of freedom that remain sub-Hubble throughout inflation, ii) m = 1, n = 2 and ϕ is

light with Mϕ/H ≪ 1 and minimally coupled, this case exhibits strong secular and infrared

enhancement, but may be constrained by their contribution to isorcurvature or entropy

perturbations, iii) m = 2, n = 1 and ϕ is massive with Mϕ ≫ H and minimally coupled,

this case yields a local “Fermi” limit of the effective action with dissipative corrections that

are suppressed by powers of H/Mϕ.

In comoving coordinates, the action is given by

S =

∫
d3x dt a3(t)

{
1

2
φ̇2 − (∇φ)2

2a2
− 1

2

(
M2

φ + ξφ R
)
φ2

+
1

2
ϕ̇2 − (∇ϕ)2

2a2
− 1

2

(
M2

ϕ + ξϕ R
)
ϕ2 − λφm : ϕn :

}
, (2.1)

with

R = 6

(
ä

a
+
ȧ2

a2

)
(2.2)

being the Ricci scalar, ξ = 0, 1/6 correspond to minimal and conformal coupling respectively.

We consider de Sitter space time with a(t) = eHt.

The interaction has been normal-ordered

: ϕn := ϕn − 〈ϕn〉 (2.3)

where the brackets 〈(· · · )〉 refer to the expectation value in the initial density matrix (see

below).

We will be primarily focused on two special cases for the interactions:

• m=1, n=2 : For this case we will consider the field φ to be massive withMφ ≪ H and

minimally coupled to gravity, the influence action from tracing over the environmental
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field ϕ will be studied in two relevant cases: i) ϕ is massless and conformally coupled to

gravity. These environmental fields effectively describe degrees of freedom that remain

sub-Hubble throughout inflation. This case was studied in ref.[45] in terms of the time

evolution of the quantum density matrix via the master equation and we will compare

the results of the influence action approach to those obtained in this reference. This

is the simplest case that yields a stochastic Langevin description with Gaussian but

colored noise and a one-loop self-energy correction to the equations of motion of the

inflaton fluctuation. ii) ϕ is light with Mϕ ≪ H and minimally coupled to gravity.

This case exhibits stronger infrared and secular divergences, but their relevance may

be severely constrained by observations that do not support isocurvature or entropy

perturbations. The correlation function of the stochastic noise and the self-energy

obey a de Sitter space time analog of a fluctuation-dissipation relation (see discussion

in section (III)).

• m=2, n=1 : in this case we will consider the environmental field ϕ to be in the

principal series of the de Sitter group SO(3, 1) with M2
ϕ ≫ H2[53]. This case yields

a local effective field theory for the super Hubble fluctuations of the system field φ

in a consistent expansion in H/Mϕ ≪ 1 akin to a local “Fermi” theory in Minkowski

space time (see discussion in section (IV)) and dissipative corrections are suppressed

by powers of H/Mϕ.

It is convenient to pass to conformal time η = −e−Ht/H with

a(t(η)) = − 1

Hη
, (2.4)

and introduce a conformal rescaling of the fields

φ(~x, t) =
χ(~x, η)

a(t(η))
; ϕ(~x, t) =

ψ(~x, η)

a(t(η))
. (2.5)

After discarding surface terms the action becomes

S =

∫
d3x dη

{
L0[χ] + L0[ψ] + LI [χ, ψ]

}
(2.6)
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where

L0[χ] =
1

2

[
χ′2 − (∇χ)2 −M2

χ(η) χ
2
]

(2.7)

L0[ψ] =
1

2

[
ψ′2 − (∇ψ)2 −M2

ψ(η) ψ
2
]

(2.8)

LI [χ, ψ] = − λ

(−Hη)p χ
m : ψn : ; p = 4−m− n , (2.9)

with primes denoting derivatives with respect to conformal time η and

M2
χ(η) =

[M2
φ

H2
+ 12

(
ξφ −

1

6

)] 1
η2

, M2
ψ(η) =

[M2
ϕ

H2
+ 12

(
ξϕ −

1

6

)] 1
η2
, (2.10)

respectively. Since the coupling λ has dimensions of (mass)p we will consider the weak

coupling case with λ/Hp ≪ 1. To simplify notation later we write the interaction Lagrangian

density as

LI [χ, ψ] = −g J [χ]O[ψ] (2.11)

with

g =
λ

Hp
(2.12)

J [χ] ≡ (χ(~x, η))m (2.13)

O[ψ] ≡ : (ψ(~x, η))n :

(−η)p (2.14)

the coupling g is dimensionless and the normal ordering prescription (2.3) leads to

〈O[ψ]〉 = 0 , (2.15)

where the average is in the initial density matrix (see below).

In the non-interacting case g = 0 the Heisenberg equations of motion for the spatial

Fourier modes of wavevector ~k for the conformally rescaled fields are

χ′′
~k
(η) +

[
k2 − 1

η2

(
ν2χ −

1

4

)]
χ~k(η) = 0 (2.16)

ψ′′
~k
(η) +

[
k2 − 1

η2

(
ν2ψ − 1

4

)]
ψ~k(η) = 0 (2.17)

where

ν2χ =
9

4
−
(M2

φ

H2
+ 12 ξφ

)
; ν2ψ =

9

4
−
(M2

ϕ

H2
+ 12 ξϕ

)
. (2.18)

In this and next sections we will focus on the fields φ, ϕ with ν2 > 0, namely

9

4
>
(M2

H2
+ 12 ξ

)
(2.19)
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with ξ = 0, 1/6 for minimal or conformal coupling respectively and obtain the generic form

of the influence action.

The Heisenberg fields are expanded in a comoving volume V as

χ(~x, η) =
1√
V

∑

~q

[
b~q g(q, η) + b†−~q g

∗(q, η)
]
ei~q·~x (2.20)

ψ(~x, η) =
1√
V

∑

~k

[
a~q u(q, η) + a†−~q u

∗(q, η)
]
ei
~k·~x . (2.21)

We choose Bunch-Davies conditions for both fields, namely

b~q|0〉χ = 0 ; a~k|0〉ψ = 0 (2.22)

and

g(q, η) =
1

2
ei
π
2
(νχ+

1

2
)
√−π η H(1)

νχ (−qη) (2.23)

u(k, η) =
1

2
ei
π
2
(νψ+

1

2
)√−π η H(1)

νψ
(−kη) . (2.24)

Quantization with non-Bunch Davies boundary conditions can be studied similarly with

straightforward generalizations in terms of arbitrary linear combinations of the mode func-

tions (2.23,2.24), here we consider this simpler case to highlight the main physical conse-

quences. The χ field is considered to be minimally coupled, ξφ = 0 and nearly massless with

Mφ/H ≪ 1, from which it follows that as −qη → 0

g(q, η) ∝ 1/η . (2.25)

This behavior in the super-Hubble limit will lead to strong secular contributions in the long

time limit and is the hallmark of the classicalization of the quantum fluctuations, which

are dominated by a growing mode[54]. We will obtain the influence action up to second

order in the system-environment coupling λ. In the case when the interaction is of the form

χ : ψ2 : the influence action to lowest order is determined by a one-loop correlation function

of the environmental fields. This case yields a stochastic description in terms of a Langevin

equation with a one-loop self-energy and a Gaussian noise whose correlation function is

determined by the one-loop correlator of the environmental fields.

We will also study the interaction χ2 ψ with the environmental field in this case being

minimally coupled (ξϕ = 0) and with M2/H2 ≫ 9/4 corresponding to ν = iµ with real
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µ. This case yields a local “Fermi” limit for the effective action. Minimally coupled scalar

fields with mass ≫ H belong to the principal series representation of the de Sitter group

SO(3, 1)[53] and require a slight modification of the mode function treatment. This case

will be studied in detail in section (IV).

The time evolution of a density matrix initially prepared at time η0 is given by

ρ(η) = U(η, η0) ρ(η0)U
−1(η, η0) , (2.26)

where Tr[ρ(η0)] = 1 and U(η, η0) is the unitary time evolution of the full theory, it obeys

i
d

dη
U(η, η0) = H(η)U(η, η0) ; U(η0, η0) = 1 (2.27)

where H(η) is the total Hamiltonian. Therefore

U(η, η0) = T
[
e
−i

∫ η
η0
H(η′)dη′

]
; U−1(η, η0) = T̃

[
e
i
∫ η
η0
H(η′)dη′

]
(2.28)

with T the time-ordering symbol describing evolution forward in time and T̃ the anti-time

ordered symbol describing evolution backwards in time.

Consider the initial density matrix at a conformal time η0 and for the conformally rescaled

fields to be of the form

ρ(η0) = ρχ(η0)⊗ ρψ(η0) . (2.29)

This choice while ubiquitous in the literature neglects possible initial correlations, we will

adopt this choice with the understanding that the role of initial correlations between the

system and environment remains to be studied more deeply.

The initial time η0 is chosen so that all the modes of the inflaton-like field that are

of cosmological relevance today are deeply sub-Hubble at the initial time. Since we are

considering a (nearly) de Sitter space-time, this initial time must be earlier than or equal to

the time at which the slow-roll stage begins (we discuss this point in section (III) below).

Our goal is to evolve this initial density matrix in (conformal) time obtaining (2.26) and

trace over the environmental degrees of freedom ϕ (ψ) leading to a reduced density matrix

for the system degrees of freedom χ namely

ρrχ(η) = Trψρ(η) . (2.30)

Furthermore, there is no natural choice of the initial density matrices for the system or

environmental fields, therefore to exhibit the main physical consequences of tracing over the
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environmental degrees of freedom in the simplest setting we choose

ρχ(η0) = |0〉χ χ〈0| ; ρψ(η0) = |0〉ψ ψ〈0| , (2.31)

namely both fields are in their respective Bunch-Davies vacua. This condition can be gener-

alized straightforwardly. With this choice the normal ordering prescription in (2.6) becomes

: (ψ(~x, η))n := (ψ(~x, η))n − ψ〈0|(ψ(~x, η))n|0〉ψ . (2.32)

In the field basis the matrix elements of ρχ(η0); ρψ(η0) are given by

〈χ|ρχ(η0)|χ′〉 = ρχ,0(χ, χ
′) ; 〈ψ|ρψ(η0)|ψ′〉 = ρψ,0(ψ;ψ

′) , (2.33)

and we have suppressed the coordinate arguments of the fields in the matrix elements. In

this basis

ρ(χf , ψf ;χ
′
f , ψ

′
f ; η) = 〈χf ;ψf |U(η, η0)ρ(0)U−1(η, η0)|χ′

f ;ψ
′
f 〉

=

∫
DχiDψiDχ

′
iDψ

′
i 〈χf ;ψf |U(η, η0)|χi;ψi〉 ρχ,0(χi;χ′

i)×

ρψ,0(ψi;ψ
′
i) 〈χ′

i;ψ
′
i|U−1(η, η0)|χ′

f ;ψ
′
f〉 (2.34)

The
∫
Dχ etc, are functional integrals where the spatial argument has been suppressed. The

matrix elements of the forward and backward time evolution operators can be written as

path integrals, namely

〈χf ;ψf |U(η, η0)|χi;ψi〉 =

∫
Dχ+Dψ+ e

i
∫ η
η0
dη′d3xL[χ+,ψ+]

(2.35)

〈χ′
i;ψ

′
i|U−1(η, η0)|χ′

f ;ψ
′
f 〉 =

∫
Dχ−Dψ− e

−i
∫ η
η0

∫
d3xL[χ−,ψ−]

(2.36)

where L[χ, ψ] can be read off (2.6) and the boundary conditions on the path integrals are

χ+(~x, η0) = χi(~x) ; χ
+(~x, η) = χf (~x) ,

ψ+(~x, η0) = ψi(~x) ; ψ
+(~x, η) = ψf (~x) , (2.37)

χ−(~x, η0) = χ′
i(~x) ; χ

−(~x, η) = χ′
f (~x) ,

ψ−(~x, η0) = ψ′
i(~x) ; ψ

−(~x, η) = ψ′
f (~x) . (2.38)

(2.39)

The fields χ±, ψ± describe the time evolution forward (+) with U(η, η0) and backward

(− ) with U−1(η, η0) as befits the time evolution of a density matrix. This is the Schwinger-

Keldysh formulation[35, 55, 56] of time evolution of density matrices.
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As usual one can linearly couple sources h± to the fields χ± on the forward (+) and

backward (−) branches, so that functional derivatives with respect to these sources yield the

correlation functions along the time branches and mixed correlation functions for example

〈χ+(η)χ+(η′)〉 = TrT(χ(η)χ(η′)) ρ (2.40)

〈χ−(η)χ−(η′)〉 = Tr T̃(χ(η)χ(η′)) ρ (2.41)

〈χ+(η)χ−(η′)〉 = Tr (χ(η′)χ(η) ρ (2.42)

〈χ−(η)χ+(η′)〉 = Tr (χ(η)χ(η′) ρ . (2.43)

We are particularly interested in the power spectrum of inflaton fluctuations given by the

equal time correlation function

P (k, η) =
k3

2π2
〈φ~k(η)φ−~k(η)〉 =

k3H2η2

2π2
〈χ~k(η)χ−~k(η)〉 , (2.44)

the equal time average can be written in terms of a “center of mass” combination

χ̃~k =
1

2

(
χ+
~k
+ χ−

~k

)
, (2.45)

it is straightforward to confirm that

〈χ~k(η)χ−~k(η)〉 = 〈χ̃~k(η)χ̃−~k(η)〉 . (2.46)

This a consequence of the fact that at equal times, the time and anti-time ordered correlation

functions coincide with the Wightmann functions (2.42,2.43). This result will be useful below

to obtain the power spectrum from the effective action.

The reduced density matrix for the light field χ is obtained by tracing over the bath (ψ)

variables, namely

ρr(χf , χ
′
f ; η) =

∫
Dψf ρ(χf , ψf ;χ

′
f , ψf ; η) , (2.47)

we find

ρr(χf , χ
′
f ; η) =

∫
DχiDχ

′
i T [χf , χ

′
f ;χi, χ

′
i; η; η0] ρχ(χi, χ

′
i; η0) , (2.48)

where the time evolution kernel is given by the following path integral representation

T [χf , χ
′
f ;χi, χ

′
i; η; η0] =

∫
Dχ+ Dχ− eiSeff [χ

+,χ−;η] (2.49)

where the total effective action that yields the time evolution of the reduced density matrix

is

Seff [χ
+, χ−; η] =

∫ η

η0

dη′
∫
d3x
[
L0[χ

+]− L0[χ
−]
]
+ F [J+, J−] , (2.50)
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with the following boundary conditions on the forward (χ+) and backward (χ−) path inte-

grals

χ+(~x, η0) = χi(~x) ; χ
+(~x, η) = χf (~x)

χ−(~x, η0) = χ′
i(~x) ; χ

−(~x, η) = χ′
f (~x) . (2.51)

F [J+; J−] is the influence action where J± ≡ J [χ±] are defined in eqn. (2.13), it is deter-

mined by the trace over the environmental fields and is given by

eiF [J+;J−] =

∫
DψiDψ

′
iDψf ρψ(ψi, ψ

′
i; η0)

∫
Dψ+Dψ− e

i
∫
d4x

{
[L+[ψ+;J+]−L−[ψ−;J−]]

}

(2.52)

where we used the shorthand notation

L±[ψ
±; J±] = L0[ψ

±]− gJ [χ±]O[ψ±] ; x ≡ (η, ~x) ;

∫
d4x ≡

∫ η

η0

dη′
∫
d3x , (2.53)

and the boundary conditions on the path integrals are

ψ+(~x, η0) = ψi(~x) ; ψ
+(~x, η) = ψf (~x) ; ψ−(~x, η0) = ψ′

i(~x) ; ψ
−(~x, η) = ψf(~x) . (2.54)

In (2.52), J [χ±] act as external sources coupled to the composite operatorO(ψ), therefore,

it is clear that

eiF [J+;J−] = Trψ

[
U(η, η0; J+) ρψ(η0)U−1(η, η0; J

−)
]
, (2.55)

where J± ≡ J [χ±] and U(η, η0; J±) is the time evolution operator in the ψ sector in presence

of external sources J± namely

U(η, η0; J+) = T
(
e
−i

∫ η
η0
Hψ [J

+(η′)]dη′
)

; U−1(η, η0; J
−) = T̃

(
e
i
∫ η
η0
Hψ [J

−(η′)]dη′
)

(2.56)

where

Hψ[J
±(η)] = H0ψ(η) + g

∫
d3xJ [χ±(η)]O(ψ) (2.57)

and T̃ is the anti-time ordered evolution operator describing evolution backwards in time.

In (2.57) H0ψ(η) is the free field Hamiltonian for the field ψ which depends explicity on time

as a consequence of the η dependence of M2
ψ(η) in (2.10) and in the interaction term J [χ±]

are classical c-number sources.

The calculation of the influence action is facilitated by passing to the interaction picture

for the Hamiltonian Hψ[J(η)], defining

U(η; η0; J±) = U0(η; η0) Uip(η; η0; J±) (2.58)
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where U0(η; η0) is the time evolution operator of the free field ψ (namely for g = 0) and

cancels out in the trace in (2.55), and

Uip(η; η0; J±) ≃ 1− ig

∫ η

η0

dη′
∫
d3xJ [χ±(~x, η′)]O(ψ(~x, η′)) + · · · (2.59)

and ψ(~x, η) has the time evolution of free fields given by (2.17).

Now the trace can be obtained systematically in perturbation theory in g. Up to O(g2)

in the cumulant expansion we find (using the shorthand notation (2.53))

F [J+, J−] = −g
∫
d4x
(
J+[x]− J−[x]

)
〈O(x)〉ψ +

ig2

2

∫
d4x1

∫
d4x2

{
J+[x1] J

+[x2]G
++
c (x1; x2) + J−[x1] J

−[x2]G
−−
c (x1; x2)

− J+[x1] J
−[x2]G

+−
c (x1; x2)− J−[x1] J

+[x2]G
−+
c (x1; x2)

}
. (2.60)

In this expression J±[x] ≡ J [χ±(~x, η)], and the connected correlation functions are given by

G−+
c (x1; x2) = 〈O(x1)O(x2)〉ψ − 〈O(x1)〉ψ〈O(x2)〉ψ = G>

c (x1; x2) , (2.61)

G+−
c (x1; x2) = 〈O(x2)O(x1)〉ψ − 〈O(x2)〉ψ〈O(x1)〉{ψ} = G<

c (x1; x2) , (2.62)

G++
c (x1; x2) = G>

c (x1; x2)Θ(η1 − η2) +G<
c (x1; x2)Θ(η2 − η1) , (2.63)

G−−
c (x1; x2) = G>

c (x1; x2)Θ(η2 − η1) +G<
c (x1; x2)Θ(η1 − η2) , (2.64)

in terms of interaction picture fields, where

〈(· · · )〉ψ = Trψ(· · · )ρψ(η0) . (2.65)

Furthermore, for the case of hermitian operators O as considered here it follows that

G>
c (x1; x2) = G<

c (x2; x1) , (2.66)

and the normal ordering prescription (2.14) leads to 〈O(x)〉 = 0 (see 2.15). Writing (2.60)

in terms of G>, G<, using the property (2.66) and following the steps detailed in ref.([43])

we find

F [J+, J−] = i g2
∫
d3x1d

3x2

∫ η

η0

dη1

∫ η1

η0

dη2

{
J+(~x1, η1)J

+(~x2, η2)G
>(x1; x2)

+ J−(~x1, η1)J
−(~x2, η2)G

<(x1; x2)− J+(~x1, η1)J
−(~x2, η2)G

<(x1; x2)

− J−(~x1, η1)J
+(~x2, η2)G

>(x1; x2)

}
; x1 = (η1, ~x1) etc . (2.67)
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In a spatially flat FRW cosmology, spatial translational invariance implies that

G≶(x1, x2) = G≶(~x1 − ~x2; η1, η2) ≡
1

V

∑

~p

K≶
p (η1, η2) e

−i~p·(~x1−~x2) , (2.68)

and in terms of the spatial Fourier transforms

J [χ±(~x, η)] ≡ 1√
V

∑

~k

J±
~k
(η) , (2.69)

we find the general form of the influence action up to second order in the coupling,

F [J+, J−] = i g2
∑

~k

∫ η

η0

dη1

∫ η1

η0

dη2

{
J+
~k
(η1)J

+

−~k
(η2)K>

k (η1; η2) + J−
~k
(η1)J

−

−~k
(η2)K<

k (η1; η2)

− J+
~k
(η1)J

−

−~k
(η2)K<

k (η1; η2)− J−
~k
(η1)J

+

−~k
(η2)K>

k (η1; η2)

}
. (2.70)

III. STOCHASTIC EFFECTIVE ACTION

In this section we consider the case of m = 1, n = 2 namely

J [χ] = χ(~x, η) ; O[ψ] =
: (ψ(~x, η))2 :

(−η) , (3.1)

For this case we find

G>(~x− ~y, η, η′) =
1

ηη′
Trψ[: ψ

2(~x, η) : : ψ2(~y, η′) : ρψ(η0)] , (3.2)

G<(~x− ~y, η, η′) =
1

ηη′
Trψ[: ψ

2(~y, η′) : : ψ2(~x, η) : ρψ(η0)] , (3.3)

and

K>[q; η, η′] ≡ K[q; η, η′] =
2

ηη′

∫
d3k

(2π)3
u(k, η)u∗(k, η′)u(p, η)u∗(p, η′) ; p = |~k + ~q|

K<(q; η, η′) = K>[q; η′, η] = K∗[q; η, η′] , (3.4)

where u(k, η), are the mode functions (2.24). These correlation functions describe a one-loop

contribution from integrating out the environmental degrees of freedom displayed in fig.(1).

The interpretation of the effective action (2.50) becomes clear by introducing the center

of mass and relative variables

χ̃(~x, η) =
1

2

(
χ+(~x, η) + χ−(~x, η)

)
; R(~x, η) =

(
χ+(~x, η)− χ−(~x, η)

)
, (3.5)
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~y, η′

FIG. 1: The correlation functions G>(~x− ~y, η, η′), G<(~x− ~y, η, η′).

in terms of which and passing to spatial Fourier transforms we find

iSeff [χ̃, R] =

∫ η

η0

dη′
∑

~k

{
−iR−~k(η

′)
(
χ̃

′′

~k
(η′) + Ω2

k(η
′) χ̃~k(η

′)
)}

−
∫ η

η0

dη1

∫ η

η0

dη2

{
1

2
R~k(η1)Nk(η1; η2)R−~k(η2) +R−~k(η1) iΣ

R
k (η1; η2) χ̃~k(η)

}

+

∫
d3xRi(~x)χ̃

′(~x, η0) , (3.6)

where

Ω2
k(η) =

[
k2 − 1

η2

(
ν2χ −

1

4

)]
. (3.7)

In the last term (surface term) in (3.6) we have neglected a contribution from R(~x, η) since

this vanishes upon taking the trace to obtain expectation values or correlation functions.

The kernels N ,Σ in (3.6) are given by

Nk(η1; η2) =
g2

2

[
K>
k (η1; η2) +K<

k (η1; η2)
]
= g2Re[K(k; η1; η2)] , (3.8)

ΣRk (η1; η2) = −ig2
[
K>
k (η1; η2)−K<

k (η1; η2)
]
= 2g2 Im[K(k; η1; η2)] . (3.9)

These are the de Sitter space time analog of the generalized fluctuation-dissipation rela-

tion in Minkowski space-time[43].

The term quadratic in R in (3.6) can be written in terms of a Gaussian noise variable,

namely

exp
{
− 1

2

∫
dη1

∫
dη2R−~k(η1)Nk(η1; η2)R~k(η2)

}
=

∫
Dξ P

[
ξ
]
ei

∫
dη′ ξ

−~k
(η′)R~k(η

′) (3.10)

where

P
[
ξ
]
= exp

{
− 1

2

∫
dη1

∫
dη2 ξ~k(η1)N−1

k (η1; η2)ξ−~k(η2)
}
. (3.11)

In terms of the center of mass and relative variables the initial density matrix in (2.48)

becomes

ρχ(χi, χ
′
i; η0) = ρχ(χ̃i +

Ri

2
, χ̃i −

Ri

2
; η0) (3.12)
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therefore it proves convenient to perform a Wigner transform, namely

W(χ̃i; Πi) =

∫
DRie

−i
∫
d3xΠi(~x)Ri(~x)ρχ,0(χ̃i +

Ri

2
; χ̃i −

Ri

2
) , (3.13)

whose inverse transform yields

ρχ,0(χ̃i +
Ri

2
; χ̃i −

Ri

2
) =

∫
DΠi e

i
∫
d3xΠi(~x)Ri(~x)W(χ̃i; Πi) . (3.14)

Gathering all the above steps leads to

ρr(χf , χ
′
f ; η) =

∫
Dχ̃iDΠi

∫
Dχ̃DRDξ P[ξ] eiSeff [χ̃,R,ξ;η] W(χ̃i; Πi) , (3.15)

where

Seff [χ̃, R, ξ; η] = −
∫ η

η0

dη1
∑

~k

R−~k(η1)

[
χ̃

′′

~k
(η1) + Ω2

k(η1)χ̃~k(η1) +

∫ η1

η0

dη2 ΣRk (η1; η2)χ̃~k(η2)− ξ~k(η1)

]
.

(3.16)

and we carried out the functional integral over Ri, which is effectively a delta function

yielding χ̃′(η0) = Πi. Obviously the effective action describes a stochastic process, the path

integral over the relative variable R in (3.15) yields a functional delta function

δ

[
χ̃

′′

~k
(η) + Ω2

k(η)χ̃~k(η) +

∫ η

η0

dη1 ΣRk (η; η
′)χ̃~k(η

′)− ξ~k(η)

]
(3.17)

whose solution is the Langevin equation

χ̃
′′

~k
(η) + Ω2

k(η)χ̃~k(η) +

∫ η

η0

dη1 ΣRk (η; η1)χ̃~k(η1) = ξ~k(η) . (3.18)

The noise ξ~k(η) is Gaussian and colored with the correlation function

ξ~k(η1)ξ−~k′(η2) ≡
∫
Dξ P[ξ] ξ~k(η1)ξ−~k′(η2)∫

Dξ P[ξ]
= Nk(η1; η2) δ~k,~k′ ; ξ~k(η) = 0 , (3.19)

where N is given by eqn. (3.8). As mentioned above (see the discussion after (3.8,3.9)) the

noise correlation function N and the self energy Σ obey a de Sitter space time generaliza-

tion of the fluctuation dissipation relation. This formulation is akin to the path integral

framework for classical stochastic field theories developed by Martin-Rose and Siggia[57].

It is clear from (3.19) that formally ξ ∝ g since ξξ = N ∝ g2, an observation that will

be relevant in the analysis below.

The solution of the Langevin equation (3.18) is a function(al) of the noise term and

the initial conditions χ~k(η0);χ
′
~k
(η0) = Π~k,i, to obtain correlation functions and observable

quantities associated with the χ fields two different averages are involved[43]:
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• Average over the initial conditions χ~k(η0);χ
′
~k
(η0) with the initial density matrix ρχ(η0),

we refer to these averages simply as

〈(· · · )〉χ = Trχ(· · · )ρχ(η0) . (3.20)

• Average over the noise, this is a Gaussian average with the probability distribution

function P[ξ] with first and second moments given by eqn. (3.19), these averages are

referred to as

(· · · ) ≡
∫
Dξ P[ξ] (· · · )∫

Dξ P[ξ]
. (3.21)

• Therefore the total average of correlation functions is given by

〈C[χ; ξ; η]〉χ =

∫
Dξ P[ξ] Trχ(C[χ; ξ; η]ρχ(η0))∫

Dξ P[ξ]
. (3.22)

In principle one should obtain the Wigner distribution function as in eqn. (3.13) however

this is just a representation of the initial density matrix ρχ,0, in the field basis passing

to a Wigner transform in the relative coordinate. Therefore the averages over the initial

conditions are averages with the initial density matrix, which in this article is taken to be a

pure density matrix describing the (free) χ fields in their Bunch-Davies vacuum.

While this program may be unfamiliar a simple example illustrates how to implement it.

Let us first consider the non-interacting case g = 0 in which case both the noise and self-

energy terms vanish (these are related by the generalization of the fluctuation-dissipation

relation). The Langevin equation (3.18) now simply becomes the field equations (2.16) whose

solutions are linear combinations of the mode function g(k, η), g∗(k, η) given by eqn. (2.23).

Since our main goal is to extract the corrections to the power spectrum and the growing

mode in the super Hubble limit, it is more convenient to expand the solution in terms of

the real growing (g+) and decaying modes (g−), namely[45]

χ̃~k(η) = Q~k g+(k, η) + P~k g−(k; η) (3.23)

with

g+(k; η) =

√
−πη
2

Yνχ(−kη) ; g−(k; η) =

√
−πη
2

Jνχ(−kη) , (3.24)
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where Y, J are Bessel functions. In the super Hubble limit −kη → 0

Yνχ(−kη) ∝ (−kη)−νχ ; Jνχ(−kη) ∝ (−kη)νχ . (3.25)

In terms of the operators b~k, b
†
~k
in the expansion (3.19) it follows that

Q~k =
1√
2

(
b~k e

iπ
2
(νχ+

3

2
) + b†

−~k
e−i

π
2
(νχ+

3

2
)
)

; Q†
~k
= Q−~k (3.26)

P~k =
i√
2

(
b†
−~k
e−i

π
2
(νχ+

3

2
) − b~k e

iπ
2
(νχ+

3

2
)
)

; P †
~k
= P−~k . (3.27)

As discussed in ref.[45], Q~k, P~k are canonical conjugate variables. In the Heisenberg picture

the operators Q~k, P~k feature the following expectation values in the initial density matrix

〈Q~k〉 = TrχQ~kρχ(η0) = 0 ; 〈P~k〉 = TrχP~kρχ(η0) = 0

〈Q~kQ−~k′〉 = TrχQ~kQ−~k′ρχ(η0) =
1

2
δ~k,~k′ ; 〈P~kP−~k′〉 = TrχP~kP−~k′ρχ(η0) =

1

2
δ~k,~k′

〈Q~kP−~k′〉 = TrχQ~kP−~k′ρχ(η0) =
i

2
δ~k,~k′ . (3.28)

Therefore any arbitrary correlation function of the χ field can be obtained from the expansion

(3.23), the average over initial conditions (3.20) are given by the (Gaussian) expectation

values (3.28). In particular, from the result (2.44) and the identity (2.46) the unperturbed

(g = 0) power spectrum for the massless case Mϕ = 0 (νχ = 3/2) in the super Hubble limit

−kη → 0 follows from (2.44, 3.28)

P0(k, η) =
(H
2π

)2
, (3.29)

this is the usual (nearly) scale invariant result.

Having addressed the free field case, let us now consider solving the Langevin equation

(3.18) in a perturbative expansion

χ̃~k(η) = χ̃
(0)
~k
(η) + gχ

(1)
~k
(η; ξ) + · · · (3.30)

where χ̃
(0)
~k
(η) is given by (3.23). The full solution is of the form

χ̃~k(η) ≡ χ~k[Q~k, P~k; ξ; η] . (3.31)

Because the Langevin equation (3.18) is linear, the full solution is a linear function of

Q~k, P~k; ξ and after solving it one can obtain correlation functions by averaging over the

noise with (3.19) and over the Q,P ′s with (3.28).
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Modelling sub-Hubble degrees of freedom:

It remains to obtain the self energy Σ and noise correlation function N (3.9,3.8) which are

determined by the kernel K[k; η; η′] (3.4). Our goal is to integrate out sub-Hubble environ-

mental degrees of freedom to obtain the influence action for the super-Hubble fluctuations

of the inflaton field. For this purpose, we now consider the environmental field ϕ (ψ) to be

massless and conformally coupled to gravity, namelyM2
ϕ = 0 ; ξϕ = 1/6, for which νψ = 1/2

and the mode functions in (2.24) become

u(k, η) =
e−ikη√
2k

. (3.32)

This is precisely the sub-Hubble limit (−kη ≫ 1) of the mode functions for a massive and

minimally coupled scalar field, therefore this choice for the environmental field ψ effectively

models degrees of freedom that remain sub-Hubble during inflation. We will comment later

on the modifications that arise if this environmental field is chosen to be nearly massless

and minimally coupled.

With the mode functions (3.32) we find (see also ref.[45])

K[k; η, η′] = − i

8π2 ηη′
e−ik(η−η

′)

(η − η′ − iε)
; ε→ 0+ , (3.33)

Therefore the kernel features a non-local and a local part,

K[k, η, η′] = − i

8π2ηη′
e−ik(η−η

′)P
[ 1

η − η′

]
+

1

8π η2
δ(η − η′) , (3.34)

where P is the principal part. It is convenient to write the principal part as

P
[ 1

η − η′

]
=

η − η′

(η − η′)2 + ε2
= −1

2

d

dη′
ln

[
(η − η′)2 + ε2

(−η0)2

]
. (3.35)

In (3.35) we have introduced −η0 to render the argument of the logarithm dimensionless,

this scale acts as a subtraction or renormalization scale just as in the usual renormalization

program in Minkowski space-time and is chosen so as to cancel surface terms in integration

by parts in the long time limit. The particular choice of this scale, coinciding with the

initial time at which the density matrix is “prepared”, is guided by the condition that the

wavelengths of cosmological relevance are deeply sub-Hubble at this time . Furthermore, as

discussed below this scale also determines the scale at which the mass of the inflaton field
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is renormalized. The self-energy and noise kernels are given by

ΣRk (η; η
′) =

g2 cos[k(η − η′)]

8π2ηη′
d

dη′
ln

[
(η − η′)2 + ε2

(−η0)2

]
(3.36)

Nk(η, η
′) =

g2

8πηη′

[
δ(η − η′)− sin[k(η − η′)]

π(η − η′)

]
. (3.37)

A. Solving the Langevin equation: the dynamical renormalization group.

We begin by analyzing the solution of the Langevin equation (3.18) for ξ = 0. This

analysis will pave the way to understanding the full solution with the noise term. Since our

main goal is to obtain the corrections to the power spectrum in the super-Hubble limit, we

will focus on the long time −η → 0 and super-Hubble −kη → 0 limits.

As a first step let us consider the non-local contribution from the self-energy term in the

Langevin equation (3.18), with the self-energy given by (3.36) this term is given by

∫ η

η0

dη1Σ
R
k (η; η1)χ̃~k(η1) =

g2

8π2η

∫ η

η0

dη′ cos[k(η − η′)]
χ̃~k(η

′)

η′
d

dη′
ln

[
(η − η′)2 + ε2

(−η0)2

]
, (3.38)

integrating by parts the derivative term, the contribution from the lower limit yields

− g2

8π2η20
cos[k(η − η0)]χ̃~k(η0) ln

[
(η − η0)

2

(−η0)2

]
, (3.39)

this contribution vanishes in the long time limit η → 0, this is the advantage of taking −η0
in the argument of the logarithm in (3.35). The contribution from the upper limit in the

integration by parts is
g2

8π2η2
χ̃~k(η) ln

[ ε2

(−η0)2
]
, (3.40)

now the homogeneous equation (3.18) becomes

χ̃
′′

~k
(η) +

[
k2 +

1

η2

(M2
φ

H2
+

g2

8π2
ln
[ ε2

(−η0)2
])

− 2

]
χ̃~k(η)

=
g2

4π2η

∫ η

η0

dη′ ln
[(η − η′)

(−η0)
] d

dη′

[
cos[k(η − η′)]

χ̃~k(η
′)

η′

]
. (3.41)

In the first line of this expression we have combined Ω2
k(η) given by (3.7) with (3.40) to

exhibit the fact that the term (3.40) is a mass renormalization, a result that was also
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found in the quantum master equation approach[45]. Therefore we absorb the divergent

contribution (3.40) into a mass renormalization writing

M2
φ

H2
+

g2

8π2
ln
[ ε2

(−η0)2
]
=
M2

φ,R

H2
. (3.42)

We note that −η0 enters as a renormalization scale for the mass. This is important, iden-

tifying η0 with a time scale of the order of or earlier than the onset of slow roll inflation

the renormalized mass of the inflaton during slow roll inflation is M2
φ,R and a nearly scale

invariant spectrum of super-Hubble fluctuations entails M2
φ,R/H

2 ≪ 1.

From now on we refer to the mass as the renormalized value and

ν2χ =
9

4
−
M2

φ,R

H2
, (3.43)

and the bracket in the left hand side (3.41) becomes Ω2
k(η) in terms of the renormalized mass.

We now proceed to solve (3.41) in perturbation theory, anticipating the main results, such

a perturbative expansion features secular terms that require a resummation program. We

will implement the dynamical renormalization group[58, 59] to provide a non-perturbative

resummation of these secular terms.

We begin by writing1

χ̃~k(η) = χ̃
(0)
~k
(η) + g2χ̃

(1)
~k
(η) + · · · (3.44)

leading to the hierarchy of equations

d2

dη2
χ̃
(0)
~k
(η) + Ω2

k(η)χ̃
(0)
~k
(η) = 0 (3.45)

d2

dη2
χ̃
(1)
~k
(η) + Ω2

k(η)χ̃
(1)
~k
(η) =

1

4π2η

∫ η

η0

dη′ ln
[(η − η′)

(−η0)
] d

dη′

[
cos[k(η − η′)]

χ̃
(0)
~k
(η′)

η′

]

... =
... .

The zeroth order solution is given by (3.23), namely

χ̃
(0)
~k
(η) = Q~k g+(k, η) + P~k g−(k; η) , (3.46)

inserting this solution into the first order equation it can be solved using the Green’s function

of the differential operator. For the full solution (3.46) the integral in the first order equation

1 In the homogeneous case the first order correction is of O(g2).
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with the convolution with the Green’s function for general values of νχ and k cannot be done

analytically. However we are primarily interested in obtaining the corrections to the power

spectrum at long times and in the super-Hubble limit (−kη ≪ 1) and for the case when the

field φ is nearly massless, namely Mφ,R/H ≪ 1 as this case yields a (nearly) scale invariant

power spectrum in the free theory.

These limits justify the following approximations

• in the super-Hubble limit for Mφ,R/H → 0 (νχ = 3/2)

g+(k; η) = 1/(k3/2η) ; g−(k; η) = (k3/2η2)/3 (3.47)

• neglect the decaying term in the zeroth-order solution, namely

χ̃
(0)
~k
(η) ≃ Q~k g+(k, η) =

Q~k

k3/2η
(3.48)

• the lower limit of the integral in the first order equation in (3.45) will be replaced by

η∗ ≃ −1/k, because for η > η∗ the integrand is dominated by the growing mode. In

this interval cos[k(η − η′)] ≃ 1 for super Hubble wave vectors. The contribution to

the integral from the interval η > η′ > η∗ will be seen to feature secular growth with

time, because the growing mode dominates, whereas the contribution from η∗ > η′ ≥
η0 remains perturbatively small, since in this region χ̃

(0)
~k
(η′) ∝ 1/

√
k and oscillates

rapidly.

With these approximations and to leading order in long time and super-Hubble limits we

find that the inhomogeneity of the first order equation, namely the right hand side in (3.45),

is given by

I(η) =
Q~k

4π2k3/2η3

[
ln
( η
η0

)
− 1
]
. (3.49)

This result clearly displays the secular divergent growth as η → 0−. The solution of the first

order equation becomes

χ̃
(1)
~k
(η) =

∫ η

η∗

G[η, η′] I(η′)dη′ (3.50)

where in the super-Hubble limit the retarded Green’s function is given by

G[η, η′]θ(η − η′) =
1

3

[η2
η′

− η′ 2

η

]
θ(η − η′) . (3.51)

The lower limit η∗ = −1/k in (3.50) reflects the region of integration in which the cor-

responding wavevector is super-Hubble and we can use of the approximations above. The
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contribution from the interval η0 < η′ < η∗ is truly perturbative and does not feature secular

growth. To leading order in this limit we find

χ̃
(1)
~k
(η) =

(
Q~k

k3/2η

)
F [η] (3.52)

where to leading order for η/η∗ ≃ −kη → 0 we find

F [η] = − 1

12π2

{1
2
ln2
( η
η∗

)
+ ln

( η
η∗

)
ln
(η∗
η0

)}
. (3.53)

Therefore the solution of the homogeneous equation (3.41) in the long time limit and for

super-Hubble wavelengths, keeping only the growing mode is

χ̃~k(η) =
Q~k

k3/2η

[
1 + g2F [η] + · · ·

]
. (3.54)

Obviously F [η] features secular growth as η/η∗ ≃ −kη → 0 and the perturbative solution

eventually breaks down in the asymptotic long time limit. Furthermore, the form of the

solution (3.54) suggests that the corrections are a renormalization of the amplitude Q~k. In

order to obtain a solution that is asymptotically well behaved we implement the dynamical

renormalization group (DRG) resummation program[58, 59]. We introduce a “wave func-

tion” renormalization Z[τ ] and an arbitrary renormalization scale τ and write the amplitude

Q~k as

Q~k = Q~k[τ ]Z[τ ] ; Z[τ ] = 1 + g2z1[τ ] + · · · . (3.55)

Inserting this expansion in the solution (3.54),

χ̃~k(η) =
Q~k[τ ]

k3/2η

[
1 + g2

(
F [η] + z1[τ ]

)
+ · · ·

]
. (3.56)

We now choose z1[τ ] to precisely cancel F [η = τ ] thereby improving the perturbative ex-

pansion, with this choice the improved solution is

χ̃~k(η) =
Q~k[τ ]

k3/2η

[
1 + g2

(
F [η]− F [τ ]

)
+ · · ·

]
, (3.57)

the convergence is improved by choosing τ arbitrarily close to a fixed time η. However the

solution does not depend on the arbitrary renormalization scale τ , therefore

∂χ̃~k(η)

∂τ
= 0 , (3.58)

leading to the dynamical renormalization group equation[58, 59]

d

dτ
Q~k[τ ]

[
1 + · · · ]−Q~k[τ ]g

2 d

dτ
F [τ ] = 0 . (3.59)

24



To leading order the solution is given by

Q~k[τ ] = Q~k[τ∗] e
g2
[
F [τ ]−F [τ∗]

]
. (3.60)

Since the scales τ, τ∗ are arbitrary, we now choose τ = η, τ∗ = η∗ and since F [η∗] = 0

we finally find the (DRG) improved growing mode solution of the homogeneous Langevin

equation in the long-time and super-Hubble limits

χ̃~k(η) =
Q~k[η∗]

k3/2η
e g

2 F [η] . (3.61)

Solution of the inhomogeneous: an alternative method.

The solution of the full inhomogeneous Langevin equation (3.18), is the solution of the

homogeneous (3.41) plus the solution of the inhomogeous for which we would need the

Green’s function of the integro-differential operator on the left hand side of (3.18). Find-

ing the Green’s function of this operator is a daunting task, below we present a method

that allows to obtain an approximation to the full solution by exploiting the multiplica-

tive renormalization arising from the (DRG) solution of the homogeneous equation studied

above.

To begin with we follow the same procedure as above and integrate by parts the self-

energy term absorbing the contribution of the upper limit of integration into the mass

renormalization and neglect the contribution from the lower limit which vanishes in the long

time limit. Secondly, we write the noise term (inhomogeneity) in (3.18) as

ξ~k(η) ≡ g ξ̃~k(η) (3.62)

to exhibit explicitly that formally the noise is of O(g), (so that ξ̃ ≃ O(1)). The Langevin

equation (3.18) becomes

χ̃
′′

~k
(η)+Ω2

k(η) χ̃~k(η) =
g2

4π2η

∫ η

η0

dη′ ln
[(η − η′)

(−η0)
] d

dη′

[
cos[k(η−η′)] χ̃~k(η

′)

η′

]
+g ξ̃~k(η) . (3.63)

where again Ω2
k(η) is in terms of the renormalized mass. In the next step we exploit the

multiplicative renormalization result from the (DRG) and write

χ̃~k(η) = Ψ̃~k(η) e
α(η) (3.64)

where

α(η) = g2α1(η) + g3α2(η) + · · · (3.65)
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and proceed to obtain Ψ̃ and α systematically in a resummed perturbative expansion so

that χ̃~k(η) features a uniform asymptotic limit. In the argument of the integral on the right

hand side of (3.63) consider

d

dη′

[
cos[k(η−η′)] χ̃~k(η

′)

η′

]
=

d

dη′

[
cos[k(η−η′)]Ψ̃~k(η

′)

η′

]
eα(η

′)+α′(η)
[
cos[k(η−η′)]Ψ̃~k(η

′)

η′
eα(η

′)
]
.

(3.66)

In the second term, α′ ∝ g2 yields a contribution of O(g4) to (3.63) and will be neglected

to leading order O(g2) which is the order at which the effective action has been obtained.

Furthermore let us define

ζ~k(η
′) =

∫ η′

η0

ln
[(η − η′′)

(−η0)
] d

dη′′

[
cos[k(η − η′′)]

Ψ̃~k(η
′′)

η′′

]
dη′′ (3.67)

so that
d

dη′
ζ~k(η

′) = ln
[(η − η′)

(−η0)
] d

dη′

[
cos[k(η − η′)]

Ψ̃~k(η
′)

η′

]
; ζ~k(η0) = 0 , (3.68)

therefore, keeping only the first term in (3.66) consistently up to O(g2) the integral on the

right hand side of (3.63) is written as

∫ η

η0

eα(η)
d

dη′
ζ~k(η

′) dη′ = eα(η) ζ~k(η) +O(g2) (3.69)

where we integrated by parts and used again that α′ ∝ g2. The term O(g2) yields a

contribution of O(g4) to the Langevin equation (3.63) and will be neglected to leading

order, thus the integral term becomes

eα(η)
∫ η

η0

ln
[(η − η′)

(−η0)
] d

dη′

[
cos[k(η − η′)]

Ψ̃~k(η
′)

η′

]
dη′ . (3.70)

Since we focus on the long-time and super-Hubble limits , we anticipate that the integral is

dominated by the growing mode in the interval η∗ < η′ < η, we keep only this mode and

cutoff the integral at a lower limit η∗ approximating cos[k(η − η′)] ≃ 1.

Introducing the definition (3.64) into the left hand side of (3.63) writing it in terms of Ψ̃

and α the Langevin equation (3.63) becomes

α
′′

(η)Ψ̃~k(η) + 2α
′

(η)Ψ̃
′

~k
(η)− g2

4π2η

∫ η

η∗

ln
[(η − η′)

(−η0)
] d

dη′

[Ψ̃~k(η
′)

η′

]
dη′

= −
[
Ψ̃

′′

~k
(η) + Ω2

k(η)Ψ̃~k(η)− gξ̃(η) e−α(η)
]

(3.71)
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in arriving at this expression we have neglected a term ∝ (α
′

(η))2 ∝ g4 consistently with a

leading order calculation. We now impose that the second line of (3.71) vanishes, namely

Ψ̃
′′

~k
(η) + Ω2

k(η)Ψ̃~k(η) = gξ̃(η) e−α(η) (3.72)

The solution of this equation is straightforward,

Ψ̃~k(η) = Ψ̃
(0)
~k
(η) + g

∫ η

η0

G~k(η, η
′) ξ̃(η′) e−α(η

′)dη′ , (3.73)

where (see eqn. (3.23))

Ψ̃
(0)
~k
(η) = Q~k g+(k, η) + P~k g−(k; η) (3.74)

is the solution of the homogeneous equation in terms of the growing g+(k, η) and decaying

g−(k; η) modes and G~k(η, η
′) θ(η − η′) is the retarded Green’s function of the free field

differential operator on the left hand side of (3.72). We now introduce this solution into

the non-local self-energy contribution in the first line of (3.71), since this term is already

of O(g2) and the second term in the solution (3.73) is formally of order g, to leading order

g2 we only input Ψ̃
(0)
~k
(η) into (3.71), therefore the equation that determines α(η) to leading

order O(g2) now becomes

α
′′

1(η)Ψ̃
(0)
~k
(η) + 2α

′

1(η)(Ψ̃
(0))

′

~k
(η) =

1

4π2η

∫ η

η∗

ln
[(η − η′)

(−η0)
] d

dη′

[Ψ̃(0)
~k
(η′)

η′

]
dη′ . (3.75)

Consistently with the long-time and super-Hubble limit we only keep the growing mode in

Ψ̃
(0)
~k

≃ Q~k/(k
3/2η) and the right hand side of (3.75) becomes

g2Q~k

4π2k3/2η3

[
ln
( η
η0

)
− 1
]
,

therefore to order g2 in the expansion of α(η) (3.64) we obtain

α
′′

1 −
2

η
α

′

1 =
1

4π2 η2

[
ln
( η
η0

)
− 1
]
, (3.76)

neglecting subdominant terms in the long time limit the solution is given by

α1(η) = α1(η∗) + F [η] . (3.77)

where F [η] (3.53) had been obtained from (DRG) resummation above and α1(η∗) is an

integration constant, it arises from the integration region η0 ≤ η′ < η∗ which is non-secular

and features a finite limit as η → 0. Thus we obtain to leading order

α(η) = g2
(
α1(η∗) + F [η]

)
. (3.78)
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Inserting this solution into (3.64) with (3.73), keeping only the growing mode, and setting

the renormalized mass to zero ( νχ = 3/2) we find in the long-time and super-Hubble limit

χ̃~k(η) =
Q~k[η∗]

k3/2η
e g

2 F [η] + g

∫ η

η0

G[η, η′] ξ̃(η′) e
g2

(
F [η]−F [η′]

)

dη′ , (3.79)

where

Q~k[η∗] = Q~k e
g2α1(η∗) , (3.80)

and G[η, η′] is given by (3.51) in the super-Hubble limit. This is the DRG improved solution

of the Langevin equation to leading order in the long-time and super Hubble limits, setting

the noise term to zero we recover the homogeneous solution (3.61) a check of consistency

with the DRG resummation.

Now we have all the elements necessary to obtain the power spectrum. From (2.44,2.46)

and the averages over the initial phase space variables and noise (see eqns. (3.20-3.22)) it is

given by

P (k, η) =
k3

2π2
〈φ~k(η)φ−~k(η)〉 =

k3H2η2

2π2
〈χ̃~k(η)χ̃−~k(η)〉 , (3.81)

the super-Hubble and long time limit yield

P (k, η) =
H2

2π2
e2g

2F [η]

[
〈Q~k[η∗]Q−~k[η∗]〉

+ k3 η2
∫ η

η0

dη1

∫ η

η0

dη2G[η, η1]G[η, η2] e
−g2
[
F [η1]+F [η2]

]
Nk(η1; η2)

]
(3.82)

where Nk(η, η
′) is given by (3.37). The average in the first term requires the evolution of

the homogeneous equation (3.41) for the growing mode from the initial time η0 up to the

time η∗ ≃ −1/k, in turn this requires a detailed assessment of the self-energy term on the

right hand side of (3.41) evaluated at η∗. Although the integral is daunting even in lowest

order in perturbation theory, in the interval η0 < η′ < η∗ the wavelength of the particular

fluctuation is sub Hubble, −kη′ ≫ 1 and χ̃~k(η
′) ≃ e−ikη

′

/
√
2k which oscillates rapidly, this

rapid oscillation along with that from the cosine term leads to a bound contribution which

is non-secular. This is because the mode function is bounded and does not grow while the

wavevector is sub Hubble. Therefore the contribution from the self-energy at the scale η∗ is

perturbatively small of O(g2) and non-secular leading us to conclude that

〈Q~k[η∗]Q−~k[η∗]〉 ≃
1

2
+O(g2) . (3.83)
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It remains to obtain the contribution from the noise. From the result for the noise kernel

(3.37) we approximate N in the super Hubble limit by

Nk(η1; η2) ≃
g2

8πη1η2
δ(η1 − η2) . (3.84)

Therefore the contribution from the noise term to the power spectrum (3.82) is given by

(H2

2π2

) g2

72π
k3 η2

∫ η

η∗

[
η2

η21
− η1

η

]2
e2g

2

(
F [η]−F [η1]

)
dη1 , (3.85)

where we have taken the super Hubble limit and used (3.51) for the Green’s function in this

limit. The integral in (3.85) cannot be done in closed form, however we can assess if it yields

a substantial contribution by neglecting the exponential term which is formally < 1. If the

resulting integral features secular growing terms in the long-time limit, the contribution of

the exponential is relevant and must be included because it damps out the secular growth

at long time. We find in the long time limit

k3 η2
∫ η

η∗

[
η2

η21
− η1

η

]2
dη1 ≃

1

3
+ 2(−kη)3 ln[−kη] , (3.86)

where we used η∗ ≃ −1/k. Therefore in the super Hubble and long time limit this con-

tribution approaches a perturbatively small constant and is subleading. This result is in

agreement with that obtained from the quantum master equation in ref.[45] where the con-

tribution from the local δ(η − η′) term is found to be subleading.

Therefore restoring the exponential this argument indicates that the noise contribution

is perturbatively small and does not feature secular growth, the long time and super Hubble

limit of the power spectrum is completely determined by the first term in (3.82), namely

P(k, η) =
(H
2π

)2
e−γ(η) (1 +O(g2)) ; γ(k; η) =

g2

12π2

[
ln2
(
−kη

)
− 2 ln

(
−kη

)
ln
(
−kη0

)]
.

(3.87)

This result agrees with that obtained in ref.[45] with the quantum master equation. The

dependence on η0 is a consequence of the choice of renormalization scale for the mass (see

eqn.3.42), in ref.[45] this aspect is discussed in detail and shown that renormalizing the mass

at a different scale η̃ leads to replacing η0 → η̃ in (3.87) as a consequence of the invariance

under choice of renormalization scale. The choice of η0 as the renormalization scale and as

a time scale at which slow roll inflation begins is therefore consistent with renormalizing the
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inflaton mass to vanish at this scale since during slow rollMR,φ ≪ H for the power spectrum

to be scale invariant.

Since the wavevector k is considered to be sub-Hubble at the initial time −kη0 ≫ 1 and

in the super Hubble limit −kη → 0+ it is clear that γ(η) > 0 and the power spectrum

is suppressed in the super Hubble limit. If η0 is taken to be the beginning of the slow

roll stage and the wavevector k corresponds to a cosmologically relevant scale that became

super Hubble about 8− 10 e-folds before the end of inflation at ηf , and if inflation lasts the

minimum 60 efolds then

ln[−kη0] ≃ 50 ; ln[−kηf ] ≃ −10 ⇒ γ(ηf) ≃ 8 g2 (3.88)

then with g = λ/H ∼ 0.1 the damping of the power spectrum is ≈ 10% for modes that

re-enter the Hubble radius during recombination (assuming no further corrections from the

post-inflationary stage). Perhaps this could be an explanation for the suppression of the

CMB power spectrum at large scales.

Although this result is in complete agreement with that obtained in ref.[45] we have

learned that the noise term is subleading and the leading contribution to the suppression of

the power spectrum arises from the “dissipative” self-energy kernel. In the quantum master

equation approach[45] it was recognized that the local contribution is subleading, therefore

we identify the contribution from the noise kernel with the local contribution in the quantum

master equation.

Beyond confirming and extending the results from the quantum master equation in a

complementary and independent manner, the important aspect of the results is that the

interaction with sub-Hubble fluctuations of environmental fields lead to “dissipative” effects

and a suppression of the power spectrum at large scales.

B. Minimally coupled nearly massless environmental fields:

Let us now consider environmental fields that are minimally coupled to gravity, and

nearly massless with Mϕ/H ≪ 1. Unlike the conformally coupled situation, now super

Hubble environmental fluctuations are amplified and grow. Loop corrections with these

fields lead to both secular and infrared enhanced contributions. The mode functions for
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these fields are given by (2.24) with

νψ ≃ 3

2
−∆ ; ∆ =

M2
ϕ

3H2
. (3.89)

The integral in (3.4) feature logarithmic infrared divergences for Mϕ/H → 0 which are

manifest as poles in ∆[21]. Detailed analysis of these divergences shows that these arise from

the regions of integration corresponding the super Hubble wave vectors and are completely

determined by the growing modes.

The calculation of the kernel K[q, η, η′] follows the same steps described in detail in ref.

[21] (see the appendix in the second reference). The regions of integration k ≃ 0 ; |~k+~q| ≃ 0

are isolated and an infrared cutoff µ is introduced in these regions, within which the small

argument expansion u(p, η) ∝ p−νψ is used and the integration yields poles in ∆. Outside

these infrared regions it is safe to take νψ = 3/2, the details are available in the second

reference in [21]. Using the results of this reference we find to leading and next to leading

order in ∆ the dissipative (self-energy) and noise kernels become

ΣRk (η, η
′) ≡ ΣRk,IR(η, η

′) + ΣRk,cc(η, η
′) , (3.90)

Nk(η, η
′) ≡ Nk,IR(η, η

′) +Nk,cc(η, η
′) , (3.91)

where

ΣRk,IR(η, η
′) =

g2

8π(ηη′)3/2∆

[
k2ηη′]∆

[
Jνψ(−kη) Jνψ(−kη′) + Yνψ(−kη) Yνψ(−kη′)

]
(3.92)

Nk,IR(η, η
′) =

g2

8π(ηη′)3/2 ∆

[
k2ηη′]∆

[
Yνψ(−kη) Jνψ(−kη′)− Jνψ(−kη) Yνψ(−kη′)

]
(3.93)

and ΣRk,cc(η, η
′) , Nk,cc(η, η

′) are given by eqns. (3.36,3.37) respectively. We see that in this

case even for super Hubble fluctuations the noise kernel is non-local and strongly infrared

and secularly enhanced (compare the powers of η, η′ with the local term in the conformally

coupled case).

The contributions ΣRk,IR(η, η
′) , Nk,IR(η, η

′) are a consequence of the infrared enhancement

of a minimally coupled, nearly massless scalar field, arising from the infrared contribution

of super Hubble modes in the loop of the environmental scalar field in the integral in (3.4).

The contributions ΣRk,cc(η, η
′) , Nk,cc(η, η

′) arise from the short wavelength modes in the loop

that remain sub-Hubble and are, therefore, the same as in the conformally coupled case.

Inspection of the different contributions available in ref.[21] reveals the infrared enhanced

terms (IR) arise from the regions k ≃ 0 ; |~k + ~q| ≃ 0 in the integral (3.4) whereas the
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latter contribution arises precisely from the terms e−ikη/
√
2k in the mode functions u(k; η)

confirming their origin as sub-Hubble contributions. This can be understood in the case

with Mϕ = 0 ; νϕ = 3/2, for which

u(k; η) =
e−ikη√
2k

[
1− i

kη

]
, (3.94)

when input in the loop integral in the kernel K[q, η, η′] (3.4) for example the term

u(k; η)u∗(k; η′) =
e−ik(η−η

′)

2k

[
1− i

kη
+

i

kη′
+

1

k2ηη′

]
(3.95)

the first term in the bracket yields the conformally coupled result, the other terms yield

infrared enhanced contributions that are cutoff by the mass and lead to the poles in ∆ (see

detailed discussion in ref.[21]). In the super Hubble limit the infrared enhanced contributions

yield

ΣRk,IR(η, η
′) ≃ g2

4π2∆

[
k2ηη′]2∆

(kηη′)3
, (3.96)

Nk,IR(η, η
′) ≃ − g2

8π2(ηη′)3/2∆

[
k2ηη′]∆

[(η′
η

)νψ −
( η
η′

)νψ]
. (3.97)

At this point we can implement the technical aspects of the dynamical renormalization

group to the homogeneous and inhomogeneous equation, the resulting integrals are obviously

more complicated and the non-local contribution to the noise kernel and the power spectrum

is more difficult to assess. Undoubtedly the infrared and secular enhancement will lead

to a stronger suppression of the power spectrum both as a consequence of the stronger

secular growth and also because of the 1/∆ infrared enhancement. However quite aside

from the technical difficulties, there are two inherently important aspects to be understood

before engaging in the more technical aspects: i) minimally coupled and nearly massless

environmental fields are a source of super Hubble fluctuations that are amplified, therefore

they may be a source of isocurvature or entropy perturbations, which are severely constrained

by the observations of the CMB, ii) our goal is to understand how degrees of freedom whose

fluctuations with wavevectors that are sub Hubble all throughout inflation influence the

dynamics of super Hubble fluctuations that seed the CMB upon horizon re-entry during

recombination. The infrared enhanced contributions arise precisely from integration regions

in the loop contributions in which modes become super Hubble. One can cutoff the integrals

with a sliding physical momentum scale and integrate only the sub-Hubble components,
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although this would introduce an explicit time dependence through the cutoff scheme, it

is clear from the analysis that the loop integration over the short wavelength modes yields

a contribution that is effectively described by the conformally coupled massless fields and

yields a suppression of the power spectrum. We will not pursue further the analysis of

this case, simply observing that if there are nearly massless and minimally coupled scalar

fields that couple to inflationary perturbations these may yield large suppression of the

power spectrum. If future observations allow a small component of isocurvature/entropy

perturbations thus suggesting the possibility of extra scalar fields minimally coupled to

gravity, then a deeper study of their impact on the power spectrum may be warranted.

IV. HEAVY FIELDS: THE “FERMI” LIMIT.

We have considered the “environmental fields” as light in the sense that Mϕ/H ≪ 1,

in this section we study the coupling of the light inflaton-like field to a heavy scalar with

Mϕ/H ≫ 1, and we focus on the interaction (see eqn. (2.6,2.9)

LI [χ, ψ] = gJ [χ] O[ψ] ; J [χ] = χ2(~x, η) ; O(ψ) =
ψ(~x, η)

(−η) (4.1)

the main reason for studying this particular coupling is because integrating out the environ-

mental field ψ in this case yields a typical χ4 type coupling in a local “Fermi” limit. Our

goal is to study, if and how a local Fermi limit emerges in de Sitter space time, and if and

how dissipative effects are manifest in the effective action.

For the case Mϕ/H ≫ 1 it follows from eqn. (2.18) that νψ is purely imaginary and

there is a subtlety in defining the mode functions u(k, η) in eqn. (2.24) so that they obey

Bunch-Davies boundary conditions. We define

µ ≡ Mϕ

H
≫ 1 (4.2)

and following ref.([60]) introduce the real functions

J̃µ(z) = sech
[πµ
2

]
Re[Jiµ(z)] (4.3)

Ỹµ(z) = sech
[πµ
2

]
Re[Yiµ(z)] (4.4)

along with

H̃(1)
µ (z) = J̃µ(z) + iỸµ(z) ; H̃(2)

µ (z) = J̃µ(z)− iỸµ(z) . (4.5)
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These functions feature the following asymptotic behavior for |z| ≫ µ

H̃(1)
µ (z) → eiz e−iπ/4

√
2

πz
. (4.6)

The mode functions that satisfy the Bunch-Davies boundary conditions are

u(k, η) =
1

2

√−πη eiπ/4 H̃(1)
µ (−kη) , (4.7)

in the super Hubble limit −kη → 0 and for µ ≫ 1 we find

u(k, η) → eiπ/4 e−iγµ
√−η

2µ

(−kη
2

)iµ
, (4.8)

where γµ is real[60].

We study the emergence of a local “Fermi” limit directly from the influence action (2.70).

The corresponding Green’s functions defined in eqn.(2.61,2.62) are given by

G≶(x1, x2) = G≶(~x1 − ~x2; η1, η2) ≡
1

V

∑

~k

K≶
k (η1, η2) e

−i~k·(~x1−~x2) (4.9)

with

K>
k (η1, η2) =

u(k, η1) u
∗(k, η2)

η1η2
; K<

k (η1, η2) =
[
K>
k (η1, η2)

]∗
. (4.10)

The influence action (2.70) now becomes

F [J+, J−] = i g2
∑

~k

∫ η

η0

dη1
η1

∫ η1

η0

dη2
η2

{
J+
~k
(η1)J

+

−~k
(η2) u(k, η1) u

∗(k, η2)

+ J−
~k
(η1)J

−

−~k
(η2) u

∗(k, η1) u(k, η2)− J+
~k
(η1)J

−

−~k
(η2) u

∗(k, η1) u(k, η2)

− J−
~k
(η1)J

+

−~k
(η2) u(k, η1) u

∗(k, η2)

}
. (4.11)

We seek to understand the emergence of a local effective action for super-Hubble wavelengths,

in this case the product of mode functions of the environmental fields simplify to

u(k, η1) u
∗(k, η2) ≃

1

2µ

√
η1η2 (η1)

iµ (η2)
−iµ . (4.12)

Consider the following contribution for the first and last terms in (4.11)
∫ η1

η∗

dη2 J
+

−~k
(η2)

√
η1η2

η1η2
(η1)

iµ (η2)
−iµ (4.13)

where the lower limit η∗ ≃ −1/k so that only super Hubble fluctuations are considered. We

generate an expansion in inverse powers of µ and derivatives by exploiting the identity

(η2)
−iµ

η2
=

1

iµ

d

dη2
(η2)

−iµ (4.14)
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integrating by parts and neglecting the lower limit in the integrals. Implementing this sys-

tematically generates a series in 1/µ and derivative terms. In the long-time and super-Hubble

limits the lower limit of the integrals at which the physical wavelength of the fluctuations

is just of the order of the Hubble radius and the fluctuations did not yet amplify yields a

subleading contribution. We find to leading and next to leading order that (4.13) becomes

J+

−~k
(η1)

[
− 1

2iµ2
+

1

4µ3

]
+

η1
2µ3

d

dη1
J+

−~k
(η1) + · · · (4.15)

and the first term in the bracket in (4.11) becomes

∫ η

η∗

dη1

{
J+
~k
(η1)J

+

−~k
(η1)

[
− 1

2iµ2
+

1

4µ3

]
+

η1
2µ3

J+
~k
(η1)

d

dη1
J+

−~k
(η1) + · · ·

}
, (4.16)

a similar procedure yields for the second term

∫ η

η∗

dη1

{
J−
~k
(η1)J

−

−~k
(η1)

[ 1

2iµ2
+

1

4µ3

]
+

η1
2µ3

J−
~k
(η1)

d

dη1
J−

−~k
(η1) + · · ·

}
, (4.17)

to leading order we find that the third and fourth terms cancel each other out. We finally

find that the influence action features both a real and an imaginary (dissipative) local parts

F [J+, J−] = FH[J
+, J−] + FD[J

+, J−] (4.18)

given by

FH [J
+, J−] = − g2

2µ2

∑

~k

∫ η

dη1

{
J+
~k
(η1)J

+

−~k
(η1)− J−

~k
(η1)J

−

−~k
(η1)

}
(4.19)

FD[J
+, J−] =

ig2

2µ3

∑

~k

∫ η

dη1

(
J+
~k
(η1)− J−

~k
(η1)

)(
J+

−~k
(η1)− J−

−~k
(η1)

)
(4.20)

where we have neglected the subleading derivative and imaginary terms in both expressions

(suppressed by at least one power of 1/µ ≪ 1). Using systematically the identity (4.14)

and a similar one for the η1 terms one generates a series in powers of 1/µ ≪ 1, valid for

Mϕ/H ≫ 1.

Comparison with (2.50) clearly reveals that to leading order the term (4.19) simply yields

a local effective action corresponding to a Lagrangian density

Leff =
1

2

[
χ′2 − (∇χ)2 −M2

χ(η) χ
2
]
− g2

2µ2
χ4 . (4.21)

The effective quartic vertex in the local “Fermi” theory is shown in fig. (2).
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FIG. 2: Effective “Fermi” vertex in the case for J [χ] = χ2 : O[ψ] = ψ/η for µ =Mϕ/H ≫ 1.

This local effective field theory is broadly in agreement with the results of refs.[28–32],

however we emphasize that to next to leading order in 1/µ there emerge dissipative effects

described by FD in (4.20) which are not captured by the treatments in these references since

this term emerges from the time evolution of the density matrix and is not available from

the simple path integral formulation in refs.[28–32].

Interpretation:

The interpretation of the emergence of this local effective Lagrangian density becomes

more clear recognizing the following aspects,

• with µ = Mϕ

H
and g = λ/H (see eqn. (2.12) with p = 1) it follows that

g2

µ2
=

λ2

M2
ϕ

, (4.22)

• with η = −eHt/H it follows that

(η1)
iµ (η2)

−iµ = eiMϕ(t1−t2) , (4.23)

corresponding to the real time propagator of the heavy particle in the long wavelength

limit.

In the limit Mϕ/H ≫ 1 the Compton wavelength of the heavy particle is much smaller

than the Hubble radius and the long wavelength correlation functions of this field are the

same as in Minkowski space time.

We emphasize that the emergence of a local “Fermi” limit is available only whenMϕ/H ≫
1, in the opposite limit µ ≪ 1 and implementing the steps described above would lead to a

divergent series in powers of 1/µ≫ 1.

It is important to quantify what is the mass scale that satisfies the assumption Mϕ ≫ H .

If the scale of the inflationary potential is the grand unified scale ≃ (1016GeV )4, it follows
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that H ≃ 1014GeV thereforeMϕ & 1015GeV , thus we see that only degrees of freedom with

masses of the order of or larger than the grand unified scale would fulfill this assumption.

For degrees of freedom with masses well below H which covers not only the standard model

but most likely physics beyond, the results for the cases with Mϕ ≪ H are valid. Therefore,

while the case of environmental fields with M ≫ H is of fundamental importance, on

physical grounds it would be expected that there are many degrees of freedom with masses

well below the grand unified scale that would yield stronger dissipative effects, unless for

some (finely tuned) reason the inflaton is not directly coupled to these degrees of freedom.

V. DISCUSSION.

Although in this study the large scale suppression of the power spectrum from dissipative

effects have been obtained for the case of a coupling of the form φϕ2 between the inflaton

and a massless environmental field conformally coupled to gravity, the results are likely

of broader relevance. For example in ref.[51] a different coupling of the form φ2ϕ2 was

studied and the numerical results reported in this reference also suggest a suppression of the

power spectrum. In ref.[43] such coupling is shown to lead to the case in which the noise is

colored and multiplicative, a situation that requires a deeper analysis with the dynamical

renormalization group. Furthermore, the modes of a conformally coupled massless fields

represent faithfully the sub-Hubble limit (indeed the high energy limit) of mode functions

for massive environmental scalar fields minimally coupled to gravity, irrespective of whether

their mass is larger or smaller than H . Therefore the result obtained from the massless

conformally coupled degrees of freedom is at the very least an important contribution to the

self energy and noise correlator as is clear from the analysis of minimally coupled fields that

yield (3.90,3.91) and which are further enhanced by infrared and secular divergences.

Although we discussed nearly massless scalar fields we expect the results to be broadly

generalized to the case of fermionic environmental fields. In particular for fermionic fields

with masses ≪ H the mode functions are similar to the case of conformally coupled scalar

fields[15, 61, 62], these mode functions are not amplified as the physical wavelength becomes

super-Hubble. This is a manifestation of the fact that fermionic degrees of freedom are never

classical. A Yukawa coupling between the inflaton fluctuations and fermionic fields yields an

influence action in terms of self-energy and noise kernels much in the same manner as for the
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case studied in the previous sections. Results of this study will be reported elsewhere[63].

Furthermore, our study focused on the power spectrum of the inflaton fluctuations,

whereas it is the power spectrum of the curvature perturbation that is relevant for CMB

anisotropies. In ref.[64] the authors have studied loop corrections to the correlation func-

tion of the curvature perturbation from both self-interaction as well as the interaction with

“spectator” scalar fields. In both cases the authors find logarithmic infrared corrections.

From the results of ref.[64] considering, for example, a “spectator” potential U(φ) = λφ2

one infers a coupling ζφ2 with ζ proportional to the curvature perturbation[64], in which

case the results obtained in the previous section are directly applicable to the case of cur-

vature perturbations. Extrapolating our results to this particular example we would be led

to conclude that the power spectrum for curvature perturbations is suppressed in the same

manner as that of the inflaton fluctuations studied above. In a recent study[65] the curvature

perturbation is coupled to heavy scalar fields with M ≫ H minimally coupled to gravity

and the authors found that the power spectrum of curvature perturbations is not modified.

A prima facie this result seems to contradict those in ref.[64], and also the fact that the

contribution from sub-Hubble modes should be similar to the case of massless conformally

coupled fields, as we found for minimally coupled fields. However the authors of ref.[65]

enumerate several caveats that may invalidate their conclusions, chief among them is the

violation of scale invariance. However, the breakdown of scale invariance is precisely one of

the hallmarks of our findings: for conformally coupled environmental fields this breakdown

is a result of (powers of) logarithmic secular terms consistently with Weinberg’s theorem[66],

for minimally coupled fields is a consequence of both logarithmic secular terms and logarith-

mic infrared singularities[5, 21, 64]. Therefore the question of whether the power spectrum

of curvature perturbations is suppressed from coupling to environmental degrees of freedom

remains to be explored further and the results of ref.[64] when combined with our analy-

sis suggest that the power spectrum of curvature perturbation will be suppressed by the

coupling to environmental fields.

VI. SUMMARY, CONCLUSIONS AND FURTHER QUESTIONS

The main question addressed in this article is what is the influence of sub-Hubble degrees

of freedom that couple to the inflaton on the power spectrum of super-Hubble inflaton fluc-
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tuations. This question is motivated by puzzling large scale anomalies in the temperature

power spectrum of the CMB. In a previous study[45] the power spectrum of inflaton fluctu-

ations were studied from the quantum master equation which describes the evolution of the

reduced density matrix obtained from tracing out “environmental” degrees of freedom. The

results of that study revealed a suppression of the power spectrum at large scales. In this

article we study the problem from a different but complementary perspective by obtaining

the non-equilibrium effective action for super Hubble inflaton fluctuations after integrating

out (tracing out) “environmental” degrees of freedom coupled to the inflaton. The effective

action includes the influence action determined by the correlation functions of the envi-

ronmental fields and is obtained up to second order in the coupling for various relevant

cases. This effective action is stochastic and yields a Langevin equation of motion for the

inflaton fluctuations with non-local self energy corrections and a noise term which explicitly

describes the stochastic aspect of the dynamics induced by the coupling to environmental

degrees of freedom. For a coupling φϕ2 of the inflaton field φ to a scalar environmental field

ϕ the noise is additive and Gaussian but colored (non-local correlations) and the self-energy

and noise correlation function obey a de Sitter space time generalization of the fluctuation

dissipation relation[43]. We model sub-Hubble environmental degrees of freedom by taking

the environmental scalar field ϕ to be massless and conformally coupled to gravity and solve

the Langevin equation in the long time and super-Hubble limit for the inflaton fluctuations

by implementing a dynamical renormalization group resummation of secular terms. We find

the corrections to the power spectrum, assuming a (nearly) massless inflaton field

P(k, η) =
(H
2π

)2
e−γ(η) (1 +O(g2)) ; γ(k; η) =

g2

12π2

[
ln2
(
−kη

)
− 2 ln

(
−kη

)
ln
(
−kη0

)]
,

where g is the dimensionless coupling between the inflaton and the environmental fields. The

dynamical renormalization group provides a non-perturbative resummation of Sudakov-type

double logarithms leading to a suppression of the power spectrum via dissipative effects and

a violation of scaling. The case of environmental fields that are minimally coupled to gravity

with Mϕ ≪ H yields stronger secular divergences as well as an infrared enhancement as a

consequence of environmental degrees of super-Hubble wavelengths in the self-energy loop

that are amplified. This case would lead to a stronger suppression of the power spectrum

but possibly to contributions from isocurvature or entropy which are severely constrained by

CMB observations. We have also analyzed a coupling of the form φ2ϕ in the case in which
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the mass of the environmental field Mϕ ≫ H . In this case the long-wavelength effective

action for the inflaton features a local “Fermi limit” with a very weak self-interaction φ4 and

dissipative contributions which are suppressed by powers of H/Mϕ. A simple interpretation

of this Fermi limit result is given.

Our results confirm those obtained in ref.[45] via the quantum master equation that

describes the dynamics of the reduced density matrix, but complement those by provid-

ing directly a non-equilibrium effective action that leads to a stochastic description of the

dynamics with precise derivation of the effective Langevin equation and the correlation func-

tions of the stochastic noise, both completely determined by the correlation functions of the

environmental fields.

There are both fundamental and practical corollaries of the study presented here:

• On the fundamental level, by reproducing the results of ref.[45] we established a direct

correspondence between the effective action including the environmental influence ac-

tion and the quantum master equation that yields the dynamics of the reduced density

matrix, and established a direct relation with a stochastic description. An important

result from the comparison between the two approaches is that the solution of the

quantum master equation for correlation functions obtained from the reduced density

matrix is equivalent to a dynamical renormalization group resummation. Both the

effective action with the influence action and the quantum master equation provide

complementary and equivalent powerful frameworks to study inflationary dynamics

upon coarse graining or tracing out (sub-Hubble) degrees of freedom with which the

inflaton field interacts. The influence action approach offers the advantage of coupling

sources and obtaining correlation functions at different times, whereas the quantum

master equation yields a direct approach to the equations of motion for expectation

values in the reduced density matrix.

• On the practical level: although we focused on the effective action of an inflaton-

like scalar field in interaction with other scalars that are traced over (integrated out)

leading to the influence action, we conjecture that the suppression of the power spec-

trum from dissipative effects associated with the interaction of sub-Hubble degrees of

freedom is likely a robust feature that perhaps may explain the puzzling large scale

suppression of the CMB temperature power spectrum. The effective action with the
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influence action and the equivalent and complementary quantum master equation for

the reduced density matrix provide a systematic non-perturbative framework to study

the effects of “environmental” degrees of freedom on inflationary observables.

Important questions remain to be studied, among them the influence of different envi-

ronmental degrees of freedom, such as fermions and the extension of the program presented

here to curvature perturbations, not just to scalar inflaton fluctuations. Work on both fronts

is in progress and will be reported elsewhere[63].
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