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In the standard inflationary scenario, primordial perturbations are adiabatic. The amplitudes of
most types of isocurvature perturbations are generally constrained by current data to be small. If,
however, there is a baryon-density perturbation that is compensated by a dark-matter perturbation
in such a way that the total matter density is unperturbed, then this compensated isocurvature
perturbation (CIP) has no observable consequence in the cosmic microwave background (CMB) at
linear order in the CIP amplitude. Here we search for the effects of CIPs on CMB power spectra
to quadratic order in the CIP amplitude. An analysis of the Planck temperature data leads to an
upper bound ∆2

rms ≤ 7.1 × 10−3, at the 68% confidence level, to the variance ∆2
rms of the CIP

amplitude. This is then strengthened to ∆2
rms ≤ 5.0 × 10−3 if Planck small-angle polarization data

are included. A cosmic-variance-limited CMB experiment could improve the 1σ sensitivity to CIPs
to ∆2

rms . 9 × 10−4. It is also found that adding CIPs to the standard ΛCDM model can improve
the fit of the observed smoothing of CMB acoustic peaks just as much as adding a non-standard
lensing amplitude.

PACS numbers: 98.70.Vc,95.35.+d,98.80.Cq,98.80.-k

I. INTRODUCTION

Cosmological density perturbations are thought to
have their origin during inflation [1–3]. These perturba-
tions seed the large-scale inhomogeneities that later grow
to become galaxies and clusters [4]. From structure for-
mation and cosmic-microwave-background (CMB) obser-
vations, we know that primordial density perturbations
have amplitude δ ∼ 10−5 [5].

Primordial perturbations can be classified into two
groups depending on their initial conditions. Adiabatic
perturbations are perturbations to the total energy den-
sity that leave the ratios of the different constituents of
matter everywhere the same. Isocurvature perturbations
involve perturbations to the relative number densities of
different components of matter [6–9]. The simplest infla-
tionary models have purely adiabatic fluctuations, while
isocurvature fluctuations usually signal the presence of
a second field during inflation, as in curvaton models
[10, 11].

Isocurvature perturbations between photons and a sin-
gle other species are in general well constrained [12–14].
If, however, there is a baryon-density perturbation that
is compensated by a dark-matter perturbation in such
a way that the total matter density remains constant,
then there are no pressure or gravitational-potential per-
turbations above the baryonic Jeans scale. These com-
pensated isocurvature perturbations (CIPs) thus have no
observable effect on the CMB at linear order in the CIP
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amplitude [15, 16]. There are constraints from other ob-
servables, but these are a factor of ∼ 104 weaker than
the adiabatic component [17–20].

In the standard scenario, the CMB power spectrum is
determined given fixed values of the baryon and dark-
matter densities Ωb and Ωm, respectively, in units of the
critical density. CIPs, however, introduce variations to
Ωm and Ωb between different patches of the CMB sky.
They thus induce a variation in the power spectrum from
one patch of sky to another.

The mean power spectrum—that obtained by measure-
ments over the entire sky—remains unaltered, to linear
order in the CIP amplitude. The variations show up,
however, in two different ways. First of all, the spa-
tial modulation of the power spectrum is characterized
by a departure from gaussianity, a specific nontrivial
four-point function, or trispectrum. A search for such
a trispectrum was performed in Ref. [20]. The second
consequence, however, is a change to the power spec-
trum that arises to quadratic order in the CIP amplitude,
which can be understood heuristically as a smoothing
of features in the CMB power spectrum when different
power spectra are averaged.

In this paper we seek this effect of CIPs on the CMB
power spectra obtained by Planck. We parametrize the
magnitude of the effect of CIPs in terms of an rms CIP
amplitude ∆rms. We find from a temperature-only anal-
ysis a constraint of ∆2

rms ≤ 7.1 × 10−3, which is com-
petitive with, and complements, that obtained from the
complete trispectrum, although with a far simpler analy-
sis. That figure improves to ∆2

rms ≤ 5.0× 10−3 if Planck
polarization data are included. We then make CIP sen-
sitivity forecasts for future experiments. We also show
that CIPs have a very similar effect on the power spec-



2

trum to changing the lensing amplitude AL. They can
thus alleviate the tension between the lensing amplitude
obtained from the Planck spectrum (AL = 1.22 ± 0.1)
and that expected from theory (AL = 1) [5].

This paper is structured as follows. In Section II we
review the physics of CIPs and their effects on the CMB
power spectra. Then, in Section III we find a linear basis
of estimators for CMB observables, including CIPs. In
Section IV we apply our analysis to current CMB data
and an ideal cosmic-variance-limited CMB experiment.
We conclude in Section V.

II. COMPENSATED ISOCURVATURE
PERTURBATIONS

CIPs change the baryon and dark-matter densities in
such a way that the total matter energy density, Ωm =
Ωb + Ωc, remains unaltered. We parametrize their effect
as

Ωb = Ω̄b[1 + ∆(n̂)], and

Ωc = Ω̄c − Ω̄b∆(n̂), (1)

where Ωb and Ωc are the baryon and dark-matter en-
ergy densities respectively, the overbar represents their
unperturbed values, and ∆(n̂) is the amplitude of the
CIP in the specific direction n̂ at recombination. This
expression is accurate for CIPs of sufficiently large angu-
lar scale, where they can be treated as a modulation of
background parameters [21].

The linear-order effects of CIPs are on scales at which
the baryons behave differently from dark matter, corre-
sponding to angular scales ` & 105−6 [18], which makes
them unobservable in CMB, although potentially de-
tectable using cosmological 21-cm absorption measure-
ments at high redshift [16]. CIPs will also have conse-
quences for the CMB fluctuations induced by adiabatic
perturbations. In a region of high ∆(n̂) (high baryon
density), decoupling will be longer, thereby smoothing
the peak structure in the CMB power spectrum. The
mean-free path of CMB photons would be reduced by the
higher electron density, leading to less damping of CMB
fluctuations on small angular scales. A higher baryon
density also decreases the plasma sound speed and hence
decreases the sound horizon at recombination [6].

A. Angular properties

We expand the amplitude of the compensated isocur-
vature perturbations in spherical harmonics as

∆(n̂) =
∑
LM

YML (n̂)∆LM , (2)

where the spherical-harmonic coefficients ∆LM are sta-
tistically independent and have a variance given by

〈∆LM∆∗L′M ′〉 = δLL′δMM ′C∆
L . (3)

We take the ansatz of a scale-invariant power spectrum
for ∆ in k-space. For L . 800, this creates a scale-
invariant angular power spectrum CL = AL−2 when
projected onto the last-scattering surface (LSS), where
A is a dimensionless amplitude [18]. The simple picture
of CIPs as a modulation of background parameters corre-
sponds to a separate universe approximation, which was
shown in Ref. [21] to only be valid for L . 100, as the
imprint of CIPs are washed for at smaller CIP angular
scales. We thus restrict our analysis to L ≤ 100.

We assume that the CIP amplitude ∆(n̂) is a Gaussian
random variable with zero average and variance ∆2

rms ≡〈
∆2
〉
. Instead of finding an estimator for each ∆LM we

will directly measure its variance, which can be expressed
in terms of the CIP angular power spectrum C∆

L as

∆2
rms =

100∑
L=1

(2L+ 1)

4π
C∆
L , (4)

which means that our constraints will be on the total
power in CIPs and not on each individual C∆

L . By us-
ing Eq. (4) we can relate the CIP variance ∆2

rms to the
amplitude A of the power spectrum as,

∆2
rms ≈ 0.96A. (5)

B. Previous constraints

As CIPs do not change CMB power spectra at linear
order, past work has relied on other observables to con-
strain their amplitude. For example, measurements of
galaxy-cluster baryon fractions (obtained through X-ray
observations) were used in Ref. [17] to search for CIPs,
imposing the constraint ∆2

rms . 5 × 10−3. This tech-
nique, however, relies on clusters being fair samples of
the baryon density in the universe, as well as being kine-
matically relaxed.

In Ref. [18], the off-diagonal correlations in the CMB
created by CIPs were computed, and a forecast was made
of the sensitivities that could be reached by studying
them with different instrumental setups. Data from the
WMAP mission [22] were analyzed in Ref. [20] to con-
strain the amplitude A of the CIP power spectrum CL to
be smaller than 5.5× 10−3 at 68% CL, which translates
to a constraint on the CIP variance of ∆2

rms . 4× 10−3,
where the L = 1 mode has been ignored due to recon-
struction uncertainties.

C. Effect on the power spectrum

In our picture we treat the CIP amplitude as a Gaus-
sian random variable. This allows us to calculate the
observed CMB angular power spectrum Cobs

` by averag-
ing over the CIP amplitudes,

Cobs
` =

1√
2π∆2

rms

∫
d∆e−∆2/(2∆2

rms)C`(∆), (6)
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which to first non-zero order in ∆rms is given by

Cobs
` ≈ C`|∆=0 +

1

2

d2C`
d∆2

∆2
rms. (7)

We calculate the second derivative by fitting C`|Ωb,Ωc

near {Ω̄b, Ω̄c} as a function of ∆. We have checked that
terms that are higher order in ∆2

rms are negligible for the
upper limits to ∆2

rms that we infer.
We have found that the CIP-induced corrections to

CMB power spectra from Eq. (7) numerically agree with
those computed with the full mode-coupling formalism
of Ref. [18], but are simpler to evaluate.

III. CIP ESTIMATORS

We have shown expressions for how CIPs alter CMB
power spectra. Now we consider how to estimate ∆2

rms

with measurements of the three main CMB power spec-
tra, CTT` , CTE` , and CEE` . For that we use a Fisher-
matrix analysis to fully capture the correlations between
the CIP variance, ∆2

rms, and the usual cosmological pa-
rameters.

Let us begin by reviewing the basics of linear (Fisher)
cosmological-parameter estimation.

A. Linear estimators

Codes like CosmoMC [23] and Python Monte Carlo
[24] are commonly used for parameter analysis. It is,
however, a computationally costly procedure. We al-
ready have a best fit for the six ΛCDM model param-
eters in the absence of CIPs [5], so we can perturb the
model around this best fit by adding CIPs, increasing the
number Np of parameters to seven. In that case the new
best-fit parameters will not be too far away in parame-
ter space from the old ones, so we can perform a linear
analysis.

We construct a linear estimator of the parameters near
their current best-fit values [5]. To do so we parametrize
the power spectra as,

CX,obs
` − CX,best−fit

` =

Np∑
i=1

δAXi g
X
i (`), (8)

where CX,best−fit
` is the best-fit (lensed) power spectrum,

with X = {TT, TE,EE}. We have left out other CMB
observables, such as B-mode polarization, due to the ab-
sence of sufficiently sensitive and foreground-free CMB
polarization data. These could potentially have signifi-
cant constraining power [17, 18].

We define the first six original amplitudes to be the
ΛCDM parameters as Ai = {ωb, ωc, ns − 1, As, τ,H0},
where ωb = Ωbh

2 and ωc = Ωch
2 are the baryon and

cold-dark-matter physical densities, ns is the tilt of the
scalar power spectrum, and As its amplitude. Here, τ is

the optical depth of reionization and H0 is the Hubble
parameter. We define the deviations of these parameters
from their best-fit values to be δAi.

The basis functions gXi (`) for i = 1−6 are constructed
as

gXi (`) ≡ ∂CX`
∂Ai

, (9)

where the derivatives are taken by fitting in CAMB [25]
near the best-fit values of the six ΛCDM parameters.

Since we are going to add CIPs we will have Np =
7, unless otherwise specified. The change in the power
spectrum when adding CIPs is parametrized by Eq. (7),
from where we can extract the seventh basis function

gX7 (`) ≡ 1

2

d2CX`
d∆2

, (10)

where the derivative is calculated in the separate-universe
approximation, and has associated amplitude δAX7 =
∆2

rms.
We show all the derivatives in Figures 1, 2, and 3.

There are well-known correlations between the high-`
effects of changing the dark-matter density ωc and the
Hubble parameter H0. Similarly, increasing As and de-
creasing τ produce very similar changes in the power
spectra, except at the lowest `s.

Notice that in those plots we are also showing the
derivative with respect to the lensing amplitude as an
eighth parameter. The basis functions for CIPs and lens-
ing are very similar. This could help resolve the ten-
sion between the observed level of CMB lensing in Planck
power spectra and expectations from the ΛCDM model.
We will explore this topic in Section IV.

B. Fisher Matrix

We now study the detectability of the seven δAi si-
multaneously through a Fisher analysis. We employ the
usual definition of the Fisher matrix [26–28], with com-
ponents

Fij = 〈gi, gj〉 , (11)

where the inner product 〈 , 〉 is defined as

〈gi, gj〉 ≡
∑
X,Y

∑
`

gXi (`)C−1
XY g

Y
j (`). (12)

The covariance matrix C` is given by [29, 30]

(C`)XY =
2

2`+ 1

1

fsky
×

×


(
C̃TT`

)2 (
C̃TE`

)2

C̃TT` C̃TE`(
C̃TE`

)2 (
C̃EE`

)2

C̃EE` C̃TE`

C̃TT` C̃TE` C̃EE` C̃TE`

[(
C̃TE

`

)2

+ C̃TT
` C̃EE

`

]
1

2

 ,

(13)
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FIG. 1: Derivatives of the CMB TT power spectrum at the
current best-fit values. We employ derivatives with respect
to the logarithm of each amplitude Ai to account for their
different orders of magnitude. Consequently, there is a factor
of Ai different to translate to the gis in the text. In the top
panel we show the derivatives with respect to ωb (in solid-
black), ωc (in dashed-blue), As (in red–dot-dashed), and H0

(in dotted-green). In the lower panel we plot the derivatives
with respect to ns (in solid-black), τ (in dashed-blue), the CIP
variance ∆2

rms (in red–dot-dashed), and the lensing amplitude
AL (in dotted-green). For visual purposes we have chosen an
arbitrary CIP normalization in these plots.

where we have defined

C̃TT` ≡ CTT` +NTT
` ,

C̃TE` ≡ CTE` ,

C̃EE` ≡ CEE` +NEE
` , (14)

and the NX
` are the instrumental noises, for which we use

the Planck tabulated noise for the Planck analysis and
zero in the cosmic-variance-limited case.

IV. CMB ANALYSIS

Now we are ready to find estimates and errors for the
six standard cosmological parameters, as well as the CIP
amplitude ∆2

rms.
We consider two cases. First, for Planck, we not only

obtain estimators for the CIP variance, but also apply
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FIG. 2: Derivatives of the CMB TE power spectrum at the
current best-fit values. We use the same conventions as in
Figure 1.

them to the data to obtain actual limits to CIPs. We
will take a small detour to study the viability of CIPs
as a solution for the lensing tension in the Planck CMB
power spectra. Second, we will study a cosmic-variance
limited (CVL) experiment.

A. Planck constraint

Let us begin by considering the Planck 2015 power

spectra (CX,Planck
` ), obtained from the Planck Legacy

Archive1. To diminish the effects of correlations between
different `s, we used binned data for ` ≥ 30, with width
∆` = 30. The minimum-variance unbiased estimators for
these seven amplitudes δAi are

δ̂Ai =
∑
j

(F−1)ij 〈R(`), gj(`)〉 , (15)

where (F−1)ij is the inverse of the Fisher matrix, and
R(`) is the residual after subtracting the best fit from

the data, RX(`) = CX,Planck
` − CX,best−fit

` .

1 http://pla.esac.esa.int/pla/
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FIG. 3: Derivatives of the CMB EE power spectrum at the
current best-fit values. We use the same conventions than in
Figure 1.

With the current data in the Planck Legacy Archive,
however, it is hard to disentangle the optical depth τ
and the scalar amplitude As, since the effect of changing
either is highly degenerate [31]. The main difference be-
tween As and τ is the reionization bump, caused by τ ,
that appears at low ` in polarization measurements [32–
34]. Our linear analysis underestimates the errors when
using low-` polarization data, so in lieu of them we will
add a prior τ = 0.068± 0.019 to the optical depth for ro-
bustness. We choose the final ` ranges to be ` = 30−2500
for TT, and ` = 30 − 1995 for TE and EE power spec-
tra, where the maximum ` is that available in the Planck
Legacy Archive. Later on, when considering lensing, we
will add the full low-` data to the analysis.

We show the best fits derived with this analysis in Ta-
ble I. The best fit to the CIP amplitude with TT-data
only is ∆2

rms = (5.8 ± 7.1) × 10−3, and with the com-
bined dataset is ∆2

rms = (0.9 ± 5.0) × 10−3. There is
thus no evidence for the existence of CIPs, and the con-
straint is of the same order of magnitude as the trispec-
trum constraint of Ref. [20]. Notice that we have not
required ∆2

rms to be positive. Imposing a prior ∆2
rms ≥ 0

would change the 68%CL constraints to ∆2
rms ≤ 0.011

for TT, ∆2
rms ≤ 0.012 for TE, ∆2

rms ≤ 0.052 for EE, and
∆2

rms ≤ 0.0054 for the combined dataset. Notice that

these limits have become more constringent in the case
of the TE dataset, due to the negative best-fit value for
∆2

rms, whereas the opposite is true for the TT and EE
datasets.

We show the confidence ellipses for the Planck experi-
ment on Figures 4 and 5, where it is clear that the CIP
contribution to the CMB power spectrum is highly corre-
lated with most of the rest of parameters. The correlation
coefficients, defined as rij ≡ (F−1)ij/

√
(F−1)ii(F−1)jj ,

are found to be rωb,∆2
rms

= 0.73, rωc,∆2
rms

= −0.57,
rns,∆2

rms
= 0.76, rAs,∆2

rms
= −0.46, and rH0,∆2

rms
= 0.69.

We do not show the covariance between ∆2
rms and τ ,

since the prior applied to τ renders meaningless the cor-
relation coefficients. Even though this high-` analysis
shows no strong evidence for the existence of CIPs, they
have the potential to resolve the lensing tension men-
tioned above, when including low-` data. We now explore
this possibility.

Lensing

The CMB is lensed by large-scale structure along the
line of sight. The main effects of the lensing on the CMB
power spectra are to add power at small scales and to
smooth the acoustic peaks [35, 36]. The amount of lens-
ing inferred from CMB TT measurements seems, how-
ever, to be higher (by about two standard deviations)
than the predicted value. This difference is parametrized
through the lensing amplitude AL [37, 38], which is fixed
to be AL = 1 in ΛCDM, but letting it vary can bet-
ter fit the data. An analysis of the Planck measure-
ments of the TT power spectrum found a best-fit value
of AL = 1.22± 0.10 [5].

Adding a new parameter to the likelihood analysis
changes the best-fit AL if the new parameter is corre-
lated with it [39, 40]. The effects on the CMB of increas-
ing AL are very similar to adding CIPs, as can be seen
from Figures 1, 2, and 3. Then, we can compute the
offset induced in AL due a non-zero CIP variance ∆2

rms

as

δAL = (F−1)AL,∆ F∆,∆ ∆2
rms. (16)

In the Planck TT case, the product (F−1)AL,∆×F∆,∆

evaluates to be ≈ −150. This means that a CIP variance
of ∆2

rms ≈ 10−3 would induce a bias in the lensing ampli-
tude of δAL ≈ −0.2, completely eliminating the tension
between the ΛCDM value of AL = 1 and the observed
value. This value of ∆2

rms is allowed by the current con-
straints on CIPs, being a factor of ∼ 7 smaller than our
TT-only bound.

Of course this is only an approximate analysis ignoring
the rest of cosmological parameters. To include all corre-
lations we use a Fisher-matrix analysis as above, adding
δAX8 ≡ AL − 1 as an eighth parameter in our analysis.
Its associated basis function, g8, is defined as in Eq. (9).

We fit for the value of AL from the Planck data, first
without CIPs (to show the tension) and then with CIPs.
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Parameter TT TE EE combined

ωb . . . . . . . . . 0.02238±0.00028 0.02175±0.00052 0.0251±0.0015 0.02243±0.00017

ωc . . . . . . . . . 0.1193±0.0026 0.1217±0.0033 0.1112±0.0055 0.1194±0.0015

ns . . . . . . . . . 0.9653±0.0081 0.939±0.023 0.986±0.018 0.9620±0.0049

log
(
1010As

)
3.097±0.036 3.08±0.040 3.11±0.040 3.11±0.034

τ . . . . . . . . . .. 0.082±0.018 0.080±0.019 0.078±0.019 0.088±0.017

H0 . . . . . . . . . 67.7±1.3 66.0±1.7 72.1±3.1 67.4±0.71

∆2
rms . . . . . . . 0.0058±0.0071 −0.023±0.020 0.040±0.023 0.0009±0.0050

TABLE I: Best-fit values and standard deviations for cosmological parameters with the three different Planck data sets (TT,
TE and EE polarizations for ` > 30), as well as combining them. We have used a prior in τ in addition to all the datasets to
break the degeneracy between τ and As.

To follow more closely the analysis carried out by Planck
[5], we will use the low-` polarization data instead of
setting a prior for τ . These data are available as part of
the Planck likelihood package.2

The results are displayed in Table II. We show the fit
for the six original ΛCDM parameters +AL first, where
it is clear that the best-fit lensing amplitude deviates ∼ 2
standard deviations from the ΛCDM value of AL = 1 for
the TT, EE, and the combined data set.

In Figure 6 we plot the likelihoods for AL, when
marginalizing over the rest of parameters, before and
after including CIPs.3 This Figure shows a significant
widening of the likelihood curves, which added to the
bias from Eq. (16) is responsible for the decrease in the
tension of the fit.

In Table II we also show the standard deviations (and
new best-fit values) when including the six ΛCDM pa-
rameters + ∆2

rms + AL (so Np = 8). In that case the
tension in the TT dataset vanishes, due to the correla-
tions between AL and ∆2

rms.
A χ2 analysis of the TT power spectrum shows prefer-

ence for a non-standard lensing amplitude. The change
in χ2 from the standard ΛCDM model (with AL = 1)
to an AL-varying model (usually denoted ΛCDM+AL)
is ∆χ2 = −4.1, giving rise to a p-value of 0.043, which
makes it a significantly better fit.

Adding CIPs to this ΛCDM+AL model changes χ2 by
∆χ2 = −0.3, with a p-value of 0.58. This implies that
ΛCDM+AL+CIPs does not fit the TT power spectrum
better than ΛCDM+AL.

Interestingly, CIPs alone can do as well as AL alone
improving the χ2 statistic. The change in χ2 from the
ΛCDM model to ΛCDM+CIPs is ∆χ2 = −3.9, with a p-
value of 0.048 (to be compared with 0.043 when adding
a varying AL to ΛCDM). Notice, though, that the best-
fit CIP variance in that case would be ∆2

rms = (12.9 ±
6.4)×10−3, which is in tension with both the trispectrum
bound [20], and the galaxy-cluster bound [17].

2 http://wiki.cosmos.esa.int/
3 Note that, since we are using a linear Fisher-matrix analysis,
these likelihoods are Gaussian by construction.

This shows that adding either a varying AL or CIPs
to a standard ΛCDM model provides a better fit for the
TT Planck power spectrum, by a comparable amount.
Adding both, however, is not supported by the data.
There are, however, a few systematic effects in the analy-
sis that could bias the result. The most important exam-
ple is that our treatment of the low-` data is too simplis-
tic. As a result, the uncertainties in τ and AL in Table II
are small when compared to the Planck 2015 result [5].
This indicates that our Fisher-matrix analysis is too op-
timistic when inferring the optical depth from the low-`
polarization data, which could be due to the non-gaussian
nature of the low-` likelihoods, to the mode coupling, or
to the linear approximation breaking down. A full likeli-
hood analysis could show that CIPs absorb more of the
lensing tension than indicated in this simple analysis.

Summarizing, we conclude that CIPs are unlikely
to solve the lensing tension with current Planck data.
Nonetheless, they remain one of the simplest prospective
solutions, due to their high correlation with the lensing
amplitude (rAL,∆2

rms
= −0.82). High-quality low-` po-

larization data will be publicly available in the next few
years [41, 42], so a reanalysis using the full Planck like-
lihoods, perhaps also including higher-` multipoles from
SPTpol [43, 44], will resolve the matter definitively.

B. Cosmic-variance limit

We now find the minimum ∆2
rms observable in the

cosmic-variance limited case for different datasets.
We consider an experiment with no instrumental noise

N` (i.e. N` = 0), full sky coverage (fsky = 1) and range
of observation from ` = 2 to 2500. In reality the low-
est multipoles should be treated with care, due to possi-
ble Galactic-foreground subtraction [45], which we ignore
here. We show the results for the uncertainties of such
an experiment in Table III.

The best CVL constraints to ∆2
rms arise from the po-

larization power spectra (EE especially) instead of the



7

Parameter TT TE EE combined

ωb . . . . . . . . . 0.02235±0.00020 0.02257±0.00032 0.0245±0.0013 0.02228±0.00014

ωc . . . . . . . . . 0.1180±0.0023 0.1168± 0.0023 0.1095±0.0053 0.1185±0.0014

ns . . . . . . . . . 0.9660±0.0054 0.983±0.015 0.992±0.014 0.9641±0.0037

log
(
1010As

)
3.038±0.031 3.065± 0.035 3.07±0.034 3.038±0.031

τ . . . . . . . . . .. 0.056±0.016 0.062±0.016 0.062±0.016 0.055±0.015

H0 . . . . . . . . . 68.1±1.0 68.6±1.1 72.4±2.9 67.75±0.64

AL . . . . . . . . . 1.13±0.064 1.17±0.17 1.46±0.23 1.108±0.054

Parameter TT TE EE combined

ωb . . . . . . . . . 0.02248±0.00029 0.0223±0.0046 0.02593±0.00017 0.02222±0.00018

ωc . . . . . . . . . 0.1176±0.0025 0.1183±0.0029 0.1102± 0.0053 0.1187±0.0015

ns . . . . . . . . . 0.9699±0.0086 0.977±0.017 1.004±0.016 0.9622±0.0052

log
(
1010As

)
3.041±0.031 3.05±0.035 3.081± 0.036 3.037±0.031

τ . . . . . . . . . .. 0.057±0.016 0.058±0.016 0.065±0.016 0.054±0.015

H0 . . . . . . . . . 68.5±1.2 67.7±1.5 73.0±3.0 67.60±0.70

AL . . . . . . . . . 1.07±0.11 1.43±0.35 −0.39±0.65 1.142±0.085

∆2
rms . . . . . . . 0.007±0.011 −0.028±0.033 0.088±0.064 −0.0038±0.0074

TABLE II: Best-fit values and standard deviations for cosmological parameters with the three different Planck data sets (TT,
TE and EE polarizations for ` > 30), as well as combining them. In the top part we have fitted for the original six parameters
and the lensing amplitude AL. In the bottom part we have also added a CIP amplitude ∆2

rms. Instead of a prior in τ we have
used the low-` polarization data (` < 30) from Planck in addition to all the datasets to disentangle τ and As.
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FIG. 4: 1σ (68%) confidence ellipses for the Planck TT dataset. From left to right we show ωb, ωc and ns versus ∆2
rms. The

unperturbed (Planck) best-fit values are shown as dashed lines.
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FIG. 6: Normalized likelihoods for the lensing amplitude for
all datasets. In the top panel without considering CIPs, and
in the lower panel adding them as well.

TT power spectrum, as holds true for the six original
parameters [28].

The minimum CIP variance observable in the CVL is
∆2

rms = 9× 10−4, a factor of ∼ 5 better than the current
trispectrum constraint [20]. This result pales in compar-
ison to the sensitivity of a CVL trispectrum experiment,
as described in Ref. [21], which would be able to measure
∆2

rms ≤ 3× 10−6.
Here τ is free, unlike the Planck case, where we in-

cluded a prior. This leads to higher correlations of the
CIP amplitude ∆2

rms with the optical depth τ , and the
scalar amplitude As. We find the correlation coefficients
in the CVL case to be rωb,∆2

rms
= 0.30, rωc,∆2

rms
= −0.02,

rns,∆2
rms

= 0.47, rAs,∆2
rms

= −0.71, rτ,∆2
rms

= −0.66, and
rH0,∆2

rms
= 0.15. When including a lensing amplitude,

we find rAL,∆2
rms

= −0.27.

V. CONCLUSIONS

Compensated isocurvature perturbations leave no im-
print on the observable CMB to linear order, so their
amplitude can be considerably larger than the ∼ 10−5

amplitude of primordial adiabatic perturbations. Cur-
rently the best constraints arise from analyzing the four-
point function of the CMB, from where one can probe
the first L ∼ 20 multipoles of a CIP power spectrum,

corresponding to scales larger than 10 degrees in the sky.
We use a different method to search for CIPs, based

on studying the CMB power spectrum that arises to sec-
ond order in the CIP-perturbation amplitude. We find
a simple form for the contribution to the CMB power
spectrum, proportional to the CIP variance ∆2

rms, which
has the advantage of being easier to analyze than the
trispectrum.

The amplitude ∆2
rms of this new contribution to the

power spectrum can be expressed in terms of a sum over
all the modes of a scale-invariant CIP power spectrum,
although only the first L ∼ 100 modes are important in
CMB studies. This allows us to probe the CIPs down to
angular scales of ∼ 2 degrees in the sky.

We show that CIPs can alleviate the 2σ discrepancy
in the lensing amplitude AL, between that inferred from
the Planck TT power spectrum and the ΛCDM expec-
tation (AL = 1). Adding CIPs to a standard ΛCDM
model can improve the fit of the TT power spectrum as
much as adding a varying AL, making it unnecessary to
have AL 6= 1. The best-fit value for ∆2

rms in that case,
however, would be three standard deviations above the
current bounds. A full MCMC analysis would precisely
determine whether CIPs provide a viable solution to the
lensing tension.

We find a 1σ constraint on the CIP variance of ∆2
rms ≤

7.1 × 10−3 using Planck temperature data alone, which
improves to ∆2

rms ≤ 5.0 × 10−3 if polarization data are
included. This result is of the same order of magnitude
as the current trispectrum bound, but this analysis is far
simpler and more intuitive, as well as less computation-
ally costly. We also forecast the minimum CIP amplitude
observable with a cosmic-variance-limited measurement
of the CMB power spectra to be ∆2

rms ≤ 9.0 × 10−4.
This result is a factor of ∼ 5 better than the current con-
straints, promising ever more precise constraints of the
uniformity of the primordial baryon fraction.
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data ωb ωc ns As τ H0 ∆2
rms

TT 1.6 ×10−4 1.7 ×10−3 5.0 ×10−3 8.1 ×10−11 0.019 0.80 4.8 ×10−3

TE 1.1 ×10−4 1.0 ×10−3 4.7 ×10−3 3.6 ×10−11 8.3 ×10−3 0.45 2.5 ×10−3

EE 7.4 ×10−5 7.6 ×10−4 2.8 ×10−3 9.9 ×10−12 2.4 ×10−3 0.33 1.5 ×10−3

combined 2.8 ×10−5 4.6 ×10−4 1.8 ×10−3 8.0 ×10−12 1.9 ×10−3 0.19 9.0 ×10−4

TABLE III: Standard deviations forecasted for a CVL experiment measuring from ` = 2 to ` = 2500 and with fsky = 1. We
consider the six ΛCDM parameters + ∆2

rms being fitted at the same time.
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