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We explore the stopping effect that results from interactions between dark matter and nuclei as
the dark matter particles travel undergound towards the detector. Although this effect is negligible
for heavy dark matter particles, there is parameter phase space where the underground interactions
of the dark matter particles with the nuclei can create observable differences in the spectrum. Dark
matter particles that arrive on the detector from below can have less energy from the ones arriving
from above. These differences can be potentially detectable by upcoming directional detectors. This
can unveil a large amount of information regarding the type and strength of interactions between
nuclei and light dark matter candidates.

I. INTRODUCTION

There is strong evidence for the existence of Dark Mat-
ter (DM) nowdays. Searches for DM include efforts for
laboratory production (e.g. LHC), possible indirect sig-
nals from the galaxy and beyond (e.g. due to annihi-
lation or decay of DM to conventional photons or other
Standard Model paticles), and direct detection where un-
derground detectors could potentially register rare colli-
sions between an incoming DM particle and a nucleus
in the detector. Current direct search experiments can
register events with a particular recoil energy, but they
cannot identify the direction of the recoil. However, a
new generation of experiments that can detect also the
direction of the recoil is on the way [1–8]. The direc-
tional detection of these experiments is based on time
projection diffuse gas chambers that have the capability
of recostructing the nuclear recoil track, giving thus in-
formation about the direction of the incoming DM parti-
cle. Additionally there are directional detectors that are
based on different techniques such as nuclear emulsion
on solid detectors [9], and DNA detectors [10]. Although
the above experiments are not yet competitive in setting
DM limits with respect to the current non-directional un-
derground detectors, they could start probing interesting
DM parameter space in the near future.

Directional DM detectors once competitive to non-
directional ones, can provide an immense amount of in-
formation that cannot be obtained otherwise. Conven-
tional detectors register counts with particular recoil en-
ergies. Although the number of expected counts depends
on the velocity distribution of the DM halo particles, it is
hard to extract useful information regarding the form of
the distribution function due to the fact that for a par-
ticular amount of nuclear recoil energy, all DM particles
with velocities above a specific value could produce the
observed recoil. The number of counts in the detector is
proportional to an integral of the DM velocity distribu-
tion, thus making hard to reveal the exact shape of this
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distribution. On the contrary in directional detectors,
the directional rate of counts per recoil energy is associ-
ated with the Radon transformation of the DM velocity
distribution [11]. This can be in principle inverted and
therefore one can obtain direct correspondence between
the velocity distribution and the amount of registered
counts on the detector. Furthermore, directional detec-
tion can help on two other fronts. On the one hand, it is
much easier to eliminate background contamination with
directional detectors. Known sources of contamination
such as for example the sun can be easily eliminated.
On the other hand, directional detectors can reveal in-
formation about possible substructure of the DM halo.
Directional detectors could shed light on the possibility
of DM streams and dark discs in the galaxy. This would
be something almost impossible to probe with conven-
tional detectors.

The recoil energy spectrum of DM scattering off nu-
clei in directional detectors has been studied extensively
first in [11] and later in [12–22]. In all the above papers,
the energy recoil spectrum has been studied for the two
generic cases of spin-independent and spin-dependent
DM-nucleon contact interactions. An extension to more
generic non-relativistic scattering operators was studied
in [23, 24].

In this paper we study the stopping effect of the earth
in directional DM detectors. DM particles can arrive at
the detector from different angles, having traveled dif-
ferent distances underground. Although DM particles
are expected to interact feebly with nucleons, as it was
pointed out in [25], there is DM parameter space espe-
cially for light DM candidates where DM-nuclei inter-
actions as the particle travels underground might have
an observable effect on the recoil energy spectrum of the
detectors. There are two ways that underground DM-
nuclei interactions can affect the spectrum. The first one
is that particles traveling larger distances underground,
might lose enough energy due to interactions, so by the
time they reach the detector might not have enough en-
ergy to create a recoil above the threshold of the detector.
This clearly creates an asymmetry between the amount
of registered counts in the detector coming from above
and from below. Additionally, DM-nuclei interactions
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can cause also the opposite effect for heavy enough DM
particles. DM particles that interact undeground as they
travel towards the detector, slow down. This reduction
in the velocity might increase the DM-nucleus cross sec-
tion and therefore the probability of detecting it. This
is because in a variety of models the cross section is in-
versely proportional to some power of the velocity (e.g.
for contact interactions σ ∼ 1/v2). The study of this
stopping effect of the earth was studied in the context
of conventional non-directional detectors in [25, 26]. In
this case, since there is no way to know the direction
of the recoiled nucleus, the effect can be seen indirectly
via the observation of a diurnal modulated signal. As
it was demonstrated in [25], since the earth moves with
a nonzero velocity with respect to the rest frame of the
galaxy, a daily varying DM signal is created because as
the earth rotates around its own axis, the DM particles
coming from the direction of the DM wind travel different
distances underground at different times during a sidereal
day. The observation of such a diurnal modulated signal
can reveal information about the nature of DM-nucleon
interactions. Additionally for detectors placed on shallow
sites, this technique might be one of the few options avail-
able to probe light DM parameter space with long range
forces that is currently inaccessible to detectors. Diur-
nal modulation has been investigated in the past in the
context of Strongly Interacting Massive Particles [27, 28]
and mirror DM [29, 30], as well as experimentally in the
DAMA Collaboration [31, 32].

In this paper we study the same stopping effect of the
earth in a more direct way, which is in the context of di-
rectional DM detectors. One should not have to rely on
a diurnal modulated signal in order to probe the asym-
metry in the spectrum between DM particles scattering
from below and above. The paper is organised as follows:
in section II we review the stopping power of DM par-
ticles due to DM-nuclei interactions. In section III we
will derive the formalism for the directional recoil spec-
trum. In section IV we will present our results. Finally
we conclude in section V.

II. NUCLEAR STOPPING

DM particles can lose energy by interacting with nuclei
or electrons as they travel underground towards the de-
tector. DM particles from the halo do not have sufficient
energy to ionize atoms as they travel underground. They
can lose energy either by interactions with nuclei, or if
allowed, by interactions with electrons. The latter can be
either in the form of DM interactions with electrons in
metallic layers of the earth, or in the form of DM-electron
interactions that result in atomic excitations [25]. The
determination of the most effective mode of decelerating
DM particles depends strongly on the type of DM-nucleus
interactions as well as the precise geological composition
of the earth. For example contact or long range forces
between DM and nuclei can result to different degrees of

DM deceleration inside the earth. In this work here, we
are going to consider only nuclear stopping. This is be-
cause nuclear stopping is quite insensitive to the geolog-
ical composition of the earth. For example DM-electron
interactions in metallic layers of the earth can give signifi-
cant amounts of stopping because electrons there behave
as a free Fermi gas that does not have an energy gap
and therefore it can subtract energy from incoming DM
particles by small bits at the time. However, they are
model dependent, depending strongly on the geological
morphology of the earth. For simplicity, we are going
to consider contact spin-independent DM-nucleon inter-
actions here. Our goal is to make a first generic esti-
mate on the possibility of observing the stopping effect
of the earth in directional detectors. Additional stop-
ping modes for DM particles can only enhance the effect.
Moreover we are going to assume a flat density for the
earth of ρe = 5.5gr/cm3. This will enable us to obtain
more transparent results regarding the spectrum of the
recoiled energy in directional detectors.

For a DM particle moving through a medium, the en-
ergy loss per distance traveled is given by

dE

dx
= −

∑
i

nNi

∫ Emax
Ri

Emin
Ri

dσi
dER

ERdER, (1)

where ER is the recoil energy of the target nucleus, nNi
is the number density of nuclei Ni and dσi/dER is the
differential cross section between Ni and DM which in the
case of contact spin-independent interactions is given by

dσ

dER
=
mNσN
2µ2

Nv
2
F 2(ER) =

mNσpA
2

2µ2
pv

2
F 2(ER), (2)

where v is the DM velocity, mN is the mass of the target
nucleus, A the number of nucleons in the nucleus and
µp (µN ) the reduced mass between DM and proton (nu-
cleus). σN and σp are correspondingly the DM-nucleus
and DM-nucleon cross sections. F 2(ER) is the usual form
factor that accounts for loss of coherence. We choose a
simple form factor of the form

F 2(ER) = e−ER/Q0 , (3)

where Q0 = 3/(2mNr
2
0) and r0 = 0.3 + 0.91(mN )1/3

is the radius of the nucleus measured in femtometers
when mN is in GeV [33]. The sum in Eq. (1) runs
over all the elements found in the earth. We are go-
ing to include the three most abundant elements in the
earth i.e. iron, oxygen and silicon. Once again, the
error is in the right direction, i.e. extra contributions
from other elements can only enhance the stopping ef-
fect of the earth we study here. The integral of Eq. (1)
has lower and upper limits Emin

Ri and Emax
Ri respectively.

Emax
Ri = 4mXmNE/(mX +mN )2 is the maximum recoil

energy given a DM particle of energy E (mX being the
DM mass). For perfect contact interaction Emin

Ri = 0.
However in a realistic case, contact interactions might
result by integrating out heavy mediators. For exam-
ple in a Yukawa type of interaction between DM and
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nucleons where a mediator of mass mφ is exchanged,
DM and nucleon should come closer than a distance
m−1
φ . This requires the exchange of a mediator with

energy determined by uncertainty principle of at least
Emin
R = m2

φ/(2mN ). Upon writing v2 = 2E/mX , Eq. (1)
can be integrated to

dE

dx
= −

∑
N

2nNσpA
2µ4
NE

mXmNµ2
p

, (4)

where we used Emin
Ri << Emax

Ri and Emax
Ri << Q0 (the last

is especially true for low DM masses that we are partic-
ularly interested). The sum runs over the three most
abundant elements (iron, oxygen and silicon). The final
trivial integration upon the assumption that the density
and composition of the earth is constant, gives

ln
Ein
Ef

=
∑
Ns

2nNsσpA
2
sµ

4
Ns
L

mXmNsµ
2
p

, (5)

where Ein and Ef are respectively the initial and final
kinetic energies of the DM particle and L is the total
length traveled underground. Note that we have added
an index s in A , nN , mN and µN in order to distinguish
the nucleus responsible for the deceleration of the DM
particles (i.e. iron, oxygen and silicon) from the nucleus
that serves as a target in the detector. Eq. (5) can be
rewritten in terms of velocities as

v′ = ve−∆L, (6)

where v′ and v are the final velocity (after the particle
has traveled L underground) and initial velocity (before
the particle enters the earth) of the DM particle. ∆ is

∆ =
∑
Ns

nNsσpA
2
sµ

4
Ns

mXmNsµ
2
p

. (7)

III. RECOIL ENERGY SPECTRUM

We are going to consider now the energy recoil spec-
trum in directional detectors. Generally, the rate of
counts (counts per time) per recoil energy per solid angle
is [11]

d2R

dERdΩq
= NTnχ

∫
d2σ

dERdΩq
f(v)vd3v. (8)

ER is the recoil energy, Ωq a solid angle around the re-
coil direction q̂, f(v) is the DM velocity distribution in
the detector reference frame, NT is the number of nu-
clei targets in the detector and nχ = 0.3GeV cm−3/mX

is the DM number density in the earth’s neighborhood.
The directional differential cross section is related to the
non-directional one as

d2σ

dERdΩq
=

1

2π
δ(cos θ − vmin

v′
)
dσ

dER
, (9)

where vmin =
√
mNER/(2µ2

N ) is the minimum velocity
that can produce a recoil energy ER. µN here is the
reduced mass between DM and the target nucleus of the
detector N , and θ is the angle between the velocity of
the DM particle and the direction of the recoiled nucleus
q̂. Using Eqs. (2) and (9) in (8), we get

d2R

dERdΩq
= κ

∫
1

v′2
δ(cos θ − vmin

v′
)f ′(x′, v′)v′d3v′, (10)

where κ = NTnχmNσpA
2F 2(ER)/(4πµ2

p). One should
keep in mind that N and A in the above equation refer
to the target element of the detector. The reader should
also notice that the 1/v′2 dependence inside the integral
comes from the fact that the scattering between DM and
nucleus takes place with a DM velocity v′ which is smaller
than the velocity of DM before enters the earth and is
given by Eq. (6). Similarly the flux is given by the distri-
bution of DM f ′(x′, v′)v′ at the location of the detector,
which is not the same as the DM flux at the surface of the
earth f(v)v (where no DM deceleration has taken place).
We can find a relation between f ′(x′, v′) and f(v) by
using Liouville theorem. Let us approximately consider
that DM moves on a straight line underground and DM-
nuclei interactions inside the earth decelerate the particle
but they don’t deflect it from its path. This approxima-
tion is definitely valid in DM-nucleon long range inter-
actions as well as in some types of contact interactions
where the forward scattering is favored. In any case one
can consider the straight line approximation as a con-
servative limit for the asymmetry we are going to study,
i.e. the difference in the rate of events between DM par-
ticles that arrive at the detector from the top and the
bottom. This is because deflection from the straight line
of the upcoming DM particles will increase further the
asymmetry. One can show on generic grounds that the
number of deflected DM particles out of the path that
leads to the detector is larger than that of particles that
deflect inside the path of the detector as long as forward
scattering is relatively favored. The distribution of DM
as it enters the earth is governed by the Boltzmann equa-
tion

∂f

∂t
+ vi

∂f

∂xi
+ ai

∂f

∂vi
= 0, (11)

where we assumed that no collisions take place among
DM particles. The acceleration ai results from the force
induced by the DM-nuclei undeground scatterings and
this force is treated as an external one. Since we are in-
terested in steady state solutions, one can set ∂f/∂t = 0.
This means that f(xi(t), vi(t)) remains constant along
the trajectory of a DM particle (which is a straight line
underground). This is a manifestation of the Liouville
theorem and therefore f(v) = f ′(x′, v′), i.e. the distribu-
tion at the detector is equal to the one before DM enters
the earth. Using this fact as well as d3v′ = e−3∆Ld3v
(see Eq. (6)) we can rewrite Eq. (10) as

d2R

dERdΩq
= κ

∫
δ(cos θ − vmin

v
e∆L)

f(v)

v
e−2∆Ld3v.(12)
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This is the main formula we are going to use in order to
probe the stopping effect of the earth. In particular, we
are going to consider the asymmetry in the directional
rate between the two directions that give the largest pos-
sible difference, i.e. q̂ = n̂ and q̂ = −n̂, where n̂ is the
direction from the center of the earth to the position of
the detector. This two directions correspond to particles
that travel the shortest distance underground (q̂ = −n̂)
and the largest one (q̂ = n̂).

We are going to use a truncated Maxwell distribution

f(v) =
1

N
exp

[
− (~v + ~ve)

2

v2
0

]
, v < vesc + ve, (13)

where N is a normalization constant, ve is the velocity of
the earth with respect to the rest frame of the DM halo,
and vesc = 550km/ sec is the escape velocity from Milky
Way. It is understood that the velocity distribution is in
the labaratory frame (boosted by ~ve). The length trav-
eled underground by a DM particle is given by

L = (R⊕ − `D) cosψ

+
√

(R⊕ − `D)2 cos2 ψ − (`2D − 2R⊕`D), (14)

where cosψ = v̂ · n̂ represents the angle between the
DM velocity and the upper direction of the detector n̂.
R⊕ and `D are the earth’s radius and the depth of the
detector respectively.

Let us consider in some detail the different directions
and angles involved in the problem. Following [25] we
define θl to be the latitude of the detector, and we choose
the z-axis with direction south-north pole. α is the angle
between ~ve and the z-axis. We choose the orientation of
the x − y plane so ~ve lies along the x − z plane. In this
reference system choice we have the following relations

n̂ = x̂ cos θl cosωt+ ŷ cos θl sinωt± ẑ sin θl, (15)

v̂e = x̂ sinα+ ẑ cosα, (16)

where ω is the angular velocity of the self-revolution of
the earth. The ± corresponds to locations at the north
and south hemisphere. We have chosen t = 0 the time
where ~ve and n̂ align as much as possible, i.e. n̂ is along
the x− z plane. Eq. (13) can now be rewritten as

f(v) =
1

N
e
− v

2+v2e
v20 e

− 2vve
v20

cos δ
, (17)

where δ is the angle between ~v and ~ve. In order to find δ
we express the WIMP velocity ~v as

~v = v(x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ), (18)

where we use the usual polar angles θ and φ to charac-
terize ~v. The angle δ now reads

cos δ = v̂ · v̂e = sinα sin θ cosφ+ cosα cos θ. (19)
A comment is in order here. θ is the angle between the
recoil direction q̂ and v̂. Since in this case q̂ = n̂, θ is
the angle between n̂ and v̂. However, as it can be seen
from Eq. (15), the vector n̂ has x̂ and ŷ time varying
components, while v̂ in Eq. (18) is expressed in spheri-
cal coordinates around the z-axis. Since we have chosen
q̂ = n̂, cos θ should express the angle between n̂ and v̂
and not the angle between ẑ and v̂. In order to simplify
our calculation and without introducing a big error in our
estimate, we take the time average value of n̂ which con-
cides with ẑ. In other words within our approximation
we have assumed that n̂ = ẑ and therefore θ of Eq. (18)
coincides with the definition of θ being the angle between
v̂ and the recoil direction q̂.

We are interested in the difference on the directional
detection rate between the direction q̂ = n̂, i.e. the direc-
tion coming from the center of the earth to the detector
and q̂ = −n̂ (the opposite one). Practically speaking, we
probe the asymmetry in the directional detection rate be-
tween events in the detector that come from below and
from above. In the case where q̂ = n̂, one can notice that
ψ = θ. Let us define y = cos θ, and y+ that satisfies

y+ =
vmin

v
e∆L+(y+), (20)

where L+(y) = L defined in Eq. (14) (with cos θ → y).
y+ in Eq. (20) is nothing else but the value of y (or cos θ)
that makes the arguement inside the delta function of
Eq. (12) zero. Eq. (12) can be written as

d2R

dERdΩn
=

κ

N

∫
e
− v

2+v2e+2vve cos δ

v20 ve−2∆L+dvdφ. (21)

Recall that exp[−2∆L+] = v2
min/(v

2y2
+) (from Eq. (20))

and that y+ is a function of v and ER. Using this and
Eq. (19), we have

d2R

dERdΩn
=

κ

N

∫
exp

−v2 + v2
e + 2vve(y+ cosα+ sinα

√
1− y2

+ cosφ)

v2
0

 v2
min

vy2
+

dvdφ

=
2πκ

N

∫ vesc+ve

v1

exp

[
−v

2 + v2
e + 2vvey+ cosα

v2
0

]
I0

(
2vve
v2

0

sinα
√

1− y2
+

)
v2

min

vy2
+

dv, (22)
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where we have used sin θ =
√

1− y2
+, and we have in-

tegrated over φ in the second line. I0 is the modified
Bessel function of the first kind. The minimum velocity
v1 is the solution of v1 = vmin exp{∆L+[y+(v1, ER)]}. As
we mentioned L+ is a function of y+ which is a function
of v.

Let us look now on the directional rate from above (q̂ =
−n̂). In this case ψ = π − θ (and cosψ = − cos θ) and
the distance traveled underground of Eq. (14) becomes

L− = −(R⊕ − `D) cos θ

+
√

(R⊕ − `D)2 cos2 θ − (`2D − 2R⊕`D). (23)

Since q̂ = −n̂ ' −ẑ (the last equality holding as a time
average of Eq. (15)), one should express v̂ in spherical
coordinates but with ẑ → −ẑ. In this case the angle δ
between v̂ and v̂e picks up a relative minus sign in the
second term of Eq. (19), thus reading

cos δ = v̂ · v̂e = sinα sin θ cosφ− cosα cos θ. (24)

The directional recoil rate can be written as

d2R

dERdΩ−n
=

κ

N

∫
exp

−v2 + v2
e − 2vve(y− cosα− sinα

√
1− y2

− cosφ)

v2
0

 v2
min

vy2
−
dvdφ

=
2πκ

N

∫ vesc+ve

v2

exp

[
−v

2 + v2
e − 2vvey− cosα

v2
0

]
I0

(
2vve
v2

0

sinα
√

1− y2
−

)
v2

min

vy2
−
dv, (25)

where y− is defined as the number that satisfies

y− =
vmin

v
e∆L−(y−). (26)

v2 is defined as the solution of v2 =
vmin exp{∆L−[y−(v2, ER)]}. In the second line of
the equation we have performed the integration over φ.
We are interested in the asymmetry on the directional
recoil rate between n̂ and −n̂. However the two direc-
tional rates are not equal in the first place, even if we
ignore the stopping effect completely. Since the earth is
moving with respect to the rest frame of the DM halo, ~ve
defines a direction that breaks isotropy. The perspective
of probing the forward-back asymmetry using directional

detectors has been explored thorougly [12, 19, 33–35].
As a first step, we would like to estimate how big is
the rate asymmetry between the direction n̂ and −n̂
due to the stopping effect we study compared to the
pure forward-backward asymmetry due to the DM wind.
This will gives us a sense of how easily this effect can be
probed in directional detectors in the near future. Let
us now calculate the forward-backward asymmetry due
to the motion of the earth inside the galaxy. Following
the steps from Eq. (12) to (22) and upon ignoring the
stopping effect (i.e. ∆ = 0) we can derive the forward-
backward asymmetry (i.e. the asymmetry between the
directions v̂e and −v̂e) as

δ0 =
d2R

dERdΩ−ve
− d2R

dERdΩve
=

4πκ

N

∫ vesc+ve

vmin

exp

[
−v

2 + v2
e

v2
0

]
sinh

[
2vevmin

v2
0

]
vdv. (27)

We can now estimate the significance of the stopping ef-
fect with respect to the forward-backward asymmetry by
considering the following ratio

R1 =

d2R
dERdΩ−n

− d2R
dERdΩn

δ0
. (28)

There is also another meaningful comparison we can
make. We can compare the asymmetry due to the stop-
ping effect compared to the pure asymmetry created in

the flux by the DM wind evaluated in the up and down
directions of the detector. In other words we get an es-
timate of the relevant importance of the stopping effect
compared to that of the velocity by considering

R2 =
δRs − δR0

δRs
, (29)
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where

δRs =
d2Rs

dERdΩ−n
− d2Rs
dERdΩn

, (30)

δR0 =
d2R0

dERdΩ−n
− d2R0

dERdΩn
. (31)

The indices “s” and “0” refer to the directional recoil
rates with stopping and after having ignored the stopping
effect of the undeground atoms respectively. The latter
is given by Eqs. (22) and (25) once we set ∆ = 0, y+ =
y− = vmin/v, and v1 = v2 = vmin

d2R0

dERdΩ−n
− d2R0

dERdΩn
=

4πκ

N

∫ vesc+ve

vmin

exp

[
−v

2 + v2
e

v2
0

]
sinh

[
2vevmin cosα

v2
0

]
I0

(
2vve
v2

0

sinα

√
1− v2

min

v2

)
vdv. (32)

One can notice that by setting α = 0, Eq. (32) reduces to
Eq. (27). In addition to the previous ratios, it is impor-
tant to estimate how big is the asymmetry compared to
the total recoil rate, i.e. the number of counts per recoil
energy after we integrate over the whole 4π solid angle.
This can be probed by the ratio

δR =
δRs − δR0

dR0/dER
δΩ. (33)

It is understood that dR0/dER is the total rate that pro-
duces recoil energy ER (upon ignoring the stopping ef-
fect), i.e. the total non-directional rate after one inte-
grates over the whole solid angle of 4π. δΩ is the solid
angle resolution for a typical directional detector. We
take it here to be the solid angle of a cone with angle
opening of π/6, i.e. δΩ = 2π(1 − cos[π/6]). dR0/dER
can be easily estimated

dR0

dER
=

2πκ

N

∫
exp

[
−v

2 + v2
e + 2vve cos θ

v2
0

]
vdvd cos θdφ

=
π5/2κv3

0

N ve

(
erf

[
vesc

v0

]
− erf

[
2ve + vesc

v0

]
+ erf

[
ve − vmin

v0

]
+ erf

[
ve + vmin

v0

])
. (34)

δR is an important parameter because it reflects the
amount of data needed in order to probe the stopping
effect of underground atoms on DM. It is the difference
in the amount of events detected in a detector with a di-
rection in the recoil within a cone (calibrated to a typical
angle of π/6) pointing down and a cone pointing up, after
subtracting the amount of the asymmetry due solely to
the velocity of the earth with respect to the rest frame of
the DM halo, over the total number of events (from all
directions).

IV. RESULTS

We present the results of R1, R2 and δR in Figs. 1 to 5.
In Fig. 1 we show the R2 as a function of the DM-nucleon
cross section. One can clearly see that the asymmetry
increases with increasing cross section up to the point
where the cross section becomes so strong that even DM
particles coming from the top decelerate so much that
cannot produce a recoil above the given values chosen in
the figure (i.e. 0.1, 0.2 and 0.3 keV). In addition one

-37.5 -37.0 -36.5 -36.0 -35.5 -35.0 -34.5
Log@Σp�cm2D

0.1

0.2

0.3

0.4

R2-asymmetry

FIG. 1: R2 asymmetry as a function of the DM-nucleon cross
section for a DM particle of mass 1 GeV at recoil energies
0.1 keV (solid thick), 0.2 keV (solid thin), and 0.3 keV (thick
dashed line). The thin dashed line corresponds to a 0.6 GeV
DM particle with recoil 0.1 keV. We assume a CF4 detector.
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0.001
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1
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FIG. 2: R2 asymmetry as a function of DM mass (in GeV)
at a recoil energy of 0.1 keV for three values of DM-nucleon
cross section 10−36cm2 (thin line), 10−37cm2 (thick line) and
10−38cm2 (dashed line).

-38.0 -37.5 -37.0 -36.5 -36.0 -35.5 -35.0 -34.5
Log@Σp�cm2D
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FIG. 3: R1 asymmetry for the parameters depicted in Fig. 1.
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0.030

0.035
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FIG. 4: δR for the parameters depicted in Fig. 1.

can notice that in the case of recoil energy 0.2 keV and
in a more pronounced way in 0.3 keV, the asymmetry
seems to flatten for a range of DM-nucleon cross sec-

0.5 1.0 1.5 2.0 2.5 3.0
mX HGeVL

10-4

0.001

0.01

0.1
∆R

FIG. 5: δR for the parameters depicted in Fig. 2.

tion. The reason we have an almost flat asymmetry for
that range of cross section is simple. The asymmetry in-
creases as a function of the cross section up to the point
where DM particles that come from below (traveling a
distance of the earth’s diameter) decelerate to low ener-
gies that cannot produce the given recoil. As the cross
section increases further, the asymmetry is not affected
simply because there are no more particles coming from
below and therefore the asymmetry cannot increase fur-
ther. At even larger cross section, the asymmetry drops
only slightly because the underground interactions start
to affect now the rate of events from above. However
since the distance from above is not large (we have taken
a typical 1.6 km), the significant drop in the number of
events happens sharply at∼ 10−34cm2. Fig. 2 depicts the
R2 asymmetry as a function of the DM mass for three
distinct values of the DM-nucleon cross section. We have
chosen to plot the asymmetry up to mX = 3 GeV, since
CRESST already sets strong constraints on DM down
to 2 GeV [36]. The constraints on smaller masses are
not strict and therefore cross section of 10−36cm2 are
allowed. Generally, one can conclude that especially for
light enough DM particles where the allowed DM-nucleon
cross section might not be so small since it is barely
constrained by current direct detection experiments, the
asymmetry in the up-down directional detection due to
interactions of DM with underground atoms is a large
fraction of the overall asymmetry that includes also the
asymmetry due to the difference in the up-down DM flux
caused by the motion of the earth in the galaxy. In Fig. 2
one can also observe that in the case of σp = 10−38cm2,
the asymmetry drops as one reduces the DM mass, but
then it starts increasing again for masses below ∼ 1.6
GeV. In fact below this mass, the asymmetry switches
sign thus becoming negative. This means that under-
ground DM-nuclei interactions slow down the DM par-
ticle thus increasing the cross section (which scales as
∼ v−2) and the probability of scattering at the detector.

Fig. 3 represents the same parameter space as in Fig.
1 for the R1 asymmetry instead of R2. We have cho-
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sen to show also the R1 asymmetry because it is the
ratio between the asymmetry of up-down events over the
forward-backward asymmetry (which is the one between
the directions v̂e and −v̂e). This comparison is important
since as mentioned earlier, it is the most thorougly stud-
ied in the case of directional detectors. Fig. 3 also verifies
the findings of the previous figures, i.e. for light DM par-
ticles with relatively strong DM-nucleon cross section,
the stopping effect of underground atoms is significant.
Finally Figs. 4 and 5 show that for DM-nucleon cross sec-
tion of the order of 10−36cm2 or larger and for DM masses
of 1 GeV or lower, the asymmetry can be of the order of
a few percent with respect to the total non-directional
detection rate. With the advent of new directional de-
tectors with lower energy recoil thresholds, not only will
be possible to probe lighter DM candidates but as we
point out in this paper, we can gain significant informa-
tion regarding the type and strength of DM-nucleon in-
teractions. There is parameter phase space in the region
of light DM where the stopping effect of underground
atoms on DM particles might be statistically significant.

V. CONCLUSIONS

In this paper we make a first attempt to identify the
importance of the stopping effect in the context of the
directional DM detectors with respect to the well stud-
ied forward-backward directional asymmetry. We assume
contact type DM-nucleon interactions, and a constant
density for the earth. We derive formulas that give the
energy loss of DM particles as they travel underground
based on coherent scattering with the three most abun-
dant nuclei in the earth. We also provide formulas that
give the directional detection rate taking into account
this effect assuming a typical CF4 directional detector.
We propose an up-down asymmetry in the directional de-
tection rate as the best parameter one can use to study
the significance of this stopping effect. We demonstrate
that this up-down asymmetry in the directional detection
rate can be a few percent of the total non-directional de-
tection rate for a large range of DM-nucleon cross sec-
tion and mass, and therefore it could be observed in
upcoming direct detection experiments with directional
detectors. In particular, as it was pointed out [33], 13
events will be sufficient to distinguish an isothermal dis-
tribution boosted with the velocity of the earth in the
galaxy from a flat background. One would roughly ex-
pect that 13/R2 number of events will be sufficient to
observe the DM stopping effect. We should emphasize
that due to stringent constraints from direct DM search
experiments, the above are valid for strictly light DM
candidates below 1 GeV where the DM-nucleon cross sec-
tion is less constrained. To get the asymmetry of the few
percent, it would require a ∼ 0.5 GeV particle with a
strong σp ∼ 10−36cm2.

Although we have presented results for a CF4 detec-
tor, our results are quite generic in the sense that one

can easily use our formulas for different targets. The up-
down asymmetry in directional detectors has two poten-
tial sources, i.e. the stopping effect and the asymmetry in
the DM flux due to the velocity of the earth with respect
to the DM halo. We demonstrate that there is phase
space where the stopping effect represents a significant
fraction of the overall asymmetry.

We leave several things for future work. One can in-
clude more elements than iron, oxygen and silicon for
the DM stopping effect, a non-constant density profile
for the earth, and different types of DM-atom interac-
tions. For example long range DM-atom interactions or
DM-electron interactions can have a significant amount
of stopping if DM particles travel through metallic lay-
ers of the earth. In this paper we have assumed that
DM moves underground in straight lines. A more precise
study of the diffusion from the original path is required
to get a more accurate estimate of the asymmetry.

In principle, if sufficient number of events is detected,
this technique can be used as a “Dark matter tomogra-
phy”. One could study the density and composition pro-
file of the earth based on the directional detection rate of
DM that has traveled different distances and segments of
the earth’s interior, given that the DM-atom interactions
have been identified and understood.

The author is supported by the Danish National Re-
search Foundation, Grant No. DNRF90. This work
was partially performed at the Aspen Center for Physics,
which is supported by National Science Foundation grant
PHY-1066293.

VI. APPENDIX

Here we study the straight line approximation. For
generic interactions one expects that DM particles will
deflect from their original path as they start interacting
with underground atoms, thus invalidating our straight
line approximation upon we have derived our results.
Firstly, we should emphasize that there are interactions
that favor forward scattering. This is something that
will validate by default the straight line approximation.
Long range interactions are extremely forward since the
scattering angle scales as sin−4(θ/2). Such an example
is millicharged DM. In this case as it was pointed out
in [25], the stopping power behaves similarly at low re-
coil energies upon identifying 16πα2ε2a4

0m
2
xZ

2 → σpA
2,

where α = 1/137 is the fine structure constant, εe the
(milli)charge of DM, a0 is the Bohr radius and Z the
number of protons. It worth mentioning that in higher
recoil energies, the stopping becomes larger than that
of the corresponding contact interaction we studied here
and therefore this enhances further the effect. The above
obviously hold also for DM-nucleon interactions medi-
ated by light mediators. Furthermore, even among the
nonrelativistic contact interactions, there are types that
favor forward scattering, thus validating the straight line
assumption. Such an example is the operator O8 in the
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list e.g. [24, 37].
However, one can show that the straight line approxi-

mation is a good approximation even in more generic not
forward scatterings. In relative forward scattering, the
straight line approximation gives a conservative estimate
of the top-down asymmetry. Deflection of DM particles
out of their straight line path will make the asymmetry
between top and bottom incoming particles even larger.
Within the straight line approximation there is no deflex-
tion of the DM particles coming from the bottom. Any
deflection (even partial one) will reduce further the num-
ber of events from the bottom, leading to an increase in
the asymmetry. Therefore one should expect in general
grounds that the straight line approximation is a conser-
vative approximation. In principle one can argue that
although DM particles moving up towards the detector
deflect out of the path, other DM particles moving on
different trajectories might deflect in the upward path,
invalidating potentially the above argument regarding a
conservative estimate of the asymmetry. However we ar-
gue below that this is not possible on generic grounds.

Although this can be easily generalized for any direc-
tion, let us consider for the simplicity of the argument
here that we choose the top-down direction to be op-
posite of the DM wind. This means that DM parti-
cles that travel to the detector from the bottom have
roughly parallel velocities. In this simplified picture,
within the straight line approximation, the fraction of the
DM flux crossing the earth that arrives at the detector
is π`2/(πR2

⊕), where ` is the dimension of the detector
and R⊕ the radius of the earth. Possible deflection of
DM from the straight line will increase the asymmetry
justifying our claim that this is a conservative limit, as
long as the number of DM particles that deflect in path
is smaller to the one of particles deflecting out. Let us
assume that the DM trajectory is described by a random
walk that after N scatterings has a probability

p(r′)dr′ =
2√
πNδ`

exp

(
− r′2

Nδ`2

)
dr′, (35)

where r′ defines the distance away from the straight path,
N the number of scatterings and δ` the dispersion of the
displacement between collisions. δ` is related to the mean
free path of the DM particle underground multiplied by√

2/3 simply because we consider the random walk in
two out of the three dimensions. Now we can estimate
the probability of a DM particle traveling initially in a
straight path that is r away from the detector, to scatter
after N collisions to a path passing through the detector.

This is

Pd(r) =

∫ arcsin(`/r)

0

dφ

2π

∫ r+`

r

p(r′)dr′, (36)

where φ is the angle subtended by the detector from the
point of consideration. The total flux of DM particles
that are deflected in the path of the detector is simply

Fin =

∫ R⊕

`

Pd(r)
2πrdr

πR2
⊕

(37)

=
1

πR2
⊕

∫ R⊕

`

rdr

∫ arcsin(`/r)

0

dφ

∫ r+`

r

p(r′)dr′.(38)

Similarly the flux of particles deflecting out of the path
that lead to the detector is

Fout =

∫ `

0

rdr

πR2
⊕

∫ 2π

0

dφ

∫ ∞
√
`2+r2−2`r cosφ

p(r′)dr′. (39)

The straight line approximation is a conservative esti-
mate of the asymmetry as long as Fin < Fout. We evalu-
ated the ratio of the two quantities for a variety of values
for the number of collisions N and δ` for a 10 meters
detector. In all cases the inequality is satisfied making
the straight line approximation a conservative estimate
of the asymmetry.

The fact that we chose DM moving in parallel trajec-
tories does not change the result. In scattering where
forward scattering is favored, DM that approach the de-
tector from high angles of attack can in principle scatter
to the “right” angle and invalidate again the straight line
approximation as a conservative estimate of the asymme-
try. However, although in this case the DM particle does
not have to walk randomly at large distances sideways,
one of the scatterings must take place at a high angle. If
δθ is the dispersion of the scattering angle, the probabil-
ity to scatter at an angle δθ << θ << 1 will be

p(θ) ∼ exp

(
−θ2

Nδθ2

)
. (40)

One can easily show that also in this case where for-
ward scattering is favored, the flux of particles that enter
the cone of detection due to deflection is much less than
the one that is deflected out of the cone. Therefore the
straight line approximation gives a conservative estimate
in the asymmetry since it has a larger number of particles
approaching from below.
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