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A natural SM-like 126 GeV Higgs via non-decoupling D-terms
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Accommodating both a 126 GeV mass and Standard Model (SM) like couplings for the Higgs
has a fine tuning price in supersymmetric models. Examples are the MSSM, in which SM-like
couplings are natural, but raising the Higgs mass up to 126 GeV requires a considerable tuning, or
the NMSSM, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like
requires some tuning. We show that models with non-decoupling D-terms alleviate this tension - a
126 GeV SM-like Higgs comes out basically with no fine tuning cost. In addition, the analysis of the
fine tuning of the extended gauge sector shows that naturalness requires the heavy gauge bosons to
likely be within the LHC run II reach.
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I. INTRODUCTION

The naturalness problem of supersymmetric (SUSY) theories is a long standing one. Already after LEP-II data,
accommodating the Higgs boson mass in the minimal supersymmetric standard model (MSSM) required large radiative
corrections, with a tuning already below the 10% level [1, 2]. The problem has become more acute after the Higgs
discovery, since a mass of 126 GeV requires a tuning worse than 1 part in 75 [3]. There is no firm theorem stating
that a theory with such a tuning have to be discarded; still, it may be seen as an indication to go beyond the MSSM.

It is clear that in order to improve the fine tuning, the Higgs sector must be cleverly modified. Broadly speaking,
this can be done in two ways: either increasing the Higgs boson mass at tree level (like in the NMSSM [4, 5], in the
triplet extended MSSM [6, 7] or in models with non decoupling D-terms, on which we will focus [8]), or enlarging
the particle content of the theory to arrange for additional “stop-like” loop contribution (as happens in R-symmetric
models [9, 10]). As a consequence, accommodating a 126 GeV Higgs does not necessarily represent a challenge for
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naturalness in MSSM extensions. However, the LHC has introduced two new naturalness probes in the picture:
sparticles direct searches and Higgs couplings measurements. Let us discuss them in turn.

Direct searches are certainly very powerful tools, but are strongly dependent on the detailed topologies appearing
in sparticle decay chains. For instance, the lower bounds on gluino and stop masses depend crucially on the lightest
neutralino mass [11]. Moreover, they can be completely modified if the R-parity requirement is dropped, or if an
R-symmetry is imposed on the theory [12, 13]. R-symmetric models also change dramatically the bounds coming
from rare flavor decays like b→ sγ [14], which may otherwise put significant bounds on the sparticle spectrum [15].

On the contrary, constraints extracted from Higgs physics are more robust, and can be used to place almost model
independent bounds on the sparticle masses. More precisely, under mild assumptions the Higgs-gluon-gluon coupling
can be used to extract lower bounds on the stop masses [16–19], while the tree level couplings to fermions and vectors
can be used to extract informations on the spectrum of the remaining CP-even scalars. As we are going to see,
heavy additional scalars do not require an effective fine tuning price only for sufficiently large tanβ . The immediate
consequence is that in the MSSM a natural SM-like Higgs can be obtained, with the 126 GeV mass setting the
fine tuning of the model. In contrast, models like the NMSSM, which requires small tanβ to increase the Higgs
mass at tree level, may have problems in accommodating natural SM-like couplings, since having the other scalars
significantly heavier than the 126 GeV Higgs requires a considerable tuning. After run I, this fine tuning price is still
small, compared to direct searches constraints, but run-II with 300 fb−1 will be able to constrain the tuning at the
few percent level [20, 21]. Precision Higgs physics is therefore a powerful way to test naturalness in the NMSSM, and
it has been shown to be effective also in models of uncolored naturalness, both supersymmetric and not [22, 23].

The purpose of this paper is to show that in models with non decoupling D-terms a tuning better than 20% can
accommodate both a 126 GeV mass and no deviations in Higgs couplings even after run II of the LHC. Even future
colliders like the ILC and TLEP will be able to probe the fine tuning only up to the 10% level. This implies that
Higgs precision physics will not be an effective probe of naturalness in this framework, leaving the probe of the natural
parameter space to direct searches. Interestingly, as we are going to show, a low fine tuning requires the heavy gauge
bosons to likely be in the LHC run II reach, adding a new naturalness probe to those already given by direct searches
of squarks, gluinos and higgsinos.

Models with non decoupling D-terms have been studied in [8, 24–33], and in [34] the fine tuning was studied for a
heavy Higgs boson. In [16, 35] the Higgs couplings deviations from the SM behavior were studied in the effective theory
below the heavy vectors threshold, but with a different emphasis and without discussing fine tuning implications.

II. SETTING UP THE TOOLS: FINE TUNING COMPUTATION

In this section we give our general definition of fine tuning and make contact with the standard definitions [36–38].
To this purpose we start considering the following potential:

V = m2
u |Hu|2 +m2

d |Hd|2 +BHuHd + h.c.+ λtree
(
|Hu|2 − |Hd|2

)2
+ λu |Hu|4 + λud|HuHd|2 , (1)

which is a simplified form of the full Coleman Weinberg potential (see [39, 40] for early works where the minimization
is done for the full Coleman Weinberg potential). In Eq. (1), λtree indicates a tree level coupling (either the standard
supersymmetric D-terms or the modified expression arising in non decoupling D-terms models, Sec. III A), while
λu and λud parametrize possible additional tree or loop level corrections. For example, λud may correspond to the
F -term quartic associated with the singlet in the NMSSM, while λu may be a typical loop contribution from stops,
or may arise when the Higgs couples to SUSY-breaking mediators for very low SUSY breaking scale. We stress that
this approach of including the complete CW potential changes quantitatively the fine tuning measure with respect to
the usual minimization at tree level. Since loop corrections may be numerically relevant, we believe their inclusion to
be important in assessing the tuning of a model.

If λtree differs from the SUSY D-term contribution, λDtree = g2+g′2

8 , it contributes together with λu to an effective
hard SUSY breaking in the low energy potential. We can estimate the contribution to the Higgs mass that diverge
quadratically as

V = Λ2

32π2 StrM2 + . . .

=
Np(λtree+λu)Λ2

32π2 |H0
u|2 + . . . ,

(2)

where we assume the sum over the different contributions to be Np(λtree + λu) ' O(1). From the associated tuning,

∆Λ2 =
δm2

h

m2
h

∼ 1

32π2

Λ2

m2
h

, (3)
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we get that the theory is basically untuned, i.e. ∆Λ2 < 5, for a cut off Λ <∼ 5 TeV. In Section III A we will show that
this rough estimate agrees with the calculation done in the complete model. This strongly suggests that new physics
leading to modified D-terms may naturally be in the LHC-13 reach, making the study of these models even more
interesting.

Minimizing Eq. (1) we obtain

v2 '
s2
βm

2
u − c2βm2

d

2(λtree c2β − λus4
β)
,

2B

s2β
'
−2λtreec2β(m2

u +m2
d) + 2λus

2
βm

2
d + λud(m

2
dc

2
β −m2

us
2
β)

2(λtree c2β − λus4
β)

, (4)

which can be used to compute the mass of the CP-odd state, m2
A = −2B/s2β , and the CP-even mass matrix in the

vev basis (h,H),

M2 =

(
4(λtreec

2
2β + λus

4
β + 1

4λuds
2
2β)v2

(
(4λtree − λud)c2β − 2λus

2
β

)
v2s2β(

(4λtree − λud)c2β − 2λus
2
β

)
v2s2β m2

A + (4λtree + λu − λud)v2s2
2β

)
. (5)

Eq. (4) can also be used to compute the sensitivity of the EW scale to the fundamental parameters ξi. Adopting
the usual fine tuning measure [36, 37],

∆ = maxξi

∣∣∣∣δ log v2

δ log ξi

∣∣∣∣ , (6)

we get that variations of m2
u and m2

d lead to

∆m2
u

=
m2
u

v2

2v2s2
β

(
m2
A + 2v2c2β(λud − 4λtree)

)
m2
AM2

hh + (λ2
ud − 4λtree(λu + λud)) v4s2

2β

,

∆m2
d

=
m2
d

v2

2v2c2β

(
m2
A + 2v2s2

β(λud − 4λtree)
)

m2
AM2

hh + (λ2
ud − 4λtree(λu + λud)) v4s2

2β

,

(7)

which is the main result of this section. It can be used to study the tuning of any theory in which Hu and Hd are the
only scalars remaining in the low energy theory, with an effective potential given by Eq. (1).

For large tanβ, the lightest scalar corresponds to h, with mass m2
h 'M2

hh. In this limit Eqs. (7) simplify to

∆m2
u
' 2m2

u

m2
h

,

∆m2
d
' 2m2

d

m2
h

m2
A − 2v2(4λtree + 2λu − λud)

m2
A

1

t2β
.

(8)

The first sensitivity may be used to compute the naturalness bounds on the Higgsino, stop and gluino masses, and for
large tanβ corresponds to the Kitano-Nomura measure [38]. Expanding Eq. (7) for small v/mA (a good approximation
already for mA

>∼ 250 GeV), the computation of the tuning on the parameters {µ,mt̃,M3} gives

µ <∼ 140 GeV
1

sβ

(
M2

hh

(126 GeV)2

)1/2(
∆

5

)1/2

,

mt̃
<∼ 600 GeV

(
M2

hh

(126 GeV)2

)1/2
(

3

log Λ
TeV

)1/2(
∆

5

)1/2

,

M3
<∼ 770 GeV

(
M2

hh

(126 GeV)2

)1/2
(

12

log Λ
TeV

(
1 + log Λ

TeV

))1/2(
∆

5

)1/2

,

(9)

where the parameters appearing on the left hand side are evaluated at the scale Λ at which the RGE evolution
starts. Notice that the bounds on µ and M3 differ a factor

√
2 from those usually found in the literature because we

compute the sensitivity with respect to µ and M3 themselves, rather than µ2 and M2
3 .
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The consequences of the second sensitivity have been less explored in the literature (see [15, 20, 21] for three recent
papers on the subject). Since m2

d roughly sets the H, A and H± mass scale, 1 ∆m2
d

measures the fine tuning on the EW

scale due to the other scalars. For large tanβ, heavy scalars do not introduce a severe tuning, since the bound scales
as m2

d/t
2
β . On the contrary, for low or moderate tanβ we expect the heavy scalars to be an important source of tuning.

The situation can thus be broadly summarized as follows: for small tanβ, in addition to Higgsinos, stops and gluino
(entering respectively at tree, one and two loop level), also the tree level contribution due to m2

d may be subject to an
important naturalness bound. At the phenomenological level, we know that stop and gluino searches are likely to be
powerful enough to put relevant bounds on these masses (with specific bounds depending on the sparticle spectrum
and to whether R-parity or an R-symmetry is imposed), while µ will likely be less constrained, due to the challenges
in the Higgsino searches. m2

d will instead be a good probe of naturalness, since it controls the mixing of the lightest
scalar with the heavier states and is thus going to be bounded by Higgs precision physics. This is relevant for instance
in the NMSSM [20, 21], or in models in which the little hierarchy problem is solved by uncolored particles [22].

For large tanβ, on the contrary, m2
d does not introduce any relevant tuning. In addition, in this limit the lightest

scalar is already SM-like almost independently on the other scalar masses, Eq. (5), so that Higgs precision physics
will hardly play any role as direct naturalness probe. We thus expect the usual direct stop and gluino searches to be
the most powerful probes of naturalness in this regime. Nevertheless, with only mild assumptions, Higgs precision
physics can be used to place important bounds on the loop stop contribution to the Higgs-gluon-gluon coupling
(see [18, 19] and Sec. IV B).

Given the model dependence of the bounds from direct searches, in the following we will analyze only the possible
tuning coming from Higgs coupling measurements. We stress however that this tuning is the minimum one for a given
model. Once the complete framework is defined, bounds coming from direct searches have to be taken into account
in assessing the overall fine tuning. Let us give some examples. In general, the bound most relevant for naturalness
is the one on the gluino mass, once the stops are decoupled from the problem of the Higgs boson mass. Assuming
R-parity conservation, the most constraining limit is mg̃

>∼ 1400 GeV [41]. Taking into account the gluino mass
running, M3(µ)/g2

s(µ) ' const, we get M3
>∼ 1300 GeV at a scale Λ = 20 TeV, i.e. ∆M3

>∼ 15. Assuming instead
baryonic R-parity violation, the experimental bound gets relaxed to mg̃

>∼ 800 − 900 GeV at the TeV scale [13, 42].
Again at Λ = 20 TeV, we obtain M3

>∼ 700− 800 GeV, with a tuning ∆M3
>∼ 5.

III. AN EXTENDED GAUGE GROUP AS SOURCE OF HARD SUSY BREAKING

As showed in the previous section, a natural UV completion that generates a hard SUSY breaking quartic coupling
should emerge at Λ <∼ 5 TeV, a scale possibly testable at LHC. This is an important feature which deserves a
complete study to make robust statements about the LHC phenomenology of a natural spectrum in this framework.

A quartic coupling λtree 6= g2+g′2

8 may be generated extending the SM gauge group and charging the Higgs fields
under the new force. The new gauge group must be broken below the SUSY breaking scale, to avoid the decoupling
of the new contribution once the heavy gauge bosons are integrated out. These non decoupling D-terms are easily
generated both in abelian extensions such as SU(2)L × U(1)Y × U(1)X , as well as in non Abelian extensions such as
SU(2)A×SU(2)B×U(1)Y → SU(2)L×U(1)Y . Another well motivated possibility is offered by quiver groups in which
the SM gauge group is doubled, so that both an extra U(1) and an extra SU(2) are present. Clearly, the hierarchy
between the heavy gauge bosons and the soft SUSY breaking scale, necessary to generate non-decoupling D-terms,
could turn into a new relevant source of tuning. In the present section we quantify exactly this new possible tuning,
and we show that the hierarchy does not need to be large to accommodate a 126 GeV Higgs boson. For simplicity we
discuss the naturalness implications coming from the extended gauge sector, focusing on a particular UV completion,
SU(2)A × SU(2)B × U(1)Y → SU(2)L × U(1)Y , which produces non decoupling D-terms. We then show how a 126
GeV SM-like Higgs boson is a natural outcome in a large region of the parameter space.

A. Naturalness bounds from the extended gauge sector

We now analyze the simplest non abelian extension of the SM electroweak gauge group, SU(2)A × SU(2)B ×
U(1)Y [8, 34]. We start considering both Hu and Hd to be charged under SU(2)A; we will comment in the following

1 Similar bounds can be obtained considering a variation of the B parameter.
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on the chiral model [23] where Hu and Hd are charged under the two different SU(2).
The breaking SU(2)A × SU(2)B → SU(2)L is driven by a bidoublet Σ, which we parametrize as

Σ =
1√
2

(
σ12 + TAσA

)
. (10)

The σ and TA fields are a (complex) SU(2)L singlet and triplet, normalized to have canonical kinetic terms.
We add a singlet S to the particle content to guarantee the breaking of the extended gauge symmetry also in the

limit of exact SUSY. The most general superpotential is thus

W = µHuHd + λS
(
detΣ− w2

)
+ λSHuHdS +MSS

2 + kS3 . (11)

To simplify our discussion on the Higgs mass and couplings we assume λS <∼ 0.5. We checked that this choice gives
negligible contributions to Higgs physics also for low tanβ. For simplicity we also neglect the contributions from MS

and k, considering the same superpotential as in [8]. The modified D-terms are given by

Da
A = gA

(
H†uτ

aHu +H†dτ
aHd + tr(Σ†τaΣ)

)
,

Da
B = gBtr(ΣτaΣ†) ,

DY = g′
(

1

2
|Hu|2 −

1

2
|Hd|2

)
,

(12)

with the new gauge couplings satisfying 1
g2
A

+ 1
g2
B

= 1
g2 . The soft SUSY breaking potential is

VSSB = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

Σ|Σ|2 +m2
S |S|2 +BHuHd −BΣdetΣ + h.c. (13)

The SU(2)A × SU(2)B × U(1)Y → SU(2)L × U(1)Y breaking is driven by the singlet vev 〈σ〉 = u, while EWSB
is driven by 〈H0

u〉 = vu, 〈H0
d〉 = vd and 〈T 3〉 = vT . Notice that the triplet vev vT is bounded by EW precision

measurements to satisfy vT <∼ 3 GeV, and is therefore negligible; we will comment on EWPM bounds in Sec. III B.
Let us now compute the tuning associated with the u and v scales. In the u� v � vT limit, the minimum equations

are

vS = 0

u2 =
2(B′Σ −m2

Σ)

λ2
, B′Σ = BΣ + λ2w2 ,

vT = − g2
A u v

2c2β
2 (4m2

Σ + (g2
A + g2

B)u2)
,

v2 = −
4
(

(m2
Hd

+ µ2)c2β − (m2
Hu

+ µ2)s2
β

)
(g2η + g′2)c4β − (g2η + g′2 + 8λu)s2

β

,

2B

s2β
=

(
g2η + g′2

) (
m2
Hu

+m2
Hd

+ 2µ2
)
c2β − 8λus

2
β

(
m2
Hd

+ µ2
)

(g2η + g′2)c4β − (g2η + g′2 + 8λu)s2
β

,

(14)

where

η =
1 +

4(m2
Σ/u

2)

g2
B

1 +
4(m2

Σ/u
2)

g2
A+g2

B

. (15)

To account for loop corrections, we have introduced a quartic term λu|H0
u|4 in the scalar potential. We will compute

in detail λu in the following, but for the moment we will remain agnostic about its form.
The computation of the tuning on u2 gives

∆u2

w2 =
4w2

λ2u2
, ∆u2

m2
Σ

=
2m2

Σ

λ2u2
, ∆u2

BΣ
=

2BΣ

λ2u2
. (16)

Requiring u2 to be basically untuned (i.e. ∆u2

< 5), we get

w2

u2
<∼

5λ2

4
,

m2
Σ

u2
<∼

5λ2

2
,

BΣ

u2
<∼

5λ2

2
. (17)
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FIG. 1: Left panel: contours of η, Eq. (15), as a function of m2
Σ/u

2 and gA(mt). The orange, yellow and green regions refer to

max
(

∆u2

m2
Σ
, ∆v2

m2
Σ

∣∣∣
tree

)
< 5, 10 and 20 respectively. Right panel: contours of mW ′ , Eq. (20), as a function of u and gA(mt).

Colored regions as in left panel, for ∆u2 . Red lines (framed labels): contours of gW ′ , Eq. (21). Dashed black line: current
bound from EWPM.

Notice that the second inequality is particularly important, since it sets a natural bound on the ratio m2
Σ/u

2 that
appears in η, Eq. (15), and that cannot be inferred from the low energy theory. All the upper bounds depend on the
λ coupling. Solving the relevant RGE’s [34], we find that for λ <∼ 1.2 at low energy, the coupling remains perturbative
up to the Planck scale.

Turning to the tuning on the EW scale, the relevant sensitivities are given by

∆v2

m2
Hd

=

∣∣∣∣∣m2
Hd

v2

δv2

δm2
Hd

∣∣∣∣∣ ,
∆v2

µ =

∣∣∣∣ µv2

δv2

δm2
Hu

[
2µ− 2v2 δλu

δµ

]∣∣∣∣ ,
∆v2

m2
Σ

∣∣∣
tree

=

∣∣∣∣ 4g4
A(m2

Σ/u
2)

(g2
A + g2

B) (g2
A (g2

B + g′2 + 8λu) + g2
B (g′2 + 8λu))

∣∣∣∣ ,
∆v2

m2
Σ

∣∣∣
loop

=

∣∣∣∣m2
Σ

v2

δv2

δm2
Hu

δm2
Hu

δm2
Σ

∣∣∣∣ ,
∆v2

ξt̃
=

∣∣∣∣ ξt̃v2

δv2

δm2
Hu

[
δm2

Hu

δξt̃
− 2v2 λu

δξt̃

]∣∣∣∣ ,

(18)

where δv2/δm2
Hu

and δv2/δm2
Hd

can be inferred from Eq. (7), while ξt̃ =
{
m2
Q̃3
,m2

t̃3
, At
}

are the stop parameters.

The soft SUSY breaking mass m2
Σ appears in the minimum equations at tree level through η, and at the two loop

level in m2
Hu

. The tree level bound only constraints the ratio m2
Σ/u

2, while the relevant RGE to be taken into account

for the computation of ∆v2

m2
Σ

∣∣∣
loop

is [34]

dm2
Hu

d logQ
=

6

(16π2)2
g4
Am

2
Σ . (19)

Since gA changes significantly with the scale, we properly integrate its RGE in our estimate of the fine tuning. In
Fig.1 (left panel) we show contours of η in the (m2

Σ/u
2, gA) plane, together with the tuning on m2

Σ/u
2, Eqs. (17)-(18).

The orange, yellow and green regions refer to ∆ < 5 , 10, and 20, respectively. We see that for moderate values of
the gauge coupling gA, values η <∼ 3 are compatible with a tuning better than 20%. We will show in Sec. IV A that
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such values can accommodate a 126 GeV Higgs without relying on large radiative corrections from the stop sector.
Furthermore, naturalness requires gA(mt) <∼ 1.2, which is compatible with the request of perturbativity up to the
GUT scale. In the present paper we take a bottom-up approach, and we refer to [8] for comments about unification
in these models. We plan to address this issue in a future work.

The expression for ∆v2

m2
Σ

∣∣∣
loop

can be used to place a naturalness bound on the absolute SUSY breaking scale of the

bidoublet. Insisting on ∆m2
Σ
< 5, we find mΣ

<∼ 6.5 TeV. Assuming λ ∼ 1, this translates into a naturalness bound

for u, u <∼ 4.1 TeV.

B. Extra gauge bosons as new signals of naturalness

As we have argued in the previous section, it is possible to have a natural EW scale as long as the additional scalars
that break the extended gauge symmetry have mass mΣ

<∼ 6.5 TeV. At the same time, the u scale is itself natural

for mΣ/u <∼
√

5/2, Fig. 1, in such a way that for u <∼ 4 TeV the tuning due to the extended gauge sector is never
worse than 20%. Since u sets the mass scale of the heavy gauge bosons, we conclude that these states are likely to be
observed at the LHC-13. Let us make the argument more concrete.

In the u� v � vT limit, the gauge boson masses simplify to

m2
W ' g2v2

2

[
1−

(
gA
gB

)4
v2

u2
+ 4

v2
T

v2

]
,

m2
Z ' (g2 + g′2)v2

2

[
1−

(
gA
gB

)4
v2

u2

]
,

m2
W ′ '

(g2
A + g2

B)u2

2

[
1 +

(
gA
gB

)4
v2

u2
+

(
g2
A − g2

B

g2
A + g2

B

)2
v2
T

u2

]
,

m2
Z′ '

(g2
A + g2

B)u2

2

[
1 +

(
gA
gB

)4
v2

u2
+
v2
T

u2

]
,

(20)

with the two heavy vectors basically degenerate, and ρ parameter given by ρ ' 1 + 4
v2
T

v2 .
The heavy gauge bosons couple to the SM doublets charged under SU(2)A with universal strength (see Appendix A)

gW ′ = g
gA
gB

. (21)

An analogous expression can be derived for the SU(2)B doublets, with the replacement gA/gB → gB/gA. We consider
here a scenario in which all SM doublets are charged under SU(2)A, therefore coupling to the heavy gauge bosons
with strength given by Eq. (21). Another interesting possibility [8] is to charge the first and second generation under
SU(2)B and the third one under SU(2)A. This makes SU(2)A asymptotically free, with larger values of gA (and of
η as well, see Eq. (15)) allowed at the EW scale. However, naturalness does not allow for arbitrarily large values of
gA and η, as can be seen from the left panel of Fig. 1. Since, as already anticipated, η is related to the enhanced
tree level Higgs boson mass, it is clear that we cannot obtain an arbitrarily heavy Higgs without worsening the fine
tuning. In any case, modest values of η are sufficient to accommodate a 126 GeV Higgs (see Sec. IV A), in a such a
way that the Higgs boson mass does not require SU(2)A to be asymptotically free to agree with experiments with a
low fine tuning. Still, it may be worth to explore such a scenario because it could offer a valuable starting point to
build a UV completion for spectra with the first and second generation squarks heavier than the third one [8, 43].

Let us now turn to the interplay between naturalness and the heavy gauge boson masses, as shown in Fig. 1 (right
panel). The masses of the triplet of heavy gauge bosons are shown as black continuous lines (unframed labels), while
the orange, yellow and green regions refer to ∆u < 5, 10 and 20, respectively. We also show contours of the universal
coupling gW ′ defined in Eq. (21) (red dashed lines, framed labels), as well as the bound coming from Electroweak
Precision Measurements (EWPM) (black dashed line). We discuss in detail how we obtain this bound in Appendix A.

We see that for gA ' g, even a 15 TeV gauge boson does not introduce any relevant tuning in the DMSSM.
Moreover, such a heavy state will likely escape detection at the LHC, since gW ′ ' 0.2 in this region. Notice however
that this portion of parameter space is disfavored by the Higgs boson mass: since η ' 1 (Fig. 1, left panel), we are
effectively in the MSSM limit of the DMSSM, with the usual fine tuning problems related to the Higgs boson mass.

On the contrary, for gA ' gB ' (0.9 ÷ 1), η is large enough to ensure that the Higgs mass can be accommodated
without introducing any relevant tuning. For these values, the requirement of a tuning better than 20% leads to an
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upper bound mW ′ <∼ 6 TeV, and since gW ′ ' g, it is not unlikely that these states can be detected at the LHC-13 [44].
A 100 TeV collider would certainly be an ideal ground to explore naturalness in this framework.

Turning to the direct searches at hadron colliders, it is worth to point out that, unlike what happens in non-SUSY
extended gauge sectors, here decays into light superpartners such as the squarks of the third generation can be
relevant, and must be taken into account in the study of the phenomenology. We postpone a detailed analysis of the
issue to a future work.

IV. A NATURAL 126 GEV SM-LIKE HIGGS FROM NON-DECOUPLING D-TERMS

In this section we show that, using the non decoupling D-terms, the mass of the lightest CP-even scalar can be
raised up to 126 GeV without requiring any relevant tuning in a large region of parameter space. The same can be
achieved in other extension of the MSSM as well, such as the NMSSM [45]. However, since in this case small values of
tanβ are required, generically the Higgs results SM-like only for quite heavy scalars. As we saw in Sec. II, this may
introduce a relevant source of tuning. Higgs couplings measurements at the Run II of the LHC can already probe a
fine tuning at a few percent level [21]. On the contrary, we will show that in the DMSSM the lightest CP-even Higgs
is SM-like in a large region of the parameter space, due to the possibility of considering moderate or large values of
tanβ. In other words, in this scenario the decoupling limit mA � mh is natural.

A. 126 GeV Higgs in the DMSSM

Let us now explain in detail how in the DMSSM the tree level Higgs quartic coupling is increased with respect to the
MSSM. From Eq. (12) we see that once the EW singlet σ acquires its vev, the bidoublet gets shifted, Σ→ u√

2
1 + Σ,

generating a trilinear coupling [29]

VD ⊃
g2
Au

2
√

2

(
H†uτ

AHu +H†dτ
AHd

) TA + T̄A√
2

+ . . . (22)

Since the real scalar triplet TAR = TA+T̄A√
2

is always heavy, m2
TAR

= 2m2
Σ + 1

2

(
g2
A + g2

B

)
u2, it can be integrated out,

generating the effective D-terms

V effD =
g2η

2

(
H†uτ

AHu +H†dτ
AHd

)2

+
g′2

2

(
1

2
|Hu|2 −

1

2
|Hd|2

)
. (23)

This is a general result, and can be applied with straightforward modifications to any gauge extended SUSY model.
Indeed, whenever the fields driving symmetry breaking acquire a vev, a trilinear coupling is always generated, leaving
at low energy effective D-terms that can be parametrized as

V effD = g2η
2

(
H†uτ

AHu +H†dτ
AHd

)2

+ g′2η′

2

(
1
2 |Hu|2 − 1

2 |Hd|2
)2
.

(24)

where η and η′ have different expressions depending on the concrete realization under consideration.
The tree level mass matrix for the CP-even scalars is easily computed. Rotating to the vev basis (h,H), we have

M2 =

(
(g2η + g′2η′) v

2

2 c
2
2β (g2η + g′2η′)v

2

4 s4β

(g2η + g′2η′) v
2

4 s4β (g2η + g′2η′) v
2

2 s
2
2β + 2B

s2β

)
. (25)

We clearly see that for large enough η and η′ the mass of the lightest scalar is larger than the Z boson already at
tree level.

In order to precisely estimate the value of η needed to accommodate mh ' 126 GeV, we turn now to the
computation of the Coleman Weinberg potential. To this purpose it is sufficient to consider the effective theory below
the real heavy scalars threshold, which we always assume >∼ 1 TeV due to constraints from EWPM.
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Let us start considering the scalar contributions. For simplicity, we will neglect the down-type Yukawa couplings
for all the three generations. In addition, we compute the eigenvalues of the mass matrices appearing in the Coleman
Weinberg potential expanding in powers of H0

u. Taking the LH and RH masses for the squarks of the first two
generations to be degenerate together with the RH sbottom, the Higgs quartic coupling at one loop is given by

V sCW ⊃
[

9
96π2h

4
t log

m2
tR

Q2 + 3
128π2 δL12(g2η)2 log

m2
12

Q2

+
(12h2

t−3δL3g
2η)

2
+(3δL3g

2η)
2

1536π2 log
m2
QL

Q2

− h2
tA

2
t

64π2

(
3g2η2−5g′2

m2
Q̃L
−m2

t̃R

− 12h2
tA

2
t

(m2
Q̃L
−m2

t̃R
)2

)]
|H0

u|4 .

(26)

Here δLi refers to the ith generation, and δLi = 1 only if the squarks of the corresponding generation are doublets
under SU(2)A as the two Higgses; otherwise δLi = 0. We checked that the Hd contribution, which in principle should
also be included, is always subleading with respect to the squark one.

Turning to the fermionic contribution, we consider only the neutral and charged Higgsinos in the effective theory.
This is a good approximation, since the calculation of the neutralinos and charginos mass matrix shows that all the
other fermions receive an irreducible O(u) contribution to their masses. There may be important mixing effects pro-
portional to the gaugino mass pushing down some eigenvalue (see [29] for interesting phenomenological consequences
in the Higgs sector); we checked numerically that our approximation is reliable in a broad region of parameter space.
The Higgsino contribution to the Coleman Weinberg potential is given by

V fCW ⊃ −
[

(g2
A + g′2)2

128π2
log

µ2

m2
t

+
g4
A

16π2
log

µ2

m2
t

]
|H0

u|4 , (27)

where the first and second term come from the neutral and charged Higgsinos, respectively. Since naturalness requires
µ to be fairly light, we do not expect this contribution to give a significant reduction to the Higgs quartic coupling;
nevertheless, we have included it in our numerical study.

In order to make more reliable our computation of the lightest CP-even mass, we evolve the Higgs quartic coupling

from its boundary, λ(Λ) = g2(Λ)η+g′2(Λ)
4 cos2 2β, 2 down to mt, taking into account the different thresholds encountered

evolving from high to low energy. We will consider a simplified situation in which the stops are generate at mt̃, with
the hierarchy m12 � mt̃ � µ. We can thus write:

λ(mt) '
g2(Λ)η + g′2(Λ)

4
cos2 2β +

(
λq̃12

(m12) + δλt̃(mt̃)− δλχ0(µ)

)
sin4 β (28)

where, assuming δL3 = 1 and δL1,2 = 1 in Eq. (26), we have

δλq̃12
=

3g4η2

64π2
log

m2
12

m2
t

,

δλt̃ =

(
9h4

t

48π2
+

(12h2
t − 3g2η)2 + 9g4η2

768π2

)
log

m2
t̃

m2
t

+
h2
tA

2
t

128π2

(
3(8h2

t − g2η − g′2)

m2
t̃

− 2h2
tA

2
t

m4
t̃

)
+

6h2
t

(16π2)2

(
3

2
h2
t − 32πα3(mt)

)
log2 m

2
t̃

m2
t

,

δλχ0 =
9g4
A + 2g2

Ag
′2 + g′4

128π2
log

µ2

m2
t

.

(29)

All the couplings are evaluated at the relevant scale, i.e. m12 for δλq̃12
, mt̃ for δλt̃ and µ for δλχ0 . Notice that

we also take into account the two loops contributions from the stop system, since they can give a sizable negative
contribution.

2 We use the convention V ⊃ λ
2
|H|4, with the Higgs boson mass given by m2

h = 2λv2.
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FIG. 2: Regions in which 115 GeV < (mh)tree < 126 GeV, Eq. (25), as a function of tanβ and η, for mA = 200 GeV (blue and
purple regions) and mA = 700 GeV (gray region). We take η = η′ for the blue and gray regions, and η′ = 1 for the purple one.
The black dashed line corresponds to the contour for ∆mA = 5 for mA = 700 GeV.

We can now discuss the region of parameter space in which a 126 GeV Higgs is obtained. To this end, we start
requiring the maximum tuning coming from the stop sector to be no worse than 20%, i.e. max(∆Xt ,∆m2

t̃
) < 5. This

sets an upper bound on the size of the stops radiative contribution, that in turn translates into a lower bound for
the tree level Higgs mass. We find this to be mtree

h
>∼ 115 GeV. Notice that we do not consider the running of the

stop mass parameters in the computation of the tuning, since it is highly dependent on the value of the gluino mass.
Whenever we will talk about tuning on the stop sector, it has to be interpreted as the worst possible tuning, arising
for vanishing gluino mass.

We show in Fig. 2 the 115 GeV < mtree
h < 126 GeV region in the (η, tanβ) plane, for mA = 200 GeV (blue and

purple regions) and mA = 700 GeV (gray region). We also show the contours of ∆m2
A

= 5 for the two values of mA

considered (dashed line and continuous line for mA = 700 GeV and 200 GeV, respectively). In the diagonalization
of Eq. (25), we have fixed η′ = 1 for the purple region, while η′ = η for the gray and blue regions. By construction,
the tuning due to the stop system is not a problem in accommodating the Higgs boson mass. Moreover, we see that
the tuning on mA sets a lower bound tanβ >∼ 3 for mA = 700 GeV, and basically no bound for mA = 200 GeV.
Comparing with Fig. 1, we also see that as long as η <∼ 3, also the tuning associated with the ratio m2

Σ/u
2 is under

control. This allows us to conclude that as long as tanβ >∼ 4, the Higgs boson mass in the DMSSM can be easily
accommodated with a tuning better than 20%.

Let us conclude with a comment on the tuning needed to stabilize the Higgs mass itself - i.e. the Higgs quartic
coupling for fixed vev v. In models with an extended Higgs sector, this may represent a non trivial source of sensitivity,
as is the case in the NMSSM for λ >∼ 1 [45]. In our case, the correct Higgs boson mass is obtained essentially at
tree level (with no need for relevant loop corrections) as long as the states belonging to the bidoublet, σ and T 3, are
sufficiently decoupled from the doublet system, in such a way that Eq. (25) applies. This can be achieved for large
m2

Σ, and as we have already seen, as long as mΣ
<∼ 6.5 TeV the naturalness of the EW scale is not compromised. We

can now ask whether the sensitivity of the Higgs boson mass on m2
Σ is instead increased, as we make it larger. This

is not the case. Using the seesaw formula, we immediately see that since m2
Σ does not appear in the mixing terms,

the tuning on the Higgs boson mass goes schematically with ∆ ∼ (mixing/m2
Σ)2.
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B. SM like Higgs couplings and fine tuning implications

Let us now investigate whether precision Higgs physics can provide a good test of naturalness in our framework,
as in [18, 20, 21]. We study the modifications with respect to the SM couplings, ri = σi/σ

SM
i , assuming that no new

production or decay modes are present beside the usual SM ones.
At tree level, the mixing between h and H modifies the couplings to the SM vectors and fermions [21] as follows:

ru ' 1 +
1

tβ

(
M2

hH

M2
HH

+
M2

hhM2
hH

M4
HH

)
− M

4
hH

2M4
HH

,

rd ' 1− tβ
(
M2

hH

M2
HH

+
M2

hhM2
hH

M4
HH

)
− M

4
hH

2M4
HH

,

rV ' 1− M
4
hH

2M4
HH

,

(30)

where M2
hh, M2

hH and M2
HH are the matrix elements of Eq. (25).

At loop level, the main contributions to the coupling to gluons arise from stop and sbottom loops, while for the
coupling to photons the lightest chargino may be relevant as well [35]. In the case of a sbottom mixing of weak size,

b̃1,2 contribute with deviation at the percent level. Such deviations can however be made much smaller assuming small
(or vanishing) mixing in the sbottom sector, or moderately heavy sbottoms. In the following we will always assume
the sbottoms to be heavy enough to suppress this contribution (we explicitly checked that already for mb̃

>∼ 500 GeV
the deviations in rG are below the 5 permil level). On the contrary, even for large tanβ, chargino mediated deviations
in the hγγ coupling cannot be made smaller than ±(1−2)% [35]. Their interference with the stop contribution, while
not particularly relevant with the current precision on the rγ measurement, will become important when a percent
precision will be reached at future colliders.

We can parametrize the deviations from the SM due to stops as

rGG = |1 + δrG|2 , rγγ ' |1− 0.27δrG|2 , (31)

where

δrt̃G '
m2
t

4

(
1

m2
t̃1

+
1

m2
t̃2

− X2
t

m2
t̃1
m2
t̃2

)
, (32)

with mt̃1,2
the physical stop masses.

Let us now study what naturalness predicts for Higgs couplings deviations from the SM behavior. In Fig. 3, left
panel, we show the contours of rGG (red lines) and rγγ (blue lines) in the (mt̃, Xt) plane, assuming mt̃ = mQL3

= mtR ,
while in the right panel we show the contours of ru and rd in the (mA, tanβ) plane (red and blue lines, respectively).
The orange, yellow and green regions refer to ∆ < 5, 10 and 20 respectively, for ∆ = max(∆m2

t̃
,∆Xt) (left panel)

and ∆ = ∆m2
A

(right panel). In the left panel, the white region is excluded by the request of positive stop-loop

contributions and charge/color conservation (|At|2 <∼ 3(m2
Q3

+ m2
tR) [46]). We do not show rV in our plots, since

|rV − 1| � |rf − 1| in most of the parameter space.
Some comments are now in order. Let us start from the consequences of the Higgs coupling measurements on

the stop spectrum. The current experimental data from LHC8 still allow for O(10 − 15%) deviations in rGG and
in rγγ [47, 48]. From Fig. 3 we can estimate that the Higgs coupling measurements already require mt̃

>∼ 300 GeV
depending on the mixing (see [16–19] for more precise estimates), and it is thus already probing a certain part of the
most natural region. This bound is more robust than those obtained from direct searches, since it does not depend
on the details of the stop decay modes. On the other hand, assuming that no relevant deviation will be observed,
LHC 13 will not significantly improve the current bounds on stops even with the 3000 fb−1 luminosity upgrade [19].
At future machines such as ILC or TLEP, Higgs precision physics will be able to probe the couplings to gluons and
photons up to a precision of about 1% and 4%, respectively [49]. This means that, as shown in Fig. 3, future colliders
will probe fine tuning regions up to 10%, since even deviations from the SM value as low as 1h are still compatible
in some regions with a 10% tuning. 3

If we cannot use precise Higgs measurements to rule out naturalness, we can vice versa use them to discover it:
indeed a sizable deviation in the gluon gluon coupling can be accommodated only within the most natural region,

3 We explicitly checked that in this region there is no additional source in tuning from the Higgs couplings.
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FIG. 3: Left panel: contours of rGG (red lines) and rγγ (blue lines). The white region is excluded requiring positive stop-loop
contribution to the Higgs quartic and charge/color conservation. The orange, yellow and green regions refer to ∆t̃ < 5, 10 and
20, respectively. Right panel: contours of ru (red lines) and rd (blue lines). Same color code as the left panel for the fine tuning
regions, this time referred to ∆m2

A
.

∆ < 5. A sizable deviation discovered in the next LHC run would need to be interpreted within this framework as
the indirect sign of hidden light stops.

Let us now turn to the tree level couplings. From Fig. 3, right panel, we see that the coupling to the down-type
quarks is the most constraining one, and already requires mA

>∼ 400 GeV, considering a current precision in the
bb and ττ couplings of about (10 − 15)%. However, we see from Fig. 3 that for tanβ >∼ 10 deviations smaller
than 0.5% are still compatible with ∆ < 5. This is true also in the MSSM, where the tuning is indeed set by the
requirement of a 126 GeV Higgs and not from requiring it to be SM-like. As with the gluon and photon couplings,
precision measurements of the Higgs couplings are not powerful tools to rule out naturalness. They can however
be used as probes of the model parameter space, giving bounds which are competitive with those that can be
obtained from direct searches. More precisely, the HL-LHC will probe rd with a precision of about 4 − 7%, while
the ILC will be able to improve the precision up to 2% [49, 50]. From the right panel of Fig. 3 we see that such
indirect searches at the HL-LHC will put a lower bound mA

>∼ 800 GeV, while the ILC will probe the multi TeV region.

Although up to now we have taken a bottom-up approach, we can argue on the challenges that a natural SM-like
Higgs would imply for possible UV completions of this scenario. A persistent agreement with the SM predictions in
the gluon gluon and γγ couplings can be accommodated as long as a sizable mixing Xt is present. This would disfavor
models where SUSY breaking is mediated primarily by gauge interactions.

Turning to the couplings with the SM fermions, the decoupling limit can be obtained in a natural way only for
|m2

Hu
| � |m2

Hd
|, since we see from Eqs. (7)-(8) that even for large tanβ an increase in m2

Hu
has a fine tuning cost.

For instance, mHu ∼ 400 GeV already implies ∆m2
Hu
∼ 20. While from the bottom-up approach this is not too

problematic, from the top-down we already see that in models which predict m2
Hu
∼ m2

Hd
the decoupling limit can

be challenging. An interesting direction to obtain the required hierarchy is given in [51], where it is shown that the
m2
Hu
∼ µ2 � Bµ � m2

Hd
region is a possible natural solution to the Bµ − µ problem in gauge mediation. Another

appealing possibility is to charge Hd, as well as the SUSY breaking mediators, under SU(2)B only. This model leads
also to suppressed deviations of the Higgs couplings [50]. In this reference it is shown that in the chiral model the
power of Higgs couplings measurement would be less effective, relaxing by 50 − 100 GeV the possible reach both at
LHC13 and at the ILC.

V. CONCLUSIONS

After the first run of the LHC, the naturalness of the electroweak scale is still under scrutiny. In particular,
supersymmetric models must face the challenge both to meet the direct searches constraints and to accommodate
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a 126 GeV SM-like Higgs boson. The two most studied supersymmetric extensions of the SM have different
problematics, in this respect: in the MSSM the Higgs boson is naturally SM-like, but its mass requires a considerable
tuning; on the contrary, in the NMSSM its mass is natural, but being SM-like may require some tuning. On
top of this, although more model dependent, direct searches place lower bounds on the sparticle masses that
must be taken into account when assessing the overall tuning of the theory. In this paper we only focused on
the naturalness implications of the Higgs phenomenology, computing a lower bound on the overall tuning of the theory.

We have considered a supersymmetric scenario where the gauge sector of the MSSM is enlarged and the Higgs boson
mass is increased at tree level via non decoupling D-terms. We focused as example on a simple non-abelian extension,
SU(2)A×SU(2)B×U(1)Y , but our conclusions apply more broadly. We studied the fine tuning cost required to have
a 126 GeV SM-like Higgs, identifying and analyzing two sources of sensitivity: the usual tuning on the electroweak
scale, and the one on the scale at which the extended gauge sector is broken. The latter source put constraints on
the parameters entering in the increased tree level Higgs quartic coupling, and it is therefore important to properly
asses the fine tuning cost of raising the Higgs mass in this scenario.

From our analysis we can extract interesting conclusions. First of all, a 126 GeV Higgs boson mass can be accom-
modated with an overall tuning better than 20% for tanβ >∼ 4. This has to be compared with the MSSM, in which
the main source of tuning is given by the stop masses needed to raise the Higgs boson mass up to the experimentally
observed value. Moreover, although deviations are expected both in loop and tree level couplings, naturalness does
not necessarily predict them to be large. In particular, we can compare the case under study with another natural
extension of the MSSM, the NMSSM. The main difference is given by the tanβ values needed to increase the Higgs
boson mass at tree level in a natural way: tanβ >∼ 4 for the DMSSM, tanβ <∼ 3− 4 in the NMSSM. As we have seen,
this implies that while Higgs precision measurements and heavy Higgs searches are powerful probes of naturalness
in the NMSSM, for the DMSSM there can be heavy scalars without an effective fine tuning cost. A similar conclu-
sion applies as well to SUSY models extended with triplets with hypercharge Y = ±1 [7], since the supersymmetric
coupling W ⊃ HuTHu generates a λu coupling in Eq. (1) whose contribution is maximized in the large tanβ regime.

What are then going to be the naturalness probes in DMSSM models? In addition to higgsinos, stops and gluino
direct searches, heavy gauge bosons are predicted by naturalness to have masses mW ′ <∼ 6 TeV, and to interact with
matter with a coupling gW ′ ' g in the interesting region of parameter space. We defer to a future work a detailed
analysis of the signals of such heavy bosons and of the expected LHC reach in such scenario.
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Appendix A: Electroweak precision measurements

Let us discuss here in some detail our analysis of EWPM. To this end, we notice that after the singlet σ acquires its
vev, 〈σ〉 = u, but before EWSB, we can define massless (W a

µ ) and massive (Y aµ ) gauge boson combinations as follows:

W a
µ = 1√

g2
A+g2

B

(
gBA

a
µ + gAB

a
µ

)
Y aµ = 1√

g2
A+g2

B

(
gAA

a
µ − gBBaµ

)
,

(A1)

where Aaµ andBaµ are the gauge bosons associated with SU(2)A and SU(2)B , respectively. Apart from small corrections

of order v2/u2, the heavy gauge bosons can be identified with the (W
′±
µ , Z ′µ) triplet.

The relevant terms in the massive gauge boson lagrangian can be written as

L = −1

2
m2
W ′W

′a
µ W

′a
µ + gW ′W

′a
µ J

a
µ , (A2)

where gW ′ = g gAgB and m2
W ′ =

g2
A+g2

B

2 u2. The triplet current coupled to the massive gauge bosons is given by

Jaµ = `Lγµτ
a`L + qLγµτ

aqL + ih†τa
←→
Dµh+ iH†τa

←→
DµH + . . . , (A3)
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where the dots represent the sparticle contributions, h is the combination of scalar doublets acquiring vev v and H is
the orthogonal combination.

Once we integrate out Y aµ , the effective lagrangian is given by

Leff =
g2
W ′

2m2
W ′
JaµJ

a
µ =

g2
W ′

2g2m2
W ′

(DµW a
µν)2 , (A4)

where in the second equation we have used the W a
µ equation of motion: DµW a

µν = gJaµ . As is well known [52, 53], this
operator generates only the W parameter, constrained by LEP-II data. Using the numerical results given in [52, 53],
we obtain the lower bound at 95% C.L.

mW ′

gW ′

>∼ 3.4 TeV , (A5)

which corresponds to the dashed line in Fig. 1.
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