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Abstract

While it is often stated that the notion of electroweak (EW) naturalness in super-
symmetric models is subjective, fuzzy and model-dependent, here we argue the contrary:
electroweak naturalness can be elevated to a principle which is both objective and pre-
dictive. We demonstrate visually when too much fine-tuning sets in at the electroweak

scale which corresponds numerically to the measure ∆BG ∼ ∆EW
>∼ 30. While many

constrained SUSY models are already excluded by this value, we derive updated upper
bounds on sparticle masses within the two-extra parameter non-universal Higgs model
(NUHM2). We confirm the classic Barbieri-Giudice (BG) result that ∆BG < 30 implies
µ < 350 GeV. However, by combining dependent soft terms which appear as multiples of

m3/2 in supergravity models, then we obtain mg̃
<∼ 4 TeV as opposed to the BG result

that mg̃
<∼ 350 GeV. We compare the NUHM2 results to a similar scan in the pMSSM

with 19 weak scale parameters. In the pMSSM with complete one-loop scalar potential
plus dominant two-loop terms, then a mg̃ < 7 TeV bound is found. Our tabulation of
upper bounds provides a target for experimenters seeking to discover or else falsify the
existence of weak scale supersymmetry. In an Appendix, we show contributions to the
naturalness measure from one-loop contributions to the weak scale scalar potential.
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1 Introduction

Weak scale supersymmetry[1] (SUSY) is a highly motivated paradigm for physics beyond the
Standard Model (SM). The principal motivation is that it offers a technical solution to the
gauge hierarchy problem or naturalness problem of the SM in that it ensures cancellation of
quadratic divergences of scalar field masses to all orders in perturbation theory[2]. This is
especially relevant now that a bonafide fundamental scalar has been discovered[3, 4]: i.e. the
Higgs boson h. The SUSY technical solution is accomplished in a highly simple manner: merely
extending the set of spacetime symmetries which underlies quantum field theory to their most
general structure based upon a graded Lie algebra. In fact the SUSY paradigm is supported
indirectly via three sets of measurements:

1. the measured values of the three gauge forces at the weak scale are exactly what is needed
for SUSY gauge coupling unification[5],

2. the measured value of the top quark mass is exactly what is needed to properly drive a
radiative breakdown in electroweak symmetry[6] and

3. the measured value of the Higgs boson mass mh = 125.09±0.24 GeV falls squarely within
the predicted narrow band of allowed MSSM values[7].

On the negative side of the ledger, there is as of yet no sign of supersymmetric matter
after extensive runs of LHC at

√
s = 7 − 8 TeV[8, 9]. This fact has led many theorists to

question the validity of SUSY in light of the oft-repeated mantra that weak scale naturalness
requires weak scale sparticles. It is also baffling on the experimental side as to when the weak
scale SUSY hypothesis is ruled out, and when one ought to move on to alternative directions.
This is especially vexing in that many theoretical predictions tend to lie just beyond current
exclusion limits: when the exclusion limits increase, then the theoretical predictions retreat
towards higher mass values again just beyond the latest lower mass bounds. This leads to the
important question: what does it take to falsify the weak scale SUSY hypothesis? When is the
job done? Are new accelerators and experiments required, or does LHC with

√
s ∼ 13 − 14

TeV and high luminosity have the necessary resolving power?
Historically, an answer to this question was provided in the classic paper by Barbieri and

Giudice[10] wherein– based upon the “naturalness criterion”– they derived upper bounds on
various sparticle masses.1 These upper bounds could serve as targets for experimental facilities
with the intent to discover or disprove weak scale SUSY. Following earlier work by Ellis et
al.[12], they introduced the naturalness measure2

∆BG ≡ maxi

∣∣∣∣∣∂ logm2
Z

∂ log pi

∣∣∣∣∣ (1)

where the pi are fundamental parameters of the theory labelled by the index i. Working within
the MSSM with unified GUT scale soft breaking terms m0, m1/2, A0 and B, they presented

1See also Ref. [11].
2The authors of Ref’s [13] note the link between naturalness and Bayesian statistics wherein naturalness

corresponds to “more probable”.
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upper bounds on sparticle masses and parameters as a function of the top-quark mass (which
of course was not yet known at the time). In light of our present knowledge of the top quark
mass (mt = 173.21 ± 0.87 GeV PDG value with combined statistical/systematic errors), they
would conclude that in order to accommodate ∆BG < 10 (or better than 10% fine-tuning in

mZ), then m0
<∼ 300 GeV, m1/2

<∼ 100 GeV and µ
<∼ 200 GeV. These upper bounds implied

that the lighter charginos m
W̃1

<∼ 100 GeV and gluinos mg̃
<∼ 350 GeV. Explorations at LEP2

resulted in limits of m
W̃1

> 103.5 GeV[16] so that weak scale SUSY already appeared somewhat
fine-tuned by the post-LEP and pre-LHC era[17]. The current limits on gluino mass from LHC8

require mg̃
>∼ 1300 GeV. Thus, in the post LHC8 era, the naturalness issue has intensified, and

based upon these theory/experiment confrontations, one might well be tempted to conclude
that weak scale SUSY has been disproved[18].

In this paper, we re-examine upper bounds on sparticle masses from the naturalness princi-
ple. In Sec. 2, we discuss naturalness and fine-tuning and articulate the Naturalness Principle.
In Sec. 3, we apply the Naturalness Principle at the weak scale to derive the electroweak fine-
tuning measure ∆EW . In Sec. 4 we discuss Barbieri-Giudice fine-tuning ∆BG, how it depends
on the selection of an independent parameter set and how it relates to ∆EW : when properly
applied by combining dependent contributions, then ∆BG ' ∆EW . In Sec. 5, we demonstrate
visually when too much fine-tuning sets in and what values of ∆EW ' ∆BG are too much. In
Sec. 6 we derive upper bounds on sparticle masses in the NUHM2 model and compare them to
upper bounds from the classic BG paper. In Sec. 7, we derive alternative upper bounds arising
from a scan over the 19 dimensional weak scale pMSSM parameter space. We compare these
against results from the 19 parameter SUGRA model with soft terms defined at Q = mGUT .
In Sec. 8, we conclude by presenting a bar chart of upper bounds on sparticle masses which
form a target for experimenters seeking to confirm or refute weak scale supersymmetry. The
hard target is that µ < 350 GeV in any models (defined at a high scale or weak scale) based

on the MSSM. In models with RG running from mGUT to mweak, then mg̃
<∼ 2 (4) TeV for

∆BG ' ∆EW < 10 (30). If one dispenses with RG running as in the pMSSM, then no bound
is obtained on mg̃ using the one-loop RG-improved effective potential. By including leading
two-loop contrubutions to the scalar potential, we find a bound of mg̃ < 7 TeV for ∆EW < 30
in the pMSSM. In an Appendix, we discuss the contributions to ∆EW from various radiative
corrections Σu

u(i) and plot their magnitudes in 2-dimensional parameter planes.

2 The naturalness principle

Several definitions of naturalness can be found in the literature: some are more abstract while
others are more pragmatic. Here we articulate the following Naturalness Principle3:4

3Dimopoulos and Susskind articulate:“Naturalness: no parameter needs to be adjusted to unreasonable
accuracy.”[19]

4Weinberg states: “The appearance of fine-tuning in a scientific theory is like a cry of distress from nature,
complaining that something needs to be better explained”[20].
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An observable O is natural if all independent contributions to O are less than or
of order O.

Suppose O can be calculated in terms of n independent contributions O = o1 + · · ·+ on. If
one of the contributions, say on, is far larger than O, then it would have to be the case that
one or more of the oi would have to be a large opposite sign contribution which would require
fine-tuning of oi ∼ −on such that O � on. This is the link between naturalness and fine-
tuning: a quantity O is natural if it requires no large fine-tuning of independent contributions
to maintain its measured value.

A common pitfall in evaluating when a quantity is natural is to split it into dependent
contributions: if O = o1 + o2 + · · ·, but as one increases o1 then o2 necessarily increases to large
opposite-sign, then o1 and o2 should be combined before the final evaluation of naturalness.
This pitfall has been dubbed the “fine-tuning rule”[21].

To see how ∆BG is a measure of naturalness, consider the observable O expressed as a linear
combination of n fundamental parameters pi:

O = a1p1 + · · ·+ anpn (2)

where the ai are numerical co-efficients. Applying the ∆BG measure, we would find

∆BG = maxi

∣∣∣∣∣piO ∂O∂pi
∣∣∣∣∣ = maxi |aipi/O| (3)

i.e. the BG measure just picks off each term on the right-hand-side of Eq. 2 and compares
it to O.5 To avoid fine-tunings, then ∆BG should be less than some value (typically 10-100)
depending on how much fine-tuning one is willing to tolerate.

3 Weak scale naturalness

Starting with the weak scale scalar (Higgs) potential of the MSSM, the minimization conditions
∂V
∂h0∗u

= ∂V
∂h0∗

d
= 0 allow one to determine the Higgs field VEVs in terms of the soft SUSY breaking

parameters and the µ parameter[1]. Then, since m2
Z = (g2 + g′2)(v2u + v2d)/2, we can relate the

observed value of mZ to the weak scale SUSY parameters as

m2
Z

2
=

(m2
Hd

+ Σd
d)− (m2

Hu
+ Σu

u) tan2 β

(tan2 β − 1)
− µ2 ' −m2

Hu
− µ2. (4)

Here, m2
Hu

and m2
Hd

are the weak scale soft SUSY breaking Higgs masses, µ is the supersym-
metric higgsino mass term and Σu

u and Σd
d contain an assortment of loop corrections to the

effective potential.6 Already at this stage (not yet worrying about high scale parameters), the
naturalness principle requires each term on the right-hand-side (RHS) of Eq. 4 to be compara-
ble to or less than m2

Z/2. From the partial equality on the RHS, it is plain to see that the weak

5If terms include powers of pi, e.g. O =
∑
i aip

ni
i , then each sensitivity co-efficient contains an additional

factor of ni.
6We will not consider tanβ as an independent parameter here. Its value is determined also by the minimiza-

tion conditions in terms of the SUSY parameters.
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scale values of m2
Hu

, µ2 and the various Σu
u(i) (i labels the various loop contributions) should

all be comparable to or less than m2
Z/2[22]. This allows us to define the electroweak fine-tuning

measure ∆EW as

∆EW = max |each term on RHS of Eq. 4| /(m2
Z/2). (5)

In gravity-mediation, the GUT scale soft terms are expected to be of order the gravitino
mass m3/2. Since the physical sparticle masses are derived from the soft terms, we thus expect
the weak scale soft terms also to be of order m3/2. Since LHC8 requires multi-TeV values of
mg̃ and mq̃, then it seems LHC8 is telling us that m3/2 is also in the multi-TeV range. This is
good news for the SUSY flavor and CP problems[23] and the gravitino problem[24]: all these
are ameliorated by multi-TeV values of m3/2 and sparticle masses. The puzzle then is: why is
mZ (and mW and mh) not also at the multi-TeV scale? There is one soft term whose weak
scale value may be very different from its GUT scale value. The term m2

Hu
may hold multi-TeV

values at mGUT but is necessarily driven through zero to negative values at Q = mweak in order
to break electroweak symmetry[6]. If it is driven to small values comparable to −m2

Z/2 rather
than large negative values, then one naturalness condition may be satisfied. This case has been
dubbed radiatively-driven naturalness[25, 26].

The other condition for naturalness is that µ2 ∼ m2
Z/2.7 In this case, we note that µ is SUSY

conserving and not SUSY breaking. It is a very different entity from the soft terms: naively, it
would be present even in the absence of SUSY breaking. In this case, one expects its value to be
of order the GUT or Planck scale MP . How it comes instead to be ∼ mZ is known as the SUSY
µ problem[31]. There are two parts to the solution of the SUSY µ problem: first, one must
forbid it (via some symmetry) from attaining values ∼ MP , and second, one must regenerate
it of order mZ (via symmetry breaking). In the original Kim-Nilles formulation[31], it was
noted that in the SUSY DFSZ[32] axion model, Peccei-Quinn symmetry forbids the µ term.
The spontaneous breaking of PQ symmetry at scale fa ∼ 1011 GeV generates an axion (thus
solving the notorious strong CP problem), but also generates a mu term of order f 2

a/MP [33].
Since one expects the gravitino mass (and hence soft terms) to be of order m3/2 ∼ m2

hidden/MP ,
where mhidden is an intermediate mass scale associated with hidden sector SUGRA breaking,
then the apparent Little Hierarchy µ � m3/2 is just a consequence of a mismatch between
PQ breaking scale and hidden sector mass scale: fa � mhidden. In fact, in models such as the
Murayama-Suzuki-Yanagida (MSY) SUSY axion model[34], PQ symmetry is radiatively broken
as a consequence of SUSY breaking. In the MSY model, for canonical parameter values a small
value of µ ∼ 100− 200 GeV can be easily generated from m3/2 ∼ 5− 20 TeV[35].

Finally, the radiative corrections Σu
u should be less than or ∼ m2

Z/2. Typically, the top
squark contributions are the largest of these. The top squark contributions Σu

u(t̃1,2) are min-
imized for TeV-scale highly mixed top squarks, which also lift the Higgs mass to mh ∼ 125
GeV [25].

The EW fine-tuning measure is the most conservative of the fine-tuning measures in that
any model with large ∆EW is surely fine-tuned. Also, ∆EW clearly agrees with ∆BG for SUSY

7In this regard, we rely on Einstein’s advice to maintain the theory as simple as possible, but no simpler.
By adding various exotica to the MSSM, then one can create models with heavy higgsinos which may still be
natural[27, 28, 29]. These often involve adding exotic states such as scalar gluons. It is not clear whether such
constructs admit a UV-completion.
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models defined purely at the weak scale such as the pMSSM.[36]8. Another virtue of ∆EW

is that its value is model-independent (within the MSSM) in that it doesn’t depend on how
the weak scale spectrum was generated. Also, from a pragmatic point of view, the fine-tuning
encapsulated in ∆EW is exactly where spectrum generators invoke explicit fine-tuning. In such
codes, usually m2

Hu
and other soft terms are calculated at the weak scale via RG running, and

then the value of µ is dialed/fine-tuned to enforce that the measured value of mZ is obtained.
Without such fine-tuning, the generated value of mZ would typically lie in the multi-TeV
region[21].

But does ∆EW encapsulate all the fine-tuning, including high-scale effects, or is it just a
lower bound on fine-tuning[38]?

4 BG fine-tuning and independent model parameters

For models defined in terms of high scale parameters, the BG measure can be evaluated by
expanding the terms on the RHS of Eq. 4 using semi-analytic RG solutions in terms of fun-
damental high scale parameters [10, 39]. For the case of tan β = 10 and taking the high scale
Λ = mGUT , then one finds [40, 41, 42]

m2
Z ' −2.18µ2 + 3.84M2

3 − 0.65M3At − 1.27m2
Hu
− 0.053m2

Hd
+ 0.73m2

Q3
+ 0.57m2

U3
+ · · · (6)

The problem with most applications of the BG measure is that in any sensible model of
SUSY breaking, the high scale SUSY parameters are not independent. For instance in gravity-
mediation, for any given hidden sector, the soft SUSY breaking terms are all calculated as
numerical co-efficients times the gravitino mass [43, 44, 45]: e.g. M3(Λ) = aM3m3/2, At =
aAtm3/2, m

2
Q3

= aQ3m
2
3/2, etc. where the ai are just numerical constants. (For example, in

string theory with dilaton-dominated SUSY breaking [44, 45], then we expect m2
0 = m2

3/2 with

m1/2 = −A0 =
√

3m3/2). The reason one scans multiple SUSY model soft term parameters is
to account for a wide variety of hidden sectors possibilities. But this doesn’t mean each soft
term is independent from the others. By writing the soft terms in Eq. 6 as suitable multiples of
m2

3/2, then large positive and negative contributions can be combined/cancelled and one arrives
at the simpler expression [21, 46]:

m2
Z ' −2µ2(Λ) + a ·m2

3/2 (7)

since the SUSY mu term hardly evolves. The value of a is just some number which is the sum
of all the coefficients of the terms ∝ m2

3/2.

Using the BG measure applied to Eq. 7, then it is found that naturalness requires µ2 ∼
µ2(Λ) ∼ m2

Z and also that am2
3/2 ∼ m2

Z . The first requirement is the same as in ∆EW . The
second requirement is fulfilled either by m3/2 ∼ mZ (which seems unlikely in light of LHC
Higgs mass measurement and sparticle mass bounds) or when m3/2 is large but the co-efficient
a is small [21]: i.e. there are large cancellations in Eq. 6. By equating m2

Z in terms of weak

8The pMSSM, or phenomenological MSSM, is the MSSM defined with weak scale input parameters where
all CP violating and flavor violating soft terms have been set to zero. Also, usually first/second generation soft
terms are set equal to each other to avoid flavor-violations.
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scale parameters (Eq. 4) with m2
Z in terms of high scale parameters Eq. 7), and using the

fact that µ(Λ) ' µ(weak), then also am2
3/2 ' m2

Hu
(weak) and so a low value of ∆BG also

requires a low value of m2
Hu

(weak) ∼ −m2
Z . By properly evaluating BG fine-tuning in terms

of independent SUGRA parameters, namely m3/2 and µ(Λ), then we are lead back to the same
sort of conditions as implied by low ∆EW : i.e. that m2

Hu
is driven radiatively to small negative

values. In this manner

• ∆EW encompasses both high scale and weak scale fine-tuning.

The ambiguity between fine-tuning measures is removed.9 For electroweak naturalness in SUSY
theories, it is not the case that sparticles need to be near the scale ∼ 100 GeV: it is just the
weak scale Lagrangian parameters mHu and µ: the remaining soft breaking terms may lie
comfortably in the multi-TeV range at little cost to naturalness.

5 How much fine-tuning is too much?

Once a reliable measure of fine-tuning is established, then the next question is: for which values
of ∆EW is a model natural, and for which can it be considered fine-tuned? The original BG
paper considered ∆BG < 10 to be natural. However, as experimental limits on sparticle masses
grew, then much higher values of ∆BG were tolerated– up to ∼ 100[42] or even ∼ 1000[50]. This
increased tolerance perhaps reflected a reluctance to easily give up on an amazingly beautiful
and simple paradigm even in the face of apparent large fine-tuning.

By properly evaluating ∆BG in terms of Eq. 7, or equivalently ∆EW (which includes one-
loop radiative corrections), then we can re-evaluate how much fine-tuning is too much. In
Fig. 1, we show the dominant contributions to ∆EW for a simple NUHM2 benchmark model
with m0 = 5 TeV, m1/2 = 700 GeV, A0 = −8.3 TeV and tan β = 10 with mA = 1 TeV and
variable µ. In the first case, with µ = 110 GeV and ∆EW = 13.6, we display the several largest
contributions to ∆EW . Some are positive and some are negative but all are comparable to ±10.
This case is visually highly natural: the Z mass is ∼ 100 GeV because its various contributions
are ∼ 100 GeV. In the second column, with µ = 200 GeV and ∆EW = 22.8, the Hu contribution
to ∆EW is largest but is on the whole balanced by several comparable positive terms: again,
one would not claim it as unnatural. The third column with µ = 300 GeV, we see that the Hu

contribution to ∆EW is again the largest, but in this case now a value of µ must be selected as
large positive to compensate and enforce that mZ = 91.2 GeV: this case is starting to already
become unnatural. By the fourth column with µ = 400 GeV and ∆EW = 51.5, the fine-tuning
is visually striking: the model is no longer natural. The unnaturalness is only accentuated in
columns five and six for µ = 500 and 600 GeV respectively.

9Another common fine-tuning measure[47, 48, 49] is known as Higgs mass or large log fine-tuning ∆HS . In its
usual implementation, ∆HS requires the radiative correction δm2

Hu
to the Higgs mass m2

h ' µ2+m2
Hu

(Λ)+δm2
Hu

be comparable tom2
h. This contribution is usually written as δm2

Hu
|rad ∼ − 3f2

t

8π2 (m2
Q3

+m2
U3

+A2
t ) ln

(
Λ2/m2

SUSY

)
which is used to claim that third generation squarks mt̃1,2,b̃1

be approximately less than 500 GeV and At be small

for naturalness. This expression for δm2
Hu

makes several approximations– the worst of which is to neglect that the
value of m2

Hu
itself contributes to δm2

Hu
. By combining dependent contributions, then instead one requires that

the two contributions m2
h = µ2+

(
m2
Hu

(Λ) + δm2
Hu

)
be comparable to m2

h. Since m2
Hu

(Λ)+δm2
Hu

= m2
Hu

(weak),
then we are lead back to the same conditions as low ∆EW and low ∆BG.
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Figure 1: Plot of contributions to ∆EW for various values of superpotential µ parameter.

To be conservative, it is evident that fine-tuning has set in for µ values ∼ 300 − 400 GeV.
For such cases one would expect the value of mZ also to be in the 300 − 400 GeV range.
With a value of µ = 350 GeV as a conservative upper estimate, and with the contribution
∆EW (µ) = µ2/(m2

Z/2), we would then expect already values of ∆EW > 30 to be overly fine-
tuned. This is somewhat above the values expected in the original BG paper where they

adopted ∆max
BG = 10. If we increase the mass bounds from BG by a factor

√
∆max
EW /10 then we

expect from BG with mt = 173.2 GeV that µ < 350 GeV and mg̃
<∼ 350 GeV.

From scans over the popular mSUGRA/CMSSM[51, 52] model, it is found that with mh =
125 ± 2 GeV, the lowest value of ∆EW which can be obtained is ∼ 100[53, 54, 21]. In this
case, the mSUGRA/CMSSM model is highly fine-tuned and is already ruled out. In addition,
an assortment of other models– including mGMSB, mAMSB and mirage unification models–
are also ruled out[21]. What remains is a region of NUHM2 parameter space where small
µ ∼ 100−300 GeV is allowed and where highly-mixed top squarks may live in the few TeV range.
This region of NUHM2 parameter space is labelled as RNS, standing for models with radiatively-
driven natural supersymmetry[25, 26]. RNS models are characterized by light higgsinos with
mass ∼ µ ∼ 100 − 300 GeV. The LSP is a higgsino-like WIMP with a thermally-produced
underabundance of dark matter. However, solving the QCD sector naturalness problem via the
axion[55] leads also to axion dark matter[56] so that one expects two dark matter particles:
the axion along with a higgsino-like WIMP[57]. Variants of this model with greater parameter
freedom, such as non-universal gaugino masses leading to natural SUSY with bino-like or wino-
like LSPs– are also allowed[58].
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6 Mass bounds from naturalness in NUHM2

To derive sparticle mass bounds from the naturalness principle, we will generate SUSY spectra
using Isajet [59, 60] in the 2-parameter non-universal Higgs model [61] (NUHM2) which allows
for very low values of ∆EW < 10. The parameter space is given by

m0, m1/2, A0, tan β, µ, mA, (NUHM2). (8)

The NUHM2 spectra and parameter spread versus ∆EW were evaluated in Ref. [26] but with
mA restricted to < 1.5 TeV and m1/2 < 2 TeV. Here, we update these results by ensuring that
we use sufficiently large range of input parameters that our upper bounds on sparticle masses
surely come from ∆EW < 30 rather than from artificial upper limits on scan parameters. Some
previous mass bounds were extracted in Ref’s [26, 14, 15]. Here, we enlarge the scan region to
include:

m0 : 0− 20 TeV,

m1/2 : 0.3− 3 TeV,

−3 < A0/m0 < 3,

µ : 0.1− 1.5 TeV, (9)

mA : 0.15− 20 TeV,

tan β : 3− 60.

We require of our solutions that:

• electroweak symmetry be radiatively broken (REWSB),

• the neutralino Z̃1 is the lightest MSSM particle,

• the light chargino mass obeys the model independent LEP2 limit, m
W̃1

> 103.5 GeV [16],

• LHC8 search bounds on mg̃ and mq̃ from the m0 vs. m1/2 plane[8] are respected,

• mh = 125± 2 GeV.

It is important to note in this Section that some of our upper bounds come from the specific
model we sample. For instance, the extracted upper bound on the gluino mass comes from RG
running effects where the gluino mass feeds into the top squark soft terms, and the top-squark
soft terms are mainly constrained by the Σu

u(t̃1,2) contributions to ∆EW . In this respect also,
∆EW is sensitive to high scale effects since it measures if a particular model defined by high
scale parameters can generate the weak scale characterized by mW,Z,h ∼ 100 GeV. In the next
Section, we will discuss model-independent upper bounds which do not depend on high scale
physics.

The first results of our scan are shown in Fig. 2. In frame a), we plot ∆EW vs. mg̃. The
symbols are color-coded according to low (≤ 15), intermediate (15−30) and high (> 30) values
of tan β. From the plot, we see first that there is indeed an upper bound to mg̃ provided by
naturalness. If we enforce ∆EW < 30, then we find that
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• mg̃
<∼ 4 TeV.

This is to be compared to the reach of LHC for gluinos via gluino pair production followed
by cascade decays. For the case of heavy squarks mq̃ � mg̃ and with ∼ 1000 fb−1, LHC13
has a reach up to mg̃ ∼ 2 TeV[62, 63]. Thus, while natural SUSY may well be discovered by
LHC1310, there is also plenty of natural SUSY parameter space well beyond the LHC reach for
g̃g̃ production. This bound may also be compared to the original BG result for mt = 173.2
GeV and with ∆BG < 30: there it was found that mg̃

<∼ 350 GeV. The discrepancy between
results arises because BG evaluated ∆BG within the four-parameter mSUGRA/CMSSM effec-
tive theory where m0, m1/2, A0 and B are assumed as independent. By recognizing the soft
terms as dependent multiples of m3/2, then using Eq. 7 we have ∆BG ' ∆EW and much larger
values of mg̃ are allowed while preserving naturalness. Our result may also be compared with
Feng[42] who uses an upper bound of 1% fine-tuning in a multi-parameter SUSY effective the-

ory: he then finds mg̃
<∼ 1.4 TeV, slightly beyond the latest bound of mg̃

>∼ 1.3 TeV from LHC8
searches. If we scale this back to 3.3% fine-tuning to compare with our result, then Feng would
obtain mg̃

<∼ 770 GeV, well below the LHC8 lower limit on mg̃.
In Fig. 2, we also show ∆EW versus b) the higgsino mass µ and c,d) versus the gaugino

masses M1 and M2. Since m
W̃1
∼ m

Z̃1,2
∼ |µ| in models with a higgsino-like LSP, then we

expect that

• m
W̃1
, m

Z̃1,2

<∼ 350 GeV

(the lighter the better). While the higgsino-like electroweak-ino masses are necessarily not too
far from mZ,h, they are notoriously difficult to see at LHC due to their compressed spectrum[65,
63]. A possible way forward may be via pp→ Z̃1Z̃2g production followed by Z̃2 → µ+µ−Z̃1. In
this case, the hard gluon ISR serves as a trigger so that events containing soft dimuons may be
visible above SM backgrounds[66, 67, 68]. In contrast, the required light higgsinos should be
easily visible at an e+e− collider operating with

√
s > 2µ[65, 69] where also their masses and

mixings can be extracted to high precision. In this, we are in accord with the conclusion of
BG[10] that lepton colliders provide a more powerful probe of SUSY electroweak naturalness
than do hadron colliders.

The bound extracted from frame c) is that the bino mass M1
<∼ 900 GeV for ∆EW < 30.

Since the NUHM2 model assumes gaugino mass unification, this translates to the mass on the
third lightest neutralino Z̃3 which is then mainly bino-like.

The bound on the wino mass M2 shown in frame d) translates to a bound on the wino-like

electroweakinos of m
W̃2,Z̃4

<∼ 1600 GeV. As noted in Ref’s [70, 63], wino pair production at

LHC13 (via W̃±
2 Z̃4 and W̃+

2 W̃
−
2 production) forms the dominant visible reaction. In fact, the

reach of LHC13 via the same-sign diboson (SSdB) signature (pp → W̃±
2 Z̃4 → W±W±+ 6ET )

exceeds the reach via gluino pair production for integrated luminosities
>∼ 300 fb−1. The reach

of LHC13 for wino pairs via the SSdB signature extends to m
W̃2

<∼ 680 GeV.
In Fig. 3, we show updated upper bounds on third generation squark masses. From frame

a), we see that

• mt̃1

<∼ 3 TeV.

10For an overview of what natural SUSY looks like at LHC13, see Ref. [64]
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Figure 2: Plot of ∆EW vs. mg̃, µ, M1 and M2 from a scan over the NUHM2 model. Points
with ∆EW < 30 (below dotted line) are considered natural.
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Figure 3: Plot of ∆EW vs. mt̃1 , mt̃2 , mb̃1
and mb̃2

from a scan over the NUHM2 model.

This upper bound is much higher than previous incarnations of natural SUSY based on large-log
fine-tuning[49] (where it was claimed that naturalness required three third generation squarks

with mass mt̃1,2,b̃1

<∼ 600 GeV). The projected reach of LHC13 for mt̃1 in various simplified
models extends up to mt̃1 ∼ 1 TeV. Thus, the lighter top squark may also lie well beyond
LHC13 search capabilities with little cost to naturalness. From frames b), c) and d), we find

successively that mt̃2

<∼ 9 TeV, mb̃1

<∼ 9 TeV and mb̃2

<∼ 10 TeV.
In Fig. 4 we show plots of ∆EW versus various matter scalar masses a) mũL , b) m˜̀

L
, c) mτ̃1

and d) mA. Frame a) is typical of all first/second generation matter scalars. Here, we extract

an upper bound of mũL
<∼ 10 TeV. The bound on first/second generation matter scalars arises

from D-term contributions to Σu
u[26]. For certain mass degeneracy patterns listed in Ref. [71],

these contributions nearly cancel amongst themselves. The limits become much stronger for
non-degenerate matter scalars. The limits are also affected by two-loop RG effects where heavy
first/second generation matter scalars feed into third generation and Higgs soft term evolution.
In this case, large m0(1, 2) can drive m2

Hu
to large instead of small negative values[73]. The limit

11



Figure 4: Plot of ∆EW vs. mũL , m˜̀
L
, mτ̃1 and mA from a scan over the NUHM2 model.

on first/second generation sleptons, shown in frame b), is similar. If we allow for non-degenerate
generations, i.e. m0(1, 2) 6= m0(3), then the upper bounds on first/second generation squarks
and sleptons can increase to ∼ 20 TeV[26].

In frame c), we show ∆EW vs. mτ̃1 . In this case, the upper bound on third generation

sleptons is also mτ̃1
<∼ 10 TeV. An upper bound on mA can be extracted from frame d) of Fig.

4. Here we find mA
<∼ 5 (8) TeV for tan β < 15 (50). Thus, the heavy Higgs bosons with mass

mH ∼ mH± ∼ mA may also be well beyond the reach of LHC13 at little cost to naturalness.

6.1 Comparison of original BG results to this work

In Table 1, we compare the upper limits on sparticle masses and the µ parameter extracted
from the original BG paper[10] as compared to this work. The BG results are presented for
mt = 173.2 GeV and scaled to impose ∆BG < 30 instead of ∆BG < 10. The BG results used
m0, m1/2, A0 and µ as independent parameters whereas our results combine these contributions
to m2

Z since each is computed as a multiple of m3/2 in gravity mediation models. To include
radiative corrections, we use the ∆EW measure.
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Since both groups use µ as an independent parameter, then both groups agree on the upper
bound µ

<∼ 350 GeV leading to relatively light higgsinos: the closer to mh the better. However,
for other sparticle masses, then our results differ markedly. Whereas BG find mg̃

<∼ 350 GeV,

we find mg̃
<∼ 4 TeV– possibly well out of range of LHC13. Also, for the bino mass M1, BG find

M1
<∼ 90 GeV while we find M1

<∼ 900 GeV. For the wino mass M2, BG find M2
<∼ 170 GeV

(leading to the suggestion that charginos should appear at LEP2 if SUSY is not fine-tuned)

while we find M2
<∼ 1700 GeV (possibly out of range of LHC13 even via wino pair production

with decays to same-sign dibosons[70]). Meanwhile, for matter scalars, BG found mũR
<∼ 700

GeV whereas we find mũR
<∼ 10 TeV. If we allow for non-degenerate matter scalar generations

(m0(1, 2) 6= m0(3)) then our limit can increase to ∼ 20 TeV[26]. Likewise, BG found mẽR
<∼ 520

GeV whereas we expect mẽR
<∼ 10 TeV (20 TeV for split families).

mass bound (GeV) BG this work

µ 350 350

mg̃ 350 4000

M1 90 900

M2 170 1700

muR 700 10000 (20000)

meR 520 10000 (20000)

Table 1: Upper bounds on masses (in GeV) from naturalness with ∆ < 30 from original BG
paper compared to Sec. 6 of this work in the NUHM2 model. The entries in parenthesis would
result if one allows for non-degenerate generations of soft scalar masses m0(1, 2) 6= m0(3)[26].

7 Upper bounds from the 19 parameter pMSSM

The mass bounds from the previous section depend on (reasonable) assumptions about high
scale physics which are implicit in the NUHM2 model. The previous NUHM2 bounds were
derived from requiring that no contributions to the renormalization-group-improved one-loop
scalar potential be far larger than m2

Z/2. The RG-improved scalar potential contains in fact
leading two loop terms since the parameters entering the scalar potential contain the effects of
RG running. For instance, the bound on the gluino mass arises mainly from its RG contribution
to the stop masses: a large value of M3 pushes mt̃1,2 to large values leading to large Σu

u(t̃1,2)
contributions to mZ . Likewise, other soft terms contribute to the evolution of m2

Hu
to small

negative values at the weak scale.
It is popular in recent years to dispense with RG running and examine physics within the

phenomenological MSSM, a model with 19 free weak scale parameters[36]. Results from the
pMSSM will look in some cases very different from those obtained with high scale models even
though in some sense the pMSSM contains models like NUHM2, and even though a given
spectra generated within either of the NUHM2 or the pMSSM models will yield up exactly
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the same value of ∆EW . The main difference is that the two-loop contribution to the scalar
potential arising from RG running of M3 will no longer occur, thus obviating any bound on
the gluino mass. In this case, we add in the explicit leading two-loop terms of order αtαs as
computed by Dedes and Slavich[37]. These terms contain sensitivity to mg̃ and to mt̃1,2 .

To obtain mass bounds from the pMSSM, we implement a scan over the 19-dimensional
weak scale parameter space with the following limits:

• mt̃L
, mt̃R

, mb̃R
, mτ̃L , mτ̃R : 0.2− 20 TeV,

• mũL , md̃R
, md̃R

, mẽL , mẽR : 0.1− 20 TeV,

• At, Ab, Aτ : −40→ +40 TeV,

• M1 : 0.05− 10 TeV, M2 : 0.1− 10 TeV, M3 : 0.4− 10 TeV,

• µ : 100− 500 GeV, mA : 0.15− 20 TeV,

• tan β : 3− 60.

We actually input the pMSSM parameters at a scale ΛpMSSM = 20 TeV– just above the
maximal soft masses. This ensures the reduced scale dependence of the scalar potential from
the interplay between the RG running of the soft terms and the log(Q2) dependence of the loop
contributions Σu

u(i) and Σd
d(j). The contributions of Σd

d(i) to ∆EW are suppressed by tan2 β
and so typically are of little consequence.

The pMSSM tree level bounds from ∆EW < 30 can be read off directly from Eq. 4 without
the need for any scan:

• µ <∼ 350 GeV,

• mHu(weak)
<∼ 350 GeV,

• mHd

<∼ 350 GeV tan β.

For large mHd
, then mHd

' mA so the latter bound translates to a bound on mA.
In Fig. 5, we plot the value of ∆EW vs. the same parameters as in Fig. 2: a) mg̃, b) µ,

c) M1 and d) M2. From frame a) we see a very important result: in the pMSSM, the bound
on mg̃ for ∆EW < 30 has moved up to about 7 TeV, well beyond what was obtained for the
NUHM2 model. This bound arises after the inclusion of the order αtαs two-loop contribution
to the scalar potential which includes sensitivity to mg̃[37].

From frame b), we see that, as expected, µ is once again bounded by µ
<∼ 350 GeV for

∆EW < 30, as is required by the tree-level contribution to Eq. 4. In frame c), we plot ∆EW

vs. the bino mass M1. For the pMSSM, mass bounds on M1 arise from the Σu
u(Z̃i). Here,

we see that M1 can range as high as 9 TeV– far beyond the bounds obtained in the NUHM2
model where gaugino mass unification is requred. In that case, the upper limit on mg̃

<∼ 4 TeV

translates to a bound on M1
<∼ 0.8 TeV. Likewise, in frame d) we plot ∆EW vs. wino mass M2.

In this case, we find M2
<∼ 6 TeV. This bound mainly arises from the contributions Σu

u(W̃i). It

is also far beyond the mass bound from NUHM2 where M2
<∼ 1.6 TeV was found.
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Figure 5: Plot of ∆EW vs. mg̃, µ, M1 and M2 from a scan over the 19 weak scale pMSSM
parameters. Points with ∆EW < 30 (below dotted line) are considered natural.
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Figure 6: Plot of ∆EW vs. mt̃1 , mt̃2 , mb̃1
and mb̃2

from a scan over 19 weak scale pMSSM
parameters.

In Fig. 6 we display values of ∆EW vs. a) mt̃1 , b) mt̃2 , c) mb̃1
and d) mb̃2

. From frame a),

we find that mt̃1

<∼ 3.5 TeV, just slightly larger than the bound arising in the NUHM2 model.
This bound arises mainly due to the contributions Σu

u(t̃1,2) to the scalar potential. In frame b),

we find that mt̃2

<∼ 10 TeV. This again is slightly beyond the bound arising from the NUHM2

case with unified matter scalars at mGUT . From frames c) and d), we find that mb̃1

<∼ 9 TeV

and mb̃2

<∼ 10 TeV. These results are in rough accord with values obtained from the NUHM2
model.

In Fig. 7, we attempt to extract upper mass bounds on squarks, sleptons, staus and heavy
Higgs bosons in analogy to Fig. 4. From frame a), we find naively thatmũL

<∼ 10 TeV. This mass
bound arises from D-term contributions to first/second generation scalar masses that enter the
scalar potential via Σu

u(ũL). As pointed out in Ref. [71], these D-term contributions all cancel
amongst themselves provided that one of several mass degeneracy patterns exist: 1. separately
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Figure 7: Plot of ∆EW vs. mũL , m˜̀
L
, mτ̃1 and mA from a scan over 19 weak scale pMSSM

parameters.

squark and slepton mass degeneracy, 2. separately left- and right- sfermion degeneracy, 3.
degeneracy within SU(5) multiplets and 4. degeneracy within an entire generation, as expected
in SO(10) GUTs. In these cases, the contributions– which are all proportional to weak isospin
and hypercharge assignments– necessarily sum to zero for degenerate masses. When these
contributions thus sum to zero, then there are no bounds on first/second generation squark and
slepton masses. However, since it is highly improbable to generate these degeneracy patterns
from a random pMSSM scan, then mass bounds do arise from our random scan. As seen
from frame a), we expect mũL

<∼ 10 TeV. But this mass bound would disappear if we invoked
degeneracy conditions amongst the physical masses within any of the patterns listed above.
Likewise, in frame b), we see that m˜̀

L

<∼ 10 TeV and from frame c) we expect mτ̃1
<∼ 9 TeV.

The mass bound on mA which arises from the loop contributions Σu
u(h,H,H

±) are shown in
frame d). These constraints are actually somewhat stronger than the naive tree-level constraint

of mA
<∼ 350 GeV tan β which is ∼ 18 TeV for large tan β ∼ 50. Instead, we find mA

<∼ 10 TeV
from our scan over 19 weak scale pMSSM parameters.
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Figure 8: Plot of ∆EW vs. mg̃, mt̃1 , mt̃2 and mb̃1
from a scan over the SUGRA19 model.

7.1 Comparison between pMSSM and SUGRA19 model

It may be worthwhile to compare the preceding results from the 19 parameter pMSSM model–
with inputs defined at the weak scale– with results from Ref. [72] where naturalness was
examined in the context of the SUGRA19 model with 19 input parameters defined at the GUT
scale. The goal of Ref. [72] was to see how how low in ∆EW one might go within the context of
a general SUGRA model, but not to establish upper bounds (which require a thorough rather
than a focussed parameter space scan). To compare sparticle mass upper bounds between
pMSSM and SUGRA19, we have re-run SUGRA19 including the aforementioned two-loop
Σu
u corrections with a thorough parameter space scan. In both the pMSSM model and the

SUGRA19 model, the SUSY mu parameter is bounded as µ < 350 GeV for ∆EW < 30 since
this quantity enters the scalar potential at tree-level.

The results from the SUGRA19 model are shown in Fig. 8 for ∆EW versus a) mg̃, b) mt̃1 ,
c) mt̃2 and d) mb̃1

. The upper bound on the gluino mass is very similar in the two cases where

we find mg̃
<∼ 7 TeV. Also, for both the SUGRA19 and pMSSM models, the third generation

squark masses have similar upper bounds: mt̃1

<∼ 3− 3.5 TeV and mt̃2,b̃2

<∼ 8− 10 TeV.
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From this comparison, and in the spirit of providing a target for experimenters seeking to
verify or disprove SUSY, we would conclude that a negative search for light higgsinos with mass
<∼ 350 GeV would rule out naturalness in the context of the MSSM (more complicated beyond-
the-MSSM extensions could always be built to circumvent these bounds[27, 28, 29]). Thus,
non-observation of light higgsinos would rule out both high scale and weak scale renditions of
SUSY based on the MSSM. Alternatively, failure to find a gluino with mass mg̃

<∼ 4 TeV would
rule out constrained SUSY models such as NUHM2 with unified soft parameters defined as
high as Q = mGUT . Colliders with the ability to probe beyond mg̃ ∼ 7 TeV would be needed
to test/exclude gluino pair production within the pMSSM or SUGRA19 context[30].

8 Conclusions:

In this paper, our goal was to sharpen the upper bounds on sparticle masses arising from
naturalness in order to provide a target for experimenters seeking to confirm or rule out the
weak scale supersymmetry hypothesis.

While most sparticle search results are presented as lower bounds in simplified or complete
model parameter space, the question arises: how far out in parameter space ought one to go
before discovering weak scale SUSY or claiming it is dead? While earlier papers by others
have presented naturalness as a subjective, fuzzy and model-dependent notion, instead here we
argue that naturalness is

• objective,

• model-independent in that different models giving rise to the same spectra have the same
value of naturalness, and

• predictive.

The previous confusion on this subject arose from what constitutes independent model param-
eters. In the case of gravity mediation, for any given hidden sector the soft terms are calculable
as multiples of the gravitino mass m3/2, i.e. they are dependent. By appropriately combining
dependent terms, then the BG measure implies the same general consequences as the model
independent electroweak measure ∆EW . We show visually that fine-tuning already arises at
∆EW ∼ 20− 30. To be conservative, we take ∆EW < 30 to derive upper bounds on parameters
and sparticle masses.

In Sec. 6, we sharpened up previous bounds on sparticle masses by increasing the range
of parameters enough to ensure that upper bounds arose from ∆EW < 30 and not from some
artificial cut-off imposed on our scan limits. For the NUHM2 model which allows SUGRA grand
unification and values of ∆EW below 10, we found mg̃

<∼ 4 TeV, well beyond the reach of even
high luminosity LHC. This bound is much higher than previous estimates which assumed that
the various soft SUSY breaking terms are independent. Alternatively, we find the superpotential
mu term to be µ

<∼ 350 GeV. The range of NUHM2 input parameters which are allowed is shown
in Fig. 9.

The allowed ranges of sparticle masses from NUHM2 are shown in Fig. 10 as the colored
histograms. As remarked before, the all-important gluino mass can range from mg̃ ∼ 1.3 − 4
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Figure 9: Range of NUHM2 model parameters allowed by naturalness with ∆EW < 30.

TeV. Third generation squarks, which were argued to exist in the sub-TeV regime in previous
natural SUSY papers, are found to be consistent with naturalness when mt̃1

<∼ 3 TeV while

mt̃2,b̃1

<∼ 9 TeV and mb̃2

<∼ 10 TeV. A large At parameter here acts to reduce EW fine-tuning
whilst lifting mh up to ∼ 125 GeV. The manifestation of large At is a splitting of the top-squark
mass eigenstates. First and second generation sfermions can have masses ranging into the 10
TeV regime so long as they are sufficiently degenerate that naturalness contributions from D-
terms largely cancel amongst themselves[71]. Such heavy matter scalars provide a decoupling
solution to the SUSY flavor and CP problems[23] and if their mass is comparable to m3/2, then
one expects a decoupling solution to the gravitino problem as well. The heavy Higgs bosons
A, H and H± can range up to the 5-8 TeV level. While such heavy sparticle and Higgs masses
are consistent with naturalness, typically we do not expect large deviations from SM rates
in rare decay branching fraction measurements such as Bs → µ+µ− or b → sγ from natural
SUSY[26] due to the presence of heavy mediators.

We have also extracted mass bounds on sparticles by requiring ∆EW < 30 in a scan over
the 19 dimensional weak scale parameter set of the pMSSM. These bounds are shown as black
lines in Fig. 10 or as arrows when no bound arises. The pMSSM bounds on scalar masses tend
to be comparable to those from the NUHM2 model. However, bounds on gaugino masses are
severely different. By including leading two-loop contributions to the scalar potential, we find
a bound of mg̃ < 7 TeV arises in the pMSSM. Also, the bounds on the bino mass M1

<∼ 9 TeV

and wino mass M2
<∼ 6 TeV– which arise from neutralino and chargino loops– are much higher

than the corresponding upper bounds extracted from the NUHM2 model. A comparison of
upper bounds extracted from NUHM2 and pMSSM is listed in Table 2.

Our results have important implications for future particle physics facilities. Even the high
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Figure 10: Range of sparticle masses allowed by naturalness within NUHM2 model with ∆EW <
30. The black bars show upper bounds from the pMSSM model with 19 weak scale parameters.

luminosity LHC can explore only about half of natural SUSY parameter space. However, if we
require a more stringent naturalness condition of ∆EW

<∼ 10 then mg̃
<∼ 2 TeV and the most

natural region of parameter space should be accessible to LHC13 (LHC13 has a projected 5σ
discovery reach to mg̃ ∼ 2 TeV for 300-1000 fb−1 of data[62]).

The key feature of naturalness– that quasi-degenerate higgsinos lie in the 100-350 GeV mass
range– highly motivates the construction of an e+e− collider which can operate with

√
s > 2µ.

Such a machine, constructed initially as a Higgs factory, would turn out to be also a higgsino
factory which would usher in the era of SUSY discovery while simultaneously elucidating the
nature of dark matter. In this case, we would expect it to consist of an admixture of higgsino-like
WIMPs and axions[57].

Acknowledgments

This work was supported in part by the US Department of Energy, Office of High Energy
Physics.

9 Appendix

In this appendix, we present some details about the radiative contributions Σu
u(i) to the natu-

ralness measure ∆EW .
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mass NUHM2 pMSSM

µ 0.35 0.35

mHu(weak) 0.35 0.35

mA 5-8 10

M1 0.9 9

M2 1.6 6

mg̃ 4 7

mt̃1 3 3

mt̃2 9 9

mb̃1
9 9

mb̃2
10 10

mq̃ 10 (20) 10/none

m˜̀ 10 (20) 10/none

Table 2: Upper bounds on masses (in TeV) from naturalness with ∆EW < 30 from a scan
over NUHM2 model versus a scan over the 19 weak scale parameter pMSSM. The entries in
parentheses would result if one allows for non-degenerate generations of soft scalar masses
m0(1, 2) 6= m0(3)[26]. The lack of bounds after the slash symbol arise in the case where highly
degenerate squark and slepton masses develop[71].

9.1 Limits from Σu
u(t̃1,2)

Usually, the dominant contributions to Σu
u come from the top squarks, owing to the large value

of the top-squark Yukawa coupling ft. The top squark contributions are given by[25, 26]

Σu
u(t̃1,2) =

3

16π2
F (m2

t̃1,2
)

[
f 2
t − g2Z ∓

f 2
t A

2
t − 8g2Z(1

4
− 2

3
xW )∆t

m2
t̃2
−m2

t̃1

]
(10)

where ∆t = (m2
t̃L
−m2

t̃R
)/2 +M2

Z cos 2β(1
4
− 2

3
xW ), xW ≡ sin2 θW and where

F (m2) = m2

(
log

m2

Q2
− 1

)
. (11)

with the optimized scale choice Q2 = mt̃1mt̃2 . In the denominator of Eq. 10, the tree level
expressions for m2

t̃1,2
should be used.

In Fig. 11, we plot out the Σu
u(t̃1,2) contributions to ∆EW in the weak scale mt̃R

vs. At
plane where we take mt̃L

= 2.6mt̃R
which is typical for RNS models. We also adopt tan β = 10,

µ = 150 GeV and ft = 0.8365. In frame a), the blue shaded region bounded by the green

contour has ∆EW (t̃1) < 30. For At ∼ 0, then mt̃R

<∼ 2 TeV although for this value of At it is
essentially impossible to generate mh as high as 125 GeV[74]. For large stop mixing, i.e. large
|At|, then there still exist bands of low ∆EW (t̃1) at large |At| and mt̃R

∼ 1 TeV which occur
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Figure 11: Contour plot of a) ∆EW (t̃1) from Σu
u(t̃1) and b) ∆EW (t̃2) from Σu

u(t̃2) in the weak-
scale mt̃R

vs. At plane. The curves correspond to fixed values of ∆EW (t̃1,2) as labelled.

where the mass eigenvalue mt̃1 becomes very small, ∼ 100 GeV, so that F (m2
t̃1

) is suppressed.

Alternatively, the low ∆EW (t̃1) bands at large mt̃R
and large At occur due to cancellations in

the square bracket of Eq. 10.
In frame b), where ∆EW (t̃2) is shown, we again see large regions of suppressed fine-tuning

contributions. Here, mt̃R

<∼ 6 TeV is required for ∆EW (t̃2) < 30 although side-bands extend
out to large |At| at mt̃R

∼ 1 and 2.5 TeV. The upper band occurs where mt̃2/mt̃1 ∼ e so that
the log term in F (m2

t̃2
) cancels. The main point is that regions exist with large enough |At|

(so that mh → 125 GeV) and mt̃R
∼ 1 − 3 TeV where both ∆EW (t̃1,2) become small[25, 26].

For higher values of mt̃R
, one or the other of ∆EW (t̃1,2) necessarily becomes > 30, leading to

fine-tuning.
Since both Σ(t̃1) and Σ(t̃2) must be small, we show in Fig. 12 the resulting green contour

from requiringmax[∆EW (t̃1),∆EW (t̃2)] < 30. These combined results show thatmt̃R
is bounded

from above by about 4.5 TeV. The region below the thick black dashed contour is where
mt̃1 < mt.

9.2 Limits from Σu
u(b̃1,2)

In Fig. 13, we plot the contributions to max[∆EW (b̃1),∆EW (b̃2)] from the b̃1,2 squarks. We plot
for tan β = 10 and mb̃L

= 0.72mb̃R
but in the mb̃R

vs. µ plane. For b-squark contributions, we
have

Σu
u(b̃1,2) =

3

16π2
F (m2

b̃1,2
)

g2Z ∓ f 2
b µ

2 − 8g2Z(1
4
− 1

3
xW )∆b

m2
b̃2
−m2

b̃1

 (12)

23



Figure 12: Contour plot of max[∆EW (t̃1),∆EW (t̃2)] in the weak-scale mt̃R
vs. At plane. The

region below the thick dashed black contour is where mt̃1 < mt.

where ∆b = (m2
b̃L
−m2

b̃R
)/2−M2

Z cos 2β(1
4
− 1

3
xW ). We take fb = 0.13 and Q2 = mt̃1mt̃2 with

mt̃1 = 1275 GeV and mt̃2 = 3690 GeV.

From Fig. 13, the contribution ∆(b̃1) can become small even for very large mb̃R
∼ 20 TeV,

but only for large/fine-tuned values of µ. In contrast, ∆EW (b̃2) < 30 only for mb̃R

<∼ 7 TeV.
The latter provides a solid upper limit on mb̃2

which is usually ∼ mb̃R
.

9.3 Limits from Σu
u(W̃1,2)

The chargino contributions to ∆EW are given by

Σu
u(W̃

±
1,2) =

−g2

16π2
F (m2

W̃1,2
)

1∓ M2
2 + µ2 − 2m2

W cos 2β

m2
W̃2
−m2

W̃1

 . (13)

We plot the W̃1 and W̃2 contributions to ∆EW in Fig’s 14a), b) in the M2 vs. µ plane. The

contribution ∆EW (W̃1) is always small for µ
<∼ 1 TeV. In fact, the ∆EW (W̃1) contribution is

small all over the plane except when µ 'M2 in which case the denominator in Eq. 13 becomes
small so that ∆EW (W̃1) blows up. In contrast, from ∆EW (W̃2) we find that µ, M2

<∼ 5 TeV.
This illustrates that wino masses all by themselves cannot become too large.

9.4 Limits from Σu
u(Z̃1−4)

The contributions to ∆EW from the neutralino mass squared matrix are found to be[26]:
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Figure 13: Contour plot of ∆EW (b̃1, b̃2) from Σu
u(b̃1,2) in the weak-scale mb̃R

vs. µ plane. We
take mb̃L

= 0.72mb̃R
and tan β = 10.

Figure 14: Contour plot of ∆EW (W̃1, W̃2) from Σu
u(W̃1, W̃2) in the weak-scale M2 vs. µ plane

for tan β = 10.
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Figure 15: Contour plots of ∆EW (Z̃1, Z̃2, Z̃3, Z̃4) from Σu
u(Z̃i) in the weak-scale M2 vs. M1

plane for µ = 150 GeV and tan β = 10.

Σu
u(Z̃i) =

1

16π2

F (m2
Z̃i

)

D(Z̃i)

[
K(Z̃i)− 2(g2 + g′2)µ2M2

Z cos2 β(m2
Z̃i
−m2

γ̃)
]

(14)

where

K(Z̃i) = −m6
Z̃i

(g2 + g′2)

+m4
Z̃i

[
g2(M2

1 + µ2) + g′2(M2
2 + µ2) + (g2 + g′2)M2

Z

]
−m2

Z̃i

[
µ2(g2M2

1 + g′2M2
2 ) + (g2 + g′2)M2

Zm
2
γ̃

]
, (15)

D(Z̃i) =
∏
j 6=i(m

2
Z̃i
−m2

Z̃j
) andmγ̃ = M1 cos2 θW+M2 sin2 θW . The contribution tomax[∆EW (Z̃i)]

(i = 1 − 4) are shown in Fig. 15 in the M1 vs. M2 plane for µ = 150 GeV and tan β = 10.

From the figure we are able to extract that M1
<∼ 10 TeV while M2

<∼ 6 TeV. These bounds are
independent of any assumptions about gaugino mass unification, unlike those of Sec. 6.

9.5 Limits from Σu
u(h,H,H

±)

For Higgs bosons, it is found that[26]

Σu
u(h,H) =

g2Z
16π2

F (m2
h,H)

(
1∓ M2

Z +m2
A(1 + 4 cos 2β + 2 cos2 2β)

m2
H −m2

h

)
(16)

while
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Figure 16: Contour plot of max[∆EW (h,H,H±)] from Σu
u(h,H,H

±) in the weak-scale tan β vs.
mA plane.

Σu
u(H

±) =
g2

32π2
F (m2

H±). (17)

The contributions from each of h, H andH± are plotted in Fig. 16 asmax[∆EW (h),∆EW (H),∆EW (H±)]
in the mA vs. tan β plane. The contribution ∆EW (h,H,H±) < 30 requires mA < 8 TeV. The
largest term usually comes from the charged Higgs contribution. These values are somewhat
higher than that which comes from the m2

Hd
term in Eq. 4.
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