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We evaluate the third- and fourth-order baryon, charge and strangeness susceptibilities near a chi-
ral critical point using the Nambu-Jona-Lasinio model. We identify robust qualitative behaviours of
the susceptibilities along hypothetical freeze-out lines that agree with previous model studies. Quan-
titatively, baryon number fluctuations are the largest in magnitude and thus offer the strongest signal
when freeze-out occurs farther away from a critical point. Charge and strangeness susceptibilities
also diverge at a critical point, but the area where the divergence dominates is smaller, meaning
freeze-out must occur closer to a critical point for a signal to be visible in these observables. In case
of strangeness, this is attributable to the relatively large strange quark mass. Plotting the third-
and fourth-order susceptibilities against each other along the freeze-out line exhibits clearly their
non-montonicity and robust features.

I. INTRODUCTION

Heavy ion collision experiments and lattice simulations
are probing the phase diagram of QCD matter to help un-
derstand the chiral and deconfinement phase transitions
[1]. These experiments have shown that at low density,
the transition is a continuous cross-over at T ∼ 165 MeV
[2]. At high density, models lead to the expectation that
the transition is first order. This structure would be veri-
fied by locating a critical end point in chemical potential–
temperature plane where the first order line begins. The
heavy ion collision experiments yield statistical observ-
ables of QCD matter, including proton number and elec-
tric charge fluctuations [3, 4],and lattice studies have de-
veloped a variety of approaches to searching for structure
at µB 6= 0 [5–11].

To interpret the experimental data in terms of the
phase diagram, we need to relate them to signatures de-
rived from theory calculations. Since conventional lat-
tice methods are limited to low baryon density by the
sign problem, it is useful to complement the investigation
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with model studies in which we can thoroughly study
the phase structure at µ 6= 0. We use the models to
identify robust signatures of the critical point, such as
consequences of the large correlation length, that would
be manifest also near a critical point in QCD. The corre-
lation length becomes large near the critical point (CP)
because the CP is a second-order phase transition where
the mass term in the Landau effective potential for the
order parameter σ vanishes, mσ ∼ ξ−1 → 0. Therefore,
at the CP, the longest wavelength correlations (of order
the system “size”) can be investigated using the partition
function [12]

Z =

∫
Dσe− 1

T

∫
d3xΩ[σ] (1)

with the Landau effective action

Ω[σ] = Ω0 +
1

2
(~∇σ)2 +

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + ... (2)

Ω0 is the energy due to the vacuum expectation value
(vev) of the order parameter, σ is the fluctuation around
this vev, and for fluctuations at wavelengths similar to
the system size, we consider only the zero momentum

mode, so the kinetic term (~∇σ)2 vanishes.
The divergent parts of the fluctuations associated with

ξ →∞ at the CP (an infrared fixed point) are universal
for systems within the same universal class. The finite
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parts of the fluctuations are model dependent which can
be described by higher dimensional operators in the effec-
tive action. Using Eq. (1), statistical observables such as
baryon number fluctuations are related to fluctuations of
the order parameter [12]. For example, higher order, non-
Gaussian fluctuation moments are more sensitive to a
critical point because they diverge with a larger power of
the correlation length, as shown for the third and fourth
order susceptibilities [13–15].

In this approach, we hypothesize the presence of a
critical point, investigate the consequences, and compare
them to data. It is important to bear in mind that the
conditions we identify for a critical point can only be
necessary conditions but not sufficient conditions. Also,
there are many assumptions in our attempt to compare
with heavy ion data. For example, we assume the fire-
ball is near thermal equilibrium at freeze-out, though
critical slowing of dynamics would be important if the
fireball approaches the critical point chemical potential
and temperature [16]. Additionally, there can be changes
in expansion dynamics and interactions that produce
variations in particle spectra and acceptance indepen-
dent of critical phenomena, whose fluctuations must also
be controlled for [17]. To claim evidence of a critical
point in this context, we should identify as many model-
independent signatures as possible to corroborate inter-
pretation of the data in terms of a critical point.

In this work, we study the Nambu-Jona-Lasinio (NJL)
model, which is a QCD inspired field theoretic model
with spontaneous breaking of Chiral symmetry [18–20].
The model comprises distinct flavors of quarks that in-
teract via (effective) point-like 4-fermion operators. At
low density and temperature, the model exhibits a non-
zero chiral condensate 〈ψ̄ψ〉 6= 0 [21–25]. The goal is
to identify, in the NJL model results, characteristics of
fluctuation observables that are predicted to be model-
independent by analysis such as given in [13, 15]. Pre-
vious work using the NJL model has focused on third
moments [14], or electric charge susceptibilities [26]. Nu-
merical studies of the susceptibilities have also used the
Polyakov-loop improved NJL model (PNJL) [27] and
Dyson-Schwinger approaches [28]. As the Polyakov-loop
does not introduce any new effective degrees of freedom
at the chiral critical point, the PNJL model is in the same
(Ising) universality class as the NJL model and QCD.
Therefore, the NJL suffices as a first step to investigate
robust and model-independent fluctuation signatures of
the chiral critical point. Although an interesting next
step to check the conclusions of this paper in the PNJL
model, we expect our results to be reproduced. Indeed,
model-independent characteristics we discuss below have
been confirmed and cross-checked in the Ising [15] and
Gross-Neveu (GN) models [29].

There are two main goals in this work. The first goal is
to make use of the flavor dependence in the NJL model to
compute the complete set of susceptibilities on the phase
diagram. The currently open-ended experimental search
motivates a thorough and systematic search of the possi-

ble experimental observables to check all candidate mea-
surements that can aid the identification of the CEP. The
second goal is to check whether some model-independent
features obtained from a general effective potential anal-
ysis then confirmed by the GN model [29] will remain
in the NJL model, which belongs to the same universal-
ity class with QCD at the CP. These features include:
(1) The negative σ-kurtosis (〈σ4〉 − 3〈σ2〉2 < 0) region
occurs almost entirely in the symmetric (normal) phase.
(2) However, in addition to the σ-kurtosis, there are more
critical-mode correlators contributing to the fourth-order
baryon number susceptibility (∂4 lnZ/∂µ4

B) to determine
its negative region. (3) The peaks in non-Gaussian sus-
ceptibilities on a freeze out line obey an ordering in tem-
perature.

Among these features, we expect the first to be robust,
because the σ fluctuations can be understood from the
shape of the effective potential around the critical point
[29]. We also expect the second to happen, that is, there
are other terms as important as the σ-kurtosis to deter-
mine the negative region of (∂4 lnZ/∂µ4

B), again due to
analysis of a general effective action in Ref. [29] to iden-
tify terms with leading power divergence in ξ near the
CP. We will check it numerically using the NJL model.
We will also show the third feature occurs in the NJL,
supporting its robustness as an observable feature of crit-
ical fluctuations.

II. COMPLETE SET OF FLUCTUATION
OBSERVABLES

Fluctuations in conserved charges are important ob-
servables because they can be obtained in principle from
HIC experiments as well as lattice simulations. Not all
fluctuation moments can be measured in practice, and
we will discuss below the observationally most relevant
subset. The fluctuation moments are derivatives of the
partition function with respect to the chemical potentials
of the conserved charges:

χαβ =
∂2 lnZ
∂µα∂µβ

, χαβγ =
∂3 lnZ

∂µα∂µβ∂µγ
, ... (3)

If α = β = .... we shall also use χ
(n)
α = ∂n lnZ/∂µnα.

Recall the first derivative is the expected number,
∂ lnZ/∂µX ≡ 〈NX〉, which is conserved and there-
fore constrained by the initial conditions. For example,
since protons and neutrons comprise only up and down
quarks and strangeness is conserved by QCD reactions,
〈Ns〉 = 0. On the other hand, since the heavy nuclei
typically contain more neutrons than protons, the initial
state has an isospin asymmetry.

At quark level, we have three independent chemical
potentials µu, µd, and µs associated with the conserved
quark numbers for u, d, and s quarks, respectively. To
compare to experiment, we use the basis of conserved
charges {B,Q, S}. The hadron-level strangeness (large
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S) is defined so that K+ has S = +1 in agreement
with the experimental notation and opposite the quark-
level definition of the strange charge (small s) where the
strange quark has s = −1 and antistrange quark has
s = +1. We will use the {q, I, s} basis of charges, where
2µq = µu + µd and µI = µu − µd. Since the isospin po-
tential µI is also measurable at hadron-level, we can use
observations to constrain the chemical potentials, and so
also the set of susceptibilities we need to evaluate.

The chemical potentials µB , µQ, µS , µI at chemical
freeze-out are determined by fitting the observed par-
ticles yields to a statistical model of hadronization in the
fireball. Limited acceptance and experimental effects can
mean the fit values of the chemical potentials differ from
the theoretical expectation. The inital conditions for two
Au nuclei imply that 〈Q〉/〈B〉 ' 0.4 if all nucleons partic-
ipate in the collision, but in general the ratio is centrality
dependent and varies from event to event. Fixing the ra-
tio to 0.4 would imply that µI varies with µB but always
remains in the range −10 < µI < 0 MeV (µI = 0 yields
〈Q〉/〈B〉 = 0.5, which is close to 0.4 already). For such
small |µI | the change in the phase diagram is small (cor-
rections of order (µI/µBc)

2 or (µI/Tc)
2 near the CP),

and we have checked that the corresponding impact on
the observables is not noticeable. To fix µs, the data in-
dicate that when collision energy per nucleon pair in the
center-of-mass frame (

√
sNN ) is 7.7, 39, 200 GeV, µB/3 is

∼130, 30, 10 GeV and µS is ∼90, 20, 5, respectively [30].
Using Eq. (8) and isospin symmetry µu ' µd, this implies
µs is ∼40, 10, 5 GeV, even though theoretically 〈Ns〉 = 0
in the initial state. However, given µs .40 MeV which is
smaller than the lower range on the strange quark (cur-
rent) mass ms & 90 MeV, it is a good approximation to
set µs = 0 in our model calculations: dependence of the
phase diagram on µs is weak as long as for µs ≤ ms.

It is worth noting here that one piece of evidence
for non-equilibrium at chemical freeze-out is that par-
ticle yield fits are improved by including a strange quark
quenching factor γs, which observationally is ≤ 1. This
smaller-than-equilibrium abundance of both s and s̄ can
be understood considering that the phase space for pro-
ducing s, s̄ quarks is smaller due to their moderately
large mass ms & 90 MeV compared to the temperature
T . 160 MeV. That is, a substantially smaller fraction
of gluons (or qq̄ pairs) collide with center-of-mass energy
≥ 2ms > 180 MeV, which suppresses the reaction rate
for production in comparison to the lifetime of the fire-
ball [31]. Although it impacts the absolute abundance
of measured strange particles, it is linearly independent
of µs that controls net strangeness, i.e. the number of
strange minus the number of antistrange quarks Ns−Ns̄.
With µs = 0, there is no violation of strange quark num-
ber independent the value of γs.

Additionally, up-to-date analysis of the charged pion
ratio N(π−)/N(π+) ' e2µQ/T has consistently concluded
that µQ = µI = 0 for all

√
sNN ≥ 7.7 GeV. However, the

µQ fit is generally dependent on the fit temperature and
centrality, and some variation as a function of

√
sNN is

expected seeing as the total particle multiplicity is much
higher for larger

√
sNN . Even having small, nonzero

µQ would not change our results however, because the
phase diagram is weakly dependent on µQ as long as
µQ = µI � mπ/2 ' 65 MeV (this is also found in [33]).
Therefore, in our work we shall for simplicity set µI = 0
for all µB .

With µs = µI = 0, a complete set of nontrivial suscep-
tibilities up to fourth order is:

χqq, χII , χss,

χ(3)
q , χqss, χqII ,

χ(4)
q , χqqII , χqqss, χ

(4)
I , χIIss, χ

(4)
s

These are easy to count in the {q, I, s} basis, because
µI = µs = 0 implies that odd-order derivatives of µI
vanish identically. When we choose another basis, there
can only be 3, 3, and 6 independent susceptibilities at
2nd, 3rd and 4th order respectively. These are plotted in
Figs. 2, 3, 5 and 6.

While the long-wavelength correlations are dominated
by the iso-scalar critical mode σ and the isospin chem-
ical potential is “small” (as defined below) this relation
shows that charge fluctuations diverge like the baryon
fluctuations near the critical point [34]. As explained
in the next section and Appendix B, the second-order
isospin and strange susceptibilities do not have a singu-
larity at the critical point, even in the presence of flavor
mixing. By direct computation of χQ and χB in the
NJL model below, we will verify this fact. On the other
hand, because the correlation length in the fireball may
peak at ∼ 3 fm, only about twice the thermal correlation
length (and much smaller than infinity), the difference
between the singular iso-scalar critical mode contribu-
tion and the smooth model-dependent contributions to
correlations may be less dramatic.

To relate the B,Q, S susceptibilities to the derivatives
with respect to quark susceptibilities we need to rewrite
partition function in terms of the B,Q, S charges. The
grand canonical partition function can be expressed as

Z = Tre−β(Ĥ−µXN̂X) (4)

where N̂X is the number operator, i.e. the time com-
ponent of the conserved current. This implies that the
quark chemical potentials µq, µI , µs are related to the
chemical potentials associated with observable numbers
µB , µQ, µS using the linear relations between the particle
numbers. Starting from the definitions

Nq ≡ Nu +Nd, NI ≡
1

2
(Nu −Nd) ,

we have

NB =
1

3
(Nq +Ns) =

1

3
(Nu +Nd +Ns) (5)

NQ =
1

6
Nq +NI −

1

3
Ns =

1

3
(2Nu −Nd −Ns) (6)

NS = −Ns (7)
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These relations lead to

µB = 3µq −
1

2
µI (8a)

µQ = µI (8b)

µS = µq −
1

2
µI − µs (8c)

and conversely

µq =
1

3
µB +

1

6
µQ (9a)

µI = µQ (9b)

µs =
1

3
µB −

1

3
µQ − µS (9c)

Using Eq. (9) we can rewrite the observable susceptibil-
ities in terms of quark susceptibilities, which are deriva-
tives of the NJL potential. For example, the baryon sus-
ceptibility is

χB =
∂2 lnZ
∂µ2

B

=

(
1

3

∂

∂µq
+

1

3

∂

∂µs

)2

lnZ

=
1

9
χqq +

2

9
χqs +

1

9
χss (10)

Since net strangeness is conserved and equal to zero
〈Ns〉 = 0 independent of the u, d chemical potentials,

χqs =
∂

∂µq
〈Ns〉 = 0 (11)

so that the second term in Eq. (10) vanishes. Finally, we
have

χB =
1

9
χqq +

1

9
χss (12)

Similarly, the charge susceptibility simplifies

χQ =
1

36
χqq + χII +

1

9
χss (13)

because the cross term ∝ χus is zero. Note the pres-
ence of the strange susceptibility. This shows that both
the charge and baryon fluctuations are dominated by the
light quark fluctuations, as we expect [34]. The strange-
hadron susceptibility is

χS = χs (14)

III. SUSCEPTIBILITIES WITH FLAVOR

In Ref. [29], the explicit expressions for the quark

(baryon) susceptibilities χ
(3)
B , χ

(4)
B in terms of autocor-

relation functions of the σ zero mode 〈σn〉 were derived
for the GN model. The k-th order susceptibility requires
only correlation functions of k-th order and lower, see
Eqs. (6), (7), and (8) in [29]. While higher order sus-
ceptibilities typically diverge with larger powers of the

correlation length ξ [13], we found that the correspond-
ing autocorrelation function 〈σn〉 does not always pro-
vide the complete leading order contribution to χn. It
also implies that the evaluation of χn can be organized
diagrammatically corresponding to a finite set of terms in
perturbation theory. As we extend the analysis to NJL,
the diagrammatic expansion becomes more complicated,
however, we can use it to help explain the behaviour of
strange quark susceptibilities near the critical point.

When writing these susceptibilities in terms of order
parameter fluctuations, we must include three conden-
sates, one for each flavor, and hence three fluctuation
fields σα, α = u, d, s. Due to the anomaly-induced six-
quark interaction vertex, the σ “correlator” (statistical
covariance) ∂2Ω/∂σα∂σβ is not diagonal in flavor. This
fact is derived and a brief description of the diagrammatic
system is found in Appendix B.

We have checked numerically that the expansion in
terms of σ correlators is equivalent to taking the µ deriva-
tives directly at the minimum of the effective potential
by brute force, e.g. a finite difference method. The σ-
correlator diagrams provide an easier method to organize
and analyze the many terms arising from the evaluation
of higher order and multi-flavor susceptibilities.

FIG. 1. Diagrams (a) and (b) respectively correspond to the
first and second terms in Eq. (B3). Each crossed circle de-
notes an insertion of the q̄αqα operator arising from taking a
µα derivative to the pressure which is proportional to the log-
arithm of the partition function. The solid and dashed lines
denote the quark and the σα propagators. The cross denotes
the flavor mixing of the σ propagators.

Using the diagrammatic system developed in Appendix
B, we can quickly identify large contributions to flavor-
dependent observables. As mentioned above, the critical
mode is associated with light quarks, since this transi-
tion occurs at smaller µB . Therefore the most divergent
contributions are n-point correlation functions of the σq
fluctuations.

The diagrams shown in Figure 1 explain the behaviour
of the second order susceptibilities χII and χss. Since the
first derivatives with respect to µI and µs vanish iden-
tically at µI , µs = 0, the diagram on the right vanishes
because it has only a single µ-derivative acting on the
distribution function. As a result, there are no contribu-
tions involving σ-correlators to these susceptibilities, and
they show no divergence.

In Figures 2, 3, 5 and 6 we display the complete set
of quark susceptibilities χαβ... up to the fourth deriva-
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FIG. 2. The quark χqq, isospin χII , and strange(-quark) χss
susceptibilities. There is no singularity at the CEP in χII or
χss as expected, considering no σ-correlator terms contribute.

tives, from which we need to construct the fluctuations
of observables. We consider this an important interme-
diate step to have on record, to verify the analytic ar-
guments which susceptibilities are singular and for the
purposes of comparison to broad experimental searches,
which may also consider other susceptibilities. We plot
the susceptibilities on the phase diagram with respect to
quark chemical potential, which is linearly related to the
observable baryon susceptibility µB = 3µq Eq. (9) seeing
that we consider the case µI = 0. (This differs from the
definition of µB in [35]).

The third order susceptibilities are straightforwardly

FIG. 3. The non-vanishing third order susceptibilities
χqqq, χqII , χqss can be checked by taking the µq derivative
of the second order susceptibilities in Fig. 2. Note the scale
of the vertical axis here: the variation in χss implied by its
derivative is barely visible in Fig. 2 and is confirmed by plot-
ting constant T lines. χqII and χqss have singularities due to
the new contributing diagram in Fig. 4.

understood since each is a single µq derivative on a second
order susceptibilities. Thus, we can confirm by eye the
correct behaviours: χqqq is odd across the first order line,
corresponding to the peak seen in χqq. χqII has a peak
around the first-order line, corresponding to the jump in
χII but remains positive at high µ since χII continues
with positive derivative. The variation of χss, exhibited
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FIG. 4. Diagram contributing the singularity to χqII and
χqss.

by nonzero χqss, is too small in magnitude to see in Fig.
2. The derivative with µq contributes a singularity at
the CEP to each χqII and χqss, which arises from a new
nonzero diagram, shown in Fig. 4.

Among the fourth order susceptibilities, three

χ
(4)
q , χqqII , χqqss can be understood in the same way

as the third order susceptibilities looking at the µq-
derivatives of the previous plots. For the other three,
we can use the diagrammatic analysis.

χ
(4)
s can have a singular contribution. Again, the dia-

grams contributing are severely constrained by the fact
that odd derivatives in µs vanish. The only two dia-
grams with an even of number of µs derivatives on the
external legs are shown in Figure 7. The diagram on
the right does contain a σ correlator, which is flavor-
diagonal, connecting one s distribution function (loop)
to a second. This correlator is also singular at the light
quark critical point, due to the flavor coupling term in
the NJL Lagrangian. This fact is recognized in many
studies of NJL [27], that the strange condensate also has
a small discontinuity across the first order line. However,
the singularity at the CEP is suppressed quantitatively
by the small discontinuity and large strange quark bare
mass. With high precision numerics, it becomes visible
in Figure 10 below.

The same diagrams in Fig. 7 contribute to χ
(4)
I . With

the presence of σ-correlators for the light quarks, we can

expect some singularity, larger than in χ
(4)
s but smaller

than in χ
(4)
q due to some cancellation of leading terms.

For χIIss only the diagram on the right in Fig. 7 con-
tributes (because the (q̄IqI)

2
(q̄sqs)

2
operators cannot be

contracted to a single loop). The σ-correlator implies
χIIss is singular, but again the divergence is relevant only
in a very small region, even accounting for the ξ-scaling of
the coefficients weighting each σ-correlator contribution.

The cross-correlation in flavor χqqss receives a larger
singular contribution. To see this, consider the four pos-
sible diagrams shown in Figure 8. In each diagram, there
are at least two σq propagators, which together give a
factor ∝ ξ4. Further, we can estimate that the dominant
effect near the CEP is the diagram with the σu 3-point
function: involving 3 σ correlators (each scaling as ξ2)
and the 3-point vertex (scaling as (ξT )−1.5, obtained by
solving the gap equation near the CP), the diagrams has
an overall scaling ∼ ξ4.5, before the ξ-dependence of the
coefficient is applied. The dominance of this term is con-

FIG. 5. The fourth-order susceptibilities, χ
(4)
q , χ

(4)
I and χ

(4)
s .

Both χ
(4)
I and χ

(4)
s have singularities at the CEP, due to the

diagram in Fig. 7. However, the relative magnitude of the

peaks in χ
(4)
q and χ

(4)
I means that χ

(4)
q still dominates the

charge susceptibility χ
(4)
Q despite the small coefficient seen in

Eq. (16). The singularity in χ
(4)
s is seen in m2(S) defined in

Eq. (17) and plotted (Fig. 10) below.

firmed numerically. However, the overall magnitude of
the peak is exponentially suppressed by the strange mass
as compared to the singularities in light quark suscepti-
bilities, which we have checked by varying the bare mass
of strange quark.

Writing out the nongaussian hadron-level susceptibil-
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FIG. 6. The fourth-order susceptibilities, χqqII , χqqss and χIIss. χqqII and χqqss receive contributions from several singular
diagrams, shown in Fig. 8, but the overall magnitude remains small, suppressed by the strange quark mass in the case of χqqss.
χIIss also has a singularity from the same diagram shown in Fig. 7.

FIG. 7. Diagrams in the expansion of χ
(4)
s and χ

(4)
I . Due to

the µ ↔ −µ symmetry around µ = 0, the only nonvanishing
diagram involving a σ field correlator is at right, and can only
involve the σs (or σI) order parameter field.

ities, as expected, only 3 third-order susceptibilities and
6 fourth-order susceptibilities are linearly independent.

FIG. 8. Diagrams in the expansion of χuuss
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The third order susceptibilities are

χ
(3)
B =

1

27
χ(3)
q +

1

9
χqss (15a)

χ
(3)
Q =

1

216
χ(3)
q +

1

2
χqII +

1

18
χqss (15b)

χ
(3)
S = 0 (15c)

χBBQ =
1

54
χ(3)
q −

1

18
χqss (15d)

χBBS = −2

9
χqss (15e)

χBQQ =
1

108
χqqq +

1

3
χqII (15f)

1

6
χBSS = χBQS =

1

3
χQSS =

1

2
χQSS =

1

18
χqss (15g)

and the fourth order susceptibilities are

χ
(4)
B =

1

81
χ(4)
q +

2

27
χqqss +

1

81
χ(4)
s (16a)

χ
(4)
Q =

1

1296
χ(4)
q +

1

54
χqqss +

1

6
χqqII

+ χ
(4)
I +

2

3
χIIss +

1

81
χ(4)
s (16b)

χ
(4)
S = χ(4)

s (16c)

χBBBQ =
1

162
χ(4)
q −

1

54
χqqss −

1

81
χ(4)
s (16d)

χBBBS = −1

9
χqqss −

1

27
χ(4)
s (16e)

χBBQQ =
1

324
χ(4)
q −

1

108
χqqss +

1

9
χqqII

+
1

9
χIIss +

1

81
χ(4)
s (16f)

χBBSS =
1

9
χqqss +

1

9
χ(4)
s (16g)

χBQQQ =
1

648
χ(4)
q +

1

108
χqqss +

1

6
χqqII

− 1

3
χIIss −

1

81
χ(4)
s (16h)

χBQQS =
1

36
χqqss −

1

3
χIIss −

1

27
χ(4)
s (16i)

χBQSS =
1

18
χqqss −

1

9
χ(4)
s (16j)

χQQQS =
1

36
χqqss + χIIss +

1

27
χ(4)
s (16k)

χQQSS =
1

36
χqqss + χIIss +

1

9
χ(4)
s (16l)

χBBQS = −1

9
χBSSS =

1

9
χQSSS =

1

27
χ(4)
s (16m)

Based on the above analysis, the behaviour of these sus-
ceptibilities near a critical point (magnitude and shape)
are dominated by the light quark susceptibilities, such

as χ
(3)
q at third order and χ

(4)
q at fourth order. Only in

observables without these two terms can the singularity
due to the strange quark fluctuations be visible. We will
see these effects in the following section.

FIG. 9. m1 for B,Q on the phase diagram. With µs = 0, m1

for S is zero for all µq, T .

IV. CHARACTERISTICS OF THE
SUSCEPTIBILITIES

Here we display the numerical results for the fluctua-
tion observables of primary interest. The volume factors
in the susceptibilities are removed by considering ratios

m1(X) =
Tχ

(3)
X

χXX
, m2(X) =

T 2χ
(4)
X

χXX
, (17)

for X = B,Q, S. We display the results for m1,m2 for
each conserved charge in Figures 9 and 10. Note that
m1(S) ∝ χsss = 0, so we do not show it.

In m2(S), we see the divergence in χ
(4)
s explained

above. However, as seen in the scaling of the axes,
the magnitude of the singularity and area of the crit-
ical region are small. It requires high numerical pre-
cision to make the effect visible. Similarly we can
form observable ratios from other third- and fourth-
order hadron-level susceptibilities, involving strangeness
or cross-correlations in baryon and charge fluctuations.
The ratio TχBSS/χBB is proportional to χqss; however,
the divergence in χqss is effectively canceled by the diver-
gence in χqq, as suggested by comparing Fig.4 and Fig.1.
Consequently, the ratio shows no singular behaviour at
the CEP. For the ratio T 2χBBSS/χBB , χuuss in the nu-
merator diverges with a larger power of ξ than the de-
nominator, as seen by comparing the diagrams in Fig.8
and Fig.1, so there is a visible singularity peak at CEP.
The shape of T 2χBBQQ/χBB is very similar to m2(B)
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FIG. 10. m2 for each of B,Q, S on the phase diagram. The

bottom figure exhibits the singularity in χ
(4)
S = χ

(4)
s coming

from the diagram Fig. 7.

and m2(Q), because all three are dominated by the light
quark susceptibilities. The results in Fig. 11 confirm that
singularities in the isospin and strangeness susceptibili-
ties make small impact on the observable fluctuations.

The area of the positive and negative regions in the
m1,m2 for B,Q are seen more clearly in the density plots

Figs. 12 and 13. The shapes are consistent with previ-
ous results [14]. Note the area of the critical region for
the baryon number fluctuations is larger than the same
region for charge fluctuations, consistent with the overall
larger magnitude of the baryon fluctuations seen in Figs.
9 and 10. The area of the critical region for strangeness
is smaller still than for the charge fluctuations, and is
due to the small effect of the singularity on the strange
quark susceptibilities away from the critical point. In
the context of the conventional equilibrium fluctuations
framework to look for signatures of a critical point, the
large mass of the strange quark (comparable to T, µq)
suppresses fluctuation observables. However, this analy-
sis does not account for the possible impact of nonequi-
librium dynamics, such as critical slowing, on strangeness
yields and fluctuations.

In addition, following [15] and [29], we show the result
of extracting the values of m1 and m2 along various hypo-
thetical freeze-out lines chosen to pass varying distances
from the critical point. The freeze-out lines are shown in
the top frame of Fig. 14. The behaviour of m1(B) and
m2(B) along the freeze-out lines shows good qualitative
agreement with the previous GN model calculations, sup-
porting the robustness of these shapes and their variation
with distance from the CEP. The profile of charge fluc-
tuations along the freeze-out line is very similar to the
baryon fluctuations, with the apparent difference due to
the overall smaller amplitude of the variation. In Fig.16,
we show the ratios involving strangeness along the freeze-
out lines, T 2χBSS/χBB , m2(S) and T 2χBBSS/χBB . As
the critical region for strangeness is very small, these ra-
tios are not sensitive to the singularity of the strange
quark susceptibilities.

Finally, we show how m1 and m2 vary in relation to
each other along the freeze-out line.1 In Fig. 17, de-
creasing

√
sNN (increasing µB or decreasing T ) starts

from m1 = 0 and continues in an anti-clockwise trajec-
tory around the loop. The convergence of the lines at
high T (close to m1 = 0) is due to the convergence of the
hypothetical freeze-out lines in our modeling, see Fig. 14
(top). For the lower T freeze-out lines (green dashed
and blue dotted lines), the loop does not close. Even so,
the low T/high µ end of the trajectory is the same for
all freeze-out lines because the statistics and fluctuations
are given by m,µ-dominated thermal distributions there.
These plots show clearly the ordering of features

Tmin,m2
> Tmax,m1

> Tmax,m2
> TCEP (18)

which was found also in the GN and Ising models. (In
the Ising model, we plot the kurtosis of the magnetization
∂4M/∂H4 versus the skewness ∂3M/∂H3 along lines of
constant H, yielding a plot of the same shape as Fig. 17.)
Again, the magnitudes of the m1,m2 are much greater for

1 We thank R. Gavai for suggesting this plot.
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FIG. 11. m1 and m2 defined for non-vanishing cross-correlations in flavor. The vertical scale shows the singularities and
variations in magnitude here are much smaller than in flavor-diagonal m1,m2 shown in Figs. 9 and 10. Only χBBQQ/χBB
is comparable in magnitude, but according to Eq. (16) the singularity is dominated by the fourth-order quark susceptibility.

Consequently, χBBQQ ' (1/4)χ
(4)
B and the new information in the difference between these function is likely below experimental

sensitivity.

baryon fluctuations than for charge fluctuations. We ex-
pect these characteristics are robust. Nonequilibrium ef-
fects and higher-order, model-dependent corrections will
perturb the loop. However, given also the similarity to
the GN and Ising results, it appears large corrections
would be necessary to affect the ordering in Eq. (18). For
ratios with strangeness, this ordering is not seen, because
the critical region for strangeness is too small to impact
the observables along the chosen freeze-out lines.

V. CONCLUSION

In this paper, we have investigated the behaviour of
non-Gaussian fluctuations of baryon number, electric

charge and strangeness on the phase diagram. Our pur-
pose was to characterize their dependence at µ 6= 0 and
find robust qualitative features that can be used to help
interpret experimental data in the search for a QCD crit-
ical point. To this end, we evaluated the third- and
fourth-order susceptibilities in the NJL model, which is in
the same universality class as QCD. Our analysis is lim-
ited to the mean-field approximation which means that
we have not included several known corrections: modi-
fications to the critical exponents controlling the diver-
gence of the correlation length at the CEP, and model-
dependent corrections described by higher-dimensional
operators in the low energy effective field theory. The cor-
rections to the critical exponents are better known quan-
titatively, but model-dependent corrections are less well-
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FIG. 12. For baryon susceptibility, the figures show the sign
change of m1 and m2 on the phase diagram. Red areas are
negative, and blue are positive. The green point indicates the
location of CEP. The dashed thin line and the solid thick line
stand for the crossover line and the first order phase transition
line respectively.

controlled and their importance is not known in the con-
text of the physical fireball where the correlation length
of the critical mode may not be much larger than thermal
correlation length.

We have given the quantitative results for all second-,
third- and fourth-order susceptibilities. These plots show
the accuracy of our diagrammatic approach in predicting
the relevance of singular contributions in the context of
multiple flavors. From this study, we see that the light
quark susceptibilities remain everywhere the dominant
singular contribution at the critical point. This result
occurs despite both the isospin and strange-quark suscep-
tibilities being also singular; both are numerically much
smaller in magnitude than the light-quark susceptibili-
ties. This also explains why charge fluctuations contain

FIG. 13. m1 and m2 for charge, with colored regions to show
sign changes. The area of the negative regions is smaller, as
expected from the relative coefficient 1/4 for the most singular
contributions.

the same information as baryon fluctuations at leading
order.

Having validated model-independent predictions from
the diagrammatic analysis, we can identify several char-
acteristics of the third- and fourth-order susceptibilities
that are likely to be robust. These are:

1. Baryon number fluctuations are the largest in am-
plitude. This is because they are dominantly com-
posed of the leading singular contributions from
the light quark susceptibilities. Charge fluctua-
tions are suppressed by numerical coefficients, as
seen by comparing the expansions in Eq. (15) and
Eq. (16). Strangeness fluctuations are the smallest
in amplitude, though at high order they also show
a singularity at the critical point. The strangeness
fluctuations are suppressed by the relatively large
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FIG. 14. Top frame: Hypothetical chemical freeze-out lines on
the phase diagram to model the behaviour of the fluctuation
ratios as a function of

√
sNN . Middle and bottom frames: m1

and m2 of baryon number susceptibilities along these freeze-
out lines, identified with lines in the top frame by color and
dashing.

bare mass of the strange quark, ms ∼ T .

2. The “critical region” where we see non-
monotonicity in m1 and m2 along hypothetical
freeze-out linesis largest for baryon number fluc-
tuations. Therefore it provides the largest signal
for freeze-outs occurring farther in the µ, T plane
from the CP. This act follows from the amplitude
of the fluctuations being largest.

3. The qualitative profile of the third and fourth order
susceptibilities along the freeze-out line is model-
independent. m1 for both B,Q has a single peak
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0.0
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T HMeVL

m
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L
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2
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FIG. 15. Electrical charge m1 and m2 along the freeze-out
lines defined in the top frame of Figure 14. The overall mag-
nitude of variation is smaller than for m1(B),m2(B).

at a temperature greater than the CP. m2 has first
a minimum and then a peak as the critical point is
approached from high T (equivalently larger colli-
sion energy

√
sNN ). The m2 < 0 negative region

may be accessible at chemical freeze-out in the sym-
metry broken phase. These behaviours have been
seen in the GN and NJL models.

4. The features of the m1 and m2 freeze-out profiles
obey a numerical ordering temperature or collision
energy, given by Eq. (18). This is demonstrated by
plotting m2 versus m1 along the freeze-out line, and
we have argued this trajectory is difficult to change
in qualitative features.

It is our hope that these features can aid the interpreta-
tion of experimental data for the third- and fourth-order
susceptibilities. Although our results may support pre-
liminary indications of critical behaviour in the data, it
is clear that much more work is required to identify these
signatures with a QCD critical point.

Appendix A: NJL model

In our study, we consider the 3-flavor NJL model with
two degenerate light quarks and a heavier strange quark.
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FIG. 16. The strangeness-dependent ratios TχBSS/χBB ,
m2(S) and T 2χBBSS/χBB along the chemical freeze-out lines
defined in the top frame of Figure 14. The small magnitude
of the singularity in these observables means they do not sig-
nificantly impact even the freeze-out line passing nearest to
the CEP.

The quark level Lagrangian is

L =
∑

i=u,d,s

ψ̄i(/∂ −mi)ψi +GTr[(ψ̄λaψ)2 + (ψ̄γ5λaψ)2]

−K(det q̄(1− γ5)q + det q̄(1 + γ5)q) (A1)

The model parameters are the “bare” quark masses mi

and the 4-fermion couplings G,K. In addition, for nu-
merical evaluation of the effective potential below we
must introduce a momentum cutoff Λ. These five model
parameters (Λ, mu, ms, G, K) are fixed by matching
the four physical quantities pion, kaon, η′ masses and
the pion decay constant in vacuum, mπ = 138 MeV,
mK = 495 MeV, mη′ = 958 MeV and fπ = 93 MeV.
Being the arbitrary renormalization scale, Λ is not com-
pletely fixed, and one can choose to work at different Λs.
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FIG. 17. Top: m2(B) versus m1(B) along the freeze-out line.
Temperature decreases following the loop anti-clockwise, ex-
hibiting the temperature ordering Eq. (18). Middle: m2(Q)
versus m1(Q) along the freeze-out line, displaying the same
features as the top plot for baryon fluctuations, but with
smaller magnitude fluctuations for charge. Bottom: an anal-
ogous plot for strangeness-fluctuation observables. Although
χBBSS and χBSS both exhibit criticality, our chosen freeze-
out lines do not pass near enough to show the impact of the
divergence near the critical point.

We have used the following parameter set[23, 36, 37]

mu = md = 5 MeV, ms = 136 MeV, (A2)

Λ = 631 MeV, GΛ2 = 1.83, KΛ5 = 9.29 (A3)

Spontaneous symmetry breaking leading to nonzero light
quark condensates 〈ūu〉, 〈d̄d〉 6= 0 has greater impact
on phenomenology than the explicit breaking from their
masses, as is the case in QCD.

Although physical observables have been used to fix
the model parameters, the calculated physical observ-
ables may exhibit residual cutoff dependence. Parame-
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ter dependence in the NJL model has been studied in
Ref. [37]. Being an effective theory, the NJL lagrangian
contains an infinite tower of higher dimensional non-
renormalizable interactions. We have truncated the La-
grangian to include only two non-renormalizable interac-
tions. Therefore, even though the parameters of the La-
grangian are fixed by fitting to physical observables, pre-
dictions of other physical observables can contain residual
cutoff dependence.

To solve the model and study the phase diagram, we
take the mean field approximation. After shifting the
quark bilinears with their vacuum expectation values
q̄q → 〈q̄q〉 + ϕq, the quark fields can be integrated out,
and we obtain an effective potential depending only on
T, µq and ϕq (q = u, d, s). As long as the isospin chemical
potential

µI = µu − µd .
mπ

2
' 65 MeV (A4)

the u, d condensates are equal and transition at the same
µ, T . Pseudoscalar, vector and pseudovector diquark
condensates are also suppressed and can be ignored. Ex-
perimental data indicates that this condition holds even
at the lowest collision energies. The resulting effective
potential has the form

Ω = 2G(σ2
u + σ2

d + σ2
s)− 4Kσuσdσs +

∑
f=u,d,s

Ωf (A5)

Ωf = −2Nc

∫
d3p

(2π)3

(
EfΘ(Λ2 − p2) (A6)

+ T ln(1 + e−β(Ef−µf )) + T ln(1 + e−β(Ef+µf )
)

where Θ(x) is the Heaviside step function, E2
f = ~p2+M2

f .
The last two terms in Ωf are respectively the particle
and antiparticle fermi distributions including the chemi-
cal potential. The Mf are effective masses, functions of
the condensates

Mf = mf − 4Gσf + 2Kσf ′σf ′′ , (f 6= f ′ 6= f ′′) (A7)

The term off-diagonal in flavor implies that the strange
quark condensate is discontinuous where the light quark
condensates are discontinuous and vice versa. The larger
bare mass of the strange quark means the impact of ex-
plicit chiral symmetry breaking is larger than for the light
quarks, and its phase transition occurs only for larger
chemical potential and temperature, see [29] for discus-
sion how the position of the critical point depends on the
bare quark mass. If a critical point is accessible to lattice
or HIC, it will be the light quark critical line, which is at
lower chemical potential and temperature. However, due
to the flavor coupling, some evidence of the criticality
will be manifest in the strange susceptibilities. We will
discuss this point further below.

The phase diagram is determined by solving the cou-

pled set of gap equations

0 =
∂Ω

∂σα
=
∑
γ

(
4Gδαγ − 2K

∑
θ

|εαγθ|σθ

)
∆γ (A8)

∆γ = σγ −
∂Ωγ
∂mγ

taking the solution that corresponds to the global min-
imum of the effective potential. (|εαγθ| tensor is +1 in
entries with α 6= γ 6= θ.) We solve the system using two
independent numerical methods, as a quantitative check
on our results.

Appendix B: Diagrammatic system

µ-derivatives of the pressure include a term for each
flavor

dP (T, ~µ, ~σ)

dµα
=

∂P

∂µα
+
∑
β

∂P

∂σβ

∣∣∣∣
~σ(0)

∂σβ
∂µα

(B1)

The vectors ~µ, ~σ are shorthand for
(µu, µd, µs), (σu, σd, σs), and ~σ(0) subscript indicates the
derivative is evaluated at the minimum of the potential.
The last factor ∂σβ/∂µα can be rewritten using the fact
that the gap equation is independent of the chemical
potential

0 =
d

dµα

(
∂P

∂σβ

∣∣∣∣
~σ(0)

)
(B2)

=
∂2P

∂µα∂σβ

∣∣∣∣
~σ(0)

+
∑
γ

∂2P

∂σβ∂σγ

∣∣∣∣
~σ(0)

∂σγ
∂µα

Note that the second term contains a factor which has
the form of a two-point correlator of the σ field.

When we write out a general (second order) suscepti-
bility, we find two terms

χαβ =
d2P

dµidµj

=
∂2P

∂µα∂µβ
−
∑
γ,δ

∂2P

∂µα∂σγ

(
∂2P

∂σγ∂σδ

∣∣∣∣
~σ(0)

)−1
∂2P

∂σδ∂µβ

(B3)

A similar relation has been discussed by [38, 39]. The
first is the second derivative at the minimum of the po-
tential, and the second relates µ-derivatives at different
points through the σ two-point function. We express this
naturally by the diagrams in Figure 1. This “σ correla-
tor”

∂2Ω

∂σα∂σβ
=
∑
γ

(
4Gδαγ − 2K

∑
θ

|εαγθ|σθ

)
∂∆γ

∂σβ
(B4)

∂∆γ

∂σβ
= δγβ −

∂2Ωγ
∂m2

γ

(
4Gδβγ − 2K

∑
θ

|εβγθ|σθ

)
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is not diagonal in flavor space due to the anomaly-
induced interaction (proportional to K).

The third and fourth order susceptibilities include new
terms, such as the σ three- and four-point functions.
By writing out all the diagrams constructed from these
pieces, one may search higher order susceptibilities for
their most singular contributions.
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