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The long-range electromagnetic interaction presents a challenge for numerical computations in
QCD + QED. In addition to power-law finite volume effects, the standard lattice gauge theory
approach introduces non-locality through removal of photon zero-momentum modes. The resulting
finite volume effects must be quantitatively understood; and, to this end, non-relativistic effective
field theories are an efficient tool, especially in the case of composite particles. Recently an oddity
related to non-locality of the standard lattice approach was uncovered by the Budapest-Marseille-
Wuppertal collaboration. Explicit contributions from antiparticles appear to be required so that
finite volume QED results for a point-like fermion can be reproduced in the effective field theory
description. We provide transparency for this argument by considering point-like scalars and spinors
in finite volume QED using the method of regions. For the more germane case of composite parti-
cles, we determine that antiparticle modes contribute to the finite-volume electromagnetic mass of
composite spinors through terms proportional to the squares of time-like form factors evaluated at
threshold. We extend existing finite volume calculations to one order higher, which is particularly
relevant for the electromagnetic mass of light nuclei. Additionally, we verify that the analogous
finite volume contributions to the nucleon mass in chiral perturbation theory vanish in accordance
with locality.

PACS numbers: 12.39.Hg, 13.40.Gp, 13.60.Fz, 14.20.Dh

I. INTRODUCTION

Lattice QCD computations have progressed to the level
of providing a variety of quantitative input for strong in-
teraction phenomenology. Refinements to techniques and
advances in both algorithms and hardware continue to be
made, and this has rendered high-precision lattice deter-
mination of some observables in need of QED corrections.
Such corrections, moreover, are important in address-
ing the light quark mass difference from first principles,
computing the nucleon mass splitting, and accounting
for charged hadron scattering at low energies. Each of
these is a milestone in the further development of lat-
tice QCD. Since the original investigation of QED effects
on the spectrum of hadrons [1], there have been consid-
erable improvements in recent lattice calculations [2–8],
including an impressive computation of the hadron spec-
trum that dynamically includes all sources of strong and
electromagnetic isospin breaking [9].
In tandem with these lattice QCD + QED calcula-

tions, there has also been a focus on addressing theo-
retical aspects of the method and applications beyond
spectroscopy, for recent progress in these directions, see,
for example, [10–13]. In this work, we focus on QED
corrections to hadron masses at leading order in the fine-
structure constant, α. Specifically we investigate the per-
nicious finite volume effects that must be quantitatively
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understood in order to extract physical results. These
effects arise from altering the long-range behavior of the
electromagnetic interaction on a torus, and our analy-
sis specializes to the non-local formulation of finite vol-
ume electrodynamics, in which photon zero-momentum
modes are removed.1 An ideal framework for these com-
putations is that of non-relativistic QED (NRQED) [16–
18], which has recently been applied to composite non-
relativistic particles, such as the nucleon [19].
Within an NRQED framework, finite volume correc-

tions to the electromagnetic masses of hadrons have been
derived [11]. In the case of a point-like spin-half particle,
results derived in QED disagree with those from NRQED,
and this is supported by numerical data [9]. Quite re-
cently [12], it has been argued that the standard NRQED
description is missing explicit contributions from antipar-
ticles in finite volume on account of the non-locality. In
the present note, we provide transparency for this argu-
ment by considering the electromagnetic mass of point-
like scalar and point-like spinor particles in QED utilizing
the method of regions; in the present context, see [20, 21].
Additionally we extend these considerations to composite
scalar and spinor particles, and find there are no mod-
ifications to the finite volume effects from antiparticles
in the former case, while there are O(αL−3) effects in
the latter that depend on squares of time-like form fac-
tors evaluated at the pair-production threshold. Exist-
ing finite volume calculations are trivially extended to

1 A local formulation of finite volume QCD + QED using C∗

boundary conditions [14] has quite recently been proposed [15],
and shows considerable promise at ameliorating the size of finite
volume corrections.
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one order higher. The absence of such corrections is use-
ful to know, for example, in assessing the effect of finite
volume on the electromagnetic mass of light nuclei. We
comment briefly on the nucleon-antinucleon contact op-
erators in chiral perturbation theory, however, their finite
volume contributions to the nucleon mass are shown to
vanish due to locality of finite volume QCD.

The organization of this note is as follows. First in
Sec. II, we consider the case of point-like particles in
QED. For scalars and spinors, we determine the finite-
volume electromagnetic mass to leading order in α, in-
cluding both power-law and exponential contributions.
These results are contrasted with those obtained by the
standard non-relativistic framework, in which the power-
law contributions should be reproduced. Disagreements
are linked to antiparticle contributions, as we exhibit by
employing the (asymptotic) method of regions. Includ-
ing particle-antiparticle contact interactions in the non-
relativistic effective field theory settles the disagreement.
These observations are then utilized to extend to the
more germane case of composite scalars and composite
spinors in Sec. III. Finite volume effects for these com-
posite particles are determined to O(αL−5). In the scalar
case, there are no antiparticle contributions at finite vol-
ume, whereas for the spinor case, antiparticle modes show
up exclusively at O(αL−3), and are completely depen-
dent on the non-locality introduced by subtracting the
photon zero mode. By extending the point-like spinor
case considered in [12] to that of a composite spinor,
we find that the required volume effect from anitparti-
cle modes depends on the square of the time-like Sachs
magnetic form factor evaluated at threshold. We address
related concerns in the finite volume computation of the
nucleon mass using chiral perturbation theory in Sec. IV.
Antiparticle modes are argued not to make a contribu-
tion to the volume dependence of the nucleon mass due to
locality of finite volume QCD. Our findings are summa-
rized in Sec. V, details about the one-loop computations
for point-like particles are contained in Appendix A, and
shape coefficients used throughout are evaluated in Ap-
pendix B.

II. POINT-LIKE PARTICLES

To establish the need for antiparticle contributions,
we evaluate the finite volume corrections to the electro-
magnetic mass of charged, point-like particles. We con-
sider both scalars and spinors in QED to leading order in
the fine-structure constant. These results are contrasted
with the non-relativistic approach, and discrepancies in
the power-law corrections are transparently linked to an-
tiparticle contributions by employing the method of re-
gions.

FIG. 1. Electromagnetic mass corrections at O(α). Circles
denote the relativistic charge and charge-squared couplings of
the photon. The latter coupling is only present in the case of
scalar electrodynamics.

A. One-Loop Computations

In all of our computations, we consider the theory
of QED defined on a three-dimensional spatial torus of
length L in each direction, with the time direction kept
infinite. To avoid singularities associated with the long-
range nature of the electromagnetic interaction, we in-
troduce non-locality by removing the three-momentum
zero modes of the photon. The effect of this non-locality
surfaces in finite volume corrections. We work in the par-
ticle’s rest frame, pµ = (M,0). Results in moving frames
are not identical because the finite volume breaks Lorentz
invariance.

1. Scalar QED

The relativistic scalar QED Lagrangian density has the
form

L = DµΦ†DµΦ−M2Φ†Φ, (1)

where DµΦ = (∂µ + iQeAµ)Φ, along with DµΦ
† =

(∂µ− iQeAµ)Φ†, and e is the magnitude of the electron’s
charge. To leading order in the fine-structure constant α
and to all orders in the particle’s Compton wavelength
M−1, the long-range part of the electromagnetic mass is
determined by the sunset and tadpole diagrams shown in
Fig. 1. Of course there are also short-distance contribu-
tions required which renormalize the particle’s mass.
Evaluation of the Feynman diagrams is straightfor-

ward. In the rest frame and with the subtraction of the
photon’s three-momentum zero modes, we arrive at the
following intermediate expression for the finite volume
electromagnetic mass shift

∆MΦ = −iQ2e2
∫

dq0
2π

ˆ∑
∫

q

1

q2 + iǫ

×
[

2M + q0
2Mq0 + q2 + iǫ

− 3

2M

]

. (2)

Throughout, finite volume corrections to a quantity M
are defined by ∆M = M(L) − M(∞), and for brevity
we employ the notation

ˆ∑
∫

q

f(q) ≡ 1

L3

∑

n 6=0

f

(

2πn

L

)

−
∫

dq

(2π)3
f(q), (3)

where the hat denotes exclusion of the three-momentum
zero mode.
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The finite volume correction shown in Eq. (2) evaluates
to

∆MΦ

M
=

∆M (1,2)

M
− 6πQ2α

(2πML)3/2
e−ML + · · · , (4)

where, for illustrative purposes, we have retained the
leading exponential correction, see Appendix A for the
full expression. The universal power-law finite vol-
ume correction ∆M (1,2) appearing above is the same
for all particles [9, 11], includes terms at O(αL−1) and
O(αL−2), and has the explicit form

∆M (1,2)

M
=

Q2α

2πML
c2 +

Q2α

(ML)2
c1. (5)

The parameters cj above are pure numbers that reflect
the modes allowed in the spatial geometry; and, for a
spatial torus, they are defined by

cj =
∑

n 6=0

1

|n|j −
∫

dn

|n|j , (6)

see Appendix B for their evaluation.
In considering non-relativistic effective field theories

below, only the power-law finite volume dependence can
be determined. To this end, it is helpful to cast the finite
volume correction, Eq. (4), in the form

∆MΦ

M
= Q2α

[

c2
2π
ξ + c1 ξ

2 − 3√
2π
ξ

3

2 exp

(

−1

ξ

)

+ · · ·
]

,

(7)
where the small dimensionless parameter ξ is defined
by ξ = (ML)−1. Higher-order terms neglected above
all depend exponentially on the volume. Consider-
ing an expansion in ξ, the power-law corrections rep-
resent perturbative contributions that can be obtained
in the effective theory, while exponential corrections are
non-perturbative and are thus inaccessible in the non-
relativistic effective theory.

2. QED

The interactions of a point-like spin- 12 particle Ψ in
QED are described by the Lagrangian density

L = Ψ(iD/−M)Ψ, (8)

where DµΨ = (∂µ + iQeAµ)Ψ. To leading order in the
fine-structure constant α and to all orders in the parti-
cle’s Compton wavelength M−1, the long-range part of
the electromagnetic mass is determined by the sunset di-
agram shown in Fig. 1. Short-distance contributions that
renormalize the particle’s mass are also required but not
depicted.
As in the scalar case, evaluation of the Feynman dia-

gram in the particle’s rest frame is straightforward. We

provide an intermediate stage of the calculation, at which
point we have the finite volume mass shift

∆MΨ = −2iQ2e2
∫

dq0
2π

ˆ∑
∫

q

1

q2 + iǫ

M − q0
2Mq0 + q2 + iǫ

.

(9)

Carrying out the computation of the finite volume effect,
we arrive at

∆MΨ

M
=

∆M (1,2)

M
+

3πQ2α

(ML)3
− 24πQ2α

(2πML)3/2
e−ML + · · · ,

(10)
where the universal finite volume correction is given
in Eq. (5), and only the leading exponential has been
shown, see Appendix A. Unlike the scalar case, there is
a non-vanishing correction beyond the universal power-
law terms because of the subtraction of photon’s zero-
momentum mode. The power-law corrections are identi-
cal to those obtained in [9].

B. Non-Relativistic Particles

Now we wish to address whether the finite volume be-
havior for scalar and spinor particles can similarly be
obtained using non-relativistic effective theory. To ac-
complish this, we shall transparently derive the non-
relativistic results using the method of regions [20, 21].
The advantage of this method is a one-to-one correspon-
dence between regions of integration and the effective de-
grees of freedom. Of course, the disadvantage is that this
asymptotic method can only be applied in perturbation
theory, and so will not produce exponential corrections.
Furthermore, the method does not straightforwardly ex-
tend to composite particles.
We start from the relativistic expressions for the mass

shift given in Eqs. (2) and (9), and inspect the pole struc-
ture of the integrand. In terms of pole structure, both
expressions are essentially the same. The photon prop-
agator has poles exclusively in the small-energy regime,
q0 ∼ |q| ≪M . On the other hand, the propagator of the
matter field has a pole in this small-energy regime, as well
as a pole in the regime q0 ∼ −2M , |q| ≪ M , which cor-
responds to the contribution from an intermediate-state
antiparticle. To exhibit this, we write the propagator of
the matter field as

1

2Mq0 + q2 + iǫ
=

1

(q0 − E+ + iǫ)(q0 − E− − iǫ)
, (11)

with

E+ = −M +
√

M2 + q2 =
q2

2M
+ · · · ,

E− = −M −
√

M2 + q2 = −2M − q2

2M
+ · · · , (12)

where E± correspond to the particle and antiparticle
states, respectively.
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In the small-energy region of integration, we can ap-
proximate the antiparticle pole by analytic terms because
q0 ≪ |E−|. Inserting the expansion

1

q0 − E− − iǫ
= − 1

E−

∞
∑

j=0

(

q0
E−

)j

, (13)

and integrating term-by-term clearly leads to an asymp-
totic expansion, but produces the non-relativistic effec-
tive field theory answer. As the poles from the photon
and particle state are retained, these are the correspond-
ing effective degrees of freedom. For the scalar case, this
non-relativistic expansion gives rise to the finite volume
electromagnetic mass shift

∆MNR
Φ = ∆M (1,2), (14)

where all higher-order power-law corrections, which have
the form (ML)−2j−3 for j = 1, 2, · · · , are absent due
to vanishing of the corresponding shape coefficients c−2j ,
see Appendix B. In this way, we recover the finite volume
effect that is perturbative in the parameter ξ, see Eq. (7).
For the spinor case, the non-relativistic expansion gives

us the finite-volume mass shift

∆MNR
Ψ

M
=

∆M (1,2)

M
− 3πQ2α

2(ML)3
c0, (15)

in which the O(αL−3) contribution is a factor of two
smaller than the correct result appearing in Eq. (10).
This discrepancy has been discussed in [9, 12].
Given the discrepancy, we see transparently that the

finite volume effect from antiparticles cannot be repre-
sented by the series of local terms obtained in Eq. (13).
Further degrees of freedom are hence required. No-
tice that this analytic antiparticle approximation can be
found by ignoring issues of convergence, and directly se-
ries expanding the integrands in Eqs. (2) and (9) as a
function of M−1 before integration.

C. Non-Relativistic Antiparticles

The discrepancy between relativistic and non-
relativistic results can be resolved by including contri-
butions from antiparticles. We first show that this is
the case using the method of regions. Then we turn to
accounting for antiparticle contributions in the effective
theory.
Returning to Eqs. (2) and (9), we investigate the re-

gion of integration where the antiparticle contribution
is dominant. In this region, we have q0 ∼ −2M and
|q| ≪ M , for which the particle contribution can be ap-
proximated by a tower of analytic terms. The photon
propagator, moreover, can similarly be approximated by
analytic terms in this region. Performing a series expan-
sion about p0 ≡ q0 + 2M ≈ 0, we have the leading-order

=⇒

FIG. 2. The fully relativistic sunset diagram reduces to the
antiparticle tadpole topology of the effective theory in the
limit of large photon virtuality. The antiparticle tadpoles give
the contributions in Eqs. (17) and (18) that are required for
the effective field theory to reproduce the QED results.

replacements

(q0 − E− − iǫ)−1 = (p0 − E− − 2M − iǫ)−1,

(q0 − E+ + iǫ)−1 = −(2M + E+)
−1 +O(p0),

(q2 + iǫ)−1 = (4M2 − q2)−1 +O(p0). (16)

Notice that E− + 2M vanishes for large M . The phys-
ical interpretation of these approximations is that only
the antiparticle part of the matter field propagates in
the loop. The particle part has been replaced by ana-
lytic terms. This is additionally the case for the photon
propagator, as the photon necessarily has large virtual-
ity, q2 ≥ (2M)2. In the effective field theory description,
we thus have the external states coupled to virtual an-
tiparticle modes via local operators, see Fig. 2.
Inserting the above approximations into the scalar elec-

tromagnetic mass shift, Eq. (2), and subsequently ex-
panding the integrand in q2/M2, we arrive at the leading
contribution from the antiparticle pole

∆Manti
Φ = i

Q2e2

8M2

∫

dp0
2π

ˆ∑
∫

q

p0

p0 +
q2

2M − iǫ
. (17)

Evaluation of the integral does not produce a finite
volume correction at O(αL−3), and explains why non-
locality has no effect on point-like scalars.
For the spin- 12 case, the leading antiparticle contribu-

tion takes the form

∆Manti
Ψ =

3iQ2e2

4M2

∫

dp0
2π

ˆ∑
∫

q

1

p0 − iǫ
, (18)

on account of inserting the approximations in Eq. (16)
into the expression for the mass shift, Eq. (9). In turn,
the missing contribution to the spinor’s finite volume
electromagnetic mass shift emerges

∆Manti
Ψ

M
= − 3πQ2α

2(ML)3
c0, (19)

which is such that ∆MNR
Ψ +∆Manti

Ψ = ∆MΨ.
To capture such missing contributions in an effective

field theory framework, we thus must retain antiparticle
degrees of freedom. We begin by considering the scalar
case, for which we must demonstrate that such contri-
butions are absent. The Lagrangian density including
the non-relativistic scalar field φ, and the non-relativistic
anti-scalar field χ schematically reads

L = Lpt.(φ, e) + Lpt.(χ,−e) + Lc(φ, χ), (20)
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=⇒

FIG. 3. Particle-antiparticle annihilation diagrams in the full
and effective theory. The necessarily large photon virtuality
reduces to a contact interaction in the effective theory.

where Lc(φ, χ) contains contact interactions and is our
present focus. The non-relativistic fields interact through
the exchange of photons given the couplings for point-
like particles. These interactions reproduce the photon-
exchange interaction of the relativistic theory order-by-
order inM−1, with one exception: the annihilation chan-
nel. In this channel, the intermediate-state photon has
large virtuality which excludes this type of interaction
from the effective theory. For large virtuality, however,
the photon propagator contracts to a point, and the an-
nihilation process thus appears in the effective theory in
the form of contact interactions between particles and an-
tiparticles [22]. These appear in Lc(φ, χ). Matching the
relativistic annihilation diagram to a contact interaction,
see Fig. 3, we find

Lc(φ, χ) = − Q2e2

16M4

(

φ†i
↔

D χ

)

·
(

χ†i
↔

D φ

)

, (21)

as the leading contribution in the limit of small momenta.
In the above expression, we define the Hermitian deriva-

tive i
↔

Dµ by its action A†i
↔

DµB ≡ A†[iDµB]− [iDµA
†]B.

Notice from Eq. (16), that the limit of small momenta
corresponds to expanding the photon’s virtuality above
the threshold for pair production.
Operators of the contact Lagrangian produce contri-

butions to the particle’s self energy through tadpole dia-
grams. The antiparticle tadpoles arise from self contrac-
tion of the antiparticle fields in the contact Lagrangian.
These are the contributions considered in [12] for a point-
like spin-half particle. Physically the tadpole diagram
takes into account the contribution to the relativistic
sunset diagram in the limit of large photon virtuality,
see Fig. 2. Computation of the antiparticle tadpole di-
agram in the effective theory generated by the operator
in Eq. (21) gives zero on account of the vanishing of c−2.
Thus the finite volume correction for a point-like scalar
remains universal in the effective theory.
There are operators of lower mass dimension in the

contact Lagrangian, such as

Lc(φ, χ) = −C Q2

4M2

(

φ†χ
) (

χ†φ
)

, (22)

that produce finite volume contributions to the electro-
magnetic mass. The contact operator above leads to an
electromagnetic mass shift of the scalar

∆M c
Φ

M
=

CQ2

8(ML)3
c0, (23)

TABLE I. Low-energy constants for composite hadrons in
sNRQED and NRQED. Listed are those coefficients required
in the present study.

Constant sNRQED NRQED

cF - Q+ κ

cD
4

3
M2 < r2 > Q+ 4

3
M2 < r2E >

cM
2

3
M2 < r2 > 2

3
M2 < r2E > −

1

2
κ

cS - Q+ 2κ

cA1
16πM3βM Q2 + 16πM3βM

cA2

8

3
QM2 < r2 > 8

3
QM2 < r2E > +2κ2

− 32πM3(αE + βM ) − 32πM3(αE + βM )

which is non-vanishing due to the zero-mode subtraction.
The coefficient C of this lower-dimensional contact opera-
tor, however, requires matching scalar QED at one-loop,
for which C ∼ α2, and the corresponding finite volume
correction from antiparticles scales as O(α2L−3), which
is beyond our present considerations.
In the spin- 12 case, the relevant particle-antiparticle

contact operator was identified in [12], and we summa-
rize their findings. For a non-relativistic spinor field ψ
and its antiparticle χ, the leading contact operator has
the form

L(s)
c (ψ, χ) = −Q

2e2

4M2
(ψ†σχ) · (χ†σψ), (24)

where the coefficient has been determined by matching
to QED at tree level [22]. The antiparticle tadpole gen-
erated from this spin-dependent contact interaction re-
produces the missing contribution to the electromagnetic
mass, Eq. (19). Having accounted for antiparticle con-
tributions to the finite volume electromagnetic mass of
point-like particles, we now extend our consideration to
composite particles using NRQED.

III. COMPOSITE HADRONS

Given our demonstration for point-like particles, it is
natural to extend the discussion to composite hadrons.
In the context of non-relativistic effective field theories,
we begin with composite scalars, and then move on to
composite spinors. In each case, we determine the finite
volume electromagnetic mass shift to O(αL−5), which is
one order beyond that computed in [11], and include an-
tiparticle contributions, which are shown to depend on
squares of time-like electromagnetic form factors evalu-
ated at threshold.

A. Composite Scalars

Scalar NRQED (sNRQED) consists of three parts: the
Lagrangian density for the particle field, that of the
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antiparticle field, and finally their contact interactions.
Thus we write the sNRQED Lagrangian density in the
form

LsNRQED = L(φ, e) + L(χ,−e) + Lc(φ, χ), (25)

where the particle and antiparticle fields are described by
the Lagrangian density

L(φ, e) = φ†

[

i
↔

D0 +

↔

D2

2M
+ ecD

[∇ ·E]

8M2
+

↔

D4

8M3

+iecM

{

Di, [∇×B]i
}

8M3
+ e2cA1

B2 −E2

8M3

−e2cA2

E2

16M3
+ ecX1

[

D2,D ·E +E ·D
]

16M4

+ecX2

{

D2, [∇ ·E]
}

16M4
+ ecX3

[∇2∇ ·E]

16M4

+ie2cX4

{

Di, (E ×B)i
}

16M4

]

φ. (26)

The constants appearing above have been determined
in [23], and the ones relevant for the present work are
given in Table I.
To the order we work, only the leading contact interac-

tion Lagrangian density is required. To leading order in
α, the contact operator is given in Eq. (21), however, the
coefficient of this operator must be modified to reflect the
composite nature of the hadron. Due to the perturbative
nature of QED, it suffices to consider the one-photon an-
nihilation diagram in Fig. 3 to perform the matching.
Unlike the point-like case, the annihilation vertex is re-
placed by the full hadronic amplitude, for example

〈Φ(p)Φ†(p′)|Jµ|0〉 = e(p′ − p)µFΦ(s), (27)

where s = (p′ + p)2 ≥ 4M2 is the photon’s virtuality,
and FΦ(s) is the time-like electromagnetic form factor of
Φ. Carrying out the computation of the annihilation dia-
gram for a composite scalar and performing the threshold
expansion leads us to the contact Lagrangian density

Lc(φ, χ) = −e
2|F|2
16M4

(

φ†i
↔

D χ

)

·
(

χ†i
↔

D φ

)

, (28)

where F ≡ FΦ(s = 4M2) is the form factor at thresh-
old. For a point-like particle, we accordingly recover the
contact interaction in Eq. (21) from that in Eq. (28).
With the specification of Eq. (25), we have all ingre-

dients necessary to compute the finite volume electro-
magnetic mass shift of the composite scalar particle to
O(αL−5). Repeating the calculation at O(αL−4), we re-
cover the result derived in [11]. We must augment this
effective field theory calculation by considering two ad-
ditional classes of diagrams. The first class consists of
photon-mediated tadpoles, while the second class con-
sists of antiparticle tadpoles. The photon-mediated tad-
poles arise from the particle exchanging a photon with a
particle or antiparticle loop, see Fig. 4. Both of these con-
tributions are potentially non-vanishing in the effective

+ = 0

FIG. 4. Photon-mediated tadpole diagrams in the effective
theory. The circles and squares denote the various photon
couplings present in the NRQED Lagrangian density. For
each possible square vertex, the sum of particle and antipar-
ticle loops vanishes for a given circle vertex due to charge
conjugation.

theory, however, the sum of the two necessarily vanishes
by charge conjugation invariance. Two photons coupling
to particle and antiparticle loops are charge conjugation
even and do not cancel; however, these effects are O(α2)
and beyond our present considerations.

The antiparticle tadpole contribution has been deter-
mined above for a point-like particle, and it is trivial to
modify this result for a composite scalar: Q2 → |F|2.
This contribution is at O(αL−5), and while there are
other such terms at this order, they cannot affect the fi-
nite volume mass because the accompanying shape coeffi-
cient vanishes, c−2 = 0. Thus there is no modification to
the result of [11] one order beyond what was considered
in that work. For completeness, we cite the O(αL−5)
result here

∆Mφ = ∆M (1,2) +
2πα

3L3
Q < r2 > −4π2

L4
(αE + βM ) c−1

+
8π3α

3ML4
Q < r2 > c−1 +O(αL−6). (29)

Notice that in the above expression, there is no con-
tribution from anti-scalar modes. This result is actually
true to all orders inO(L−1), and to leading order in α. As
we have seen, such contributions arise from antiparticle
tadpole diagrams generated by the contact interactions
in the effective theory. The coefficients of these operators
are determined from matching, which requires expanding
the time-like electromagnetic form factor about thresh-
old, see Eq. (27). Relative corrections in the threshold
expansion of the annihilation amplitude always contain
even powers of the momentum. As a result, the contact
operators in the effective theory for a composite scalar
contain an even number of derivatives (which also fol-
lows on account of invariance under parity). Based on
power counting, the corresponding antiparticle tadpole
diagrams are thus accompanied by the shape coefficients
c−2j , for j = 1, 2, · · · . Because all of these shape coeffi-
cients vanish, see Appendix B, there are no contributions
from anti-scalar modes in the finite volume electromag-
netic mass of a composite scalar to O(α). The same
conclusion does not apply to O(α2) finite volume correc-
tions.



7

B. Composite Spinors

Now we consider finite volume corrections to the elec-
tromagnetic mass of a composite spin-half particle. By
retaining the leading contribution from composite spin-
half antiparticles in NQRED, we derive finite volume cor-
rections valid to O(αL−5). This requires matching four-
fermion operators for a composite spinor and generalizes
the computation of [12].
A composite spinor hadron can be described at low-

energies by the NRQED Lagrangian density. There are
three terms necessary: the Lagrangian density for the
spin-half particle ψ, that for the spin-half antiparticle
χ, and the Lagrangian density containing their contact
interactions. Writing down these three terms, we have

LNRQED = L(s)(ψ, e) + L(s)(χ,−e) + L(s)
c (ψ, χ), (30)

where the superscript is used to denote that the La-
grangian density is that relevant for a spinor field.
For the spin-half particle field, the Lagrangian density
L(s) can be decomposed into spin-independent and spin-
dependent terms

L(s)(ψ, e) = L(ψ, e) + L(σ)(ψ, e), (31)

where the spin-independent part L(ψ, e) has precisely the
form given in Eq. (26).
The spin-dependent NRQED Lagrangian density reads

L(σ)(ψ, e) = e ψ†

[

cF
σ ·B
2M

+ icS
σ · (D ×E −E ×D)

8M2

+ cW1

{D2,σ ·B}
8M3

− cW2

Diσ ·BDi

4M3

+ cp′p
{σ ·D,B ·D}

8M3

]

ψ. (32)

The coefficients of spin-dependent operators that are per-
tinent for our computation are given in Table I. The La-
grangian density for the spin-half antiparticle is related
by charge conjugation to that of the spin-half particle,
L(s)(χ,−e) = L(χ,−e) + L(σ)(χ,−e).
Unlike the contact interaction in the scalar case, the

four-fermion contact interaction required in the spinor

calculation appears at O(M−2), and hence makes a con-
tribution to the electromagnetic mass in finite volume of
O(L−3). The leading contact operator generated atO(α)
is contained in the Lagrangian density

L(s)(ψ, χ) = −C(s) e2

4M2
(ψ†σχ) · (χ†σψ). (33)

The coefficient of this operator, C(s), must be determined
by matching the hadronic annihilation amplitude with
that computed in NRQED. As with the scalar case, the
annihilation process can be computed perturbatively in
QED using the annihilation diagram shown in Fig. 3.
The hadron one-photon annihilation vertex must be de-
scribed non-perturbatively by time-like electromagnetic
form factors, for example

< ψ(p)ψ(p′)|Jµ|0〉 = eu(p)

[

F1(s)γµ +
iσµνq

ν

2M
F2(s)

]

v(p′),

(34)
with qµ = p′µ + pµ, and s = q2 ≥ 4M2. The matching
computation is an extension of that in [22], and results
in the value of the coefficient C(s) = |GM |2, where

GM ≡ F1(s = 4M2) + F2(s = 4M2), (35)

is the time-like Sachs magnetic form factor evaluated at
threshold. In the case of a point-like fermion, GM → Q,
and this ensures the result of [12] is recovered.

Having determined the coefficient of the fermion-
antifermion contact operator, we have all of the necessary
terms of the NRQED Lagrangian density, Eq. (30), to
perform the finite volume mass calculation to O(αL−5).
The result is identical to that derived in [11] aside from
the additional term at O(αL−3) arising from the an-
tifermion tadpole shown in Fig. 2. As with the scalar
case, the sum of photon-mediated tadpole diagrams
shown in Fig. 4 vanishes, as do such diagrams with a ki-
netic energy insertion. As a result, there are no O(αL−4)
corrections due to antiparticle modes. One order beyond
that computed in [11], we observe that all O(αL−5) con-
tributions are proportional to the shape coefficient c−2

which vanishes. For completeness, we give the full result
to O(αL−5) accuracy

∆Mψ = ∆M (1,2) +
πα

M2L3

[2

3
M2Q < r2E > +

1

2
Q2 +

3

2
|GM |2 + (Q+ κ)2

]

− 4π2

L4
(αE + βM ) c−1

+
π2α

M3L4

[

Q

(

4

3
M2 < r2E > −κ

)

− κ(Q+ κ)

]

c−1 +O(αL−6). (36)

Notice that the finite-volume effect from antiparticles in
the case of spinor particles is due to infrared regular-
ization, namely the subtraction of photon zero modes is

accompanied by the need to remove loop contributions in
the effective theory with vanishing antiparticle momen-
tum [12]. At higher orders in L−1, however, there are
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no finite volume contributions from antiparticle modes
at leading order in the fine-structure constant. As in the
case of a composite scalar, this happens on account of
parity invariance, which restricts the contact operators
to have even mass dimension. The corresponding an-
tiparticle tadpoles generated are hence accompanied by
the shape coefficients c−2j, with j = 0, 1, · · · . The only
non-vanishing antiparticle tadpole on a spatial torus is
that with j = 0. This contribution has been accounted
for in Eq. (36).
While the sole O(α) contribution from antiparticle

modes is suppressed by two orders relative to the leading
finite volume correction for charged spinors, the situation
is different for neutral spinors. The leading finite-volume
correction for a neutral spinor receives contributions from
the particle-antiparticle contact interaction. In the case
of the neutron, for example, we have

∆Mn =
πα

M2L3

(

κ2n +
3

2
|GnM |2

)

− 4π2

L4
(αnE + βnM ) c−1,

(37)

which is valid to O(αL−5). As the time-like form fac-
tors of the neutron are not very well known experimen-
tally [24], careful study of the finite volume effects for the
neutron electromagnetic mass could, in principle, con-
strain the magnetic form factor at threshold. In practice,
determining a small finite-volume effect through the elec-
tromagnetic mass of the neutron is quite challenging, as
the determination of baryon mass splittings already has
considerable computational demands [9].

IV. RELATED CHIRAL CONCERNS

It is instructive to contrast the electromagnetic mass of
the nucleon with the QCD self-energy of the nucleon. We
verify that finite volume contributions from the strong
nucleon-antinucleon annihilation process vanish due to
the locality of finite volume QCD.
At low energies, one can use chiral perturbation the-

ory to describe the long-range physics of the nucleon.
As a result, this effective field theory gives predictions
for the volume dependence of the nucleon mass in terms
of the pion Compton wavelength, m−1

π . For most lat-
tice QCD applications, one works in the p-regime, where
mπL ≫ 1, which ensures that zero modes of the pion
field do not become strongly coupled [25]. Strong cou-
pling of pion zero modes is quite similar to zero modes in
finite volume QED, which can be exemplified by giving
the photon a small mass [26]. The natural question to
address in light of our work is whether there are annihi-
lation contributions missing from standard chiral pertur-
bation theory analyses of the volume dependence of the
nucleon mass [27, 28]. Nucleon-antinucleon annihilation
is described by the amplitude depicted in Fig. 5. Un-
like the electromagnetic annihilation process, the strong
interaction annihilation is not dominated by one-pion ex-
change. The nucleon-pion interactions are weak only at

FIG. 5. Strong nucleon-antinucleon annihilation.

low energy, whereas the electromagnetic interaction re-
mains weak well above the pair-production threshold,
q2 ≥ 4M2. The strong annihilation process can, how-
ever, be described by local operators in chiral perturba-
tion theory. Momentum-independent operators, such as
the spin/isospin independent contact operator

O =
1

4M2

(

ψ†χ
) (

χ†ψ
)

, (38)

would appear to give the leading contribution from the
strong annihilation process. In infinite volume, such con-
tact operators lead to an infinite renormalization of the
nucleon mass, which can be absorbed by local nucleon op-
erators in chiral perturbation theory. At finite volume,
there is the possibility of a finite counter-term from the
antinucleon tadpole diagram. Due to momentum inde-
pendence, however, the contributions from all such oper-
ators are proportional to

(

1

L3

∑

n

−
∫

dq

(2π)3

)

1 = 0. (39)

The vanishing of this regulated sum depends on the re-
tention of antinucleon zero modes. In the ǫ-regime, where
mπL≪ 1, a separate analysis is required.
Antinucleon loops could contribute to the finite volume

shift of the nucleon mass through higher-dimensional
contact interactions. Operators of the form

O =
1

16M4

(

ψ†i
↔

D χ

)

·
(

χ†i
↔

Dψ

)

, (40)

for example, would lead to finite volume contributions
∝ M−4L−5c−2, where the constant of proportionality
depends the annihilation amplitudes at threshold in the
possible spin/isospin channels. Such higher-dimensional
operators with an even number of derivatives, however,
lead to mode sums involving the shape coefficients c−2j ,
which vanish. Thus provided one remains in the p-regime
of chiral perturbation theory, there are no finite volume
effects from any antinucleon modes. This is to be ex-
pected from the locality of finite volume QCD.

V. SUMMARY

Above we consider the effect of antiparticle contribu-
tions in low-energy effective field theories. Interactions
of non-relativistic particles and antiparticles can be de-
scribed in NRQED, such as those required in the treat-
ment of positronium. In applying non-relativisitic effec-
tive theories to single hadrons, however, it would seem
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that such short-distance antiparticle contributions only
show up at low energies in the form of counter-terms. In
infinite volume, this is precisely the case as can be demon-
strated from computing annihilation tadpole diagrams.
Such diagrams, however, can lead to non-vanishing ef-
fects at finite volume. In the non-local formulation of
finite volume QED, antiparticles make finite contribu-
tions to the electromagnetic mass of hadrons with spin
at O(α).

To make the discussion of these points concrete, we
consider the case of point-like particles in QED. Antipar-
ticle modes are exhibited in the covariant computation
using the method of regions. In order for the power-law
finite volume effect in the non-relativistic description of
point-like particles to agree with the corresponding QED
results, we require the addition of particle-antiparticle
contact interactions. The strength of such interactions
can be determined from matching conditions, and power
counting arguments naturally explain why no antiparti-
cle contributions exist in the scalar case, whereas such
contributions are required in the spinor case.

We extend the considerations of [12] to the case of com-
posite particles. In the case of a composite scalar, the
matching condition is generalized, however, symmetry
and power counting arguments allow one to conclude that
anti-scalar modes do not contribute to the finite volume
effect at leading order in α. Due to the vanishing of the
shape coefficient c−2, we additionally find that results de-
rived for composite scalars to O(αL−4) in [11] are valid to
O(αL−5). For composite spinors, on the other hand, an-
tiparticle contributions modify results at O(αL−3); and,
arise from the zero-mode subtraction utilized to regulate
QED in the infrared. Unlike the point-like spinor case,
however, the contribution from antiparticle modes is en-
coded in matching the full electromagnetic annihilation
amplitude. This requires non-perturbative QCD physics,
and we find that the finite volume effect is sensitive to
the square of the Sachs magnetic form factor at threshold.
From precision study of the finite volume dependence of
the neutron electromagnetic mass, for example, there is
the amusing possibility to bound the time-like magnetic
form factor at threshold because such O(αL−3) effects
are leading order for neutral particles, see Eq. (37). In
the course of our investigation, we found that computa-
tions for composite spinors to O(αL−4) are valid to one
order higher due to the identical vanishing of the shape
coefficient c−2 appearing in O(αL−5) finite volume ef-
fects.

Finally we assess the contribution of antiparticle modes
in finite volume calculations of the nucleon mass. In chi-
ral perturbation theory, the dominant finite volume ef-
fects arise from long-range pions that wind around the
lattice volume. Nucleons winding around the lattice
volume are exponentially suppressed relative to these.
Antinucleon contributions at finite volume are shown to
be absent due to the retention of pion zero modes, and
hence the locality of finite volume QCD.
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Appendix A: Power-Law and Exponential Volume

Effects

In this Appendix, we evaluate the one-loop finite vol-
ume corrections to the point-like scalar and spinor elec-
tromagnetic masses. To accomplish this, we follow [9],
and separate the power-law from exponential behavior in
ML. Only the leading exponential behavior is quoted in
the main text.
In the case of point-like scalars and spinors, we write

both finite volume corrections in the form

∆M = ∆M (1,2) + δ(∆M). (A1)

For point-like scalars, the correction beyond the universal
one, which is defined as δ(∆MΦ), vanishes exponentially
fast in the volume. From Eq. (2), this correction is given
by

δ(∆MΦ) =
iQ2e2

2M

∫

dq0
2π

ˆ∑
∫

q

2M + q0
(q0 + iǫ)(2Mq0 + q2 + iǫ)

,

(A2)
and accordingly does not contain singularities associated
with propagation of the photon. Furthermore, the zero-
mode contribution to δ(∆MΦ) vanishes, and the sum over
non-zero momentum modes can be trivially extended to
all modes. Carrying out the integration over q0 and utiliz-
ing the Poisson summation formula to perform a Fourier
transform, we arrive at

δ(∆MΦ) = − Q2α

2πM

∫ ∞

M

dΛ(2M − Λ)
∑

~ν 6=~0

K0(ΛL|~ν|),

(A3)
where K0(x) is a modified Bessel function of the second

kind. Here, the absence of ~ν = ~0 from the winding num-
ber summation ensures that there are no contributions
which survive the infinite volume limit. The asymp-
totic behavior of the Bessel function, K0(x) ∼

√

π
2xe

−x

for x ≫ 1, leads to the leading exponential correction
given in Eq. (4), which includes the periodic images with
|~ν | = 1.
For point-like spinors, on the other hand, the finite

volume correction beyond the universal one, δ(∆MΨ),
contains both power-law and exponential dependence on
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L. The residual power-law dependence is due to non-
locality introduced by the photon zero-mode subtraction.
From Eq. (9), we find the expression

δ(∆MΨ) =
iQ2e2

M

∫

dq0
2π

ˆ∑
∫

q

M − q0
(q0 + iǫ)(2Mq0 + q2 + iǫ)

,

(A4)
which has a form quite similar to the scalar case. Anal-
ogous to that case, we perform the q0 integration; how-
ever, in order to utilize the Poisson summation formula,
we must add and subtract the non-vanishing zero mode
contribution. This is the source of power-law volume de-
pendence in δ(∆MΨ), and the full result takes the form

δ(∆MΨ) =
3πQ2α

M2L3
− Q2α

πM

∫ ∞

M

dΛ(M + Λ)
∑

~ν 6=~0

K0(ΛL|~ν|).

(A5)

The asymptotic expansion of the modified Bessel function
yields the leading exponential correction to the point-like
spinor mass presented in Eq. (10).

Appendix B: Shape Coefficients with Zero-Mode

Subtraction

In this Appendix, we evaluate the shape coefficients,
cj , which are formally defined by

cj =
∑

n 6=0

1

|n|j −
∫

dn

|n|j .

These mode number sums arise in finite volume compu-
tations of QED with photon zero-mode subtraction, and
have been employed in the main text. The sum and inte-
gral are each divergent in the ultraviolet, however, their
difference is finite in a large class of ultraviolet regulariza-
tion schemes. For this reason, we can treat the ultraviolet
regularization as implicit. To evaluate these coefficients,
we add a small mass term to regulate the behavior in
the infrared, and work in d spatial dimensions. Thus we
consider

c
(d)
j = lim

µ→0





∑

n 6=0

1

[n2 + µ2]j/2
−
∫

ddn

[n2 + µ2]j/2



 , (B1)

with cj = c
(3)
j the desired quantities of interest. Fol-

lowing [29],2 we consider the coefficients as functions of
j > 0, and employ analytic continuation for j ≤ 0.
We write these coefficients in terms of two contribu-

tions c
(d)
j = a

(d)
j + b

(d)
j . The a

(d)
j are all non-singular in

2 The same conclusions are reached using Lüscher’s zeta-function,
as rigorously detailed in [30].

the infrared

a
(d)
j =

∫ 1

0

ds
s−

j

2
−1 + s

j−d

2
−1

π−
j

2Γ( j2 )

[

ϑ3
(

0, e−
π
s

)d − 1
]

,(B2)

with ϑ3(z, q) is the Jacobi elliptic-theta function, and
can readily be continued to j ≤ 0 because the quantity
in brackets vanishes at s = 0 faster than any power of

s. The b
(d)
j coefficients, on the other hand, potentially

contain infrared singularities, and are given by

b
(d)
j = lim

µ→0

[

Bj(µ)− Bj−d(µ)
π−

j

2Γ( j2 )
− 1

µj

]

, (B3)

where the last term is the subtraction of the photon zero
mode, and the incomplete gamma-function Bj(µ) has the
definition

Bj(µ) =
∫ ∞

1

ds s
j

2
−1e−πsµ

2

=
Γ
(

j
2

)

(πµ2)
j
2

−
∞
∑

n=0

1

n!

(

−πµ2
)n 1

n+ j
2

. (B4)

From explicit evaluation, we see the infrared singular be-
havior of the coefficients

b
(d)
j≥d = lim

µ→0







(

1
µ

)j−d

, j > d

logµ, j = d
. (B5)

For any charged particle, the largest possible value for
j entering the effective theory computation of the self
energy is j = 2, and arises at leading order in the non-
relativistic expansion. Not surprisingly, we find that the
photon zero-mode subtraction eliminates all infrared sin-
gularities provided that we work in d > 2 spatial dimen-
sions.
For all values of j such that j < d, the coefficients

b
(d)
j are finite [29, 30]. Despite the many possible special
cases depending on the sign of j, and the evenness or
oddness of both j and d, we find that the coefficients can
be compactly written in the form

b
(d)
j<d = − π

j

2

Γ( j2 )

2d

j(d− j)
, (B6)

with a limit implied for j = 0, −2, −4, · · · . In particular,

the special case j = 0 has the corresponding value b
(d)
0 =

−1 in all spatial dimensions d. Combining with the non-

singular piece, a
(d)
0 = 0, we have

c
(d)
0 = −1. (B7)

Finally both a
(d)
j and b

(d)
j contributions vanish at nega-

tive even integers. This leads us to

c
(d)
j = 0, for j = −2,−4, · · · , (B8)
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in all spatial dimensions d. In three spatial dimen-
sions, one has a special relation between shape coeffi-

cients, c
(3)
2 = πc

(3)
1 . In the main text, we have made

use of the additional values: c
(3)
1 = −2.83729, and

c
(3)
−1 = −0.266596.

As many of the conclusions drawn in the main text
depend on the values derived in Eq. (B8), we show the
vanishing of these coefficients alternatively by using an
explicit Gaussian ultraviolet regulator. Introducing the
Gaussian regularization and without a mass term, we
have

c
(d)
−2j = lim

λ→0

(

∑

n

−
∫

ddn

)

n2je−λn
2

. (B9)

Notice that the mode summation has been extended to
include the zero mode, because the summand vanishes
there. Making use of the smoothness of the Gaussian we
can write

c
(d)
−2j = lim

λ→0

(

− ∂

∂λ

)j
(

∑

n

−
∫

ddn

)

e−λn
2

=
∑

ν 6=0

lim
λ→0

(

− ∂

∂λ

)j
(π

λ

)
d
2

e−π
2
ν

2/λ = 0, (B10)

where we have used limλ→0 λ
αe−β/λ = 0, for any α and

for β > 0. The value of c
(d)
0 can also be obtained from

Gaussian regularization in the limit that j → 0. Notice

the above expression produces the quantity c
(d)
0 + 1 = 0

because the zero mode has been included in the summa-
tion.
Separation of the ultraviolet behavior and volume de-

pendence holds for a large class of regulators, such as
dimensional regularization and smooth cutoffs. Sharp
ultraviolet cutoffs, by contrast, tend to produce power
divergences in finite volume corrections which spoil the
separation of ultraviolet from infrared physics [29]. In
hard-cutoff regularization, for example, we have the con-
flicting result

ĉ
(1)
0 = lim

Λ→∞

[

−1 +
Λ
∑

n=−Λ

1−
∫ Λ

−Λ

dn 1

]

= 0 6= −1,

(B11)
where the first term is the explicit subtraction of the
zero mode. The hard cutoff can be ruled out on physi-
cal grounds, however, as further shape coefficient exhibit
ultraviolet singularities, e.g.,

ĉ
(1)
−2 = lim

Λ→∞

[

Λ
∑

n=−Λ

n2 −
∫ Λ

−Λ

dnn2

]

= lim
Λ→∞

Λ2 = ∞.

(B12)
This behavior is physically unacceptable because the in-
finite volume limit of quantities can no longer be taken
independent of the ultraviolet regularization.

[1] A. Duncan, E. Eichten, and H. Thacker, Phys. Rev. Lett.
76, 3894 (1996), arXiv:hep-lat/9602005 [hep-lat].

[2] T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, and N. Ya-
mada, Phys. Rev. D76, 114508 (2007), arXiv:0708.0484
[hep-lat].

[3] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi,
S. Uno, and N. Yamada, Phys. Rev.D82, 094508 (2010),
arXiv:1006.1311 [hep-lat].

[4] S. Aoki et al., Phys. Rev. D86, 034507 (2012),
arXiv:1205.2961 [hep-lat].

[5] T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi,
C. Jung, and R. Zhou, Phys. Rev. Lett. 109, 072002
(2012), arXiv:1202.6018 [hep-lat].

[6] S. Borsanyi et al. (Budapest-Marseille-Wuppertal),
Phys.Rev.Lett. 111, 252001 (2013), arXiv:1306.2287
[hep-lat].

[7] G. de Divitiis et al. (RM123), Phys.Rev. D87, 114505
(2013), arXiv:1303.4896 [hep-lat].

[8] R. Horsley et al., (2015), arXiv:1508.06401 [hep-lat].
[9] S. Borsanyi et al., Science 347, 1452 (2015),

arXiv:1406.4088 [hep-lat].
[10] S. R. Beane and M. J. Savage, Phys. Rev. D90, 074511

(2014), arXiv:1407.4846 [hep-lat].
[11] Z. Davoudi and M. J. Savage, Phys. Rev. D90, 054503

(2014), arXiv:1402.6741 [hep-lat].
[12] Z. Fodor, C. Hoelbling, S. D. Katz, L. Lellouch,

A. Portelli, K. K. Szabo, and B. C. Toth, (2015),

arXiv:1502.06921 [hep-lat].
[13] N. Carrasco, V. Lubicz, G. Martinelli, C. T. Sachrajda,

N. Tantalo, C. Tarantino, and M. Testa, Phys. Rev.
D91, 074506 (2015), arXiv:1502.00257 [hep-lat].

[14] U. J. Wiese, Nucl. Phys. B375, 45 (1992).
[15] B. Lucini, A. Patella, A. Ramos, and N. Tantalo, (2015),

arXiv:1509.01636 [hep-th].
[16] W. Caswell and G. Lepage, Phys.Lett. B167, 437 (1986).
[17] T. Kinoshita and M. Nio, Phys.Rev. D53, 4909 (1996),

arXiv:hep-ph/9512327 [hep-ph].
[18] A. V. Manohar, Phys.Rev. D56, 230 (1997), arXiv:hep-

ph/9701294 [hep-ph].
[19] R. J. Hill, G. Lee, G. Paz, and M. P. Solon, Phys.Rev.

D87, 053017 (2013), arXiv:1212.4508 [hep-ph].
[20] V. A. Smirnov, Commun. Math. Phys. 134, 109 (1990).
[21] M. Beneke and V. A. Smirnov, Nucl. Phys. B522, 321

(1998), arXiv:hep-ph/9711391 [hep-ph].
[22] G. T. Bodwin, E. Braaten, and G. P. Lepage,

Phys. Rev. D51, 1125 (1995), [Erratum: Phys.
Rev.D55,5853(1997)], arXiv:hep-ph/9407339 [hep-ph].

[23] J.-W. Lee and B. C. Tiburzi, Phys.Rev. D89, 054017
(2014), arXiv:1312.3969 [hep-ph].

[24] A. Denig and G. Salme, Prog. Part. Nucl. Phys. 68, 113
(2013), arXiv:1210.4689 [hep-ex].

[25] J. Gasser and H. Leutwyler, Nucl. Phys. B307, 763
(1988).

[26] M. G. Endres, A. Shindler, B. C. Tiburzi, and A. Walker-



12

Loud, (2015), arXiv:1507.08916 [hep-lat].
[27] A. Ali Khan et al. (QCDSF-UKQCD), Nucl. Phys.B689,

175 (2004), arXiv:hep-lat/0312030 [hep-lat].
[28] S. R. Beane, Phys. Rev. D70, 034507 (2004), arXiv:hep-

lat/0403015 [hep-lat].
[29] P. Hasenfratz and H. Leutwyler, Nucl. Phys. B343, 241

(1990).
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