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Abstract

We calculate the next-to-next-to-leading correction to the expectation value of the Polyakov loop

or equivalently to the free energy of a static charge. This correction is of order g5. We show that up

to this order the free energy of the static charge is proportional to the quadratic Casimir operator

of the corresponding representation. We also compare our perturbative result with the most recent

lattice results in SU(3) gauge theory.
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I. INTRODUCTION

The Polyakov loop is an order parameter for deconfinement in pure SU(N) gauge theories

at nonzero temperature T . It is defined as

L =
1

dR
Tr

〈
P exp

[
ig

∫ 1/T

0

dτA0(τ, x)

]〉
, (1)

where P denotes path ordering of the exponential of the zero component of the gauge field A0

integrated along the compactified imaginary time direction, and g is the coupling constant.

Here we have defined the Polyakov loop in a general representation R of SU(N), so the gauge

fields are understood as matrices in this representation R, and dR is the dimension of this

representation. The thermal expectation value of a single Polyakov loop is invariant under

translations, so we can choose it to be at the origin in the following.

The nonzero expectation value of the Polyakov loop above some temperature indicates

the onset of color screening and thus deconfinement [1]. Early lattice studies of the Polyakov

loop and its correlators were instrumental in establishing the existence of a deconfinement

transition in non-Abelian gauge theories from first principle calculations [2, 3]. The physical

interpretation of the logarithm of the Polyakov loop expectation value is the free energy of

a static quark FQ/T = − lnL (see, e.g., discussions in Ref. [3]). The free energy of a static

quark in a gluonic plasma is finite due to color screening, but becomes infinite below the

phase transition temperature Tc.

While in the presence of nf > 0 flavors of light quarks the Polyakov loop is no longer

an order parameter for deconfinement [4], its value at sufficiently high temperatures is still

a measure of the screening properties of the deconfined medium. It is easy to see that at

leading nontrivial order the Polyakov loop expectation value is L = 1 + CRαsmD/2T , or

equivalently FQ = −CRαsmD/2, where CR is the quadratic Casimir of the representation R.

The Debye mass mD is given by

m2
D =

CA + TFnf
3

g2T 2 , (2)

where CA = 2TFN is the quadratic Casimir of the adjoint representation and TF is the

normalization constant of the fundamental representation, for which usually the value 1/2 is

taken. The next-to-leading-order (NLO) contribution to the Polyakov loop is of O (g4). The

first calculation of the NLO contribution was performed long ago [5]. However, several years
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later, it was shown that this calculation was not correct and the correct NLO contribution

was calculated independently by two groups [6, 7].

The Polyakov loop has been studied in lattice QCD both in SU(N) gauge theories [8–11]

and in the physically relevant case of 2 + 1 flavor QCD [12–19]. For the understanding

of the screening properties of the deconfined medium it is important to connect lattice

calculations with perturbative calculations at high temperatures and to see to what extent

these calculations agree. In this perspective it is important to compute next-to-next-to-

leading order (NNLO) corrections, which will considerably reduce the uncertainties of the

NLO result by fixing the scale dependence of the coupling constant at leading order. The

computation of the Polyakov loop at NNLO accuracy is the purpose of the present work.

One feature of the lattice results on the Polyakov loop is Casimir scaling [11]. One

outcome of our analysis is that Casimir scaling holds up to O (g7). This is important for

understanding the lattice results for the Polyakov loops in higher representations [11, 20, 21].

The rest of the paper is organized as follows. In the next section we outline our strategy

for the perturbative calculation to O (g5) and discuss the power counting. The calculation

of the necessary loop integrals is presented in section III, which also contains the main

result of the paper. In section IV, we comment on the higher order perturbative terms

discussing Casimir scaling and outlining the O (g6) calculation. In section V, we compare

the perturbative O (g5) result with available lattice results. Finally, section VI contains our

conclusions. Several technical details of the calculations are presented in appendices.

II. OUTLINE OF THE PERTURBATIVE CALCULATION

In this section, we will outline the perturbative calculation of the Polyakov loop. We will

perform calculations directly in QCD as well as using the effective field theory approach.

The direct calculation of the NNLO correction to the Polyakov loop is rather involved and

its details will be discussed in the next section. On the other hand, as we will see, the

calculation that relies on the effective field theory approach is rather simple, because we can

draw on previous results.
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A. The structure of the perturbative series

The following way of defining the path ordered exponential is particularly suited for

perturbative expansions:

L =
1

dR
Tr

〈
P exp

[
ig

∫ 1/T

0

dτA0(τ, 0)

]〉

=
∞∑

n=0

(ig)n
∫ 1/T

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn
1

dR
Tr
〈
A0(τ1, 0)A0(τ2, 0) · · ·A0(τn, 0)

〉
. (3)

The Feynman diagrams for the Polyakov loop can then be drawn as a straight line from 0

to 1/T in the imaginary time direction to which n gluons are attached. The line represents

the contour integrations over the gauge fields. In the gauges we are going to use for this

calculation, where the gluon propagator is diagonal in color space, it is possible to split

each diagram into a color coefficient and a loop integral. The color coefficient contains

the trace over the color matrices from the gauge fields and any structure constants coming

from interaction vertices as well as symmetry factors, while the loop integral contains the

integrations over Euclidean time, spatial momenta, etc., as well as the propagators and the

Lorentz structures.1

It has been shown in [22, 23] that the perturbative series for any closed Wilson line can be

rearranged such that it takes the form of an exponential of a series over the same diagrams

but with altered color coefficients, several of which are zero. This result has been generalized

in [24] for the exponentiation of any Wilson line operator (for an application in the context

of heavy quarks in thermal QCD, see [25]). In the case of the Polyakov loop we have

L = 1 + CR + C2
R + CR

(
CR −

1

2
CA

)
+ C2

R + . . .

= exp

[
CR − 1

2
CRCA + . . .

]
= exp (D1 +D2 + . . . ) , (4)

where we have written the color coefficients explicitly. CR and CA are the quadratic Casimirs

of the representation of the Polyakov loop and the adjoint representation respectively. The

gluon propagators are understood as resummed. The dots represent diagrams with three or

more gluons, which are at least O (g6) and therefore beyond our accuracy. There is also a

1 Since three- and four-gluon vertices contain a sum over several terms, it may be necessary for some

diagrams to split each term separately into color coefficient and loop integral. This is not required for any

diagram appearing in this paper, only in the case of tadpoles there appear two terms from the vertex, but

they give the same contribution, so we just include a factor 2 in the color color coefficient.
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diagram with three propagators connected by a three-gluon vertex, which would be O (g4)

at leading order, but since a three-gluon vertex with only temporal indices vanishes, this

diagram gives no contribution in all gauges where the propagator is block diagonal in the

temporal and spatial components, so it has been neglected in the expression above. We note

that the free energy of the static charge corresponding to the above expression is proportional

to CR. This property is known as Casimir scaling.

First, we perform the integral over the Euclidean time in the expression for D1 and D2

to get

D1 = CR(ig)2
∫ 1/T

0

dτ1

∫ τ1

0

dτ2
∑

K

∫
eik0(τ1−τ2)D00(K) = −CRg

2

2T

∫

k

D00(0,k) , (5)

D2 = −1

2
CRCA(ig)4

∫ 1/T

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4
∑

K,Q

∫
eik0(τ1−τ3)eiq0(τ2−τ4)D00(K)D00(Q)

= −CRCAg
4

4T

∫

k, q

[
1

12T
D00(0,k)D00(0, q)−

∑

k0

′ 1

k20
D00(K)

(
2D00(0, q)−D00(k0, q)

)
]
,

(6)

where K and Q include both the spatial momenta k and q and the Matsubara frequencies

k0 and q0, which are given by 2πTn with n ∈ Z. We use boldface letters to denote vectors

in d dimensions and regular font letters for the absolute value, so k2 = k2. The sum-integral

symbols are a shorthand for the Matsubara sums and the d-dimensional integrals, which are

defined in the following way:

∑

K

∫
f(k0,k) =

∑

k0

∫

k

f(k0,k) = T
∑

n∈Z

∫
ddk

(2π)d
f(2πTn,k) . (7)

The sum with a prime denotes a Matsubara sum without the zero mode, i.e., n 6= 0.

Up to this point the discussion is independent of the choice of gauge for the perturbative

calculations. In this paper we will use Feynman gauge, static gauge, and Coulomb gauge.

In Appendix A, we discuss the gluon propagators and self-energies in these gauges.

The integration momenta k and q can either be of the order of the temperature scale T or

of the scale of the Debye mass mD. In principle, they may also scale with the nonperturbative

magnetic mass mM . The magnetic mass enters the temporal propagators not directly but

only through self-energies. Hence, as we will show at the end of this section, momentum

regions scaling with mM contribute only to O (g7). We use dimensional regularization to

treat both infrared and ultraviolet divergences. In this regularization scheme the different
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momentum scales can be separated by expanding the integrand according to the hierarchy

T � mD � mM .

We start considering D1. Separating out the contributions from the scales T , mD, and

mM we write

D1 = −CRg
2

2T

∫

k

1

k2 + Π(0, k)

= −CRg
2

2T

{∫

k∼T

−Π
(1)
T (0, k)

k4
+

∫

k∼mD

[
1

k2 +m2
D

− Π
(1)
mD(0, k)

(k2 +m2
D)

2 +
Π

(1)
mD(0, k)2

(k2 +m2
D)

3

− 1

(k2 +m2
D)

2

(
dΠ

(1)
T

dk2
(0, 0) k2 + Π

(2)
T (0, 0) + Π(2)

mD
(0, k) + Π(1)

mM
(0, k)

)]}
+O

(
g6
)
.

(8)

Here Π
(i)
T , Π

(i)
mD , and Π

(i)
mM denote the contributions to the self-energy of the A0 field at i-loop

order coming from loop momenta of order T , mD, and mM . There can also be self-energies

where the loop momenta are not all of the same scale, but these do not contribute until

O (g6). The self-energies entering the above equation depend on the choice of gauge. The

terms proportional to Π
(1)
T and Π

(1)
mD , together with tree-level D2, give rise to the known

O (g4) term in the expression of the Polyakov loop [6, 7]. The 2-loop scale T contribution

to the self-energy Π
(2)
T as well as the

dΠ
(1)
T

dk2
(0, 0) k2 term give rise to terms of O (g5), some of

which have been identified in Ref. [7] and are related to the running of the coupling constant.

The terms proportional to Π
(2)
mD and

(
Π

(1)
mD

)2
are new and also contribute at O (g5) to the

Polyakov loop. In section III, we will discuss the calculation of these terms in detail. Finally,

the term proportional to Π
(1)
mM does not contribute to the Polyakov loop at O (g5) and O (g6).

This will also be shown in section III.

Concerning D2, it is easy to see that the leading order contribution of the first term in

Eq. (6) in any gauge comes only from the scale mD and is of O (g6), which is beyond the

accuracy of this calculation. It was already identified in Ref. [7]. The second and third

terms in Eq. (6) do not contribute in static gauge because D00(K) vanishes for nonzero k0.

In Coulomb gauge the second term starts to contribute at O (g7) and the third at O (g8),

since the leading order propagators with nonzero Matsubara frequencies are scaleless and

need at least one loop insertion to not vanish. In Feynman gauge the second term in Eq. (6)

contributes already at O (g5) for k ∼ T and q ∼ mD, while the third starts to contribute

at O (g4) when both momenta are of the scale T . There is no O (g5) contribution from the
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third term, since the scale mD can only enter Feynman gauge propagators with nonzero

frequencies through loops, which would at least be of O (g7).

In summary we see that theO (g5) contribution to the Polyakov loop receives two different

contributions. The first comes from terms with mixed scales like the two-loop self-energy

at a scale mD with loop momenta of order T or two-gluon exchange. The second comes

from the two-loop self energy with loop momenta of order mD. In the effective field theory

approach that will be discussed in the next subsection these two contributions correspond

to two different steps of the calculation: the determination of the matching coefficients and

the calculation of the correlators in the effective theory, respectively.

B. The Polyakov loop in an effective field theory approach

The separation between the scales T and mD that was used in the calculation of the

previous section can be incorporated in an effective theory, the so-called electrostatic QCD

(EQCD) [26, 27] (for earlier and related works on this subject see Refs. [28–44]). In EQCD

the scale T is integrated out, which includes all fields with nonzero Matsubara frequencies.

This means that quark fields are completely absent and the gluons do not depend on the

imaginary time coordinate. So EQCD is a three-dimensional field theory where A0 no longer

plays the role of a gauge field, but becomes an adjoint scalar field. As a consequence, a mass

term for A0 does not break gauge invariance in EQCD.

The contribution from the nonperturbative magnetic scale mM can also be calculated

in this effective field theory approach. Namely if mD � mM the scale mD can also be

integrated out leading to an effective field theory called magnetostatic QCD (MQCD), which

is the three-dimensional Yang-Mills theory [26]. Using this sequence of effective theories the

weak coupling expansion of the QCD pressure has been calculated [26] finding a solution to

the well known infrared problem [45].

The imaginary time integration in the EQCD action just gives a factor 1/T , since the

fields no longer depend on the imaginary time coordinate. This factor can be absorbed in a

rescaling of the fields and gauge coupling by a factor
√
T (denoted by a tilde over the fields).
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The Lagrangian is then given by

LEQCD =
1

4

(
F̃ a
ij

)2
+

1

2

(
D̃ab
i Ã

b
0

)2
+
m2
E

2

(
Ãa0

)2

+ λE

(
Tr
[
Ã2

0

])2
+ λ̄E

(
Tr
[
Ã4

0

]
− 1

2

(
Tr
[
Ã2

0

])2)
+ . . . , (9)

where F̃ a
ij = ∂iÃ

a
j − ∂jÃbi + gEf

abcÃbiÃ
c
j, D̃

ab
i Ã

b
0 = ∂iÃ

a
0 + gEf

abcÃbiÃ
c
0, and the dots stand for

higher dimensional operators. The fields Ã0 and Ãi in the above Lagrangian have canonical

dimension 1/2. The gauge coupling gE of EQCD is dimensionful. At leading order we have

gE = g
√
T , mE = mD, λE = (6 + N − nf )g

4T/24π2, and λ̄E = (N − nf )g
4T/12π2 (see,

e.g., [27]). The second quartic interaction is a vanishing operator for N = 2 or N = 3, so

any result can only depend on λ̄E for N > 3. The couplings gE, λE, and λ̄E have been

calculated to next-to-leading order (NLO) [27]. The three-dimensional gauge coupling gE is

known to next-to-next-to-leading order [46]. The NLO correction to m2
E has been calculated

in Ref. [26]

m2
E =m2

D

[
1 +

αs

4π

(
5

3
CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

))]
− 2CFTFnfα

2
sT

2 ,

(10)

where CF = TF (N2 − 1)/N is the quadratic Casimir of the fundamental representation.

Here and in the rest of this section we express all matching parameters in terms of the

renormalized coupling. Thus the pole that appears with the first coefficient of the beta

function β0 = 11CA/3− 4TFnf/3 has already been canceled. The relation between the bare

coupling g and the renormalized coupling gR at one-loop in the MS-scheme is

g2 = g2R

[
1− αsβ0

4π

(
1

ε
− γE + ln 4π

)
+ . . .

]
, (11)

where ε is related to the number of spatial dimensions d through d = 3− 2ε.

In EQCD we can write the Polyakov loop in the following way [6]

L = Z0 −Z2
g2

2 dR T
Tr
〈
Ã2

0

〉
+ Z4

g4

24 dR T 2
Tr
〈
Ã4

0

〉
+ . . . . (12)

The matching coefficients Zn are equal to 1 at leading order, at higher orders they can be

written as an expansion in αs, i.e., only in even powers of g. In the power counting of EQCD,

every power of Ã0 counts as
√
gT , so the term proportional to Z4 starts to contribute at

O (g6). In EQCD only the scales mD and mM are still dynamical, which means that no loop
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momenta of order T appear in the evaluation of the Feynman diagrams. The contributions

of such loops are contained in higher order corrections to the matching coefficients Zn and

the EQCD parameters.

For the determination of Z0 and Z2 from QCD it is convenient to use the static gauge.

In this gauge we can write

L = 1− g2

2 dR T 2
Tr
〈
A2

0

〉
+

g4

24 dR T 4
Tr
〈
A4

0

〉
+ . . . . (13)

Now we can separate each contribution into a static and a nonstatic piece, i.e., we can write

〈
A2

0

〉
=
〈
A2

0

〉
s
+
〈
A2

0

〉
ns
. (14)

The notation 〈. . . 〉ns means that there appear only loop momenta of order T in the evaluation

of the corresponding Feynman diagrams, which corresponds to a strict perturbative expan-

sion in g without any resummation of self-energies. The notation 〈. . . 〉s then means that

some or all loop momenta are of order mD or mM . The corresponding Matsubara frequencies

have to be zero, hence the name “static”. We can write down a similar decomposition for

Tr
〈
A4

0

〉
.

The sum over all nonstatic pieces exactly gives Z0. Since in static gauge the scale T can

enter the temporal propagators only through loops, the nonstatic part of the A4
0 contribution

will contribute first at O (α4
s ). The leading order result for the A2

0 piece can be found in

Ref. [7] and gives

Z0 = 1 +
CRα

2
s

2

[
CA

(
1

2ε
+ 1− γE + ln

πµ2

T 2

)
− 2TFnf ln 2

]
+O

(
α3
s

)
. (15)

The pole in ε is not related to charge renormalization, but corresponds to an infrared diver-

gence in the nonstatic part that cancels against an ultraviolet divergence in the static piece,

or equivalently in the EQCD calculation.

The sum over the static pieces then contains all contributions from the scales mD and

mM and thus corresponds to the EQCD representation of the Polyakov loop without the

unit operator. Up to O (g5) it is sufficient to consider only the quadratic terms, i.e.,
〈
A2

0

〉
s

=

Z2

〈
Ã2

0

〉
. The two gauge fields in

〈
A2

0

〉
s

themselves can carry either momenta k � T or

k ∼ T , however, in the latter case they only start to contribute to the static piece at three-

loop order. The first loop from the two gauge fields in the correlator is scaleless, so another

loop is needed to introduce the scale T and a third one to include the scale mD in order
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to be counted towards the static piece. This corresponds to diagrams like L10 and L12 in

Fig. 1 when only the tadpole or the subloop momentum is of order mD and the two other

momenta are of order T . The two scale T integrations give a contribution of O (α2
s ) to Z2

and only one propagator with a momentum of order mD remains, which corresponds to the

leading order of
〈
Ã2

0

〉
.

In the former case we can relate the QCD field A0 to
√
Z2Ã0 in EQCD, where the wave

function normalization constant Z2 can be obtained from the small momentum expansion

of the propagator:

DQCD
00 (k � T ) = Z2D

EQCD
00 (k) + . . . . (16)

The dots stand for higher powers in the small k2 expansion, which correspond to higher

order two-point interactions in EQCD. From this expression it follows that

Z2 =

(
1 +

dΠT

dk2
(
k2 = 0

))−1
, (17)

and with the result from [7] we have up to corrections of O (α2
s )

Z2 = Z2 = 1 +
αs

4π

[
11

3
CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
. (18)

Now that we have determined the matching coefficients to the desired order, we can write

the weak coupling expansion for
〈
Ã2

0

〉
as

1

dR
Tr
〈
Ã2

0

〉
= −CRmE

4π

(
1 + a1

g2E
mE

+ a2
g4E
m2
E

+ a3
g6E
m3
E

+ a4
λE
mE

+ . . .

)
, (19)

using simple dimensional analysis. In the above expression we explicitly wrote down all the

terms contributing up to O (g6) and ignored the magnetic mass scale mM . We will return

to the contribution from the scale mM later.

In Eq. (19) the terms proportional to ai come from the i-loop self-energy of the Ã0

field. The coefficient a1 is known [6, 7]. We are primarily interested in the NNLO, i.e.,

O (g5) contribution to L. It is evident from Eqs. (10), (18), and (19) that the mixed scale

contributions from the previous section come from the O (αs) corrections to Z2 and m2
E,

while the pure scale mD term comes from the two-loop self-energy contribution contained

in the coefficient a2. One can perform a similar analysis for
〈
Ã4

0

〉
and see that it contributes

at orders α2
sm

2
E, α3

smE, etc. It is also easy to generalize the analysis for
〈
Ã2n

0

〉
, n ≥ 3, and

see that these terms do not contribute at O (g5).
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The only remaining task is now to calculate the coefficient a2. This can be done using

the EQCD calculation of the pressure [26]

p = −T
(
fE + fM −

1

V
lnZMQCD

)
. (20)

Here we use the same notation as in Ref. [26], i.e., fE denotes the contribution from the scale

T , fM denotes the contribution from the scale mD, and ZMQCD is the partition function of

MQCD, which is completely nonperturbative. Ignoring the contribution from MQCD it is

easy to see that since

fM = − 1

V
ln

∫
DÃa0DÃai exp

[
−
∫
d3xLEQCD

]
, (21)

it follows that
1

dR
Tr
〈
Ã2

0

〉
=

CR
N2 − 1

〈
Ãa0Ã

a
0

〉
=

2CR
N2 − 1

∂fM
∂m2

E

. (22)

Using the expression for fM from [26] we get

1

dR
Tr
〈
Ã2

0

〉
=− CRmE

4π
+
CRCAg

2
E

(4π)2

[
1

2ε
+

1

2
− γE + ln

πµ2

m2
E

]

+
2CRC

2
A

(4π)3
g4E
mE

(
89

48
− 11

12
ln 2 +

π2

12

)
+O

(
g4
)
. (23)

The first term corresponds to the well-known leading order result. The second term is

identical to the O (g4) static contribution to
〈
A2

0

〉
(c.f. Eq. (44) of Ref. [7]). The 1/ε pole in

this term is exactly the ultraviolet divergence that cancels against the infrared pole in the

nonstatic contribution to
〈
A2

0

〉
[7]. The scale dependence cancels in the same way. The last

term gives the coefficient a2 we are interested in.

We still need to calculate the O (g5) contribution arising from the O (αs) corrections

to mE and Z2 times the leading order result for Tr
〈
Ã2

0

〉
= −CRmD/4π. Using Eqs. (10)

and (18) we find that this O (g5) contribution is

3CRα
2
smD

16πT

[
3CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFnfTFα

2
sT

2mD

. (24)

With this result and Eq. (23) we find the O (g5) contribution to the Polyakov loop

L
∣∣∣
g5

=
3CRα

2
smD

16πT

[
3CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]

− CRC
2
Aα

3
sT

mD

(
89

48
− 11

12
ln 2 +

π2

12

)
− CRCFnfTFα

3
sT

2mD

. (25)
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The above equation is the main result of this paper. In the next section we will obtain this

result via direct calculations in QCD.

The contribution from the scale mM to
〈
Ã2

0

〉
, which we have neglected so far, can be

calculated using MQCD, the effective theory obtained from EQCD by integrating out the

electric scale mE ∼ mD. The only scale in MQCD is the dimensionful coupling constant

gM ∼
√
mM , which is given at leading order as gM = gE. Since in this theory we have only

the three-dimensional gauge fields, we write

L = ZM0 +
ZM1
2m3

D

〈
F̃ a
ijF̃

a
ij

〉
MQCD

+ . . . . (26)

The matching constant ZM0 contains the contributions to L from the scales T and mD, so

ZM0 = L up to O (g5). The matching constant ZM1 has been calculated in Ref. [47] for

the fundamental representation. We have repeated that calculation, but allowed for general

representations; the result is

ZM1 =
CRCAα

2
sπ

12 (N2 − 1)
+O

(
g5
)
, (27)

and for CR = CF one obtains the expression from [47]. Since
〈
F̃ a
ijF̃

a
ij

〉
∼ m3

M ∼ g6M , we

see that the contribution from the magnetic scale first appears at O (g7). Through the

explicit calculations presented in section III and appendix C we will see that the magnetic

contributions at O (g5) and O (g6) indeed vanish.

The O (g7) contribution to the Polyakov loop can be obtained using lattice calculations

in MQCD. However, for interesting temperature ranges the separation of the scales mD and

mM is not obvious. Therefore, it is more practical to calculate
〈
Ã2

0

〉
using lattice calculations

in EQCD. Such lattice calculations have been performed with the aim to estimate the QCD

pressure using the EQCD approach in Ref. [48]. We will use this lattice EQCD result when

comparing the weak coupling expansion of the Polyakov loop with lattice results in QCD in

section V.

III. CALCULATION OF THE O
(
g5
)

CORRECTION TO THE POLYAKOV LOOP

In this section we will present the calculations of the O (g5) contribution to the Polyakov

loop directly in QCD. From the discussion in the previous section it is clear that the diagrams

that contribute at O (g5) always have at least one momentum integral of order mD, while

12



the self-energy contributions may arise from the scales T , mD, or mM . In what follows we

will refer to them as contributions from the scale T , mD, or mM , even though all the loop

diagrams also involve the scale mD. We will perform the calculations in Coulomb gauge

and in Feynman gauge. The contribution from the diagram D2 is only relevant in Feynman

gauge. It involves one integral over the scale mD and another sum-integral over the scale T ,

so we will refer to it as a part of the contribution from the scale T .

A. Contribution from the scale T

All self-energies relevant for the contribution from the scale T in Feynman gauge are

known and can be found in Ref. [26] (they use a slightly different convention for the MS-

scheme, which can be converted into our convention by replacing the renormalization scale

Λ2 in their expressions by 4πe−γEµ2):

Π
(1)
T (0, 0) ≡ m2

D(ε) =
g2T 2

3

[
(CA + TFnF ) + CA

(
−γE + 2

ζ ′(−1)

ζ(−1)
+ ln

µ2

4πT 2

)
ε

+ TFnf

(
1− γE + 2

ζ ′(−1)

ζ(−1)
+ ln

µ2

16πT 2

)
ε

]
, (28)

dΠ
(1)
T

dk2
(0, 0) = − g2

(4π)2

[
5

3
CA

(
1

ε
− 1

5
+ γE + ln

µ2

4πT 2

)
− 4

3
TFnf

(
1

ε
− 1 + γE + ln

4µ2

πT 2

)]
,

(29)

Π
(2)
T (0, 0) =

g4T 2

(4π)2

[
2

3
C2
A

(
1

ε
+ 1 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

µ2

4πT 2

)

+
2

3
CATFnf

(
1

ε
+ 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

µ2

8πT 2

)
− 2CFTFnF

]

=
g2

(4π)2

[
2CAm

2
D(ε)

(
1

ε
+ 1 + γE + ln

µ2

4πT 2

)
− 2g2T 2CFTFnf

]
. (30)

In the last line we have re-expressed some terms through m2
D(ε), i.e., the leading order Debye

mass with O(ε) corrections. This will be crucial for the cancellation of the 1/ε-poles. The

O(ε) terms of m2
D(ε) are necessary at this point.

With these we can calculate the first scale T contribution from diagram D1 at O (g5) in

Feynman gauge (FG):

D1

∣∣∣
FG

g5, T
=
CRg

2

2T

∫

k∼mD

1

(k2 +m2
D)

2

(
dΠ

(1)
T

dk2
(0, 0) k2 + Π

(2)
T (0, 0)

)

13



=
3CRα

2
smD(ε)

16πT

[
7

3
CA

(
1

ε
+

23

21
+ 2 ln

µ2

2TmD

)
− 4

3
TFnf

(
1

ε
+

1

3
+ 2 ln

2µ2

TmD

)]

− CRCFTFnfα
3
sT

2mD

. (31)

The scale T contribution from D2 is given by

D2

∣∣∣
FG

g5, T
=
CRCAg

4

2T

∑

q0

′
∫

q∼T

∫

k∼mD

1

q20 (q20 + q2) (k2 +m2
D)

=
CRCAα

2
smD(ε)

4πT

(
1

ε
+ 4 + 2 ln

µ2

2TmD

)
, (32)

and together they give

(D1 +D2)
∣∣∣
FG

g5, T
= −CRCFTFnfα

3
sT

2mD

+
3CRα

2
smD(ε)

16πT

[
11

3
CA

(
1

ε
+

71

33
+ 2 ln

µ2

2TmD

)
− 4

3
TFnf

(
1

ε
+

1

3
+ 2 ln

2µ2

TmD

)]
.

(33)

We see now that the coefficient of the 1/ε-terms is proportional to the first coefficient of

the beta function β0 = 11CA/3 − 4TFnf/3. This suggests that they are removed through

charge renormalization, which is indeed the case. The first counter term comes from charge

renormalization of the O (g3) term. We need to be careful with the ε → 0 limit, so we will

keep the dimension d general until the last step:

D1

∣∣∣
g3

= −CRg
2

2T

∫

k∼mD

1

k2 +m2
D

= −CRg
2Γ
(
1− d

2

)
md−2
D µ2ε

2(4π)
d
2T

g0→gR−→ −CRg
2Γ
(
1− d

2

)
md−2
D (ε)µ2ε

2(4π)
d
2T

[
1− d

2

αsβ0
4π

(
1

ε
− γE + ln 4π

)
+O

(
α2
s

)]
. (34)

The factor d/2 comes from the power of αs: g
2md−2

D ∝ α
d
2
s . Including the counter term for

the charge renormalization we get the full contribution from the scale T :

(D1 +D2)
∣∣∣
g5, T

=
3CRα

2
smD

16πT

[
3CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]

− CRCFTFnfα
3
sT

2mD

. (35)

We no longer indicate Feynman gauge in this final result for the scale T contribution, because

it is gauge invariant.
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The corresponding calculation goes the same way for both Coulomb (CG) and static

gauge (SG). D2 is scaleless at O (g5), so only D1 contributes. It has been shown in [26] that

the electric mass parameter mE of EQCD is given up to O (α2
s ) by

m2
E = Π

(1)
T (0, 0) + Π

(2)
T (0, 0)− Π

(1)
T (0, 0)

dΠ
(1)
T

dk2
(0, 0) . (36)

Since mE is a gauge invariant parameter, we can eliminate Π
(2)
T (0, 0) in Coulomb or static

gauge from this equation and express it through the Feynman gauge results and
dΠ

(1)
T

dk2
(0, 0),

which is the same for Coulomb and static gauge and can be found, e.g., in [7]:

dΠ
(1)
T

dk2
(0, 0) = − g2

(4π)2

[
11

3
CA +

4

3
TFnf (1− 4 ln 2) + β0

(
1

ε
+ γE + ln

µ2

4πT 2

)]
. (37)

With this we have

Π
(2)
T

∣∣∣
CG/SG

=

(
Π

(2)
T −m2

D(ε)
dΠ

(1)
T

dk2

)∣∣∣∣
FG

+m2
D(ε)

dΠ
(1)
T

dk2

∣∣∣∣
CG/SG

= − 2g2

(4π)2
(
CAm

2
D + g2T 2CFTFnf

)
. (38)

The contributions from the scale T are now

D1

∣∣∣
CG/SG

g5, T
=
CRg

2

2T

∫

k∼mD

1

k2 +m2
D

(
dΠ(1)

dk2
(0, 0) + Π(2)(0, 0)

)

=
3CRα

2
smD(ε)

16πT

[
71

9
CA −

4

9
TFnf (1 + 12 ln 2) + β0

(
1

ε
+ 2 ln

µ2

2TmD

)]

− CRCFTFnfα
3
sT

2mD

. (39)

This is the same result that we got in Feynman gauge from D1+D2, so including the counter

term we obtain the same scale T contribution in Coulomb and static gauge:

(D1 +D2)
∣∣∣
g5, T

=
3CRα

2
smD

16πT

[
3CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]

− CRCFTFnfα
3
sT

2mD

. (40)

B. Contribution from the scale mD

The contribution from the scale mD consists of the two-loop self-energy and the square

of the one-loop self-energy. It corresponds to the full g4E contribution of
〈
Ã2

0

〉
in EQCD. The

relevant diagrams for the two-loop self-energy are given in Fig. 1. The contribution from the
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FIG. 1. All Feynman diagrams contributing to Π
(2)
mD(0, k ∼ mD). Dashed lines represent temporal

gluons, curly lines spatial gluons, and dotted lines with arrows are ghost propagators. The diagrams

are labeled L1, . . . , L12 from top-left to bottom-right. L7, . . . , L12 are self-energy insertions into

one-loop diagrams, while L1, . . . , L6 are new two-loop configurations.

square of the one-loop self-energy is not displayed, it corresponds to two one-loop insertions

into the temporal gluon propagator. Together they also give a gauge invariant result:

D1

∣∣∣
g5,mD

= −CRg
2

2T

∫

k∼mD

[
− Π

(2)
mD(0, k)

(k2 +m2
D)

2 +
Π

(1)
mD(0, k)2

(k2 +m2
D)

3

]

= −CRC
2
Aα

3
sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (41)

The calculation itself is quite involved, so we will not go into further details here. We

use the method of integration by parts to reduce the three-loop integrals corresponding to

each diagram down to a handful of known master integrals. A list of all integrals and their

results in different gauges is given in appendix B.

C. Contribution from the scale mM

Finally, we have to consider the contribution from the scale mM . The temporal gluon mo-

mentum k cannot be of order mM , because then the propagator would have to be expanded

in 1/m2
D and the k integration would be scaleless. But the loop momenta in the self-energy

diagrams may be of order mM and such diagrams start to contribute at O (g5). However,

by the arguments from EQCD and MQCD in the previous chapter we expect the scale mM
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FIG. 2. All O
(
g5
)

diagrams that can give a contribution from the scale mM . The bubble stands

for the resummed propagator.

to enter the Polyakov loop only at O (g7), so the O (g5) contributions have to vanish, which

is indeed the case.

There are two diagrams at this order (cf. Fig. 2), both have one spatial gluon that

carries the momentum of order mM . The first is the diagram, where the spatial gluon

connects at two three-gluon vertices, and the second is the tadpole diagram, where the

spatial gluon connects at a four-gluon vertex. From the three-gluon vertices there comes a

factor (2k + q)i(2k + q)j, where k is the momentum of order mD and q is of order mM , but

only 4kikj needs to be kept, because the rest is of higher order. According to the power

counting, each power of q in the numerator adds a power of g to the result, while terms with

odd powers of the momenta in the numerator vanish. So the first higher order contributions

(i.e., the terms quadratic in q) are of O (g7). For the same reason, we only have to expand

the propagator of the temporal gluon with momentum k + q in the left diagram of Fig. 2

to leading order in q. Then we have

D1

∣∣∣
g5,mM

=
CRg

2

2T

∫

k∼mD

Π
(1)
mM (0, k)

(k2 +m2
D)

2

=
CRCAg

4

2

∫

q∼mM

Dij(0, q)

∫

k∼mD

[
δij

(k2 +m2
D)

2 −
4kikj

(k2 +m2
D)

3

]

=
CRCAg

4

2

∫

q∼mM

Dii(0, q)
Γ
(
2− d

2

)

(4π)
d
2m4−d

D

[
1− 4 Γ

(
1 + d

2

)

dΓ(3)Γ
(
d
2

)
]

= 0 . (42)

Also the O (g6) contributions from the scale mM need to vanish. These are the two-loop

self-energy diagrams with one loop momentum of order mM . We have also checked their

cancellation explicitly, the details of this are given in appendix C.
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D. Result

Now we have all contributions to the Polyakov loop at O (g5):

lnL =
CRαsmD

2T
+
CRα

2
s

2

[
CA

(
1

2
+ ln

m2
D

T 2

)
− 2TFnf ln 2

]

+
3CRα

2
smD

16πT

[
3CA +

4

3
TFnf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFTFnfα

3
sT

2mD

− CRC
2
Aα

3
sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
+O

(
g6
)
. (43)

The second line contains the contribution from the scale T and the third line the contribution

from the scale mD.

IV. HIGHER ORDER CONTRIBUTIONS

A. Casimir scaling

It is known from lattice calculations that the logarithm of the Polyakov loop obeys Casimir

scaling, at least approximately [11, 20, 21]. Casimir scaling is observed by any quantity, in

our case the free energy FQ of a static charge in representation R, if it is proportional to

the quadratic Casimir operator CR of that representation. In other words, FQ/CR should

be independent of the representation R.

A necessary condition for the breaking of Casimir scaling is the appearance of a term not

proportional to CR. A term like that was identified for L− 1 in Ref. [7] at O (g6). The term

is

δ〈L〉 =
1

2

(
CRαsmD

2T

)2

. (44)

This term, however, does not break the Casimir scaling of the free energy FQ, since it is

nothing else than the second order term in the expansion of exp(−FQ/T ), when FQ is taken

at leading order. In fact, this term does not appear in FQ. Note that the exponentiation

formula given in (4) provides a way of calculating FQ directly. It is then clear that at the

level of two-gluon diagrams there is no breaking of Casimir scaling. Hence, we may ask, to

which order of the perturbative series can Casimir scaling be observed?

There are several equivalent prescriptions on how the color coefficients in the logarithm

of a closed Wilson line can be determined. It will not be necessary here to go into details on
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FIG. 3. Connected three-gluon diagrams.

how they are calculated exactly (see appendix F), it is sufficient to know that for so-called

connected diagrams, where every gluon is connected to every other gluon through gluon,

ghost, or light quark propagators, the standard color factor and the one in the logarithm

are the same.

At the three-gluon level we have several unconnected diagrams (cf. Fig. 13) and a few

connected diagrams. By three-gluon diagrams we mean diagrams that correspond to three

sum-integrals. We exclude sum-integrals from self-energy or vertex-function insertions from

this definition, because if the corresponding tree-level diagram obeys Casimir scaling then

also any self-energy or vertex-function insertion does.

The unconnected three-gluon diagrams are all scaleless in Coulomb or static gauge unless

each gluon carries a momentum of order mD, which means that they start to contribute

at O (g9). We will see below that Casimir scaling is already broken at a lower order, so

we can ignore the unconnected three-gluon diagrams in Coulomb gauge on the basis of this

argument. In other gauges these diagrams contribute at O (g6), but, as we will show in

appendix F, their color coefficients obey Casimir scaling.

The connected three-gluon diagrams are shown in Fig. 3. Their color factors are all given

by −CRC2
A/4, except for the second from left where it is 0. All of these depend linearly on

CR, so at the three-gluon level Casimir scaling is still observed.

In general, the color factor of any diagram without light quarks is given as the trace over

a product of color matrices in the respective representation divided by the dimension of

the representation, where every color index is contracted with that of another color matrix

or a structure constant from the interaction vertices. By repeated use of the commutation

relation, the Jacobi identity or the quadratic Casimir

[
T aR, T

b
R

]
= ifabcT cR , fabef ecd + f bcef ead + f bdef eca = 0 , (45)

T aRT
a
R = CR1 , facdf bcd = CAδ

ab , (46)
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one can express every such color factor as a combination of the following terms

C
(n)
R = f i1a1i2f i2a2i3 · · · f inani1 1

dR
Tr [T a1R T

a2
R · · ·T anR ] (47)

and CR or CA.

C
(1)
R is trivially zero and C

(2)
R and C

(3)
R can be calculated independently of the represen-

tation:

C
(2)
R = −CRCA , C

(3)
R = − i

4
CRC

2
A . (48)

But starting from C
(4)
R there is no longer a simple unique formula like Eq. (48) valid for all

representations. For the fundamental and the adjoint representation one can replace every

structure constant by color matrices and then use the Fierz identity to calculate the C
(n)
R

explicitly:

fabc =
1

iTF
Tr
[
T aF
[
T bF , T

c
F

]]
, (49)

(T aF )ij (T aF )kl = TF

(
δilδkj −

1

N
δijδkl

)
. (50)

Note that T aF with a color index denotes the generators of the fundamental representation,

while TF without a color index denotes the normalization constant of the fundamental

representation. The two are related by

Tr
[
T aFT

b
F

]
= TF δ

ab , or T aF =

√
TF
2
λa , (51)

where λa are the Gell-Mann matrices.

In this way we obtain

C
(4)
F =

1

8
CFC

2
A (3CA − 4CF ) , C

(4)
A =

1

8
C3
A (13CA − 24CF ) , (52)

or alternatively

C
(4)
F

C
(4)
A

=
CF
CA

N2 + 2

N2 + 12
. (53)

If we can find a diagram whose color coefficient is given by C
(4)
R , then we have found a

Casimir scaling breaking term. Such a diagram can appear only at O (g8) or higher, because

in the Feynman rules of QCD every color matrix and structure constant comes with a factor

of g. Fig. 4 shows some similar diagrams where the dependence on C
(4)
R is immediately

apparent. The diagram on the left has the color coefficient C
(4)
R exactly and the other two
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FIG. 4. Diagrams at O
(
g8
)

with a color coefficient C
(4)
R .

have C
(4)
R + CRC

3
A/8, because in both cases two color matrices have to be commuted to get

the form of C
(4)
R and the commutator gives iC

(3)
R CA/2.

If we add up the contributions proportional to C
(4)
R from all three diagrams, then the con-

tour integrations simplify a lot and we get Kronecker deltas for the Matsubara frequencies of

each of the four gluon propagators attached to the Polyakov loop contour times a coefficient

of 1/8T 4. One of these four Kronecker deltas is redundant and the Matsubara frequency

in the internal loop (the square in the left diagram, or the twisted square in the other two

diagrams) remains different from zero. So the momentum integrals are not scaleless, be-

cause the scale T remains in the calculation, and we have a possible genuine nonvanishing

contribution at O (g8) that breaks Casimir scaling.

There are other diagrams similar to these three, which can be obtained from Fig. 4 by

contracting one or two propagators in the internal loop to a four-gluon vertex. Their color

coefficients also involve C
(4)
R , so they will give other terms of O (g8) that break Casimir

scaling. In principle, light quark loops can also give rise to color factors that break Casimir

scaling. If such a light quark loop has to two or three external gluon legs, then it can be

included as a contribution to the self-energy or the vertex function and it will not affect

Casimir scaling. With four or more external legs the color factor is no longer proportional

to the quadratic Casimir, which can be checked in a similar calculation to the one above

replacing the internal gluons in Fig. 4 with light quark propagators, but such diagrams also

start to contribute at O (g8).

One could in principle imagine that all those terms cancel and only Casimir scaled terms

remain, but that would imply some underlying mechanism that enforces Casimir scaling to

all orders of perturbation theory. Such a mechanism, if it exists, has not been discovered so

far. The approximate Casimir scaling observed in lattice calculations may be explained by

the strong suppression of the O (g8) contributions that possibly violate Casimir scaling.
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B. Outline of the O
(
g6
)

calculation

We will outline here the necessary steps for the calculation of the O (g6) contributions,

the last order accessible by perturbation theory. The amount of work one has to do is greatly

reduced by choosing the appropriate gauge. As explained above, all the unconnected three-

gluon diagrams (see Fig. 13) are scaleless at leading order and start to contribute only at

O (g9) in Coulomb or static gauge. In Feynman gauge, however, the six diagrams of Fig. 13

whose modified color coefficients in the logarithm of the Polyakov loop do not vanish all

contribute at O (g6), so this is not the most efficient gauge to perform this calculation.

There are also unconnected three-gluon diagrams consisting of only two unconnected

pieces, a single gluon and a piece of three propagators connected by a three-gluon vertex.

These are not displayed in Fig. 13, because in gauges that are diagonal in temporal and

spatial indices they vanish on account of the three-gluon vertex with three temporal indices,

just like the corresponding two gluon diagram, but in nondiagonal gauges they also have to

be considered.

The connected diagrams of Fig. 3 can only contribute at O (g6) when all momenta are

of the scale T , the scale mD contributions are of higher order. However, in Coulomb or

static gauge all of them vanish. The first three diagrams are essentially the same gluonic

configuration, but with different path ordering prescriptions along the Polyakov loop contour,

so we will only discuss the leftmost diagram, the others are analogous (apart from the second

having a vanishing color coefficient). In static gauge all Matsubara frequencies have to be

zero because of the temporal propagators, so the integrals are scaleless and vanish. In

Coulomb gauge the Matsubara frequencies are not necessarily all zero, but the integrand

vanishes by itself: Call k the momentum flowing from the first to the last point on the

Polyakov loop contour, p the momentum flowing from the first to the second point, and

q the momentum flowing from the third to the fourth point. The results of the p and

q integrations can only be proportional to k because of rotational symmetry, where each

vector comes from the three-gluon vertices. But these vectors k are then contracted with

the transverse projector from the spatial propagator, which gives zero.

In the second diagram from the right in Fig. 3 the Matsubara frequencies of the propaga-

tors connecting to the Polyakov loop contour have to be zero. In static gauge this is again

a consequence of the temporal propagator, while in Coulomb gauge it follows after comput-
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ing the contour integrations (this involves some convenient momentum shifts). There is no

constraint on the frequency from the loop momentum that flows around the gluon triangle,

but through the three-gluon vertices it appears to either linear or cubic power in the nu-

merator, so the remaining Matsubara sum is odd and cancels. The same is true if the gluon

triangle is replaced by a fermion loop. The rightmost diagram in Fig. 3 vanishes because of

the four-gluon vertex in all gauges where the gluon propagator is diagonal in temporal and

spatial indices.

The two-gluon diagram D2 has already been discussed above, only the first term in

Eq. (6) contributes in Coulomb or static gauge at O (g6). It gives a contribution of

−CRCAα2
sm

2
D/48T 2 when both momenta are of the scale mD. When one or both mo-

menta are of the scale T , then the first nonvanishing contribution is of O (g7) or O (g8),

respectively.

The O (g6) contribution from diagram D1 contains several different elements: the three-

loop self-energy with all momenta of order mD, products of one-loop and two-loop self-

energies [essentially the last line of Eq. (8) times Π
(1)
mD(k)/ (k2 +m2

D)] or the one-loop self-

energy cubed from the expansion of the resummed propagator, the two-loop self-energy at

the scale mD with one loop momentum of order T and the other of order mD, and the

two-loop or square of one-loop self-energy with all momenta of order T .

Fortunately, most of these contributions can be inferred in the EFT approach from an

already existing EQCD calculation. As explained previously [see Eq. (22)], the correlator of

two Ã0 fields in EQCD can be obtained from the pressure or vacuum energy density, which

has been calculated at the four-loop level in [49]. From this we get

1

dR
Tr
〈
Ã2

0

〉
s

=− CRmE

4π
+
CRCAg

2
E

(4π)2

[
1

2ε
+

1

2
− γE + ln

πµ2

m2
E

]

+
2CRC

2
A

(4π)3
g4E
mE

(
89

48
− 11

12
ln 2 +

π2

12

)

+
2CRT

2
F (N2 + 1)λE

(4π)2
+
CRT

2
F λ̄E

(4π)2

(
4N2 − 6

N
−N2 − 1

)

+
CRC

3
Ag

6
E

(4π)4m2
E

(
43

4
− 491π2

768

)
+O

(
g5
)
. (54)

If we now insert the explicit expression for λE and λ̄E in terms of g and the one-loop

corrections to gE, mE, and Z2, then we have almost the full O (g6) contribution to the

logarithm of the Polyakov loop. The only thing that is missing is the contribution from
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D2 given above and the two-loop and square of one-loop self-energy contributions with all

momenta of order T in Coulomb or static gauge.

The one-loop correction to the EQCD coupling constant is given by [27]:

g2E = g2T

{
1 +

αs

4π

[
1

3
CA −

16

3
TFnf ln 2 + β0

(
1

ε
+ γE + ln

µ2

4πT 2

)]}
. (55)

Because of the 1/ε pole in the g2E term in Eq. (54) we also need the O(ε) terms of both

g2E [46] and Z2:

g2E

∣∣∣
O(ε)

=
g4Tε

(4π)2

[
β0

(
1

2

(
γE + ln

µ2

4πT 2

)2

+
π2

4
− 2γ2E − 4γ1

)

+

(
1

3
CA −

16

3
TFnf ln 2

)(
γE + ln

µ2

4πT 2

)
− 16

3
TFnf (ln 2)2

]
, (56)

Z2

∣∣∣
O(ε)

=
αsε

4π

[
β0

(
1

2

(
γE + ln

µ2

4πT 2

)2

+
π2

4
− 2γ2E − 4γ1

)

+

(
11

3
CA +

4

3
TFnf (1− 4 ln 2)

)(
γE + ln

µ2

4πT 2

)
+

23

3
CA −

16

3
TFnf (ln 2)2

]
.

(57)

Here γ1 is the coefficient of the linear term in the expansion of ζ(1−x) for small x. Combining

all these terms and inserting the renormalized coupling, we then have

lnL
∣∣∣
O(g6)

=− CRα
3
s

8π

[
β0CA

(
1

2

(
γE + ln

µ2

4πT 2

)2

+
π2

4
− 2γ2E − 4γ1

)

+ CA

(
2CA +

2

3
TFnf (1− 8 ln 2)

)(
γE + ln

µ2

4πT 2

)

+ 8C2
A +

2

3
CATFnf

(
1 + 4 ln 2− 8(ln 2)2

)
+ 8CFTFnf

+ CA

(
4CA +

4

3
TFnf (1− 8 ln 2) + 4β0

(
γE + ln

µ

4πT

))( 1

2ε
− γE + ln

πµ2

m2
D

)]

− CRCAα
4
sT

2

m2
D

(
C2
A

(
43

8
− 491π2

1536

)
+ CFTFnf

)
− CRCAα

2
sm

2
D

48T 2

− CRg
2

2T

∫

k∼T

1

k6

[(
Π

(1)
T (0, k) +

β0αs

4π

(
1

ε
− γE + ln 4π

)
k2
)2

− k2 Π
(2)
T (0, k)

]
.

(58)

The first 1/ε pole, a UV divergence from the scale mD, has to cancel against a corresponding

IR divergence in the scale T integrals. The 1/ε pole in the last line comes from the charge
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renormalization in the MS-scheme of the O (g4) contribution from the scale T , i.e., the first

term in Eq. (8), and it cancels the UV divergence in the one-loop vacuum part of the self

energy.

There are also O (g6) contributions from two-loop diagrams with two momenta of order

mD and one momentum of order mM . From the MQCD analysis of the Polyakov loop we

know that the scale mM can only appear first at O (g7), so these contributions ultimately

have to cancel. We have checked this cancellation explicitly in appendix C.

V. CONVERGENCE OF THE PERTURBATIVE SERIES AND COMPARISON

WITH THE LATTICE RESULTS

In this section, we discuss the convergence of the perturbative series for the Polyakov loop,

or equivalently the free energy of a static quark, and compare the weak coupling results with

lattice QCD results. For a reliable comparison of the lattice and the weak coupling results

we need to consider a temperature range that extends to sufficiently high temperatures. So

far, it is only in pure SU(3) gauge theory, i.e., in QCD with zero light quark flavors (nf = 0),

that we have lattice results at sufficiently high temperatures to perform such a comparison.

Namely, the renormalized Polyakov loop has been calculated up to temperatures of 24Tc [20],

with Tc being the deconfinement transition temperature.

In Fig. 5 we show the perturbative results for the free energy of a static quark at various

orders in perturbation theory for pure SU(3) gauge theory (nf = 0). We use one-loop

running for αs. To determine the renormalization scale for different values of T/Tc we used

the relation r0Tc = 0.7498(50) [50], where r0 is the Sommer scale [51]. The value of ΛMS was

determined in Ref. [52]: r0ΛMS = 0.637+0.032
−0.030. With this we get Tc/ΛMS = 1.177. One can

see that the scale dependence of the leading order (LO) results is quite large and becomes

even larger at NLO. The scale dependence of FQ is first reduced at NNLO and is, in fact,

quite small, making a meaningful comparison with the lattice results possible. In Fig. 5

we also show the lattice results for the static quark free energy for nf = 0 from Ref. [20].

The lattice results appear to agree with the LO and NLO results, given their large scale

uncertainty, but are slightly larger than the NNLO results at small T .

We should keep in mind, however, that the comparison of the lattice and the perturbative

results for FQ is not as straightforward as Fig. 5 may suggest. This fact seems to be
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FIG. 5. The free energy of a static quark FQ for the SU(3) gauge theory in weak coupling expansion

at LO, NLO and NNLO. The bands are obtained by varying the renormalization scale µ between

πT and 6πT . Also shown are the lattice data for FQ obtained on lattices with temporal extent

Nτ = 4 and 8 [20].

generally overlooked in the literature. The perturbative calculations are performed in the

MS-scheme, while on the lattice the calculation is performed in a scheme in which the static

quark-antiquark energy at zero temperature is normalized such that it is equal to the string

potential V (r) = −π/(12r) + σr at large distances, with σ being the string tension. To

match the two schemes one has to normalize the static energy at zero temperature in the

perturbative calculation at each order to the lattice potential at short distances. This then

corresponds to a constant shift Cshift in physical units of the perturbative static energy,

which is different at different orders of perturbation theory.

This matching has been carried out for both nf = 0 [52] and nf = 3 [53]. The shift

of the static energy implies that one has to add Cshift/2 to the perturbative result for FQ

before the comparison with the lattice results can be made. However, Cshift is sensitive to

the perturbative order, to the resummation of the logarithms associated with the running

coupling constant, as well as to the ultra-soft scale (see, e.g., discussions in Ref. [54]). Thus,

the uncertainty in the determination of Cshift will be the dominant systematic uncertainty in
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the comparison of the weak coupling and lattice calculations for FQ. For this reason we did

not add Cshift in the comparison of the lattice and the perturbative result for FQ in Fig. 5.

We can avoid this problem by calculating the entropy of the static quark defined as

SQ = −∂FQ(T )

∂T
. (59)

In this quantity the normalization constant Cshift drops out. In perturbation theory it

is straightforward to calculate the entropy of a static quark by taking the temperature

derivative of Eq. (43) times T . In order to calculate the entropy of a static quark on the

lattice, we use the lattice data on the renormalized Polyakov loop obtained on Nτ = 4 lattices

in Ref. [20]. We interpolate these data using different smoothing splines and calculate the

derivatives of the splines using the R package [55]. The statistical errors of the interpolation

and the derivative were calculated using the bootstrap method. Furthermore, we considered

different spline interpolations, varying the number of knots and the value of the smoothing

parameter. We enlarged the statistical error to take into account the difference between the

different splines, if those were outside the statistical error. In this way we obtained the total

error for the entropy in lattice QCD.

In Fig. 6 we compare the entropy of a static quark estimated in lattice QCD and in

the weak coupling calculations. As in the case of the static quark free energy, the scale

dependence of the LO and NLO results is quite large. Within this large scale uncertainty

the perturbative calculations and the lattice data agree. The scale dependence of the NNLO

result is much smaller. The NNLO result, however, lies below the lattice data. This implies

that higher order corrections in the weak coupling expansion may still be important. In

view of this, below we discuss some higher order terms in the weak coupling expansion of

the static quark free energy and have a closer look on the convergence of the perturbative

series.

As discussed above, in the weak coupling expansion we have three types of contributions,

purely nonstatic, i.e., arising from the scale T , purely static contributions corresponding to

the scales mD and mM , which can be calculated within EQCD, and mixed contributions,

where some loop momenta are of order mD or mM and others are of order T . Here we will

discuss the latter two types of contributions, referring to them as EQCD type and mixed

type contributions, respectively. Together they have been called the static contribution in

the previous sections, but here we want to distinguish between them.
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FIG. 6. The entropy of a static quark SQ for the SU(3) gauge theory in weak coupling expansion

at LO, NLO and NNLO. The bands are obtained by varying the renormalization scale µ between

πT and 6πT . Also shown are the lattice results for SQ, cf. the description in the text.

The EQCD type contributions arise from the weak coupling expansion of Tr
〈
Ã2

0

〉
with the

expansion parameter CAg
2
E/(4πmE) [c.f. Eq. (54)], using only the leading order results for

the matching parameters Z2, gE, and mE and neglecting quartic or higher order interactions.

Beyond four-loop order the condensate Tr
〈
Ã2

0

〉
contains a nonperturbative contribution of

order g8E/m
3
E, which was calculated using lattice simulations of EQCD [48]. Furthermore,

in Ref. [48] a simple parametrization of those higher order contributions to the condensate

beyond four-loop order was given.

In Fig. 7 we show the EQCD type contributions at O (g5) and O (g6) as well as the sum

of all higher order contributions calculated in lattice EQCD, which we plot using Eq. (4.1) of

Ref. [48]. The bands shown in the figure correspond to the variation of the renormalization

scale µ from πT to 6πT . The magnitude of the different contributions is decreasing with

increasing order, the O (g6) contribution is smaller than the O (g5) contribution, and the

sum of all the higher order contributions to g2/(2TdR)×Tr
〈
Ã2

0

〉
[starting from O (g7)], which

includes the nonperturbative contributions, is about the same size as theO (g6) contribution.

Thus, we conclude that the weak coupling expansion for the purely static contribution
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FIG. 7. EQCD type and mixed contributions to FQ at O
(
g5
)

(upper panel) and O
(
g6
)

(lower

panel). The bands correspond to the variation of the renormalization scale from πT to 6πT . The

thick black line corresponds to the higher order EQCD type contributions from lattice EQCD

estimated in Ref. [48] for the renormalization scale µ = 4πT , cf. the description in the text.

is converging reasonably well and there are no large nonperturbative corrections to the

Polyakov loop from the static chromomagnetic sector. Furthermore, as shown in Fig. 7, the

sum of the higher order corrections to the static quark free energy is positive and thus would

shift the perturbative result away from the lattice data.

Now let us discuss the mixed contributions, which come from higher order corrections to

the matching parameters and higher interaction terms in EQCD. In Fig. 7 we show theO (g5)

and O (g6) mixed contributions. The latter is evaluated by using Eq. (58) and omitting the

last two lines as well as the 1/ε pole. In contrast to the EQCD type contributions, the mixed

contributions can be positive or negative depending on the choice of the renormalization

scale. AtO (g5) the mixed contribution is smaller than the EQCD type contribution, while at

O (g6) the mixed contribution is of the same size or larger (depending on the renormalization

scale). Furthermore, the two mixed contributions are about the same size, which means

that the full O (g6) contribution might be large. Clearly, for rigorous statements about the

convergence of the weak coupling expansion and comparison with lattice QCD results a

complete calculation of the O (g6) contribution will be necessary.
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VI. CONCLUSIONS

In this paper, we have calculated the next-to-next-to-leading-order contribution to the

Polyakov loop or equivalently to the static quark free energy. This contribution is of O (g5).

The calculations have been performed directly in QCD as well as through an effective theory

approach using known results from EQCD. The effective theory approach based on EQCD

also allowed us to calculate some of the higher order contributions of O (g6) as well as to

have an estimate of some nonperturbative contributions starting to appear at O (g7). The

weak coupling expansion in EQCD seems to converge reasonably well, but there could be

potentially large contributions from nonstatic modes at O (g6).

While the scale dependence of the O (g5) result is reasonably small, we do not find a very

good agreement between the lattice data and the weak coupling expansion. It is possible that

the observed discrepancy between the lattice results and the weak coupling expansion is due

to the missing O (g6) term. Therefore, the calculation of the complete O (g6) contribution

is important.

Finally, we discussed the Casimir scaling of the static quark free energy. We have shown

that Casimir scaling holds up to O (g7), but at O (g8) there may appear terms that break

Casimir scaling. The fact that the breaking of Casimir scaling happens only at O (g8)

in the weak coupling expansion may explain the lattice results on the Polyakov loop in

higher representations, which show approximate Casimir scaling in the high temperature

region [20, 21].
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Appendix A: Gluon propagators

1. Feynman gauge

Feynman gauge is obtained by adding the gauge fixing term
(
∂µA

a
µ

)2
/2 to the Lagrangian,

as well as the ghost Lagrangian (∂µc̄
a)Dab

µ c
b. Then the free propagators for gluons D0 and

ghosts G0 are given by

D0 =
δµν

k20 + k2
and G0 =

1

k20 + k2
. (A1)

We will not explicitly display color indices, because they only appear in Kronecker deltas.

For the resummed gluon propagators we need to sum over all one-particle reducible

diagrams, i.e., over all bubble insertions in a propagator, where the bubbles define the self-

energy tensor −Πµν . We can parametrize the self-energy tensor in the following way

Π =


 Π00 ΠAk0kj

ΠAkik0 ΠBδij + ΠCkikj


 , (A2)

which comprises all tensor structures allowed by rotational symmetry. Even though Feynman

gauge is designed to be fully covariant under Lorentz transformations, the existence of the

medium explicitly breaks the full Lorentz symmetry down to the rotational symmetry in the

rest frame of the medium, so that the temporal and mixed components of the self-energy

tensor Π00 and Πi0 = Π0i may have different coefficients than the corresponding tensor

structures in the spatial components Πij. In other words, Π00 6= ΠB + ΠCk
2
0 and ΠA 6= ΠC .

The sum over one-particle reducible diagrams constitutes a geometric series. So the

resummed propagators are given by

D = D0

∞∑

n=0

(−ΠD0)
n = D0(1 + ΠD0)

−1 =
(
D−10 + Π

)−1
, (A3)

and similarly for the ghosts. By inverting this matrix we get

D00 =
k20 + k2 + ΠB + ΠCk

2

(k20 + k2 + Π00) (k20 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2
, (A4)

Di0 =
−ΠAkik0

(k20 + k2 + Π00) (k20 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2
, (A5)

Dij =
1

k20 + k2 + ΠB

(
δij −

kikj
k2

)

+
k20 + k2 + Π00

(k20 + k2 + Π00) (k20 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2

kikj
k2

. (A6)
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We can rewrite these expressions in terms of the self-energy tensor as

D00 =
1

k20 + k2 + Π
and Dij =

1

k20 + k2 + Σ1

(
δij −

kikj
k2

)
+

1

k20 + k2 + Σ2

kikj
k2

, (A7)

where

Π = Π00 −
Π2
Ak

2
0k

2

k20 + k2 + ΠB + ΠCk2
= Π00 −

Π0iΠi0

k20 + k2 + Πijkikj/k2
, (A8)

Σ1 = ΠB =
1

d− 1

(
Πii −

Πijkikj
k2

)
, (A9)

Σ2 = ΠB + ΠCk
2 − Π2

Ak
2
0k

2

k20 + k2 + Π00

=
Πijkikj
k2

− Π0iΠi0

k20 + k2 + Π00

, (A10)

and

D0l =
−Π0l

(k20 + k2 + Π00) (k20 + k2 + Πijkikj/k2)− Π0iΠi0

. (A11)

We see that, although the free Feynman propagator is diagonal, the resummed propagator

is not.

The free ghost propagator G0 as well as the ghost self-energy Γ are scalar functions, so

the resummation of the geometric series for the full ghost propagator G is trivial:

G =
(
G−10 + Γ

)−1
=

1

k20 + k2 + Γ
. (A12)

2. Static gauge

Static gauge [30] satisfies the gauge condition ∂0A0 = 0, but this condition alone does not

give an invertible propagator, so we need to modify it in order to fix the gauge also for the

spatial gluons. This can be done by adding the gauge fixing term
(
∂0A0+

√
α/ξ∇ ·Aa

)2
/2α

and taking the limit α→ 0, which gives back the original gauge condition. This limit would

diverge in the Lagrangian, but leads to a finite propagator. The freedom in how to fix the

gauge for the spatial gluons is reflected in the residual gauge fixing parameter ξ. The gauge

condition on the spatial gluons is lifted for ξ →∞ and accordingly the propagator diverges

in this limit.

The inverse of the free propagator can be read from the Lagrangian:

D−10 =




k20
α

+ k2 −
(

1− 1√
αξ

)
k0kj

−
(

1− 1√
αξ

)
kik0 (k20 + k2) δij −

(
1− 1

ξ

)
kikj


 , (A13)
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which can be inverted to

D0 =




α (ξk20 + k2)
(√

ξk20 +
√
αk2
)2

(
αξ −√αξ

)
k0kj(√

ξk20 +
√
αk2
)2

(
αξ −√αξ

)
kik0(√

ξk20 +
√
αk2
)2

1

k20 + k2

(
δij −

kikj
k2

)
+

ξ (k20 + αk2)
(√

ξk20 +
√
αk2
)2
kikj
k2




α→0
=




δk0
k2

0

0
1− δk0
k20 + k2

(
δij −

kikj
k20

)
+
δk0
k2

(
δij − (1− ξ)kikj

k2

)


 , (A14)

where by δk0 we mean for k0 = 2πTn with n ∈ Z that δk0 = δ0n, i.e., selecting only the

zero mode in the Matsubara sum. We see that the free propagator explicitly distinguishes

between zero and nonzero modes. In particular, the 00 component of the propagator contains

only the zero mode, which means that in position space it does not depend on the imaginary

time coordinate, as required by the gauge condition.

The ghost Lagrangian is given by

Lgh =
1√
α

(∂0c̄
a)Dab

0 c
b +

1√
ξ

(∇c̄a) ·Dabcb , (A15)

from which it follows that the free ghost propagator is

G0 =

√
αξ√

ξk20 +
√
αk2

α→0
=

√
ξδk0
k2

. (A16)

There is a ghost vertex with a temporal gluon that is proportional to 1/
√
α, so the

α → 0 limit may potentially be problematic in this interaction. However, this vertex is

also proportional to the Matsubara frequency k0 of the outgoing ghost propagator, which

means that only nonzero modes can participate in this interaction. The number of ghost

propagators and ghost-gluon vertices is always the same in any loop diagram, so in the most

singular diagrams, where all vertices are with a temporal gluon, the powers of
√
α cancel

exactly between the vertices and the numerators of the propagators. Then the α→ 0 limit

can be taken without problems and all propagators are given by 1/k20, which is not singular

because the zero-modes do not contribute. This makes all loop integrations scaleless and

therefore vanish. If there are some vertices with spatial gluons, then there are more powers

of
√
α in the numerator than in the denominator and the diagram vanishes trivially in the

α→ 0 limit.
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So we see that the ghosts completely decouple from the temporal gluons. For the inter-

actions with the spatial gluons the α→ 0 limit is unproblematic. There is a factor of 1/
√
ξ

at each vertex, which exactly cancels the
√
ξ factor in the ghost propagators. So we can

in fact simplify the ghost sector considerably, because as we have just shown the nonzero

Matsubara frequencies, the parameter ξ, or interactions with temporal gluons are irrelevant.

Therefore the modified ghost Lagrangian and free propagator

Lgh = (∇c̄a) ·Dabcb and G0 =
δk0
k2

(A17)

with static (i.e., independent of the imaginary time coordinate) ghost fields give exactly the

same contributions as the more complicated Lagrangian given above.

For the resummed propagator we can use the same parametrization of the self-energy

tensor as in Feynman gauge. Then we get

D00 =
k20 + k2/ξ + ΠB + ΠCk

2

(k20/α + k2 + Π00)
(
k20 + k2/ξ + ΠB + ΠCk2

)
−
(
1− 1/

√
αξ − ΠA

)2
k20k

2

α→0
=

δk0
k2 + Π00

, (A18)

Di0 =

(
1− 1/

√
αξ − ΠA

)
kik0

(k20/α + k2 + Π00)
(
k20 + k2/ξ + ΠB + ΠCk2

)
−
(
1− 1/

√
αξ − ΠA

)2
k20k

2

α→0
= 0 ,

(A19)

Dij =
1

k20 + k2 + ΠB

(
δij −

kikj
k2

)

+
k20/α + k2 + Π00

(k20/α + k2 + Π00)
(
k20 + k2/ξ + ΠB + ΠCk2

)
−
(
1− 1/

√
αξ − ΠA

)2
k20k

2

kikj
k2

α→0
=

1− δk0
k20 + k2 + ΠB

(
δij +

(1− ΠC) kikj
k20 + ΠB + ΠCk2

)
+

δk0
k2 + ΠB

(
δij −

(1− ξ + ξΠC) kikj
k2 + ξ (ΠB + ΠCk2)

)
.

(A20)

Or in analogy to the functions Π, Σ1, and Σ2 that we defined in Feynman gauge we can also

write

D00 =
δk0

k2 + Π
, (A21)

Di0 = D0j = 0 , (A22)

Dij =
1− δk0

k20 + k2 + Σ1

(
δij −

kikj
k2

)
+

1− δk0
k20 + Σ2

kikj
k2

+
δk0

k2 + Σ1

(
δij −

kikj
k2

)
+

ξδk0
k2 + ξΣ2

kikj
k2

,

(A23)
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where now

Π = Π00 , Σ1 = ΠB =
1

(d− 1)k2
(
k2Πii − Πijkikj

)
, and Σ2 = ΠB + ΠCk

2 =
Πijkikj
k2

.

(A24)

The resummed ghost propagator follows trivially from the modified ghost Lagrangian.

G =
δk0

k2 + Γ
. (A25)

For ξ = 1 the static part of the gluon propagator (i.e., k0 = 0) has the same form

as in Feynman gauge, which is why this choice is also called Feynman static gauge. The

self-energy functions still differ between the two gauges. For ξ = 0 the static part of the

propagator has the same form as in Coulomb gauge, so this choice could be called Coulomb

static gauge.

3. Coulomb gauge

Coulomb gauge is defined by the gauge condition ∇ ·Aa = 0. It can be implemented by

adding the gauge fixing term (∇ ·Aa)2 /2ξ to the Lagrangian as well as the ghost Lagrangian

(∇c̄a) ·Dabcb with the limit ξ → 0. If we compare this to the gauge fixing term in static

gauge, we see that Coulomb gauge can also be obtained from there by first taking the limit

α→∞ and then ξ → 0, so we can reuse all results from the previous section.

The free propagator is then given by

D0
ξ→0
=




1

k2
0

0
1

k20 + k2

(
δij −

kikj
k2

)


 , (A26)

and the resummed propagator by

D
ξ→0
=




1

k2 + Π
0

0
1

k20 + k2 + Σ1

(
δij −

kikj
k2

)


 , (A27)

where the self-energy functions Π and Σ1 are defined as in static gauge.

The temporal component of the propagator is the same as in static gauge, except that in

Coulomb gauge also the nonzero Matsubara frequencies are allowed (although they do not
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appear explicitly in the free propagator). The spatial part of the propagator is transversely

polarized with respect to k and the mixed temporal and spatial components vanish, such

that the gauge condition is explicitly satisfied as kiDiν = 0. This relation holds for both the

free and the resummed propagator, and only the coefficient Σ1 of the transversely polarized

part of the self-energy tensor remains in the propagator after the resummation.

After a redefinition of the ghost fields (c̄, c) → ξ1/4(c̄, c), the limit ξ → 0 eliminates the

first term in (A15) and the free and resummed propagators are given by

G0 =
1

k2
and G =

1

k2 + Γ
. (A28)

The ghosts only couple to spatial gluons like in static gauge.

Quantization in Coulomb gauge generates the so-called Schwinger-Christ-Lee term [56,

57]. This term is an α2
s suppressed term that involves a nonlocal interaction with transverse

gluons. It is beyond the accuracy of the present work.

4. Phase-space Coulomb gauge

There exists an alternative formulation of Coulomb gauge QCD that is defined in the

so-called phase-space formalism [58], which we will adapt here to the Euclidean space of the

imaginary time formalism. An auxiliary field E is introduced in the action S:

e−S = exp

[
−
∫ 1/T

0

dτ

∫
d3x

(
1

4
F a
ijF

a
ij +

1

2
F a
0iF

a
0i

)]

= N−1
∫
DEi exp

[
−
∫ 1/T

0

dτ

∫
d3x

(
1

4
F a
ijF

a
ij + iEa

i F
a
0i +

1

2
Ea
i E

a
i

)]
. (A29)

This step can be interpreted such that now the chromoelectric field is treated as a dynamical

variable. This interpretation originates from the equations of motion for the E-field, which

are Ea
i = −iF a

0i (the factor i is an effect of the imaginary time formalism, in Minkowski

space it is absent). So we will call E the electric field for the rest of this section. One can

easily return to the original action, up to some irrelevant constant N , by explicitly carrying

out the path integral over the electric field, which is possible because it only appears in

quadratic terms in the exponential.

With this new action we can calculate as if there was a seven-component gluon field

Aα, where α = 0 corresponds to A0, α = 1, 2, 3 to A, and α = 4, 5, 6 to E. The free
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propagator (D0)αβ will be the 7× 7 matrix given through the quadratic terms of this gluon

field as Aα
(
D−10

)
αβ
Aβ. In order to distinguish between the spatial gluon and electric field

components in this unified description, we will use the propagator indices i, j and m, n

exclusively for α, β = 1, 2, 3 and α, β = 4, 5, 6 respectively.

In order to fix the gauge we again introduce the terms (∇ ·Aa)2 /2ξ and (∇c̄a) ·Dabcb

into the Lagrangian. The ghost sector remains unchanged compared to standard Coulomb

gauge, so we will only discuss the gluonic sector. Going from position to momentum space

in the free action,

S0 =

∫ 1/T

0

dτ

∫
d3x

[
1

2

(
∂iA

a
j

) (
∂iA

a
j

)
− 1

2

(
∂iA

a
j

) (
∂jA

a
i

)
+

1

2ξ

(
∂iA

a
i

) (
∂jA

a
j

)

+ iEa
i ∂0A

a
i − iEa

i ∂iA
a
0 +

1

2
Ea
i E

a
i

]

=
∑

K

∫
1

2

[
Aai (−K)

(
k2δij −

ξ − 1

ξ
kikj

)
Aaj (K)− Ea

i (−K)k0A
a
i (K) + Aai (−K)k0E

a
i (K)

+ Ea
i (−K)kiA

a
0(K)− Aa0(−K)kiE

a
i (K) +

1

2
Ei(−K)aEa

i (K)

]

=
∑

K

∫ [
1

2
Aaα(−K)

(
D−10

)
αβ
Aaβ(K)

]
, (A30)

we get the inverse of the propagator as

D−10 =




0 0 −kn
0 k2 δij − (1− 1/ξ) kikj k0 δin

km −k0 δmj δmn


 , (A31)

where we have written the 7× 7 matrix in terms of (1, 3, 3)× (1, 3, 3) blocks. Inverting this

and taking the ξ → 0 limit, we get the free propagator:

D0 =




1

k2
0

kn
k2

0
1

k20 + k2

(
δij −

kikj
k2

)
− k0
k20 + k2

(
δin −

kikn
k2

)

−km
k2

k0
k20 + k2

(
δmj −

kmkj
k2

)
k2

k20 + k2

(
δmn −

kmkn
k2

)




. (A32)

We see that the temporal and spatial components still have the same propagators as in the

standard formalism, in particular they do not mix with each other for ξ = 0, but both do

mix with the electric field. Also note that DT
0 (K) = D0(−K). This is of relevance for the
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pk

q

k

a

c

k

c

=
δab

k20 + k2


δij −

kikj
k2




=
δabk0
k20 + k2


δin −

kikn
k2




= igfabc
[

δij(k − p)l + δjl(p− q)i + δli(q − k)j
]

= −g2

fabef cde

(

δikδjl − δilδjk
)

+ facef bde
(

δijδkl − δilδjk
)

+ fadef bce
(

δijδkl − δikδjl
)


= igfabcki

= igfabcδmj

a

i

b

j

a

i

b

n

b

j

a

i

d

l

b

j

c

k

a

i

c

l

b

i

a

m

b

j

ba

=
δabk2

k20 + k2


δmn − kmkn

k2




= −δab

k2

a

m

b

n
ba

a
k

=
δab

k2

= −δabkn
k2

b

n

FIG. 8. All free propagators and interaction vertices in phase-space Coulomb gauge. Whenever

there is an arrow specifying the direction of a momentum over a mixed propagator, opposite

momenta will give the negative propagator.

off-diagonal terms, which have odd powers of the momentum in the numerator (the reason

is that A0 and A are of mass dimension 1, while E is of dimension 2).

The interaction part of the action is given by

Sint =

∫ 1/T

0

dτ

∫
d3x

[
gfabc

(
∂iA

a
j

)
AbiA

c
j +

g2

4
fabef cdeAaiA

b
jA

c
iA

d
j − igfabcAa0Eb

iA
c
i

]
. (A33)

This gives the same three- and four-gluon vertices as in standard Coulomb gauge if only

spatial gluons are involved, but the temporal gluons now interact with the spatial gluons

only through a three-field vertex with an additional electric field and the simple coefficient

igfabcδim. All Feynman rules of phase-space Coulomb gauge are shown in Fig. 8.

For the resummed propagator we need to introduce a new parametrization of the self-

energy tensor in the form a 7× 7-matrix:

Π =




Πtt k0kj Πts −kn Πte

kik0 Πts Πss1 δij + Πss2
kikj
k2

k0

(
Πse1 δin + Πse2

kikn
k2

)

km Πte −k0
(

Πse1 δmj + Πse2
kmkj
k2

)
Πee1 δmn + Πee2

kmkn
k2




, (A34)

where the labels t, s, and e stand for temporal, spatial, and electric respectively. Then the
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resummed propagators are

D00 =
1 + Πee1 + Πee2

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (A35)

D0j = Di0 = 0 , (A36)

D0n =
(1 + Πte) kn

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (A37)

Dm0 =
− (1 + Πte) km

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (A38)

Dij =
1 + Πee1

k20 (1 + Πse1)
2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δij −

kikj
k2

)
, (A39)

Din =
− (1 + Πse1) k0

k20 (1 + Πse1)
2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δin −

kikn
k2

)
, (A40)

Dmj =
(1 + Πse1) k0

k20 (1 + Πse1)
2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δmj −

kmkj
k2

)
, (A41)

Dmn =
k2 + Πss1

k20 (1 + Πse1)
2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δmn −

kmkn
k2

)

+
Πtt

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

kmkn
k2

. (A42)

We see that the self-energy components that are proportional to ki or kj (i.e., Πts, Πss2,

and Πse2) do not appear at all, while the ones that are proportional only to km or kn (i.e.,

Πte and Πee2), appear only in D00, Dm0, D0n, and Dmn. The reason for this is that every

free propagator with a spatial gluon index i or j is proportional to the transverse projector

δij − kikj/k2, so the self-energy components Πts, Πss2, and Πse2 drop out of the geometric

series. Since only the δij self-energy terms remain in the geometric series for Dij, Din, and

Dmj, also the resummed propagators are proportional to the transverse projector. A mix-

ing of temporal and spatial gluons is still not possible, because (D0)i0 and (D0)0j are zero

from the outset and intermediate electric field contributions like, e.g., (D0)in Πnm (D0)m0 or

(D0)in Πn0 (D0)00 always involve a contraction of the transverse projector with the momen-

tum km, either from the self-energy or the (D0)m0 propagator. In the case of the propagators

D00, Dm0, D0n, and Dmn, there appear terms in the geometric series without any transverse

projectors, so those propagators also depend on the self-energy terms Πte and Πee2. Also note

that, in contrast to the free propagator, the resummed Dmn contains a part that is not pro-

portional to the transverse projector, which comes, e.g., from terms like (D0)m0 Π00 (D0)0n.
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5. Expansions of the propagators

In the small coupling case the two energy scales T and mD ∼ gT are well separated,

so we expand the propagators accordingly. The Matsubara frequencies are always of order

T and the momentum k can be either of order T or mD. The self-energy functions are at

least of order g2T 2, so if k is of order T then the propagators have to be expanded in the

self-energy, which is equivalent to using free propagators instead of resummed propagators.

If k is of order mD but k0 is not zero, then the propagators also have to be expanded in

k2/k20, which leads to scaleless integrals in most cases (and in all integrals appearing in this

paper). An exception to this are the temporal propagators in static and Coulomb gauge,

which do not have a k20 term in the denominator.

If k is of order mD and k0 is zero, then the leading term of the self-energy may be of the

same order as k2 and the propagator has to be expanded in the next-to-leading terms. It is

known that only the self-energy in the temporal propagator has a term of order g2T 2, which

is gauge invariant and given by the square of the Debye mass m2
D, see Eq. (2). In Coulomb

gauge, the free propagator is independent of the Matsubara frequencies. The self-energy,

however, is such that it is of order g2T 2 for the zero mode, while it is of higher order for the

other frequencies. The self-energies in the spatial propagator start at order g4T 2, therefore

the spatial propagator has to be expanded and we can use the free one.

It is a straightforward calculation to show that also in the phase-space Coulomb gauge

(PSCG) only Πtt has a term of order g2T 2 and this is again given by m2
D. All other self-

energies need to be expanded, see Eqs. (A35)-(A42). Therefore, the spatial and mixed

spatial-electric propagators remain massless, but the electric and mixed temporal-electric

propagators also get massive denominators.

We summarize here the propagators in different gauges in the leading order expansion

for k0 = 0 and k ∼ mD.

DFG =




1

k2 +m2
D

0

0
δij
k2


 , DSG =




1

k2 +m2
D

0

0
1

k2

(
δij − (1− ξ)kikj

k2

)


 , (A43)
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DCG = DSG
∣∣
ξ=0

, DPSCG =




1

k2 +m2
D

0
kn

k2 +m2
D

0
1

k2

(
δij −

kikj
k2

)
0

− km
k2 +m2

D

0 δmn −
kmkn

k2 +m2
D




. (A44)

Appendix B: Electric scale two-loop integrals

In this appendix, we will explicitly write down the integrals and their results for all

the two-loop self-energy diagrams at the scale mD. In order to calculate the integrals we

make use of an algorithm that systematically reduces the integrals to a handful of master

integrals by the method of integration by parts and then replaces these master integrals by

their known values. More details on this algorithm can be found in appendix D.

All relevant diagrams for Π
(2)
mD(0, k ∼ mD) are shown in Fig. 1. As explained in ap-

pendix A 5, only temporal gluons carry the Debye mass in the propagator, so it makes sense

to visually distinguish between temporal and spatial gluons in the diagrams. All Matsubara

frequencies are assumed to be zero, which means that a vertex with one temporal gluon

and two spatial gluons or ghosts (if they are required by the chosen gauge) cannot appear,

because it would be proportional to the Matsubara frequencies. This is why there are no

three-gluon vertices with just one temporal gluon in all the diagrams of Fig. 1. Tadpole

diagrams with only spatial gluons or ghosts are scaleless and therefore have been omitted

in Fig. 1. Fermion propagators do not have zero-modes, so also light quark loops cannot

contribute to Π
(2)
mD(0, k ∼ mD).

We will do the calculation explicitly in Feynman, Coulomb, and phase-space Coulomb

gauge. In the case of the static gauge we will not perform the calculation for a generic gauge

fixing parameter ξ. For ξ = 1 and ξ = 0 the calculation is identical to the one in Feynman

and Coulomb gauge, respectively.

The color factors of the two-loop self-energy can be calculated using the quadratic Casimir

of the adjoint representation and the Jacobi identity:

Tr
[
T aAT

b
A

]
= (−ifacd)(−if bdc) = facdf bcd = CA δ

ab , (B1)

fabef ecd + f bcef ead + f caef ebd = 0 . (B2)
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With these we get

facdfdcef eghfhgb = (−CA δae)(−CA δeb) = C2
A δ

ab , (B3)

facdfdghfhgef ecb = −CAfacdfdcb = C2
A δ

ab , (B4)

facdf cgefdehfhgb = −1

2
facd

(
f cgef edh + f chef egd

)
fhgb =

1

2
facdfdcef eghfhgb =

1

2
C2
A δ

ab . (B5)

All color factors are given by these expressions or combinations thereof. Symmetry factors

appear only when gluons of the same type (temporal or spatial) can be exchanged, which is

the case for L3, L8, L9, L10, and L12, although in the case of L3, L8, and L12 one symmetry

factor 1/2 is compensated by a factor 2 from the four-gluon vertices. From the vertices we

either get (ig)4, (ig)2(−g2) or (−g2)2, which is equal to g4 in each case. So no additional

signs arise from the vertices, but the ghost loop gets a minus due to its Grassmann nature.

Then we have

C(L1) = C(L2) = −C(L8) = C(L9) = C(L10) =
1

2
C2
A , (B6)

C(L7) = −C(L11) = −C(L12) = C2
A , (B7)

C(L3) = −C(L4) = −C(L5) = −C(L6) =
3

2
C2
A . (B8)

1. Feynman gauge

We will call the momenta in the diagrams of Fig. 1 in such a way that k appears in each

temporal gluon propagator (even in the temporal gluon loops in L8, L10 and L12 through a

shift of the loop momentum by k), while the additional loop momenta will be called p and

q. In the denominator only the combinations k+p, k+q, and either k+p+q or p−q can

appear. The reason for this choice is that with this momentum configuration the integrals

are already in the form required by the algorithm described in appendix D. We will use the

abbreviation P (k) = k2 +m2
D. L5 and L6 are the same up to a relabeling of the momenta,

so we will calculate them together. Then we have

L1 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
2T (2ki + pi)(p

2δij − pipj + q2δij − qiqj − (p · q)δij + piqj)(2kj + qj)

p2 (p− q)2 q2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 1

32ε
− 7

32
+

3

32
γE −

π2

24
− 3

32
ln
πµ2

m2
D

+O(ε)

]
, (B9)

42



L2 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T
[
(2k + p) · (2k + p + 2q)

] [
(2k + q) · (2k + 2p + q)

]

p2 q2 P (k + p)P (k + q)P (k + p + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 1

32ε
− 1

4
+

3

32
γE −

π2

12
− 3

32
ln

πµ2

256m2
D

+O(ε)

]
, (B10)

L3 = −3CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T d

p2 (p− q)2 P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 9

32ε
− 3

8
+

27

32
γE −

27

32
ln
πµ2

m2
D

+O(ε)

]
, (B11)

L4 =
3CRC

2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T (2k + p) · (2k + q)

p2 q2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
39

32
+O(ε)

]
, (B12)

L5 + L6 =
3CRC

2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
2T (2k + p) · (2k + p + q)

p2 (p− q)2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
9

32ε
− 3

16
− 27

32
γE +

π2

8
+

27

32
ln
πµ2

m2
D

+O(ε)

]
, (B13)

L7 = −CRC
2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2 (2k + p + q)2

p2 (p− q)2 P (k + p)2 P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 1

8ε
− 9

8
+

3

8
γE −

3

8
ln
πµ2

m2
D

+O(ε)

]
, (B14)

L8 =
CRC

2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T (2k + p + q)2

((p− q)2)2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 1

32ε
+

3

32
γE −

3

32
ln
πµ2

m2
D

+O(ε)

]
, (B15)

L9 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T (2ki + pi) (2kj + pj)

P (k + p)P (k)2

× (5p2δij − (6− d)pipj + 2q2δij − (6− 4d)qiqj − 2(p · q)δij + (6− 4d)piqj)

(p2)2 (p− q)2 q2

=
CRC

2
Aα

3
sT

mD

[
13

64ε
− 19

32
− 39

64
γE +

39

64
ln
πµ2

m2
D

+O(ε)

]
, (B16)

L10 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T [(2k + p) · (2k + p + 2q)]2

(p2)2 P (k + p)P (k + q)P (k + p + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 5

48
+

1

6
ln 2 +O(ε)

]
, (B17)
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L11 =
CRC

2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
T [(2k + p) · (−q)] [(2k + p) · (p− q)]

(p2)2 (p− q)2 q2 P (k + p)P (k)2

=
CRC

2
Aα

3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B18)

L12 =
CRC

2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2

(p2)2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
1

8
+O(ε)

]
. (B19)

We also have to include the contribution from the square of the one-loop self-energy

in order to get a gauge invariant result. This contribution can also be put into the form

required by the algorithm:

−CRg
2

2T

∫

k∼mD

(
Π

(1)
mD(0, k)

)2

(k2 +m2
D)

3 = −CRC
2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2 (2k + q)2

p2 q2 P (k + p)P (k + q)P (k)3

=
CRC

2
Aα

3
sT

mD

[
− 5

16
− π2

12
+O(ε)

]
. (B20)

The sum of all these terms then gives the O (g5) contribution from the scale mD:

D1

∣∣∣
g5,mD

= −CRC
2
Aα

3
sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (B21)

2. Coulomb gauge

In Coulomb gauge we have

L1 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫ −16T

p2 (p− q)2 q2 P (k + p)P (k + q)P (k)2

×
[(

k · q − (k · p)(p · q)

p2

)(
k · p− (k · q)(p · q)

q2

)(
1 +

k · (p + q)

(p− q)2

)

+

(
k2 − (k · p)2

p2

)(
k · p− (k · q)(p · q)

q2

)(
1− q2

(p− q)2

)

+

(
k · q − (k · p)(p · q)

p2

)(
k2 − (k · q)2

q2

)(
1− p2

(p− q)2

)

− p2q2 − (p · q)2

(p− q)2

(
k2 − (k · p)2

p2
− (k · q)2

q2
+

(k · p)(k · q)(p · q)

p2 q2

)]

=
CRC

2
Aα

3
sT

mD

[
1

8
− π2

24
+O(ε)

]
, (B22)
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L2 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
16T

p2 q2 P (k + p)P (k + q)P (k + p + q)P (k)2

×
[
k · (k + q)− (k · p)(k · p + p · q)

p2

] [
k · (k + p)− (k · q)(k · q + p · q)

q2

]

=
CRC

2
Aα

3
sT

mD

[
1

8
+

3

4
ln 2− π2

12
+O(ε)

]
, (B23)

L3 = −3CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
T

p2 q2 P (k + p + q)P (k)2

[
d− 2 +

(p · q)2

p2 q2

]

=
CRC

2
Aα

3
sT

mD

[
− 9

64ε
− 3

64
+

27

64
γE −

27

64
ln
πµ2

m2
D

+O(ε)

]
, (B24)

L4 =
3CRC

2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
4T [k2p2q2 − (k · p)2q2 − (k · q)2p2 + (k · p)(k · q)(p · q)]

(p2)2 (q2)2 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
15

8
− π2

8
+O(ε)

]
, (B25)

L5 + L6 =
3CRC

2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
4T

p2 q2 P (k + p)P (k + p + q)P (k)2

×
[
k2 − (k · p)2

p2
− (k · q)(k · q + p · q)

q2
+

(k · p)(k · q + p · q)(p · q)

p2q2

]

=
CRC

2
Aα

3
sT

mD

[
−3

2
+
π2

4
+O(ε)

]
, (B26)

L7 = −CRC
2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
16T [k2p2 − (k · p)2] [(k + p)2q2 − (k · q + p · q)2]

(p2)2 (q2)2 P (k + p)2 P (k + p + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
−9

8
+O(ε)

]
, (B27)

L8 =
CRC

2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
4T [(k + q)2p2 − (k · p + p · q)2]

(p2)3 P (k + q)P (k + p + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 1

32ε
+

3

32
γE −

3

32
ln
πµ2

m2
D

+O(ε)

]
, (B28)

L9 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
16T

(p2)2 (p− q)2 q2 P (k + p)P (k)2

×
[(

k2 − (k · p)2

p2

)(
p2q2 − (p · q)2

)( 1

(p− q)2
+

1

q2

)

+

(
k · q − (k · p)(p · q)

p2

)2(
d− 1− p2q2 − (p · q)2

(p− q)2 q2

)]

=
CRC

2
Aα

3
sT

mD

[
5

32ε
− 43

64
− 15

32
γE +

15

32
ln
πµ2

m2
D

+O(ε)

]
, (B29)
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L10 = −CRC
2
Ag

6

4

∫ ∫

k, p, q∼mD

∫
16T [(k2 + k · q)p2 − (k · p)(k · p + p · q)]

2

(p2)4 P (k + p)P (k + q)P (k + p + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
− 5

48
+

1

6
ln 2 +O(ε)

]
, (B30)

L11 =
CRC

2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
4T [(k · q)p2 − (k · p)(p · q)]

2

(p2)4 (p− q)2 q2 P (k + p)P (k)2

=
CRC

2
Aα

3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B31)

L12 =
CRC

2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
4T [k2p2 − (k · p)2]

(p2)3 P (k + p)P (k + q)P (k)2

=
CRC

2
Aα

3
sT

mD

[
1

8
+O(ε)

]
. (B32)

The square of the one-loop self-energy from the scale mD gives the contribution

−CRg
2

2T

∫

k∼mD

(
Π

(1)
mD(0, k)

)2

(k2 +m2
D)

3 = − CRC
2
Ag

6

2

∫ ∫

k, p, q∼mD

∫
16T [k2p2 − (k · p)2] [k2q2 − (k · q)2]

(p2)2 (q2)2 P (k + p)P (k + q)P (k)3

=
C2
Aα

3
sT

mD

[
−5

8
− π2

12
+O(ε)

]
, (B33)

and after summing up all these terms, we again obtain the same result as in Feynman gauge:

D1

∣∣∣
g5,mD

= −CRC
2
Aα

3
sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (B34)

There is a subtlety in Coulomb gauge regarding the nonzero modes. In Feynman gauge

all Matsubara frequencies have to be zero, because otherwise the necessary expansions of the

propagators only lead to scaleless or higher order contributions. But in Coulomb gauge the

frequencies do not appear explicitly in the temporal gluon or ghost propagators, the only

dependence on the frequencies is that the Debye mass appears in the temporal gluon propa-

gator only for the zero mode. So, in principle, the propagators do not have to be expanded

and there is nothing preventing also nonzero frequencies to appear in the Matsubara sums,

as long as they do not appear in spatial gluon propagators.

In most diagrams there is only the zero mode because of the contour integration, but

in diagrams L8, L10, L11, and L12 the momentum of the temporal gluon or ghost loop

can have a nonzero frequency without it entering a spatial gluon propagator. This poses

a problem, because those loops do not depend on the frequency, so the Matsubara sums
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FIG. 9. All diagrams relevant for the cancellation of the nonzero modes in the one-loop spatial

gluon self-energy in Coulomb gauge.

contain an infinite sum over a constant, which is divergent and not regulated by dimensional

regularization.

However, these sums are canceled by a diagram that we could ignore so far, because it

vanishes for the zero mode. This is the last diagram in Fig. 9 and the Matsubara frequencies

in the numerator from the vertices exactly cancel the denominator of the spatial gluon after

it has been expanded. Then the sum over all diagrams of Fig. 9 gives from left to right

g2CA
∑

Q

′
∫ [

1

2

4qiqj
(p− q)2q2

− qiqj
(p− q)2q2

− δij
(p− q)2

+
q20

(p− q)2
1

q20

(
δij −

qiqj
q2

)]
= 0 . (B35)

We have used the momentum p− q instead of just q in the tadpole loop so that its cancel-

lation becomes more apparent, and we do not have to consider the higher order expansion

terms of the spatial gluon propagator in the last diagram, because they only contain scaleless

integrals.

So even though each diagram contains a divergent series, the sum of all four of them is

finite, because for each particular value of the frequency the sum cancels. In static gauge

with ξ = 0 this problem does not arise, because the temporal gluon and ghost propagators

vanish for nonzero frequencies. Since the last diagram of Fig. 9 gives no other contribution

apart from canceling the nonzero-frequency contributions of the other diagrams in Coulomb

gauge, the corresponding diagram has not been displayed in Fig. 1.

3. Phase-space Coulomb gauge

In phase-space Coulomb gauge there are less diagram topologies, because temporal gluons

only couple in a three-gluon vertex. These topologies are shown in Fig. 10. But because the

massive propagators now can be temporal, electric, or mixed, there are more diagrams in

total. However, it is possible for each diagram topology to factorize the massive propagators

from the spatial gluon propagators, so that we can sum over all possibilities for the massive
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FIG. 10. All two-loop diagram topologies in phase-space Coulomb gauge. The double-line propa-

gators can represent either a temporal, an electric, or a mixed propagator. Also the diagram with

two one-loop bubbles is displayed in the bottom-right corner. We will label the diagrams L̃1, . . . , L̃7

from top-left to bottom-right.

= − + + −

FIG. 11. Explicit expression for a double line propagator with two vertices in terms of temporal,

electric, and mixed propagators.

propagators before multiplying them with the spatial gluons. This sum over all massive

propagators is represented by the double-line propagators in Fig. 10.

We have included the one-particle reducible diagram L̃7 in Fig. 10, which corresponds

to the second order expansion of the resummed propagator. In this case the re-expanded

temporal propagator depends on several different self-energy functions, so it is easier to just

calculate this diagram explicitly.

We will denote the sum over massive propagators by Dm1m2...
αβ (k0,k1,k2, . . . ). The indices

mi correspond to the vector indices at each vertex i, which can then be contracted with the

spatial gluon propagator. The initial momentum of the series of propagators is k0 and the ki

are the incoming momenta at each vertex i. The final and initial indices of the propagator

series are α and β, respectively. We will need temporal indices for most diagrams, but also

mixed indices for the double line loop in diagram L̃5.

We will show the summation over massive propagators explicitly in one case for illus-

tration and just give the result for the other relevant cases. Fig. 11 shows the double line

propagator with two vertices in terms of temporal, electric, and mixed propagators. By the
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phase-space Coulomb gauge Feynman rules this gives

Dm1m2
00 (k0,k1,k2) =−D00(k0 + k1 + k2)Dm2m1(k0 + k1)D00(k0)

+D00(k0 + k1 + k2)Dm20(k0 + k1)Dm10(k0)

+D0m2(k0 + k1 + k2)D0m1(k0 + k1)D00(k0)

−D0m2(k0 + k1 + k2)D00(k0 + k1)Dm10(k0)

=− 1

P (k0 + k1 + k2)

(
δm2m1 −

(k0 + k1)m2(k0 + k1)m1

P (k0 + k1)

)
1

P (k0)

+
1

P (k0 + k1 + k2)

−(k0 + k1)m2

P (k0 + k1)

−(k0)m1

P (k0)

+
(k0 + k1 + k2)m2

P (k0 + k1 + k2)

(k0 + k1)m1

P (k0 + k1)

1

P (k0)

− (k0 + k1 + k2)m2

P (k0 + k1 + k2)

1

P (k0 + k1)

−(k0)m1

P (k0)

=− 1

P (k0 + k1 + k2)

(
δm1m2 −

4(k0 + k1)m2(k0)m1

P (k0 + k1)

)
1

P (k0)
. (B36)

Here we have used the fact that all vector indices are contracted with gluon propagators

that are proportional to the transverse propagator, which means that all terms (ki)mi
cancel

in the numerator and can be neglected. The different signs in front of the propagators come

from the two color structure functions in the vertices, which are even or odd depending on

whether the temporal, electric, and spatial fields are attached with the same ordering or the

opposite one compared to the three-field vertex shown in Fig. 8.

In the same way one can calculate double line propagators with more vertices or different

initial and final indices:

Dm1m2m3
00 (k0,k1,k2,k3)

=
2(k0 + k1 + k2)m3δm2m1

P (k0 + k1 + k2 + k3)P (k0 + k1 + k2)P (k0)
+

2δm3m2(k0)m1

P (k0 + k1 + k2 + k3)P (k0 + k1)P (k0)

− 8(k0 + k1 + k2)m3(k0 + k1)m2(k0)m1

P (k0 + k1 + k2 + k3)P (k0 + k1 + k2)P (k0 + k1)P (k0)
, (B37)

Dm1m2m3m4
00 (k0,k1,k2,k3,k4)

=
1

P (k0 + k1 + k2 + k3 + k4)

(
δm4m3 −

4(k0 + k1 + k2 + k3)m4(k0 + k1 + k2)m3

P (k0 + k1 + k2 + k3)

)

× 1

P (k0 + k1 + k2)

(
δm2m1 −

4(k0 + k1)m2(k0)m1

P (k0 + k1)

)
1

P (k0)

− 4(k0 + k1 + k2 + k3)m4δm3m2(k0)m1

P (k0 + k1 + k2 + k3 + k4)P (k0 + k1 + k2 + k3)P (k0 + k1)P (k0)
, (B38)
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Dm1
0n (k0,k1) = − 1

P (k0 + k1)

(
δm1n −

2(k0)m1(k0)n
P (k0)

)
. (B39)

With these we can write the phase-space Coulomb gauge diagrams in a rather compact

form:

L̃1 = −CRC
2
Ag

6T

4

∫ ∫

k, p, q∼mD

∫
Dijl

00 (k,p, q − p,−q)Dii′(p)Djj′(q − p)Dll′(−q)

× [δi′j′(2p− q)l′ + δj′l′(2q − p)i′ − δl′i′(p+ q)j′ ]

=
CRC

2
Aα

3
sT

mD

[
1

8
− π2

24
+O(ε)

]
, (B40)

L̃2 = −CRC
2
Ag

6T

4

∫ ∫

k, p, q∼mD

∫
Diji′j′

00 (k,p, q,−p,−q)Dii′(p)Djj′(q)

=
CRC

2
Aα

3
sT

mD

[
− 3

64ε
+

15

64
+

9

64
γE −

π2

24
+

3

4
ln 2− 9

64
ln
πµ2

m2
D

+O(ε)

]
, (B41)

L̃3 = −CRC
2
Ag

6T

2

∫ ∫

k, p, q∼mD

∫
Dijj′i′

00 (k,p, q,−q,−p)Dii′(p)Djj′(q)

=
CRC

2
Aα

3
sT

mD

[
− 3

32ε
− 69

32
+

9

32
γE +

π2

6
− 9

32
ln
πµ2

m2
D

+O(ε)

]
, (B42)

L̃4 = −CRC
2
Ag

6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)
2

(p− q)2q2

×
[(
p2q2 − (p · q)2

)( 1

q2
+

1

(p− q)2

)
δi′j′ +

(
d− 1− p2q2 − (p · q)2

(p− q)2q2

)
qi′qj′

]

=
CRC

2
Aα

3
sT

mD

[
5

32ε
− 43

64
− 15

32
γE +

15

32
ln
πµ2

m2
D

+O(ε)

]
, (B43)

L̃5 = −CRC
2
Ag

6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)Dj′

0n(k + q,p)δi′n

=
CRC

2
Aα

3
sT

mD

[
− 1

32ε
+

1

48
+

3

32
γE +

1

6
ln 2− 3

32
ln
πµ2

m2
D

+O(ε)

]
, (B44)

L̃6 = −CRC
2
Ag

6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)
qi′qj′

(p− q)2q2

=
CRC

2
Aα

3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B45)

L̃7 = −CRC
2
Ag

6T

2

∫ ∫

k, p, q∼mD

∫
Dii′jj′

00 (k,p,−p, q,−q)Dii′(p)Djj′(q)

=
CRC

2
Aα

3
sT

mD

[
5

8
− π2

6
+O(ε)

]
. (B46)
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We have changed the momenta in the double line loop of diagram L̃5 from p + q and q to

k + p + q and k + q by a shift of the integration momentum q, such that the integrals are

all of the form required by the algorithm of appendix D.

We see that the sum of these integrals gives the same result as in standard Coulomb

gauge and in Feynman gauge. But we can make the correspondence between phase-space

and standard Coulomb gauge even clearer. The propagator of the electric field [cf. Eq. (A44)]

contains a part that is just a Kronecker delta, which gives exactly the same contribution as

if the electric propagator were contracted to a point and replaced by a four-gluon vertex in

standard Coulomb gauge. The second part of the electric propagator contains components of

the momentum in the numerator and a massive denominator. This term has the same form

as a corresponding three-gluon vertex in Coulomb gauge, where the momentum components

in the numerator come from the vertex and not the propagator. The same applies for mixed

temporal-electric propagators.

The correspondence is not one-to-one, for example diagrams L̃2 and L̃3 both give diagram

L3 in standard Coulomb gauge when we replace the second and fourth double-line propagator

by a Kronecker delta. But if we look at the color coefficients CRC
2
A/2 of L̃2 and CRC

2
A of

L̃3, we see that they add up exactly to the color coefficient 3CRC
2
A/2 of L3. So ultimately

it is only a matter of combinatorics to see that phase-space and standard Coulomb gauge

generate exactly the same integrals.

A simpler check of this statement is to compare certain classes of diagrams between

phase-space and standard Coulomb gauge, which have unique topologies in both gauge

formulations. In our case, L1 and L̃1 are the only diagrams with a vertex of three spatial

gluons, and diagrams L8, . . . , L12, and L̃4, . . . , L̃6 are the only ones with a one-loop self-

energy in a spatial propagator. So accordingly, we find the equalities

L̃1 = L1 , (B47)

L̃2 + L̃3 + L̃7 = L2 + L3 + L4 + L5 + L6 + L7 + L13 , (B48)

L̃4 + L̃5 + L̃6 = L8 + L9 + L10 + L11 + L12 , (B49)

where we used L13 to denote the contribution from the square of the one-loop self-energy at

the scale mD.

The cancellation of the nonzero frequency contributions is a bit simpler in this formulation

than in standard Coulomb gauge. The double-line loop in diagram L̃5 of Fig. 10 gives rise to
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FIG. 12. Additional diagrams carrying the scale mM at O
(
g6
)
.

two contributions, one where the loop contains a temporal and an electric propagator and one

where both propagators are mixed temporal-electric. The first contribution is unproblematic,

since the electric propagator for nonzero frequencies contains the denominator q20 + q2, for

which the Matsubara sum is finite. The second contribution exactly cancels the ghost loop

diagram.

Appendix C: Magnetic scale cancellation at O
(
g6
)

We will list here all contributions at O (g6) that involve the scale mM . At O (g5) those

were one-loop diagrams where the spatial gluon carries a momentum of order mM and the

temporal gluon carries a momentum of order mD (see section III C). At O (g6) it is the same

principle: two-loop diagrams with all propagators carrying momenta of order mD except for

one spatial gluon with a momentum of order mM . In three-gluon vertices only the momenta

of order mD are to be kept in the numerator.

We refer again to Fig. 1, which essentially gives all relevant diagrams for this calculation.

In diagrams L1, . . . , L7 any of the spatial gluons can be the one that carries the scale mM , in

diagram L9 it is only the gluons in the sub-loop. So L1 contains three and L2, . . . , L7, L9 each

contain two different contributions. In addition, there are two new diagrams not displayed

in Fig. 1, which we give in Fig. 12. They correspond to the diagrams L7 and L9 from Fig. 1

with the sub-loop replaced by a tadpole, so we will include the contributions of the left and

right diagram in Fig. 12 in the following expressions for L7 and L9, respectively. Diagrams

L8, L10, and L12 do not contribute, because if the spatial gluons were of the scale mM ,

then these would correspond to the one-loop diagram with a resummed spatial propagator,

which we have already considered in the O (g5) calculation. Diagram L11 with one ghost
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propagator of the scale mM does not contribute, because from the gluon-ghost vertices there

is a factor of the loop momentum squared in the numerator, so this diagram is of O (g8).

We will do this calculation in Feynman gauge, because the expressions are somewhat

shorter. We will label the momenta such that k, p ∼ mD and q ∼ mM . Since we have to

expand everything in q/mD, we can just ignore q in all other propagators at leading order.

This simplifies the q integration, which now contains only one propagator:

∫

q∼mM

Dij(0, q) =
δij
d

∫

q∼mM

Dkk(0, q) . (C1)

The Kronecker delta can then be used to contract all indices in the k and p integrations,

which can be carried out by the same methods as in the O (g5) calculation.

The calculation of the different diagrams gives

L1 = −CRC2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4 (k2p2 − (k · p)2)

(p2)2 P (k + p)P (k)3
+

2 (k2p2 − (k · p)2)

(p2)2 P (k + p)2 P (k)2

)
Dii(0, q)

d

= −2π

3

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C2)

L2 = −CRC2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫
2(2k + p)2 (k2 + k · p)

p2 P (k + p)2 P (k)3
Dii(0, q)

d

= −2π

3

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C3)

L3 = −3

2
CRC

2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫
d

p2 P (k + p)P (k)2
Dii(0, q)

d

= −3π

2

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C4)

L4 = CRC
2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫
3 (2k2 + k · p)

p2 P (k + p)P (k)3
Dii(0, q)

d

= π
CRC

2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C5)

L5 + L6 = CRC
2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫ (
3(2k + p) · (k + p)

p2 P (k + p)2 P (k)2
+

3 (2k2 + k · p)

p2 P (k + p)P (k)3

)
Dii(0, q)

d

= 2π
CRC

2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C6)
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L7 = −1

2
CRC

2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4(2k + p)2(k + p)2

p2 P (k + p)3 P (k)2
+

4k2(2k + p)2

p2 P (k + p)P (k)4

− d(2k + p)2

p2 P (k + p)2 P (k)2

)
Dii(0, q)

d

= −5π

9

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) , (C7)

L9 = −1

2
CRC

2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫ (
20k2p2 − 4(6− d)(k · p)2 − 4(1− d)(k · p)2p2 − (1− d) (p2)

2

(p2)3 P (k + p)P (k)2

− (d− 1)(2k + p)2

(p2)2 P (k + p)P (k)2

)
Dii(0, q)

d

=
π

2

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) . (C8)

From the square of the one-loop self-energy we have

− CRg
2

2T

∫

k∼mD

Π
(1)
mD(0, k)Π

(1)
mM (0, k)

(k2 +m2
D)

3

= −CRC2
Ag

6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4k2(2k + p)2

p2 P (k + p)P (k)4
− d (2k + p)2

p2 P (k + p)P (k)3

)
Dii(0, q)

d

= −π
9

CRC
2
Aα

3
sT

m2
D

∫

q∼mM

Dii(0, q) . (C9)

The sum of all these terms gives zero.

Appendix D: Automatic reduction to master integrals

The method of how to solve the three-loop integrals appearing in this calculation has been

described in [59]. Minimal modifications are required in order to account for the Euclidean

metric. All integrals can be put in the two following forms:

BM(i1, i2, i3, i4, i5, i6) =

∫

k

∫

p

∫

q

1

(p2)i1((p− q)2)i2(q2)i3P (k + p)i4P (k + q)i5P (k)i6
, (D1)

BN(i1, i2, i3, i4, i5, i6) =

∫

k

∫

p

∫

q

1

(p2)i1(q2)i2P (k + p)i3P (k + q)i4P (k + p + q)i5P (k)i6
,

(D2)

with P (k) = k2 +m2
D. In this framework, the exponents i1, . . . , i6 are integers.
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By relabeling or shifting the integration variables k, p, and q several identities between

the different BM and BN can be established:

BM(i1, i2, i3, i4, i5, i6) = BM(i2, i1, i3, i4, i6, i5)

= BM(i3, i1, i2, i6, i4, i5) = BM(i3, i2, i1, i5, i4, i6)

= BM(i2, i3, i1, i5, i6, i4) = BM(i1, i3, i2, i6, i5, i4) , (D3)

BN(i1, i2, i3, i4, i5, i6) = BN(i1, i2, i5, i6, i3, i4)

= BN(i1, i2, i4, i3, i6, i5) = BN(i1, i2, i6, i5, i4, i3)

= BN(i2, i1, i4, i3, i5, i6) = BN(i2, i1, i5, i6, i4, i3)

= BN(i2, i1, i3, i4, i6, i5) = BN(i2, i1, i6, i5, i3, i4) . (D4)

In addition, any BN with an index i3, . . . , i6 zero or negative can be turned into a BM . The

obvious relation is

BN(i1, i2, i3, i4, 0, i6) = BM(i1, 0, i2, i3, i4, i6) . (D5)

If i5 is negative, one can expand the numerator after substituting

(k+p+q)2 +m2
D = p2− (p−q)2 +q2 +

(
(k + p)2 +m2

D

)
+
(
(k + q)2 +m2

D

)
−
(
k2 +m2

D

)
.

(D6)

All these terms appear to some power in the denominator, so they can be canceled to give

proper BM integrals. If any of the other indices i3, . . . , i6 is zero or negative, then one can

use the identities above to shift that to the fifth position and then use the relation for i5 ≤ 0.

Other identities can be found by acting with ∇i · kj on the integrand, where ki and kj

can be any of the three loop momenta. The total expression has to be zero, since it is an

integral over a total derivative, but calculating the derivative explicitly gives a number of

other BM and BN integrals. These new identities include integrals with changed indices

i1, . . . , i6, while the identities above just shift them:

(d− 2i1 − i2 − i4)BM (i1, i2, i3, i4, i5, i6)

= i2BM (i1 − 1, i2 + 1, i3, i4, i5, i6)− i2BM (i1, i2 + 1, i3 − 1, i4, i5, i6)

+ i4BM (i1 − 1, i2, i3, i4 + 1, i5, i6)− i4BM (i1, i2, i3, i4 + 1, i5, i6 − 1) , (D7)

(d− i1 − i3 − 2i6)BM (i1, i2, i3, i4, i5, i6) = −2i6m
2
DBM (i1, i2, i3, i4, i5, i6 + 1)

+ i1BM (i1 + 1, i2, i3, i4, i5, i6 − 1)− i1BM (i1 + 1, i2, i3, i4 − 1, i5, i6)

+ i3BM (i1, i2, i3 + 1, i4, i5, i6 − 1)− i3BM (i1, i2, i3 + 1, i4, i5 − 1, i6) , (D8)
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(d− i1 − 2i4 − i6)BN (i1, i2, i3, i4, i5, i6)

= i1BN (i1 + 1, i2, i3, i4 − 1, i5, i6)− i1BN (i1 + 1, i2, i3, i4, i5 − 1, i6)

+ i6BN (i1, i2, i3, i4 − 1, i5, i6 + 1)− i6BN (i1, i2 − 1, i3, i4, i5, i6 + 1)

− 2i4m
2
DBN (i1, i2, i3, i4 + 1, i5, i6)− 2i6m

2
DBN (i1, i2, i3, i4, i5, i6 + 1) , (D9)

(
i1 + i2 + i3 + i4 + i5 + i6 −

3d

2

)
BN (i1, i2, i3, i4, i5, i6)

= i3m
2
DBN (i1, i2, i3 + 1, i4, i5, i6) + i4m

2
DBN (i1, i2, i3, i4 + 1, i5, i6)

+ i5m
2
DBN (i1, i2, i3, i4, i5 + 1, i6) + i6m

2
DBN (i1, i2, i3, i4, i5, i6 + 1) . (D10)

There are 16 further identities, which can be obtained from these four by combining them

with the index shifts given above.

By repeated use of these identities every BN integral can be reduced to BN(0, 0, 1, 1, 1, 1)

plus a bunch of BM integrals. In the same way every BM integral can be reduced to

BM(0, 0, 0, 1, 1, 1) plus BM integrals where at least one of the indices i4, . . . , i6 is zero or neg-

ative, for which there exists a general solution. So all integrals appearing in our calculation

can be put into the form of a few master integrals. The needed results for those can be

found in [26, 59, 60].2

Appendix E: Calculation of the master integrals

For the sake of completeness, we attach here how the master integrals, whose results are

given in [26, 59, 60], can be calculated. The simplest one is BM(0, 0, 0, 1, 1, 1), because in

this case all three loop integrations decouple by shifting p→ p− k and q → q − k:

BM(0, 0, 0, 1, 1, 1) =

(∫

k

1

k2 +m2
D

)3

=
Γ
(
1− d

2

)3

(4π)
3d
2

m3d−6
D . (E1)

For the other BM integrals instead of a closed expression we will rather give another

algorithm for their solution. We will assume that the zero or negative index is i4, because if

it is i5 or i6 instead then one can exchange those with i4 by one of the identities. After also

performing the shift p→ p− k and q → q − k we can integrate over p without problems,

2 As a check that our programs are running correctly we have calculated all the integrals given in the

appendix of [26] and reproduced their results.
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because it no longer appears in a massive denominator:

∫

p

(p2 +m2
D)
−i4

((p− k)2)i1 ((p− q)2)i2

=
Γ(i1 + i2)

Γ(i1)Γ(i2)

∫ 1

0

dx

∫

p

(p2 +m2
D)−i4xi1−1(1− x)i2−1

(p2 − 2xp · k − 2(1− x)p · q + xk2 + (1− x)q2)i1+i2

=
Γ(i1 + i2)

Γ(i1)Γ(i2)

∫ 1

0

dx

∫

p

((p + xk + (1− x)q)2 +m2
D)
−i4 xi1−1(1− x)i2−1

(p2 + x(1− x)(k − q)2)i1+i2
. (E2)

Now we have to expand the numerator, which we can do because −i4 is a non-negative

integer, and then use the identity

∫

p

(p · q)nf
(
p2
)

=
2

(4π)
d−1
2 Γ

(
d−1
2

)
∫ ∞

−∞

dp‖
2π

∫ ∞

0

dp⊥ p
d−2
⊥ (p‖q)

nf
(
p2‖ + p2⊥

)

=
4

(4π)
d+1
2 Γ

(
d−1
2

)
∫ ∞

0

dp

∫ 1

−1
dx

p√
1− x2

(√
1− x2 p

)d−2
(xpq)nf

(
p2
)

=
4

(4π)
d+1
2 Γ

(
d−1
2

)
∫ ∞

0

dp

∫ 1

0

dx (1− x)
d−3
2 x

n−1
2 pd−1+nqnf

(
p2
)

=
Γ
(
n+1
2

)
Γ
(
d
2

)
√
π Γ
(
d+n
2

)
∫

p

pnqnf
(
p2
)

=
Γ(n)Γ

(
d
2

)

2n−1Γ
(
n
2

)
Γ
(
d+n
2

)
∫

p

pnqnf
(
p2
)
, (E3)

if n is even, or 0 if it is odd. Then the expanded numerator consists only of a sum of powers

of p2, m2
D, and (xk + (1− x)q)2, the last of which can be re-expressed as:

(xk + (1− x)q)2 = x(k2 +m2
D)− x(1− x)(k − q)2 + (1− x)(q2 +m2

D)−m2
D . (E4)

The p and x integrations now all have the form

∫ 1

0

dx

∫

p

xα−1(1− x)β−1p2γ

(p2 + x(1− x)(k − q)2)δ

=
Γ
(
δ − γ − d

2

)
Γ
(
d
2

+ γ
)

(4π)
d
2 Γ(δ)Γ

(
d
2

)
∫ 1

0

dx
xα+γ+

d
2
−δ−1(1− x)β+γ+

d
2
−δ−1

((k − q)2)δ−γ−
d
2

=
Γ
(
δ − γ − d

2

)
Γ
(
d
2

+ γ
)

Γ
(
α + γ + d

2
− δ
)

Γ
(
β + γ + d

2
− δ
)
µ3−d

(4π)
d
2 Γ(δ)Γ

(
d
2

)
Γ(α + β + 2γ + d− 2δ) ((k − q)2)δ−γ−

d
2

. (E5)

We see that the remaining loop momenta k and q appear only in the combination (k−q)2

in the denominator, which can be combined with the term ((k − q)2)
i3 from the original

BM integral. The numerator has already been expressed through terms appearing in the

denominator, which can also be combined so that we have a sum of integrals of the form
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∫

k

∫

q

1

((k − q)2)α (k2 +mD)β(q2 +m2
D)γ

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx

∫

k

∫

q

(1− x)α−1xβ−1

(k2 + x(1− x)q2 + xm2
D)α+β(q2 +m2

D)γ

=
Γ
(
α + β − d

2

)

(4π)
d
2 Γ(α)Γ(β)

∫

q

(1− x)α−1x
d
2
−α−1µ3−d

((1− x)q2 +m2
D)α+β−

d
2 (q2 +m2

D)γ

=
Γ
(
α + β + γ − d

2

)

(4π)
d
2 Γ(α)Γ(β)Γ(γ)

∫ 1

0

dx

∫ 1

0

dy

∫

q

(1− x)α−1x
d
2
−α−1(1− y)γ−1yα+β−

d
2
−1µ3−d

((1− xy)q2 +m2
D)

α+β+γ− d
2

=
Γ(α + β + γ − d)

(4π)dΓ(α)Γ(β)Γ(γ)

∫ 1

0

dx

∫ 1

0

dy
(1− x)α−1x

d
2
−α−1(1− y)γ−1yα+β−

d
2
−1µ6−2d

(1− xy)
d
2m2α+2β+2γ−2d

D

. (E6)

If we now perform the substitution

z =
(1− y)x

1− xy , 1− z =
1− x
1− xy , dz =

1− y
(1− xy)2

dx , (E7)

where for x from 0 to 1 also z ranges from 0 to 1 independently of y, then the two Feynman

parameter integrations decouple:

∫

k

∫

q

1

((k − q)2)α (k2 +mD)β(q2 +m2
D)γ

=
Γ(α + β + γ − d)

(4π)dΓ(α)Γ(β)Γ(γ)

∫ 1

0

dy

∫ 1

0

dz
(1− z)α−1z

d
2
−α−1(1− y)α+γ−

d
2
−1yα+β−

d
2
−1µ6−2d

m2α+2β+2γ−2d
D

=
Γ(α + β + γ − d)Γ

(
d
2
− α

)
Γ
(
α + β − d

2

)
Γ
(
α + γ − d

2

)
µ6−2d

(4π)dΓ(β)Γ(γ)Γ
(
d
2

)
Γ(2α + β + γ − d)m2α+2β+2γ−2d

D

. (E8)

In this way all BM integrals with a zero or negative index i4, . . . , i6 can be expressed through

gamma functions.

The final missing integral BN(0, 0, 1, 1, 1, 1) is more complicated and we are not aware of

a solution for general d, so we will show how to calculate it to O(ε0). In fact, it is easier to

calculate BN(0, 0, 2, 1, 1, 2), because unlike BN(0, 0, 1, 1, 1, 1) this integral is finite. Through

the algorithm described above we get the relation

BN(0, 0, 2, 1, 1, 2) =
(3d− 8)(3d− 10)(d− 3)

64(d− 4)m4
BN(0, 0, 1, 1, 1, 1) +

(d− 2)3Γ
(
1− d

2

)3
µ3d−9

32(d− 4)(4π)
3d
2 m3d−6

D

.

(E9)

We see that, because of the coefficient (d− 3), in order to get BN(0, 0, 1, 1, 1, 1) to O(ε0) we

need to calculate BN(0, 0, 2, 1, 1, 2) to O(ε1). After performing the shift p → p − k the p
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and k integrations are identical:

BN(0, 0, 2, 1, 1, 2) =

∫

k

∫

p

∫

q

1

(p2 +m2
D)

2
((k + q)2 +m2

D) ((p + q)2 +m2
D) (k2 +m2

D)
2

=

∫

q

(∫

k

1

((k + q)2 +m2
D) (k2 +m2

D)
2

)2

=

∫

q

(∫ 1

0

dx

∫

k

2x

(k2 + x(1− x)q2 +m2
D)

3

)2

=

∫

q

(
Γ
(
3− d

2

)

(4π)
d
2

∫ 1

0

dx
xµ3−d

(x(1− x)q2 +m2
D)

3− d
2

)2

=

∫ ∞

0

dq
2qd−1µ3−d

(4π)
d
2 Γ
(
d
2

)
(

1

8πmD (q2 + 4m2
D)

(
1− γE ε+ ln

µ2π

m2
D

ε

)
+

tan−1 q
2mD

2πq (q2 + 4m2
D)

ε

)2

=

∫ ∞

0

dq
q2

128π4m2
D (q2 +m2

D)
2

(
1 + 2ε− 3γE ε+ ln

µ6π3

m4
Dq

2
ε+

8mD

q
tan−1

q

2mD

ε

)

=
1

16(4π)3m3
D

(
1 + 2ε− 3γE ε− 2 ln 2 ε+ 3 ln

µ2π

m2
D

ε

)
+O

(
ε2
)
. (E10)

From these two results we obtain

BN(0, 0, 1, 1, 1, 1) =
mD

(4π)3

(
−1

ε
− 8 + 3γE + 4 ln 2− 3 ln

µ2π

m2
D

)
+O(ε) . (E11)

Appendix F: Color coefficients of the unconnected three-gluon diagrams

All unconnected three-gluon diagrams are given in Fig. 13. The standard color coefficients

are labeled Cij according to the caption, while the coefficients that appear in the logarithm

are called C̃ij.

The most straightforward prescription to calculate the coefficients in the logarithm comes

from the replica trick [24]. First one attaches an index from 1 to n to each gluon, where n is

some integer, then rearranges each diagram such that gluons with a higher index are moved

along the Polyakov loop contour to the right of gluons with a lower index, while gluons with

the same index keep their current configuration. After summing over all combinations of

indices one expands in n and takes the coefficient of the linear term.

Here we have three different possibilities, either all three gluons have a different index,

two have the same but the third index is different, or all three indices are the same. It is

then only a matter of combinatorics to count the number of possible index combinations.
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FIG. 13. All unconnected three-gluon diagrams. The corresponding color coefficients are labeled

Cij , where i denotes the row and j the column in which the diagram is listed.

For three different indices there are n(n−1)(n−2) possibilities, while when all three are the

same there are n. When only two are the same there are n(n− 1) index combinations and 3

ways to choose the one gluon that has a different index. Rearranging the gluons according

to their index number always gives C11 = C3
R for three different indices and the standard

(i.e., QCD) color coefficient when all indices are the same. When only two are the same,

then in half of the index combinations the single index will be smaller then the double index

and larger for the other half, but in both cases the color coefficient is the same, so we do not

have to differentiate between them. The 3 different ways to choose the single index gluon

may or may not give different color coefficients after rearranging the gluons according to

their indices.

The standard color factors are

C11 = C3
R , C21 = C2

R

(
CR −

1

2
CA

)
, C31 = C3

R ,

C12 = C2
R

(
CR −

1

2
CA

)
, C22 = CR

(
CR −

1

2
CA

)2

, C32 = C2
R

(
CR −

1

2
CA

)
,

C13 = C3
R , C23 = CR

(
CR −

1

2
CA

)
(CR − CA) , C33 = CR

(
CR −

1

2
CA

)2

,

C14 = C2
R

(
CR −

1

2
CA

)
, C24 = CR

(
CR −

1

2
CA

)2

, C34 = C2
R

(
CR −

1

2
CA

)
,

C15 = C3
R , C25 = C2

R

(
CR −

1

2
CA

)
, C35 = C3

R . (F1)
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Then we can calculate the coefficients in the logarithm:

C̃11 = nC11 + 3n(n− 1)C11 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (F2)

C̃12 = nC12 + 2n(n− 1)C11 + n(n− 1)C12 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (F3)

C̃13 = nC13 + 2n(n− 1)C11 + n(n− 1)C13 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (F4)

C̃14 = nC14 + n(n− 1)C11 + n(n− 1)C12 + n(n− 1)C13

+ n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C11 − C12 − C13 + C14 = 0 , (F5)

C̃15 = nC15 + n(n− 1)C11 + 2n(n− 1)C13 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C11 − 2C13 + C15 = 0 , (F6)

C̃21 = nC21 + 2n(n− 1)C11 + n(n− 1)C21 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (F7)

C̃22 = nC22 + 2n(n− 1)C21 + n(n− 1)C11 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C22 − 2C21 + C11 =
1

4
CRC

2
A , (F8)

C̃23 = nC23 + 3n(n− 1)C21 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C23 − 3C21 + 2C11 =
1

2
CRC

2
A , (F9)

C̃24 = nC24 + 2n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C24 − 2C21 − C31 + 2C11 =
1

4
CRC

2
A , (F10)

C̃25 = nC25 + n(n− 1)C21 + 2n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C25 − C21 − 2C31 + 2C11 = 0 , (F11)

C̃31 = nC31 + 2n(n− 1)C11 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (F12)

C̃32 = nC32 + n(n− 1)C11 + n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C32 − C21 − C31 + C11 = 0 , (F13)

C̃33 = nC33 + 2n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C33 − 2C21 − C31 + 2C11 =
1

4
CRC

2
A , (F14)

C̃34 = nC34 + n(n− 1)C21 + 2n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C34 − C21 − 2C31 + 2C11 = 0 , (F15)
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C̃35 = nC35 + 3n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C35 − 3C31 + 2C11 = 0 . (F16)

Here we see the general property confirmed that only two-particle irreducible diagrams

appear in the logarithm. This means that the color coefficient in the logarithm vanishes for

any diagram where one can cut the (closed) Polyakov loop contour in two points such that

there are no gluons connecting from one segment of the contour to the other. These are

the so-called two-particle reducible diagrams, the diagrams where this is not possible are

called two-particle irreducible. Here the considerable reduction in the number of diagrams is

even more apparent than in the two-gluon diagrams: out of fifteen unconnected three-gluon

diagrams only four survive in the logarithm.

We also see that all higher power terms of CR are canceled, only the linear term remains

and only the two-particle irreducible diagrams have a linear term. This is in accordance

with the theorem shown in [24] that the color coefficients in the logarithm all correspond to

those of fully connected diagrams. The coefficients of fully connected diagrams depend only

linearly on CR or the C
(n)
R . So the only terms that can break Casimir scaling come from the

C
(n)
R , see Eq. (47).
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