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Abstract

Two quantum field theories whose Hilbert spaces do not overlap cannot trans-
mit a signal to one another. From this simple principle, we deduce some highly
nontrivial consequences for holographic quantum gravity. These include: (1)
certain cosmological bounces are forbidden, (2) generic singularities inside black
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1 Introduction

A true understanding of singularities, both in cosmology and in the black hole interior,

requires a nonperturbative formulation of a quantum theory of gravity. Perhaps the

best-understood approach to quantum gravity is gauge/gravity duality, which relates

quantum string theory on asymptotically locally Anti-de Sitter (AdS) backgrounds –

the bulk – to quantum field theories2 living on the conformal boundary of the bulk [1–3].

At its strongest form, the duality provides a definition of nonperturbative quantum

gravity in terms of a field theory. A powerful feature of this duality is that statements

that are hard to establish on one side of the duality are often much easier to prove

or derive on the dual counterpart. Unitarity of the evolution is an early example of

a simple statement about field theory with a highly nontrivial consequence for black

hole evaporation in the gravitational dual. This is the direction that we pursue in this

paper: deducing significant implications for quantum gravity from a simple field theory

principle.

The principle we employ is intuitive: a signal cannot be transmitted between two

quantum field theories defined on separate Hilbert spaces. We call this the No Trans-

mission Principle. In general, two quantum field theories have separate Hilbert spaces

when they are defined on separate spacetimes. When the field theories in question

are conformally invariant, there is a subtlety: two spacetimes which a priori appear

disconnected can possibly be conformally mapped to one connected spacetime. Two

disjoint copies of a conformal field theory (CFT) on d-dimensional Minkowski space-

time, for example, can be mapped into disjoint finite subsets of the same CFT on the

Einstein static universe. The two original copies of the CFT are then defined on the

same Hilbert space, and signals can then propagate from one to the other through

the CFT on the Einstein static universe. In the situation in which two CFTs cannot

be conformally embedded in a larger CFT in this sense, their Hilbert spaces cannot

overlap, and therefore no signals may be exchanged between the two (see Fig. 1 for an

illustration).

The application to holography is immediate. If two field theories with holographic

duals do not share a Hilbert space, then no signal can be transmitted between their

bulk duals. This is reminiscent of the Gao–Wald theorem [4]: signals between two

boundary points travel faster on the boundary than in the bulk; here we say that

signals can only propagate through the bulk if it can do so on the boundary. This

results in nontrivial constraints on the structure of bulk spacetimes with cosmological

2Note that we do not restrict to conformal field theories, as gauge/gravity duality can also apply
to theories without conformal invariance, provided that these theories have a UV fixed point.
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singularities or black holes. We note that while certain black hole spacetimes might

appear to present a violation of this line of reasoning (e.g. Reissner-Nordstrom-AdS)

by allowing signals to propagate from one asymptotic boundary to another through the

inner horizon, the instability of the inner horizon guarantees that no actual violations

occur. This is discussed at length in Sec 4.

The power of the No Transmission Principle in holography is in its broad applicabil-

ity to quantum string theory in any regime. The statement of the principle omits any

mention of N or the ’t Hooft coupling, so any constraints obtained from this principle

are valid when the bulk theory is anything from classical Einstein gravity to full quan-

tum string theory. At the classical level, it implies new results about asymptotically

AdS solutions of general relativity, which may presumably be proved using geometry

alone. At the quantum level, it yields new insights into quantum gravity, which cannot

be obtained directly from our current understanding of the theory.

We organize our investigation into two different categories based on the extent of

evolution of the dual field theory. In particular, we separately consider field theories

in which evolution stops at some finite time – “singular” field theories – and ones in

which evolution continues indefinitely, which we term “nonsingular” (in a conformally–

invariant sense to be defined in Sec. 2). Application of the No Transmission Principle

to two singular field theories yields constraints on the behavior and resolution of cos-

mological singularities; the implications for two nonsingular field theories place limits

on black hole singularity resolution and wormholes. Below we provide a heuristic dis-

cussion of the principle’s implications separately for singular and nonsingular CFTs.

Singular Field Theories: The No Transmission Principle yields a simple result when

applied to singular field theories: if the boundary constituents are two singular field

theories, then their corresponding Hilbert spaces have no mutual overlap. In this case,

the field theory singularity must extend through the bulk, cutting off bulk evolution at

finite time; the alternative would allow signals to propagate between the field theories

through the bulk even though such propagation is forbidden due to the No Transmission

Principle.

We may now investigate consequences of terminated bulk evolution in various

regimes of quantum string theory. First, at the level of classical General Relativity

(large N and large coupling), we obtain nontrivial statements about the structure of

singular solutions to general relativity: a cosmological singularity on the boundary

results in a bulk singularity which extends to infinity and cannot end in the interior,

leaving a smooth region behind. This agrees with intuition, as a spacetime which has a

singularity with a “hole” would constitute a gross violation of cosmic censorship as well
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as global hyperbolicity. Such a singularity would arise from smooth initial data in the

past and an observer traveling through the hole would be able to see the singularity on

the other side. There are various cosmological singularity theorems in general relativity

which have a similar conclusion, but those assume the strong energy condition, which

is violated by reasonable and more pertinently extant matter such as massive scalar

fields.

At the level of classical string theory (infinite N and finite coupling), we find con-

straints on stringy singularities. Certain types of cosmological singularities can be

smoothed out by closed string tachyon condensation [5]. In the context of holography,

the No Transmission Principle shows that a tachyon condensate cannot mediate signal

transmission from a collapsing spacetime to an expanding one.

The application of this argument to full quantum gravity is of greatest interest.

Gauge/gravity duality at finite N and finite coupling still has a fixed (classical) metric

on the conformal boundary, but the metric in the interior is subject to arbitrarily large

quantum and stringy fluctuations. The No Transmission Principle certainly applies

to field theories at finite N and coupling, leading to the conclusion that holographic

quantum gravity forbids a large class of bounces through cosmological singularities3.

Cosmological bounces have been extensively investigated in prior literature, ranging

from classical solutions which violate the strong energy condition [6, 7], to bounces in

nonholographic theories of quantum gravity, and even bouncing cosmologies in holog-

raphy. With regard to the first, we are not aware of any such classical solutions with

asymptotically AdS initial data that would contradict our results. Our analysis does

not apply to the second category, which includes loop quantum gravity [8,9], as well as

string inspired models that use T-duality [10, 11] or colliding branes [12]. Our conclu-

sions for holographic bounces could only be avoided in the following way: by matching

the state of one dual field theory prior to the singularity to the state of another dual

theory after the singularity [13,14]. This extra input is not part of standard holography

and, in our opinion, is unnatural and not justified. Furthermore, there are indications

that a suitable rule does not exist. We will discuss this further in Sec. 5.

Nonsingular Field Theories: The No Transmission Principle may be similarly ap-

plied to nonsingular field theories to yield fruitful results constraining the black hole

interior and forbidding traversable wormholes that connect two asymptotically AdS re-

gions of spacetime. The line of reasoning is similar to the cosmological case: two field

3We are only able to rule out holographic bounces for which the dual field theory is genuinely
singular. We are aware of only one example of a cosmological singularity in holography for which the
dual field theory may be nonsingular in the sense of Sec. 3. See Sec. 3.4 for discussion.
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theories on separate spacetimes which have maximal evolution – i.e. cannot be evolved

any further in any conformal frame – must have non-overlapping Hilbert spaces. They

therefore cannot transmit signals to one another.

The above argument immediately shows that quantum string theory forbids the

resolution of a Schwarzschild black hole future singularity into a white hole singular-

ity of another asymptotic region. That would allow signals to propagate from one

asymptotically AdS bulk to another, inducing forbidden transmission between nonsin-

gular field theories. More generally, a charged or rotating AdS black hole has an inner

horizon which is known to be classically unstable [15, 16]: generic perturbations will

turn this horizon into a singularity [17,18] (see Sec. 4 for more detail). The No Trans-

mission Principle implies that there is no evolution past this singularity into another

asymptotic region in holographic quantum gravity. Finally, the same line of reasoning

shows that traversable wormholes between two asymptotically AdS bulks are forbidden

by quantum string theory, as such a setup would allow signals to propagate from one

asymptotically AdS region to another.

In the next section we introduce the No Transmission Principle in greater detail.

Singular and nonsingular field theories are defined in Sec. 3, where the No Transmission

Principle is used to derive constraints on cosmological bounces. Sec. 4 contains appli-

cations to nonsingular field theories, and Sec. 5 contains some concluding remarks.

This includes a brief discussion of applications of the No Transmission Principle to

superselection sectors in holography [19].

2 No Transmission Principle

When can signals be exchanged between two quantum field theories? Excitations in one

field theory can only make sense in the other if the operator algebra of each field theory

acts on a common Hilbert space4. More precisely, consider two field theories on fixed

classical, non-overlapping geometries5 of the same dimensionality with Hilbert spaces

H1 and H2, respectively. We will say that the two field theories are independent if the

joint Hilbert space of the system can be written as a tensor product: H = H1 ⊗ H2,

and when acting on H, every operator of the first theory takes the form Φ1 ⊗ I2, and

every operator of the second theory takes the form I1 ⊗ Φ2, where Ii is the identity

operator on Hi. Otherwise, the two field theories are dependent.

4We thank D. Jafferis for suggesting this formulation.
5We will not consider backreaction, and for our purposes these spacetimes need not be dynamical.
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No Transmission Principle (NTP): Two independent quantum field theories can-

not transmit signals to one another.

At first sight, the simplicity of this statement may belie its utility. The power of

the principle stems from its applicability to gauge/gravity duality without reference to

the coupling or the number of degrees of freedom of the field theory. In the holographic

context, it states that if two holographic field theories cannot influence one another

on the boundary, then they cannot do so through the bulk, be it classical, stringy, or

quantum.

In the context of holography, we will often be interested in quantum field theories

that are conformally invariant, so we will give a few examples of dependent and inde-

pendent CFTs. The simplest example can be constructed from two copies of N = 4

super Yang-Mills (SYM) in the ground state on (3+1)-dimensional Minkowski space.

As is well known, each copy is holographically dual to a Poincaré patch of pure AdS5.

Explicitly, the Minkowski metric can be written as a conformal rescaling of part of the

Einstein static universe:

ds2flat =

[
sec

(
T +R

2

)
sec

(
T −R

2

)]2 (
−dT 2 + dR2 + sin2RdΩ2

)
. (1)

where −π < T ± R < π and R > 0. Thus each copy of N = 4 SYM on Minkowski

space is a subset of N = 4 SYM on the Einstein static universe. The two copies are

dependent if they share a Hilbert space, which can only happen if the above conformal

transformation maps them onto the same N = 4 SYM on the Einstein static universe.

They are independent if it maps them to two separate N = 4 SYM on two distinct

copies of the Einstein static universe. In the former case, the two copies of N = 4

SYM on Minkowski space are holographically dual to two Poincaré patches of the same

global AdS spacetime (see Fig. 1(a)). These CFTs can communicate both through the

boundary and through the bulk. In the latter case (see Fig. 1(b)), they are each dual to

a Poincaré patch of a different global AdS spacetime: the CFTs cannot communicate

in any way, either through the bulk or the boundary, in agreement with the NTP.

This construction is not limited to Minkowski space: de Sitter (dS), for example, is

also conformally related to a finite patch of the Einstein static universe, so two CFTs

living on two copies of dS, or one copy on dS and the other on Minkowski space, can

all in principle be dependent – that is, as long as the two copies of the CFT can be

consistently mapped to the same Einstein static universe.
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(a) (b)

Figure 1: Two copies of a CFT can be mapped to (a) disjoint subsets of the same CFT
in the Einstein static universe if they are dependent, or (b) two separate Einstein static
universes if they are independent.

As a caution we note that simply taking any two finite subsets of a CFT and confor-

mally rescaling them into two complete universes does not necessarily yield dependent

CFTs. The problem is the following: consider a Cauchy surface in the original CFT

and two open subsets S1 and S2. Any pure state defined in one of the subsets will

be singular in the larger CFT, since there are no correlations across the boundary of

Si [20]. For example, the quantum stress tensor will diverge on this boundary. To avoid

this problem, dependent CFTs must each contain an entire Cauchy surface of the larger

CFT (or all but a set of measure zero, as in the case of Minkowski spacetime).

As a final, somewhat pathological example, consider a holographic field theory on

the Einstein static universe dual to global AdS, and excise the region r > r0 from the

constant time slice t = 0 in the bulk geometry. The result naturally picks out two

dual field theories on two separate universes: the field theory that lives on t < 0, and

the field theory that lives on t > 0 (see Fig 2). Information about an excitation in

the t < 0 field theory can travel through the bulk spacetime to the t > 0 field theory.

This, however, is not in violation of the NTP: the two field theories in question are

dependent — they are subsets in this case of a field theory that lives on the complete
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r=r0
t=0

CFT1

CFT2

Figure 2: By excising a constant time (t = 0, r > r0) surface from global AdS, we may
artificially obtain a setup which a priori seems to have two independent CFTs, and
yet bulk signals from CFT1 to CFT2 are allowed. This is not in violation of the No
Transmission Principle, since the two CFTs are simply subsets of the CFT that lives
on the complete Einstein static universe.

Einstein static universe, with the t = 0 slice not excised.

We now turn to deriving constraints on the bulk spacetime from the No Transmis-

sion Principle.

3 The No Transmission Principle For Singular Field

Theories

A key question in the study of cosmological singularities is whether quantum gravity

mediates a bounce from a big crunch. Is a cosmological singularity a true end to

spacetime or is there another semiclassical region of spacetime before a big bang or

after a big crunch? We will show in this section that a large class of holographic

bounces are forbidden.6 For completeness, we will also discuss one case of a quantum

bounce which is not yet ruled out. There is evidence that it is, but further work is

needed to settle the question.

The crux of the argument is that the NTP implies that the bulk evolves forward in

time only if the dual field theory evolves forward in time. If the field theory evolution

ends, bulk evolution must stop; it is this principle which generally forbids bounces. A

quantum field theory evolution will end only if it becomes singular in a suitable sense.

For quantum field theories which are not conformally invariant, the definition is simple:

a field theory is singular if its evolution stops at some finite time. This can be a result

6We define a bounce to be one in which signals can propagate from the past semiclassical spacetime
to the future. If this is not possible, then operationally the spacetimes are not connected.
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of a curvature singularity in the underlying spacetime or a sickness in the field theory

(e.g. a Hamiltonian which is unbounded from below). We will review several ways

in which this can happen, but first we must address the following issue: since many

holographic setups involve CFTs, any finite time evolution can be rescaled to infinite

time via a conformal mapping. We will therefore need a conformally-invariant way of

defining arrested evolution.

We consider CFTs on maximally conformally extended spacetimes, i.e., spacetimes

which cannot be conformally embedded as a proper subset of a larger spacetime. We

assume that the topology is X × R, where X is a compact (d− 1)-dimensional mani-

fold,7 and that the metric is globally hyperbolic: there exists a Cauchy surface C with

unique classical evolution from initial data on C to anywhere in the spacetime. In fact,

the spacetime can be foliated by a one parameter family of Cauchy surfaces {Ct} each

with topology X [21]. Given a conformal metric on X ×R, we pick a conformal frame

in which the volume of Ct is bounded from above and below by nonzero constants for all

t; such frames exist for any conformal metric (this excludes a conformal frame in which

the CFT lives in a spacetime like de Sitter). We will call this a standard conformal

frame. The notion that evolution ends in finite time in a standard conformal frame is

now conformally invariant.

Definition: If the evolution of the CFT extends to infinite future proper time (in a

standard conformal frame), then the CFT is future-complete. If in this frame, evolu-

tion cannot be extended to infinite proper time, the CFT is future-singular. Similarly, if

there is past-infinite evolution of the CFT, the CFT is past-complete, and past-singular

otherwise.

Three different types of singular CFTs have been discussed in the literature: (1)

the CFT could have a potential which is unbounded from below so observables run off

to infinity in finite time, (2) the CFT could live on a spacetime with a cosmological

singularity in the standard conformal frame (see Sec. 3.1 for a precise definition), (3)

the CFT could be coupled to a time dependent source for a relevant deformation which

becomes singular in a finite time. We now briefly review examples that illustrate these

three possibilities. In each case the dual bulk geometry has a cosmological singularity.

An example of the first case is given in [22, 23] where a stable (2 + 1)-dimensional

CFT is deformed by a marginal triple trace term: S = S0 + k
∫
O3 where O is a

dimension one operator. This adds a potential which is unbounded from below. A

7Spacetimes like Minkowski space that can be conformally mapped to a compact universe are
included.
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similar example is studied in [13], where a (3 + 1)-dimensional CFT is deformed by a

marginal double trace term: S = S0 + k
∫
Õ2 where Õ is a dimension two operator.

Since k > 0, this again corresponds to adding a potential which is unbounded from

below. In both cases, the bulk dual consists of gravity coupled to a scalar field φ

with potential V (φ) coming from a consistent truncation of supergravity. It was shown

that there are solutions in which smooth asymptotically AdS initial data evolves into

a cosmological singularity in the bulk.

Examples of the second possibility, that the field theory spacetime is itself singular,

were discussed in [24–26] where the CFT was defined on the Kasner universe:

ds2 = −dt2 +
d−1∑
i=1

t2pidx2i , (2)

where
∑
pi =

∑
p2i = 1 and the xi’s are periodically identified (to make space com-

pact). This metric describes an anisotropic, homogeneous cosmology with a curvature

singularity at t = 0. This metric is not in a standard conformal frame (the volume of

spatial slices vanishes at t = 0), but is conformally related to a standard conformal

frame by the conformal factor t−1/(d−1). There is a simple bulk dual to this setup, with

the metric:

ds2 =
1

z2

(
dz2 − dt2 +

d−1∑
i=1

t2pidx2i

)
, (3)

which solves the vacuum Einstein equations with a negative cosmological constant.

This bulk metric has a cosmological singularity at t = 0 for all z, as well as a singularity

at the Poincare horizon, z =∞. Should the additional singularity be of concern, there

is a related solution, the Kasner-AdS Soliton, which is also dual to a field theory on

Eq. (2) (with one of the pi = 0) [27]

ds2soliton =
1

z2

[(
1− zd−1

)
dθ2 − dt2 +

d−1∑
i=1

t2pidx2i +
dz2

1− zd−1

]
. (4)

With a suitable period for θ, space now smoothly caps off at z = 1.

Finally, we give an example of singular field theories in which the singularity stems

from a singular time-dependent source [28–30]. A relevant perturbation of a CFT on

de Sitter (with a constant coefficient of appropriate sign) is dual to a bulk with matter

coupled to gravity8. Within the future lightcone of a point in the bulk, the solution is

8For some deformations, this is dual to gravity coupled to the same scalar fields used in the first
example above, and the bulk solutions are in fact identical to the ones found in [13,22,23].
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described by an open FRW universe with a big crunch extending all the way through the

bulk. Similarly, within the past lightcone, there is an expanding open FRW universe

with an initial big bang extending all through the bulk. For small coefficients, the

deformed CFT on de Sitter space is perfectly well-defined, but if one now conformally

maps de Sitter to a standard conformal frame like the Einstein static universe, the

coefficient of the relevant operator gets multiplied by a power of the conformal factor

and diverges in finite time both in the past and the future: the CFT is being driven

by a source that becomes singular [30].

We will establish a correspondence between singular CFTs and singular bulks in

the sections below. We first consider bounces in a bulk described by classical general

relativity, then in a special case of classical string theory, and finally in full quantum

gravity.

3.1 In Classical General Relativity

We argue below that a singular holographic field theory is dual to an asymptotically

AdS spacetime with a cosmological singularity – a singularity which extends out to

infinity and cuts off all further evolution. More precisely, let Σ be a complete spacelike

surface in the bulk, and let g̃AB = Ω2gAB be the rescaled bulk metric with timelike

boundary at infinity attached.

Definition: The bulk spacetime has a future cosmological singularity (big crunch) if

it is maximally extended and the length of all future directed timelike curves from Σ is

bounded when computed with the rescaled metric g̃AB.

A big bang singularity is defined similarly with “future” replaced by “past”.

One can characterize the region of the bulk described by the dual field theory as

follows: given a conformal boundary B to an asymptotically AdS spacetime, the dual

field theory on B describes the region of the bulk spanned by all spacelike surfaces

which end on B.

In the particular case where a holographic field theory is singular due to a cosmolog-

ical singularity on the boundary, we obtain a purely geometric result which relates the

conformal geometry of the boundary to the geometry of the bulk. To state it formally,

we first define what we mean by a boundary cosmological singularity:

Definition: The conformal boundary B of an asymptotically AdS spacetime has a fu-

ture cosmological singularity (a big crunch) if in any standard conformal frame, through
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every point of any Cauchy surface Ct, there exists a future incomplete timelike geodesic.

Once again, a big bang singularity is defined similarly with “future” replaced by “past”.

Note that we cannot require that the length of all timelike curves (or even all timelike

geodesics) be bounded in this case, since we can rescale the metric by a function that

diverges locally near the singularity. We now state a purely geometric implication of

the NTP:

Conclusion: Consider any supergravity theory arising in the low energy limit of string

theory. If the conformal boundary metric of an asymptotically AdS solution has a cos-

mological singularity, then the bulk solution must also have a cosmological singularity.

It is easy to see that this follows immediately from the NTP. If the conformal boundary

has a cosmological singularity in the future (as defined above), evolution of the holo-

graphic field theory dual must end in finite time. This is the second type of singular

field theory discussed in Sec. 3. If the bulk dual does not have a big crunch singularity,

then evolution in the bulk can continue into another region of spacetime with its own

asymptotic boundary metric. This would require that the bulk be dual to two field the-

ories: the original future-singular field theory, and another, past-singular field theory

which can receive causal signals via the bulk from the future-singular field theory. See

Fig. 3(a). The two field theories are manifestly independent, so any communication

between them violates the NTP. This contradiction is avoided only if the bulk has a

cosmological singularity, as in Fig 3(b), establishing the above result.

The above implication is a novel singularity “theorem”: a boundary singularity

guarantees a bulk singularity. Since it is purely a geometric statement, it is reasonable

to expect that it can be shown just using techniques from classical general relativity.

Ideally, the restriction to supergravity theories would be replaced by a more general

condition like the Null Energy Condition ( Tab`
a`b ≥ 0 for all null `a). Since the result

shows that the singularity cannot end in a naked singularity in the interior as illustrated

in Fig. 3, it also incorporates a (very limited) form of cosmic censorship.

The above conclusion is not obvious: there are bulk spacetimes which are nonsin-

gular, but still have a conformal boundary with a cosmological singularity. As argued

above, the NTP shows that these are not solutions to string theory. As an example,

consider the following spacetime:

ds2 =
1

z2

[
−dt2 +

d−1∑
i=1

(t2 + z2)pidx2i + dz2

]
(5)
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CFT2

CFT1

(a)

CFT2

CFT1

(b)

Figure 3: (a) In a bulk in which a singularity that extends to the boundary has a
hole, signals can travel from the bulk region dual to CFT1 to the bulk region dual to
CFT2. This is forbidden by the No Transmission Principle, as CFT1 and CFT2 are
independent. (b) The NTP implies that any signal in the bulk region dual to CFT1

must terminate before it reaches the bulk region dual to CFT2: the singularity has no
hole.

where
∑
pi = 0. This form of the metric is intended to apply only in the asymptotic

(small z) region. (For large z, it can be modified in any nonsingular manner.) The

bulk spacetime given by (5) is suggestive of a regulated version of the AdS Kasner

metric in which the cosmological singularity is replaced by a bounce. The metric on

the boundary z = 0 is still singular and is simply Kasner (2) in a standard conformal

frame. The NTP, as argued above, shows that this metric is forbidden as a solution to

general relativity with matter coming from string theory. Since this spacetime violates

the Null Energy Condition, the results of the NTP agree with conventional wisdom,

that any reasonable classical geometry arising from string theory should obey the Null

Energy Condition.

We have focused above on the case in which the field theory has a cosmological

singularity, but the conclusion holds whenever the field theory is singular, irrespective

of the type of singularity: a portion of a bulk spacetime which is dual to a future-

singular field theory can have no overlap with a portion of the bulk which is dual to a

past-singular field theory.
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3.2 In Classical String Theory

In this section, we explore one implication of the No Transmission Principle for holog-

raphy with infinite N and finite coupling, dual to a classical, but stringy bulk. Can

classical stringy effects mediate evolution through the singularity? Since the argument

in the previous section made no use of N or the ’t Hooft coupling, we conclude that

the same line of reasoning shows that the answer is no.

We illustrate this with an example of one classical stringy effect that can be ex-

plicitly ruled out as mediating evolution through a singularity: tachyon condensation.

When one direction of space is compactified to a circle, string theory has states corre-

sponding to winding modes around the circle. These winding modes become tachyonic

whenever the size of the circle is smaller than the string scale and fermions are anti-

periodic around this circle. A space that has a circle at infinity which is larger than the

string scale and slowly shrinks to become smaller than the string scale in the interior

has a tachyon instability; this instability results in the circle pinching off [31].

In the context of cosmological singularities, the tachyon instability can manifest as

a result of the circle shrinking in time. An explicit instance of this was worked out

in [5] for the Milne spacetime [32]:

ds2 = −dτ 2 + τ 2dχ2. (6)

These coordinates cover the interior of the light cone of two dimensional Minkowski

space. Compactifying χ with period χ0 forms a Lorentzian cone, as illustrated in

Fig. 4(a). Since the length of the circle is L(τ) = |τ |χ0, its rate of change is L̇ = ±χ0.

It was shown in [5] that if χ0 is sufficiently small, the string spectrum can be reliably

computed and a winding string mode becomes tachyonic when L reaches the string

scale9. When the tachyon condenses, spacetime ends. All string modes (including

the graviton) become massive and there is no low energy spacetime description of the

physics [5]. This is a classical string theory effect which does not involve quantum

gravity.

The above metric with −∞ < τ < +∞ describes two cones attached at a singular

tip (Fig. 4(a)). Although the tip is only a conical singularity (since the curvature

vanishes for all nonzero τ), in classical string theory it is unstable to developing large

curvature: the slightest perturbation with momentum around the circle will become

strongly blue-shifted near τ = 0 and cause the curvature to become large. The NTP

shows that, at least in the context of holography, the tachyon instability (which can

9We are ignoring the extra spatial dimensions which will play no role in this discussion.
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CFT1

CFT2
χ

τ=0

(a)

?

CFT1

CFT2

τ=0

(b)

Figure 4: (a) Two independent CFTs on the past and future Lorentzian cone, with
a conical singularity in between them. (b) The bulk dual with a tachyon condensate
modifying the near-singularity region. It may a priori seem that the tachyon could allow
signals to propagate through, but the No Transmission Principle forbids the signal in
the shaded region from emerging in the bulk region dual to CFT2.

set in before the curvature becomes large) will not allow signals to propagate from the

past cone to the future cone through the tachyon condensate.

More explicitly, consider AdS3 in Poincare coordinates and write the Minkowski

metric on each radial slice in Milne coordinates:

ds2 =
1

z2
[
−dτ 2 + τ 2dχ2 + dz2

]
(7)

where χ is compactified with period χ0. The bulk spacetime has a cosmological singu-

larity at τ = 0: this is a simple example of an AdS cosmology. The dual field theory

consists of two independent field theories on two Lorentzian cones which are attached

at their tip. In a standard conformal frame, the past cone by itself is conformal to

an infinite cylinder: ds2 = −dt2 + dχ2 with t = ln τ ; the field theory on the past

cone itself is nonsingular. In the bulk, tachyon condensation replaces the singularity

at τ = 0 with a tachyon condensate when |τ |L/z < `s, see Fig 4(b). If signals in the

bulk could propagate through the tachyon condensate, it would violate the NTP. Note

that although the tachyon condensate extends out to infinity, it is confined to a region
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|τ | < z`s/L. At the conformal boundary, then, it is concentrated at the tip and does

not affect the geometry of the cone, or the infinite static cylinder.

3.3 In Quantum Gravity

A holographic field theory at finite N and finite coupling is dual to a bulk spacetime

with all quantum string theory effects included. If the dual field theory is singular,

the No Transmission Principle implies that signals cannot be transmitted through

cosmological singularities – even in a quantum stringy bulk. In other words, such

bounces are forbidden. A potential objection to this argument is that holography

might fail in this context. After all, gravitational excitations are no longer confined

inside a finite box. Since quantum gravity effects are strong near the singularity, and

the singularity extends all the way out to infinity, perhaps decoupling fails and the

boundary metric will be subject to quantum fluctuations10, rather than being a fixed,

nondynamical background as usually assumed.

The following argument shows that holography does not fail, and can still be applied

in the cosmological context. First we show that the boundary metric (in Fefferman-

Graham gauge) is singular for any semiclassical bulk geometry with large asymptotic

curvature, even if the bulk curvature remains finite. In other words, bulk quantum

effects cannot regulate the boundary metric so that it becomes nonsingular. The line

of reasoning is simple: no matter how large the boundary curvature is, as long as

it remains finite, the bulk remains asymptotically AdS everywhere. In particular,

the asymptotic bulk curvature is set by the bulk cosmological constant and does not

become large. To see this, recall that on any scale smaller than the boundary curvature,

the boundary metric looks flat, so the bulk metric resembles standard AdS in that

asymptotic region.

More explicitly, for any nonsingular d-dimensional boundary metric g0µν , introduce

Fefferman-Graham coordinates in which the bulk metric takes the asymptotic form

ds2 =
1

z2
[dz2 + g0µνdx

µdxν ]. (8)

The scalar curvature of this metric is R = −d(d + 1) + z2R0 where R0 is the scalar

curvature of g0µν . So as long as R0 remains finite, it yields only a subleading contribution

to the asymptotic bulk curvature. (A similar result holds for the full Riemann tensor.)

This implies that if the bulk metric has large finite curvature that continues into the

asymptotic region (as expected for any quantum backreaction near a cosmological

10We thank S. Hartnoll for raising this point.
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singularity), the boundary metric must be singular.

Quantum gravity effects are expected to be significant only within a bounded dis-

tance to the singularity. Suppose that the singularity is at t = 0 and the quantum

effects are significant within a proper time τ0 of the singularity. Applying a conformal

rescaling which produces a finite boundary metric, we find that all effects within a

proper time τ0 of the asymptotic singularity are shrunk to zero proper time on the

boundary. In other words, they are compressed to the t = 0 singularity in the bound-

ary metric, and the boundary metric at any nonzero time does not fluctuate. This can

also be seen by conformally rescaling any singular boundary metric to a (de Sitter-like)

frame in which the singularity is pushed off to infinity. In this frame, the curvature

on the boundary remains bounded, and the standard rules of holography should apply.

Quantum gravity effects in the bulk should not affect this boundary metric. A rescaling

back to the singular boundary metric shows that the boundary metric away from the

singularity remains fixed.

Thus, the basic rules of holography still apply. Our conclusion from the NTP holds:

a singular field theory cannot be holographically dual to a cosmological bounce in full

quantum string theory.

3.4 Can a Big Crunch be Dual to a Nonsingular Field Theory?

We are aware of only one construction in which the bulk spacetime has a cosmological

singularity, but it is not immediately obvious that the boundary field theory is singular.

Consider N = 4 super Yang-Mills theory on four-dimensional Minkowski space with

a time dependent coupling gYM(t) that vanishes at t = 0 [33]; this is an example

of a marginal coupling which is taken to extreme values. The bulk dual consists of

gravity coupled to a massless scalar field (the dilaton). Since gYM determines the

asymptotic value of the dilaton via eφ = g2YM , the vanishing of the coupling requires

that φ(t) → −∞ as t → 0. The backreaction of this diverging scalar field causes a

cosmological singularity in the bulk. For example, one of the bulk solutions that has

been found is

ds2 =
1

z2
[dz2 + |t|ηµνdxµdxν ], eφ(t) = gs|t|

√
3 (9)

which has a cosmological singularity at t = 0.11 In the field theory, it is not obvious

that evolution must stop. Indeed the vanishing of the coupling might suggest that

the theory just becomes free near t = 0. It was shown in [33] that this is not the

11Note that the boundary metric in Fefferman-Graham coordinates is singular, consistent with the
general result discussed above. But since the singularity is entirely in the conformal factor, one can
view the super Yang-Mills theory as living in Minkowski spacetime.
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case. The fields become large near t = 0 and the interactions never become negligible.

Furthermore, they present strong evidence that evolution must end. The state appears

to become singular with diverging energy and a wildly oscillating phase as t→ 0. This

is not yet a proof that evolution must end since effects of renormalization were not

fully taken into account. If it could be shown that (at finite N and coupling) there

is some choice of gYM(t) such that evolution is well defined through a time when the

coupling vanishes, then evolution in the bulk must continue as well. This would be the

first example of a holographic bounce. Note that this is not in contradiction with the

above discussion, which assumed that the dual field theory was singular.

If gYM(t) becomes very small but stays bounded away from zero, then the field

theory is clearly nonsingular and evolution can continue for all time. This, however,

tells us nothing about cosmological bounces: the bulk solution now contains a large

black hole [33], and the singularity does not enter the asymptotic region. The fact

that the field theory evolution continues for all time simply reflects future-infinite

evolution outside of the black hole. This is very similar to our discussion in the previous

subsection of regulating the boundary metric so that its curvature remains finite. Both

types of modifications destroy the cosmological singularity.

4 The No Transmission Principle for Nonsingular

Field Theories

In this section we discuss consequences of the No Transmission Principle for nonsingular

holographic field theories. We find the exclusion of the following two a priori possible

scenarios: (i) evolution through black hole singularities to a new asymptotically AdS

region of spacetime, (ii) existence of traversable wormholes connecting two asymptotic

regions. Here we will assume that the CFT and its superselection sectors contain

complete information about the black hole interior. We discuss the alternative in

Sec. 5.

No Evolution through Black Hole Singularities: Could a signal entering an AdS

black hole pass through the black hole and reemerge in another asymptotically AdS

spacetime? In the simplest case of a Schwarzschild black hole in global AdS, it is a

priori possible that quantum gravity could mediate evolution through the singularity

into another asymptotic region (see Fig. 5). This kind of evolution, however would

result in signals propagating from the field theory dual to the black hole to the field

17



CFT1

CFT2

Figure 5: Resolution of the Schwarzschild black hole singularity allowing evolution to
another asymptotic region would violate the No Transmission Principle.

theory dual to the white hole. Since the two field theories each live on a complete

Einstein static universe, they are independent, and this is immediately forbidden by

the NTP. We find that in any regime of string theory, the black hole singularity in

Schwarzschild-AdS does not admit evolution to another asymptotic region.

Generic black holes, however, have some nonzero rotation (and possibly nonzero

charge). The resulting causal structure appears at first to facilitate the transmission of

signals between asymptotic regions even at the classical level. The Penrose diagram for

a charged and rotating AdS black hole contains multiple asymptotic regions (see Fig. 6).

Each asymptotic region is dual to a CFT on a complete Einstein static universe, and

each of the dual CFTs is clearly independent of all of the others. It may prima facie

appear that this system presents a violation of the NTP: signals can travel from one

asymptotic region to another through the bulk, as illustrated in Fig. 6. These signals

result in a transmission of information which cannot be explained by entanglement

and is of course forbidden by the NTP. This puzzle is resolved by the instability of the

inner horizon of such black holes: any excitation that enters the black hole will cause

the inner horizon to develop a curvature singularity [15–18]. The reader may raise an

objection at this point: normally, a field theory excitation with energy less than Np

for some suitable power p does not result in any backreaction on the bulk metric in the

large N limit. This argument, however, assumes bulk stability. In the presence of an

instability, the curvature diverges for any excitation at finite N , so the natural large

N limit contains a singularity for any excitation12.

12We thank Don Marolf for a discussion on this point.
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Figure 6: A conformal diagram of a charged black hole, with the possible path of
a signal between independent CFTs. Any such signal, however, collapses the inner
horizon into a null singularity. The No Transmission Principle implies that there is no
evolution past this null singularity.

In asymptotically flat spacetimes, the singularity that forms on the inner horizon is

null, and while the Christoffel symbols at the singularity are not square integrable, the

metric at the singularity remains continuous. Since the total tidal distortion remains

finite across the singularity, there has been some debate on the possibility that signals

could pass through the singularity even in the purely classical regime. In asymptot-

ically AdS spacetimes, the falloff of excitations asymptotically is slower than that in

asymptotically flat spacetimes, so the singularity may perhaps be stronger in AdS 13.

Regardless of the nature of the singularity, we claim that signals cannot pass through:

such a scenario would result in the exchange of signals between independent field the-

ories, and is therefore ruled out by the NTP. Most significantly, evolution through the

inner horizon singularity to another asymptotic region is ruled out by the NTP even

in full quantum gravity.

Finally, we comment on the asymptotic regions of an eternal AdS black hole which

are not causally connected, where the maximally extended spacetime is not a pure

state of a single field theory. The above argument is unaffected by these additional

13We thank M. Dafermos for pointing this out to us.
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asymptotic regions: given any entangled state, an excitation can always be added

to one field theory and allowed to propagate. Alternatively, one can combine the

two field theories dual to the asymptotic regions on either side of the Einstein-Rosen

bridge into one Hilbert space, and apply the NTP to these larger Hilbert spaces. This

minor complication may at any rate be avoided via the formation of black holes from

the collapse of a charged spherical shell. Such systems initially have only a single

asymptotic region, and can be dual to a field theory in a pure state. If the local charge

density of the shell is greater than its local mass density, then the shell will reach a

minimum radius inside the horizon and bounce out into another asymptotic region

(provided it is given sufficient kinetic energy at collapse) [34]. With AdS boundary

conditions, the shell will continue to oscillate and execute an infinite number of bounces.

The spacetime outside the shell is exactly Reissner-Nordstrom-AdS, and the inner

horizon is again unstable. So this provides a pure state, or one sided, version of the

argument that there is no evolution through inner horizon singularities.

Of course small black holes can evaporate in quantum gravity, and the fact that the

evolution must be unitary already provided an indication that no information could

pass through the black hole into another universe.

No Traversable Wormholes in Quantum Gravity: A traversable wormhole may

be constructed from two copies of global AdS, each with a dual CFT on Sd−1 × R:

excise a unit ball on a time slice t = 0 from each spacetime and glue the bottom edge

of one to the top edge of the other (see Fig. 7). A signal with t < 0 in the first spacetime

can now propagate to t > 0 in the second spacetime. This wormhole does not have

negative energy or large curvature anywhere, but it has a naked singularity (defined

in terms of geodesic incompleteness) along the boundary r = 1. Could this singularity

be smoothed out in quantum gravity? The answer is clearly no, since this wormhole

violates the No Transmission Principle.

Now consider a permanent traversable wormhole: a static bulk spacetime with two

(or more) asymptotically AdS regions each with a dual field theory14. A bulk excitation

near the first boundary can propagate to a second asymptotic region through the

wormhole. Such an excitation initially corresponds to exciting a field theory dual to one

asymptotic region; in this initial stage, the field theory on the second asymptotic region

is ignorant of this excitation. Once the excitation propagates through the wormhole,

however, it is identical to an excitation created by the second field theory, and the

14 The dual field theories will almost certainly be in some entangled state; however, signals cannot
be transmitted via entanglement.
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CFT2CFT1

Figure 7: A traversable wormhole obtained by identifying a spatial surface in two sepa-
rate AdS universes. The orange signal (single-arrow), initially dual to some excitation
in CFT1, propagates into CFT2; the purple signal (double-arrow), initially dual to an
excitation in CFT2, propagates from CFT2 to CFT1. This violates the No Transmission
Principle.

second field theory therefore must register the signal. Such communication is in clear

violation of the NTP, and we therefore conclude that traversable wormholes connecting

two asymptotic regions are forbidden, not just in classical or semiclassical gravity, but

in full quantum gravity15.

5 Discussion

We have deduced several nontrivial consequences of the simple statement that two

quantum field theories cannot transmit signals to one another unless they share a com-

mon Hilbert space (and hence are both part of a larger field theory). It is rather

surprising that a number of deep properties of full quantum gravity follow immedi-

ately from this simple statement. Of course our conclusions are restricted to the the-

ory of quantum gravity with asymptotically AdS boundary conditions obtained from

gauge/gravity duality; other theories of quantum gravity might behave differently.

In Sec. 4 we assumed that the dual field theory contains complete information about

the black hole interior. This is almost certainly true for eternal black holes with two

15A classical solution describing a traversable wormhole has recently been constructed using matter
satisfying the null energy condition, but it involves closed timelike curves [35].
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asymptotic regions on an initial static surface: it is generally agreed that a maximally

entangled state of the two theories corresponding to a thermofield double describes

the region inside as well as outside the horizon [36]. If the dual field theory does not

describe the interior of a single-sided black hole, then we cannot rule out the possibility

that quantum gravity permits signals to propagate through black hole or cosmological

singularities to a region inside another horizon.

As is standard in holography, we have been assuming that if an asymptotically

AdS spacetime has several asymptotic regions, there is a separate dual field theory

associated with each one. In particular, there is no coupling between them. If such

couplings did exist, the No Transmission Principle would clearly not apply. Could our

conclusions be avoided by simply extending holography to allow couplings between the

dual theories? The answer is no. Most of our examples involve bulk spacetimes in

which one asymptotic region is to the future of the other. In this case any coupling

between the dual field theories would violate causality in the bulk, since they would

allow signals to be sent into the past as well as the future. The one exception is the

possibility of a traversable wormhole; even this case, however, cannot be described by

any simple coupling between the dual theories, such as the product of a single trace

operator in one theory with a single trace operator in the other. This type of double

trace deformation corresponds to modified boundary conditions in the bulk and is more

analogous to gluing the two boundaries together. A signal can pass from one theory

to the other, but it does so instantly, without going through the wormhole.

As mentioned earlier, the only way to avoid our conclusions is to add to holography

some ad hoc rule that matches the future state of one dual theory with the past state of

another theory on a disconnected spacetime. No one has found such a rule that works in

all cases, and more importantly, there is some indication that such a rule does not exist.

Consider first the black hole examples discussed in Sec. 4. One would need to evolve a

state in one dual theory for an infinite time and extract some asymptotic limiting state

to use in the next copy of the theory. However, a limiting state almost never exists. The

state can always be expanded in energy eigenstates, and unless the state is a single

eigenstate, it will continue to evolve for all time. Certain observables might settle

down, e.g., to their thermal expectation values, but there will still be fluctuations;

more importantly, the microstate itself never settles down. Simply postulating an

isomorphism between the Hilbert spaces and identifying all states of one dual theory

with the other would violate causality: excitations in the future theory would then be

seen in the past.

We have been implicitly using a Schrödinger representation in this discussion. In a
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Heisenberg picture, any evolution through the bulk black hole singularity would define

something like an S-matrix between the Hilbert space of CFT1 and that of CFT2.

This would contain nontrivial physics which is not captured by the dual field theory,

contradicting the statement that the two dual descriptions are equivalent.

The ad hoc rule fairs no better with the singular field theories discussed in Sec. 3.

These theories are driven by external sources which diverge in finite time, or by the

background metric itself becoming singular. Since normal evolution ends in finite time,

the limiting state is likely to be very badly behaved. Often the energy, and possibly

other expectation values, diverge. (Indeed, a typical state of finite energy is expected

to describe a black hole in the bulk.) It is unlikely that one can match such a singular

end state with some initial state of another copy of the dual theory.16

We conclude by noting that our results support the idea of superselection sectors

in holography [19]. Given CFTs on two disjoint copies of Minkowski spacetime, local

observables cannot distinguish whether they share a Hilbert space or not; ancillary

information is necessary to determine whether the bulk geometry is one copy of AdS

or two. This additional data is contained in non-local observables such as two-point

correlators or mutual information. In other words, the knowledge of whether the two

CFTs are dependent or independent is not accessible to local observables. This is rem-

iniscient of the superselection sectors of [19], where it was shown that local observables

of two entangled CFTs cannot determine whether the two CFTs are dual to a wormhole

or two disconnected universes.
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