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Abstract

We calculate fermionic response in domain wall backgrounds of four-dimensional gauged
supergravity interpolating between distinct stable AdS vacua, holographically dual to zero-
temperature states of ABJM theory at finite density for monopole charge. The backgrounds
were found by Bobev et al. and are similar to zero-temperature limits of holographic su-
perconductors, but with a symmetry-breaking source as well. The condensed scalar mixes
charged and neutral fields dual to composite fermionic operators in the top-down Dirac
equations. Both gapped and gapless bands of stable quasiparticles are found.



1 Introduction

Understanding the behavior of strongly coupled fermionic systems at nonzero density is of

great interest. Holographic methods using the AdS/CFT correspondence are a powerful tool

for exploring such systems, and they have been employed profitably both from a “bottom-up”

perspective, where a custom gravity theory can be tailored to produce the desired dynamics,

and a “top-down” perspective, where fields and solutions of supergravity and string theory

can be matched precisely to operators and states of known dual quantum field theories.

Nonzero density means turning on a chemical potential for a conserved charge, associated

to a background gauge field on the gravity side.

One class of solutions that has been studied extensively leaves the corresponding symme-

try unbroken. Holographic Fermi surfaces at zero temperature were studied, initially from

a bottom-up perspective of generic fermions in Reissner-Nordström backgrounds [1, 2, 3, 4]

and later from a top-down perspective in gravity duals to four-dimensional N = 4 Super-

Yang-Mills theory and three-dimensional ABJM theory involving more complicated black

hole geometries with running neutral scalars [5, 6, 7, 8, 9, 10, 11]. The game is to calculate

retarded fermionic Green’s functions by solving the Dirac equation in the appropriate gravity

background, interpreting bulk fermion (quasi)normal modes at zero energy as holographic

Fermi surfaces and studying the corresponding dispersion relations around them. In bottom-

up models, parameters of the bulk Lagrangians can be adjusted so that the excitations near

the holographic Fermi surface resemble those of either a Fermi liquid (with stable quasi-

particles) or a non-Fermi liquid (without stable quasiparticles). In the top-down models

of strongly coupled N = 4 Super-Yang-Mills and ABJM theories, however, the bulk La-

grangian is fixed, and the fermionic excitations that appear reflect actual dynamics of these

field theories at finite density, modulo possible instabilities. Generic backgrounds in both

cases have nonzero entropy at zero temperature, and associated dispersion relations char-

acteristic of non-Fermi liquids. At special values of the chemical potentials the zero-point

entropy vanishes and an energy band of absolutely stable quasiparticles appears around the

Fermi surface. Fermions at finite temperature were also studied for top-down models, leading

to agreement with the zero-temperature cases.

Another interesting class of backgrounds, which we focus on here, breaks the symmetry

of the conserved charge. This includes the holographic superconductors, in which a charged

scalar condenses outside the horizon in the gravity background for sufficiently low temper-

ature [12, 13, 14, 15]. The zero-temperature limits of such backgrounds are expected to

be horizonless domain wall-type geometries, where Lorentz invariance or even conformal in-
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variance may be regained in the infrared [16, 17, 18]. Such backgrounds could be related

to the non-Fermi liquids discussed previously, as real-world non-Fermi strange metals in

high-temperature superconductors become hidden behind a superconducting dome below a

critical temperature, but the zero-temperature quantum critical point is still thought to con-

trol their behavior. Symmetry-breaking systems have been studied using bottom-up generic

fermion actions in [19]. In [20], a Majorana Yukawa coupling was studied where a charged

fermion couples to itself (not its conjugate) as well as a “Cooper pair” scalar with twice the

charge. It is interesting to ask whether the Fermi system becomes gapped in the presence of

symmetry breaking; [20] found that the Majorana coupling could lead to the generation of

such a gap by a “level crossing” repulsion between two lines of poles in the Green’s function.

Naturally, it is interesting to consider symmetry-breaking systems from a top-down per-

spective. Holographic superconductors descending from string/M-theory were constructed

in [21, 22, 23, 24, 25], and one may ask about the fermionic response of these systems, us-

ing the Dirac equations derived from the top-down theory. Here we will focus on a class

of symmetry-breaking geometries described in [26]. These backgrounds are solutions to the

equations of four-dimensional N = 8 gauged supergravity invariant under a SO(3)× SO(3)

subgroup of the SO(8) gauge group, and besides the metric involve a gauge field correspond-

ing to the chemical potential and a charged scalar. These geometries are domain walls,

interpolating between the maximally symmetric AdS4 vacuum in the UV and a different

AdS4 region corresponding to a nonsupersymmetric critical point of the scalar potential in

the IR, and as such are similar to the zero-temperature limit of holographic superconduc-

tors. Both the UV and IR fixed points are known to be stable under perturbative scalar

fluctuations [27]. The dual descriptions of these solutions are states of three-dimensional

superconformal ABJM theory with a chemical potential for monopole charge, and both a

source and an expectation value turned on for charged operators dual to the bulk scalar; as

a result the system is not precisely a superconductor, since the associated U(1) is broken

explicitly as well as spontaneously.

To understand fermion response in these ABJM states, we analyze the spectrum of

fermionic fluctuations in the holographically dual backgrounds. We study spin-1/2 modes

whose SO(3)×SO(3) quantum numbers prevent them from mixing with the gravitino fields.

While they do not mix with the gravitino, these spin-1/2 modes mix with each other; an-

other system of mixed fermionic excitations in a symmetry-breaking background was studied

in [25]. In a more intricate generalization of the Majorana “Cooper pair” coupling of [20],

we find a charged fermion mixing with a neutral fermion via the condensed charged scalar,
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which in turn has a Majorana-type coupling to its own conjugate. Thus the analog of a

Cooper pair in this system is a condensation of a charged/neutral bound state. Since the

charge is monopole charge, the associated charged operators may be thought of as bound

states of fundamental fermions with vortices, so-called composite fermions.

We study two backgrounds, one having a source for a fermion bilinear and an expectation

value for a boson bilinear, and the other with the roles reversed. We first elaborate on the

analysis of [26] of the conductivities of these backgrounds. In geometries approaching AdS in

the infrared, the emergent Lorentz invariance generates a light-cone structure on the energy-

momentum, and modes living outside this light-cone have regular (rather than infalling) IR

boundary conditions; normal modes in this region are associated to fluctuations in the field

theory with zero dispersion. We determine the locations of such normal modes, and find in

both cases two lines of modes, one gapped and the other ungapped. By studying the pole

structure of the matrix of Green’s functions, we can see that each line is a mixture of both

charged and neutral fermionic excitations. This matrix also provides information about the

presence of unstable fluctuations inside the lightcone.

Following the ideas of [20], it is natural to inquire how the charged fermion/neutral

fermion coupling in our system of Dirac equations affects the dynamics, and in particu-

lar whether it causes a repulsion between lines of poles. We study a modification of the

Dirac equations removing the couplings between different fermions, and see that without the

charged/neutral coupling there is an ungapped, purely charged band, a purely neutral band

that asymptotes to the origin in energy/momentum space, and a new gapped band with

the conjugate charge; each pair of bands has a point of intersection. The charged/neutral

coupling thus has a number of effects: it pushes the third band outside the region of stable

excitations, it repels the crossing between the other two bands while mixing the charged and

neutral contributions, and it turns what was the neutral band away from the origin leaving

it fully gapped. While modifying the Dirac equations departs from the top-down structure

of N = 8 supergravity, it allows us to see how the couplings are responsible for the structure

of the quasiparticle excitations.

2 Gauged supergravity and ABJM theory

In this section we review the maximally supersymmetric gauged supergravity theory in four

dimensions and a particular truncation of it in which the backgrounds we will consider can

be constructed, as well as its duality to (2+1)-dimensional ABJM theory.
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2.1 4D N = 8 gauged supergravity

The four-dimensional maximally supersymmetric gauged supergravity theory [28, 29] is the

consistent truncation of eleven-dimensional supergravity compactified on a seven-sphere to

retain only the supermultiplet of the four-dimensional graviton. The bosonic degrees of

freedom are the vierbein, 28 gauge fields in the adjoint of the gauge group SO(8), and 70

real scalars; the fermions are 8 Majorana gravitini and 56 Majorana spinors. The scalars

parametrize the coset E7(7)/SU(8) as a 56-bein, which can be written

V =

(
u IJ
ij vijKL

vklIJ uklKL

)
= exp

(
0 φIJKL

φIJKL 0

)
, (1)

where the complex φIJKL ≡ φ∗IJKL obey the self-duality relation

φIJKL =
1

24
εIJKLMNPQ φ

MNPQ. (2)

In the second equality of (1) we have gauge-fixed the internal SU(8) symmetry. This “unitary

gauge” removes the distinction between SO(8) index pairs [IJ ] and SU(8) pairs [ij], and

allows us to associate definite SO(8) representations to all the fields: the scalars split into a

35v of parity even scalars and a 35c of parity odd pseudoscalars, the gravitini are in the 8s,

and the Majorana spinors are in the 56s.

For the backgrounds we study we will be interested in a particular truncation of the

gauged supergravity, retaining only modes invariant under an SO(3) × SO(3) subgroup of

SO(8). We will choose I = 3, 4, 5 and I = 6, 7, 8 to be the directions in which the two SO(3)

groups act on the 8s; the 1, 2 directions correspond to an additional SO(2) gauge symmetry

commuting with SO(3)×SO(3). The truncation corresponds to an N = 2 gravity multiplet

plus a hypermultiplet, with the bosonic sector consisting of the vierbein, a single graviphoton

gauge field for the SO(2) in the 12-directions, and two complex scalars charged under it.

Moreover, it is consistent with the equations of motion to set one complex scalar to zero, and

we will do this in what follows. The SO(3)×SO(3)-invariant truncation is characterized by

the ansatz [30]

φIJKL(x) =
λ(x)

2
√

2

[
cosα(x)

(
Y +
IJKL + i Y −IJKL

)
− sinα(x)

(
Z+
IJKL − i Z

−
IJKL

)]
, (3)

where λ and α are four-dimensional scalars, and Y ± and Z± are self dual (+) and anti-self
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dual (−) invariant four-forms on the scalar manifold, defined as

Y +
IJKL = 4!

(
δ3451IJKL + δ2678IJKL

)
Y −IJKL = 4!

(
δ3452IJKL + δ1678IJKL

)
(4)

Z−IJKL = 4!
(
δ3451IJKL − δ2678IJKL

)
Z+
IJKL = 4!

(
δ3452IJKL − δ1678IJKL

)
. (5)

The more general case of two complex scalars would involve four independent coefficients for

the four tensors.

Given the scalar ansatz (3), it is a straightforward matter to obtain the Lagrangian of

the truncated theory. The bosonic sector of the gauged N = 8 theory in four dimensions

can be written [29]

2κ2e−1L = R− 1

48
Aijklµ A

µ
ijkl −

1

4

[
F+
µνIJ

(
2SIJ,KL − δIJKL

)
F+µν
KL + h.c.

]
− 2P . (6)

Let us discuss the terms in turn. The curvature scalar R is the usual Einstein-Hilbert term.

The tensor Aijkl determining the scalar kinetic terms follows from the definition

DµV · V−1 ≡ −
1

2
√

2

(
0 Aijklµ

Aµmnpq 0

)
. (7)

This expression also implicitly fixes the composite SU(8) connection B, which we will discuss

in section 4. The gauge fields have non-abelian field strengths of the standard form, F IJ
µν =

2∂[µA
IJ
ν] − 2gAIK[µ A

KJ
ν] with F+ the self-dual part of the field strength; these couple to the

scalars in their kinetic terms via the S-tensor defined as

(
uijIJ + vijIJ

)
SIJ,KL = uijKL . (8)

The SU(8) covariant T -tensor

T jkli =
(
uklIJ + vklIJ

)(
u JK
im ujmKI − vimJKv

jmKI
)
, (9)

in turn defines the tensors A1 and A2,

Aij1 =
4

21
T ikjk Ajkl2i = −4

3
T

[jkl]
i , (10)
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which appear in the scalar potential,

P = −g2
(

3

4
|Aij1 |2 −

1

24
|Ajkl2i |2

)
. (11)

Evaluating the Lagrangian (6) in the SO(3)× SO(3) invariant truncation gives

e−1L =
1

2
R− 1

4
FµνF

µν − ∂µλ∂µλ−
sinh2(2λ)

4
(∂µα− gAµ) (∂µα− gAµ)− P , (12)

where κ2 has been set to one, the gauge field is A ≡ A12, and the potential is

P =
g2

2

(
s4 − 8s2 − 12

)
with s ≡ sinhλ. (13)

It is easy to see that this potential has critical points at s = 0 and s = ±2. In anticipation

of the domain wall geometry, we will refer to the corresponding values of the scalar λ as

λUV ≡ 0 and λIR ≡ ± log(2 +
√

5) , (14)

corresponding to AdS4 solutions with AdS radii LUV = 1√
2g

and LIR =
√

3
7
LUV, respectively.

Solutions to the equations of motion coming from (12) will provide the classical backgrounds

we wish to probe, and we will discuss them in more detail in section 3.

2.2 The holographic dual ABJM theory

The maximally superconformal theory in three dimensions living on a stack of N coincident

M2-branes is holographically dual to M-theory compactified on AdS4 × S7; in the large-

N limit this reduces to eleven-dimensional supergravity, and hence the four-dimensional

gauged supergravity theory we have discussed describes a set of low-dimension operators in

this theory. For a single M2-brane the theory is 8 free scalars in the 8v and 8 free spinors

in the 8c of the SO(8) R-symmetry; for N > 1, however, the theory becomes interacting.

While it can be characterized as the IR limit of three-dimensional Super-Yang-Mills theory,

it is most conveniently formulated as ABJM theory.

ABJM theory ([31, 32, 33, 34, 35]; for reviews see [36, 37]) is a 3D U(N)×U(N) Chern-

Simons theory at levels (k,−k) coupled to bifundamental matter. The manifest supersym-

metry is N = 6 and the manifest global symmetry is SU(4) × U(1)b. For general k this

represents the theory of N M2-branes at a Zk orbifold singularity. However, for the cases

k = 1, 2 there is an enhancement to N = 8 supersymmetry and SO(8) R-symmetry; the
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decomposition of the eight-dimensional representations of SO(8) into SU(4)× U(1)b are

8v → 41 ⊕ 4̄−1 , 8c → 4̄1 ⊕ 4−1 , 8s → 60 ⊕ 12 ⊕ 1−2 . (15)

Here we are interested in the k = 1 case, corresponding a stack of N M2-branes with no

orbifold.

The bifundamental matter may be written as four complex scalars Y A, A = 1 . . . 4 in the 4

of SU(4) and four complex spinors ψA in the 4̄; both sets of fields are in the N×N of U(N)×
U(N) and neutral under U(1)b. Alone these fields do not assemble into complete SO(8)

representations; however, they combine with monopole operators, representing the scalars

dual to the gauge fields, into gauge-invariant objects with proper SO(8) transformation

properties. We will denote by eqτ the monopole operator with U(1)b charge q in the q-fold

tensor product of N × N; monopole operators are neutral under SU(4). We then have

gauge-invariant operators such as

41 : Y Aeτ , 4̄−1 : Y †Ae
−τ , 4̄1 : ψAe

τ , 4−1 : ψ†Ae−τ , (16)

assembling into complete 8v and 8c representations according to (15). It is these combi-

nations that are analogous to the free bosons and fermions in the N = 1 case; the ABJM

presentation fractionalizes the symmetry carriers into ordinary matter charged under SU(4)

and monopole operators charged under U(1)b, which bind into gauge-invariant “composite”

bosons and fermions.

The supergravity modes discussed in the previous subsection are dual to such gauge-

invariant operators. These are described in the table, with the dual ABJM operators indi-

cated schematically:

SUGRA Mode eaµ ψIµ AIJµ χIJK Re φIJKL Im φIJKL

SO(8) Rep 1 8s 28 56s 35v 35c

Dual ABJM Operator T µν Sµ JµR Y ψ Y 2 ψ2

Conformal dimension ∆ 3 5/2 2 3/2 1 2

The first three sets of operators are the energy-momentum tensor, supercurrents and SO(8)

R-symmetry currents. The 28 R-symmetry current operators include 15 SU(4) currents, one

U(1)b current, and 12 additional operators including e±2τ monopoles, corresponding to the

decomposition

28→ 150 ⊕ 10 ⊕ 62 ⊕ 6−2 . (17)
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We note that while some operators include monopoles and some do not, the enhancement

to full SO(8) symmetry means that they are all treated on equal footing. Indeed, one can

imagine distinct embeddings of SU(4) × U(1)b inside SO(8) where a monopole operator in

one case becomes a non-monopole operator in the other.

Let us now discuss how the SO(3) × SO(3) × SO(2) subgroup of the previous section

relates to the ABJM picture. Since one has a full SO(8) to work with, one can imagine

embedding SO(3) × SO(3) × SO(2) in SO(8) in a way that does not play nicely with

SU(4) × U(1)b. However, it is natural and convenient to take the simplest choice, where

SO(3)× SO(3) is realized as the subgroup of SU(4) ∼= SO(6) under which

6→ (3,1)⊕ (1,3) , 4, 4̄→ (2,2) , (18)

and the remaining SO(2) of the gauge field (12) is simply U(1)b itself. Hence the charge

carried by supergravity fields that condense in the backgrounds we will study next is most

simply realized on the field theory side as the monopole charge.

3 The Domain Wall Background

The results of the previous section isolate a sector of maximal gauged SUGRA in D = 4

whose bosonic content includes the vierbein, one U(1) gauge field, and one complex scalar.

The dynamics of this sector are encoded in the Lagrangian (12), and any solution to the

corresponding equations of motion can in principle be uplifted to a solution of SUGRA in

D = 11. This feature is particularly notable in that it will allow us to confidently exploit

the holographic duality between solutions of M-theory and states in ABJM theory to study

the properties of an explicitly known field theory at strong coupling.

We will be interested in solutions to the equations of motion wherein the scalar interpo-

lates between the two fixed points (14) of P , and the geometry asymptotes to different AdS4

regions in the IR and UV. Holographically, these solutions are dual to zero-temperature

states of ABJM theory in which both the low energy and high energy physics is governed by

(distinct) conformal field theories. In [26] such domain wall solutions were found numerically,

and their identification with zero-temperature limits of novel states in the ABJM theory was

discussed in some detail. We now review these solutions, and provide further commentary

on their dual holographic description.
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3.1 Interpolating gravity solutions

The solutions of interest [26] are given in the ansatz,

ds2 = −G(r)e−χ(r)dt2 + r2d~x2 +
dr2

G(r)
, A = Ψ(r) dt, λ = λ(r), α = 0 . (19)

This ansatz sets g = 1, equivalent to LUV = 1/
√

2. The equations of motion are

0 =− eχ sinh2(2λ)Ψ2

2G2
r − 2rλ′2 − χ′ , (20)

0 =
1

r2
+
P
G

+ eχ
sinh2(2λ)Ψ2

4G2
+
G′

rG
+ λ′2 +

eχΨ′2

2G
, (21)

0 = − sinh2(2λ)Ψ

2G
+

2Ψ′

r
+

1

2
χ′Ψ′ + Ψ′′ , (22)

0 = eχ
sinh2(4λ)Ψ2

4G2
− P

′

2G
+ λ′

(
2

r
+
G′

G
− 1

2
χ′
)

+ λ′′ . (23)

Near the boundary, the solution approaches the maximally supersymmetric AdS4 vacuum

with λ = 0, given by

GUV = 2r2 =
r2

L2
UV

, χUV = const , ΨUV = const , (24)

while in the IR region far from the boundary, the scalar approaches the extremal value

λIR = log(2 +
√

5) and the equations are solved by

GIR =
14

3
r2 =

r2

L2
IR

, χIR = const, and ΨIR = 0 . (25)

By rescaling the time coordinate one sees only χUV − χIR is physical, but for convenience in

finding solutions we will allow both to be free. Fixing ΨIR = 0 allows us to identify ΨUV as

proportional to the chemical potential µ of the U(1)b conserved current.

A useful invariant of the domain wall solution is the index of refraction n, defined by the

ratio of the speed of light in the UV and IR CFTs:

n ≡ vUV

vIR
=

LIR

LUV

e
1
2
(χIR−χUV) =

√
3

7
e

1
2
(χIR−χUV) . (26)

This quantity is invariant under coordinate transformations, and characterizes the causal

properties of the emergent IR conformal dynamics.
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To construct the domain wall geometries, it is convenient to consider IR–irrelevant pertur-

bations about the fixed point solution (25). These perturbations can be used to numerically

integrate away from the IR critical point at r = 0 along the radial direction, tracking the

RG flow “upstream” to the UV fixed point at r = ∞. To identify these perturbations, one

performs a linearized fluctuation analysis by substituting into the equations of motion the

following ansatz for the IR form of the bulk fields:

G(r) =
14

3
r2
(

1 + δG rγ
)
, (27)

χ(r) =χIR + δχ rξ , (28)

Ψ(r) = δΨ rβ , (29)

λ(r) = log
(

2 +
√

5
)

+ δλ rα . (30)

The requirement that the perturbations represent irrelevant deformations to the IR fixed

point constrains the various exponents. Specifically, one requires α, β, ξ > 0 and γ > −2.

Substituting the fluctuations (27-30) into the equations of motion (20-23) one finds that

the linearized equations decouple, can be solved non-trivially by

δG = δχ = 0, α =

√
303

28
− 3

2
and β =

√
247

28
− 1

2
, (31)

and that the amplitude δΨ can be rescaled to any value under symmetries of the equations

of motion. Thus the IR deformations are described by a single free parameter, δλ, which we

will tune to produce domain wall solutions with various UV asymptotics.

The asymptotic mass of the scalar field λ near the boundary is

m2
λ =

1

2

∂2P
∂λ2

∣∣∣∣∣
λ=0

= − 2

L2
UV

, (32)

which implies that near the UV boundary the scalar behaves like

λ(r →∞) ∼ λ1
r

+
λ2
r2

+ . . . (33)

We will consider two particular cases, solutions in which either λ1 or λ2 vanish. For reasons

we will explain in the next subsection, we will refer to these as “Massive Boson” and “Mas-

sive Fermion” backgrounds, respectively. In practice, it is straightforward to produce such

solutions by integrating the equations of motion from very near the IR fixed point to the UV
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Figure 1: The Massive Boson background, with δΨ = 1 and χIR = 4. The dashed lines in
the plot of G/r2 are at 14/3 and 2, indicating the values obtained in the IR and UV AdS4

fixed points respectively. The ratio of the speed of light in the UV CFT compared to that
of the IR theory is n = 26.900.

boundary. This involves employing the scaling symmetries of the equations of motion to fix

δΨ and χIR, then using the fluctuations defined in (27-30) to produce IR boundary condi-

tions for the numerical integration of (20-23) for many choices of δλ. After each successful

integration throughout the bulk, one can fit the near boundary behavior of the numerical

solution obtained for λ to the form given in (33), and subsequently extract the values of λ1

and λ2, χUV and ΨUV characterizing that solution.

“Massive Boson” and “Massive Fermion” solutions constructed from this procedure are

shown in figures 1 and 2.1 The Massive Boson solution, with nonzero λ2, has interesting

similarities to the extremal AdS Reissner-Nordström solution, and in some sense is “almost”

AdSRN. Extremal AdSRN is characterized by an AdS2 × R2 near horizon geometry, which

manifests as a double pole in the metric function grr. From figure 1, a similar feature can

be seen around r ≈ 0.4 where G very nearly vanishes quadratically, before reverting to a

nonzero value. Moreover, the figure shows that nearly all the scalar hair is bunched behind

this “almost” horizon. Perhaps not surprisingly, similar properties have been observed in

the extremal limits of various holographic superconductors studied in the literature [18].

The index of refraction in this solution is large, n = 26.900, which implies that the

effective speed of light is very slow in the IR CFT compared to the UV theory, in turn

suggesting that the IR dynamics is nearly 0 + 1 dimensional, reminiscent of the Semi-Local

1It is possible that these solutions are not unique, even up to rescalings; there may be additional solutions
with nodes in λ. If such additional solutions exist, they are probably unstable toward bosonic perturbations.
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Figure 2: The Massive Fermion background, with δΨ = 1 and χIR = 4. The dashed lines in
the plot of G/r2 are at 14/3 and 2, indicating the values obtained in the IR and UV AdS4

fixed points respectively. This geometry is characterized by vUV/vIR = 1.861.

Quantum Liquid [38]. This is another sense in which the solution is “almost” extremal

AdSRN, since the black hole horizon corresponds to an n → ∞ limit. We will learn in the

next subsection that λ2 is proportional to a dimension-2 source for a scalar bilinear; the

dimensionless ratio of the source to the U(1) chemical potential can be measured to be

λ
1/2
2

ΨUV

≈ 0.0308 , (34)

indicating that indeed this solution can be thought of as a small perturbation by λ on top

of the no-scalar background, which has extremal AdSRN as a solution.

The Massive Fermion background has λ2 = 0, and unlike the previous case, this geometry

is not “almost” AdSRN in any sense. The function G(r) never comes close to vanishing, so

the solution is not “close” to having a horizon. The index of refraction is substantially closer

to unity at n = 1.861, so the speed of light does not change that dramatically between the

UV and the IR. In this case λ1 is proportional to a dimension-1 source for a fermion bilinear,

and we have

λ1
ΨUV

≈ 1.227 , (35)

so the two massive perturbations to ABJM theory, the source and the chemical potential,

are the same to a factor of order unity. We plot the IR light cones for the two solutions next
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Figure 3: In units where the UV light cone is 45o (dotted black), we compare the Massive
Boson (solid blue) and Massive Fermion (dashed red) IR light cones.

to a UV light cone normalized at right angles in figure 3.

These backgrounds interpolate between UV and IR fixed points that are known to be

stable in the following sense. The ultraviolet AdS4 is stable on account of supersymmetry;

this corresponds simply to the unitarity of ABJM theory. It is shown in [27] that all the

scalar fluctuations in the non-supersymmetric IR AdS4 geometry satisfy the Breitenlohner-

Freedman bound [39, 40]. However, we do not know of a demonstration of stability of the non-

supersymmetric AdS4 solution against perturbations involving non-scalars; also, stability of

the anti-de Sitter endpoints of these domain wall solutions does not by itself demonstrate the

stability of the whole domain wall. Nonetheless, these domain wall backgrounds are the best

candidates available for a stable holographic dual of a finite-density state in ABJM theory.

3.2 Holographic Interpretation

The domain wall backgrounds constructed in the previous subsection are horizonless solutions

to N = 8 gauged supergravity with a non-vanishing electric potential for the gauge field.

Thus, we broadly expect that these bulk solutions provide a holographic description of certain

zero temperature states of ABJM theory at finite density. The fact that a charged scalar

is turned on in these backgrounds implies that we are studying either a deformation of the

ABJM theory by the addition of a dual scalar operator, a state of the ABJM theory with

non-vanishing expectation values for this scalar operator, or some combination of these.

Since we have a top-down solution, we can determine the nature of the background precisely

using the explicit mapping between the bulk fields and various single trace operators of the

13



ABJM theory.

The truncation of the maximal gauged supergravity breaks the SO(8) gauge symmetry to

SO(3)×SO(3)×SO(2). The surviving bulk fields are all singlets under the SO(3)×SO(3),

and carry charge only under the remaining SO(2) ∼= U(1). The gauge field associated with

this U(1) is A, the active gauge field in the domain wall backgrounds constructed above.

The gauge symmetry present in the SUGRA theory is holographically dual to the global R-

symmetry of the ABJM theory, and thus bulk solutions with non-zero At = Ψ correspond to

ABJM theory with a chemical potential µ turned on for the conserved global U(1)b current.

The dual U(1)b current counts monopole number, and hence takes the form

Jµb ∼ εµνλ Tr (Fνλ + F̂νλ) , (36)

where F and F̂ are the field strengths for U(N)× U(N).

Let us now connect the scalar λ in our background to dual ABJM operators. As men-

tioned previously, the SO(3)×SO(3)-invariant sector of N = 8 gauged supergravity contains

a hypermultiplet, corresponding to two complex scalars, which can be packaged in various

ways. The gauged supergravity naturally gives rise to φ1, φ2 which are a complex SO(2) dou-

blet, the real parts being parity-even scalars and the imaginary parts being pseudoscalars.

We can define φ1 ≡ 1√
2
(S1 + iP1) and φ2 ≡ 1√

2
(S2 + iP2), and can assemble charge and

parity eigenstates as S ≡ S1 + iS2, P ≡ P1 + iP2. [26] also make use of the combinations

ζ1 ≡ 1√
2
(φ1 − iφ2) = 1√

2

(
S† + iP †

)
and ζ2 ≡ 1√

2
(φ1 + iφ2) = 1√

2
(S + iP ).

To identify the dual ABJM operators, recall the 70 scalars of the gauged supergravity

theory live in a 35v ⊕ 35c, each of which decomposes into SU(4)× U(1)b representations as

35v → 150 ⊕ 102 ⊕ 10−2 , 35c → 150 ⊕ 10−2 ⊕ 102 , (37)

corresponding to the “Y 2” operators dual to the parity-even scalars,

150 : Y AY †B −
1

4
δABY

CY †C , 102 : Y (AY B)e2τ , 10−2 : Y †(AY
†
B)e
−2τ , (38)

as well as the “ψ2” operators dual to the pseudoscalars,

150 : ψAψ
†B − 1

4
δBAψCψ

†C , 102 : ψ(AψB)e
2τ , 10−2 : ψ†(Aψ†B)e−2τ . (39)

Under SU(4) → SO(3) × SO(3) the 15 does not contain a singlet, while both the 10 and

the 10 become (3,3)⊕ (1,1). Thus the complex scalar S and pseudoscalar P living in the
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SO(3)× SO(3)-invariant truncation correspond to the U(1)b-charge 2 operators

OS ≡ Y AY Ae2τ , OP ≡ ψAψAe
2τ . (40)

The ansatz (3) truncates the scalar sector down to one complex scalar. The truncation can

be described in various equivalent forms:

ζ1 = 0 ↔ φ1 = iφ2 ↔ S = iP ↔ S1 = −P2, P1 = S2 , (41)

and the remaining two degrees of freedom can be identified with λ and α from (3) as

tanhλ eiα = ζ2 =
√

2S = i
√

2P . (42)

We note that while the Lagrangian (12) indicates the scalar has charge g in a convention

where the gauge field is dimensionless, it is convenient for us to match the natural field

theory convention and refer to this as charge 2. Thus our background involves a simultaneous

turning on of sources and/or expectation values for the ∆ = 1 operator Y AY Ae2τ and the

∆ = 2 operator ψAψAe
2τ , with a fixed relative phase.

All the scalars of the supergravity theory have the asymptotic mass m2L2
UV = −2, lying

in the window where both the leading terms in the near-boundary expansion (33) are normal-

izable deformations of AdS4, and correspondingly the scalars can be quantized in one of two

ways. Supersymmetry [39, 40] requires that the pseudoscalars in the 35c have the standard

quantization dual to an operator with ∆ = 2, while the scalars in the 35v must have the

alternate quantization, and be dual to operators with ∆ = 1. For regular quantization fields,

the mode λ1 in (33) corresponds to the source, while the subleading term λ2 corresponds to

the expectation value; this holds for our ψAψAe
2τ operator. For alternate quantization fields,

λ1 is the expectation value, while λ2 is the source, which holds for Y AY Ae2τ . Hence we find

each parameter in the solution controls both a source for one operator and an expectation

value for the other,2

λ1 ∼ JImψ2 = 〈ReY 2〉 , (43)

λ2 ∼ JReY 2 = −〈Imψ2〉 , (44)

where Y 2 and ψ2 are shorthand for Y AY Ae2τ and ψAψAe
2τ respectively. Thus for a solution

2Additional finite boundary counterterms could in principle shift these relations at the nonlinear level,
but the terms required by supersymmetry found in [41] vanish in our background.
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where λ1 = 0, the background corresponds to a source for the scalar bilinear, hence the

name “Massive Boson”, as well as an expectation value for the fermion bilinear, while for

the “Massive Fermion” solution with λ2 = 0 we have a source for a fermion bilinear and

an expectation value for the boson bilinear. Since either ReY AY Ae2τ or ImψAψAe
2τ is

explicitly added to the ABJM field theory Lagrangian, in either case one breaks the U(1)

symmetry explicitly. Hence these domain wall backgrounds are not precisely holographic

superconductors, which should involve only spontaneous breaking of the symmetry.

We note in passing that it is possible to cast these backgrounds as true holographic su-

perconductors, if we pass to an alternate quantization of some of the scalars or pseudoscalars

and hence move away from ABJM theory to a non-supersymmetric boundary theory. In a

quantization where all the active scalars are dual to ∆ = 2 operators, λ1 = 0 backgrounds

involve only expectation values of the dual operators; conversely λ2 = 0 backgrounds have

no sources if all the active scalars are dual to ∆ = 1 operators. In these two scenarios, the

solutions are in fact holographic superconductors in the usual sense. The former case can be

obtained as the infrared limit of a deformation of ABJM theory by a relevant double trace

operator, essentially the square of Y AY Ae2τ . We prefer, however, to work in the quantiza-

tion dual to the ABJM theory when analyzing fermionic Green’s functions, because there

can be no doubt about the operators dual to the supergravity fermions, and the Dirac equa-

tions we study are precisely determined. In this approach, we cannot claim to be analyzing

fermionic response in a true holographic superconductor, but in a member of a broader class

of symmetry-breaking backgrounds.

3.3 Conductivities

Before we turn to the task of probing the fermionic properties of these SUGRA backgrounds,

it is sensible to wonder what lessons we can learn from the linear response of bosonic probes.

An obvious candidate is the conductivity of ABJM matter charged under the global U(1)b.

The imaginary part of this conductivity appeared previously in [26], where it was claimed that

the 1/ω pole in the imaginary part of the DC conductivity was indicative of superconductivity

in the boundary gauge theory. We will briefly revisit this claim before turning to the real

part of this U(1) conductivity.

The linear response of the gauge theory current to an applied electric field is encoded in

the retarded Green’s function, which in turn dictates the AC conductivity, σ(ω):

σ(ω) =
〈Jx〉
Ex

= − i
ω
GR
JxJx(ω) . (45)
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Roughly speaking, (45) shows that the real part of the AC conductivity gives a measure of

the density of states for charged matter at zero spatial wavenumber.

From a bulk perspective, computing this conductivity is by now a standard exercise

in applied holography. The computation begins by turning on the coupled perturbations

A→ A+ δA and g → g + δg where

δA = δAx(r)e
−iωt dx , δg = δgtx(r)e

−iωt dtdx , (46)

and continues by solving the equations of motion linearized about these perturbations. The

near boundary behavior of δAx fully determines the current-current correlator GR
JxJx

. If

δAx(r →∞) ∼ δA(0)
x +

δA
(1)
x

r
+ . . . then GR

JxJx = 2
δA

(1)
x

δA
(0)
x

, (47)

and using (45) results in the conductivity.

In figure 4 the real and imaginary parts of the AC conductivity are shown for charge trans-

port in both Massive Boson and Massive Fermion backgrounds. From the rightmost plot, it

is immediately clear that Imσ ∼ 1/ω at low energies. By the Kramers-Kronig relations, this

necessarily implies a delta function contribution to the real part of the conductivity. Such

a delta function does not imply that the backgrounds we are studying are holographic su-

perconductors, since any translationally invariant background with non-zero charge density

will show a similar delta function peak in the conductivity [14]. Indeed, as we saw in the

previous subsection, our backgrounds are not true superconductors for ABJM theory, since

the U(1) is explicitly broken, although the same conductivity calculations apply to the true

holographic superconductors associated to non-supersymmetric alternate quantizations.

Reσ(ω) is characterized in both backgrounds by the aforementioned infinite DC contri-

bution separated from the conformal plateau at high energies by a soft gap. The fact that

the Massive Fermion background gives rise to a broader gap can be used to argue that this

state has an enhanced suppression of charge carrying states at intermediate energies rela-

tive to the Massive Boson background’s dual. As indicated above, this suppression can be

inferred only for the states near the origin in momentum space, and thus is of limited utility

for uncovering what is happening to the fermionic degrees of freedom in the dual ABJM

state. This is because the natural expectation for a system of fermions at finite density is to

organize into a Fermi surface at some finite k = kF . Thus, to address questions related to

the fermionic nature of these states it would be more appropriate to study current-current

correlators at non-zero k along the lines of [42, 43]. An alternative approach, which we
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Figure 4: The real (left) and imaginary (right) AC conductivity in Massive Boson (darker)
and Massive Fermion (lighter) backgrounds. The imaginary part of the conductivity has been
multiplied by ω to highlight the 1/ω pole at low energies giving rise to the delta function in
Reσ.

adopt in the present work, is to study the fermion response of the ABJM states directly,

using appropriate fermion probes.

4 Fermion Response in the Domain Wall Solutions

We would like to study the linear response of states in the gauge theory to the insertion

of various fermionic operators, which is characterized by an assortment of fermionic two-

point functions. Holographically, these two-point functions are computed from the linearized

fluctuations of supergravity fermions about the classical (bosonic) backgrounds of interest.

The way to do this and the results we find are the topics of this section.

4.1 Coupled Dirac equations and holographic operator map

We will focus on spin-1/2 fields that cannot mix with the gravitino sector. Under the

SO(8)→ SU(4)×U(1)b → SO(3)×SO(3)×SO(2) decomposition, we have for the gravitini

in the 8s,

8s → 60 ⊕ 12 ⊕ 1−2 → (3,1)0 ⊕ (1,3)0 ⊕ (1,1)2 ⊕ (1,1)−2 , (48)

and thus we can avoid mixing in the SO(3) × SO(3)-invariant backgrounds as long as we

study fermions in representations other than (3,1), (1,3) or (1,1). The spin-1/2 fields live
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in the 56s, which decomposes as

56s → 152 ⊕ 15−2 ⊕ 100 ⊕ 100 ⊕ 60

→ (3,3)2 ⊕ (3,1)2 ⊕ (1,3)2 ⊕ (3,3)−2 ⊕ (3,1)−2 ⊕ (1,3)−2 ⊕ (49)

2(3,3)0 ⊕ 2(1,1)0 ⊕ (3,1)0 ⊕ (1,3)0 ,

and thus we see there are fermions in the (3,3) of SO(3) × SO(3) that cannot mix with

the gravitini. They may, however, mix with each other, and in fact do, as we shall see.

The different SO(2) charges of the fermions in the (3,3) representations are no obstacle to

mixing because the SO(2) symmetry is broken by non-zero λ in our backgrounds. These

(3,3) fermions are not in the fermionic sector of the SO(3) × SO(3) truncation discussed

previously, and thus to obtain their dynamics we must return to the full N = 8 supergravity

theory.

Dropping gravitino pieces that will not couple, the relevant terms for the spinor χijk ≡
χ[ijk] in the full N = 8 gauged SUGRA Lagrangian are [29]:

e−1Lχ =
i

12

(
χ̄ijkΓµDµχijk − χ̄ijkΓµ

←−
D µχijk

)
− 1

2

(
F+
µνIJS

IJ,KLO+µνKL + h.c.
)

+ g

√
2

144

(
εijklmnpqAr2lmnχ̄ijkχpqr + h.c.

)
. (50)

The fermion tensor O+ is defined through

uijIJO
+µνIJ =

√
2

144
εijklmnpqχ̄klmΓµνχnpq , (51)

and the covariant derivative is

Dµχijk = ∇µχijk −
1

2
Blµ iχljk −

1

2
Blµ jχilk −

1

2
Blµ kχijl , (52)

where ∇µ is the covariant derivative defined with respect to the spin connection ωµab:

∇µ = ∂µ −
1

4
ωµabΓ

ab , (53)

and the composite SU(8) connection B is determined through the vanishing of the diagonal

blocks of (7) to be

Biµ j = −2gAijµ +
2

3

(
uikLMDµu

LM
jk − vikLMDµvjkLM

)
, (54)
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where Dµ is covariant only with respect to SO(8).

We now derive the Dirac equations for the χijk in the (3,3). If we take the first SO(3)

to act on greek indices α = 3, 4, 5, the second SO(3) to act on roman indices a = 6, 7, 8,

and the SO(2) which corresponds to the active gauge field to act on hatted indices â = 1, 2,

the fermions that transform as four distinct copies of (3,3) in (49) are readily seen to be

those of the form χαβc, χαbc, and χaβĉ, where we recall the SO(3) antisymmetric product

3⊗A 3 = 3. Thus, an example of a set of fermions with the same SO(3)× SO(3) quantum

numbers is {χ467, χ538, χ416, χ426}; these fields may all mix with each other, but not with any

others. We will study these four fermions; any other analogous quartet has results related

by group theory.

The Dirac equation for these fermions can be obtained from (50), plugging in the val-

ues for the supergravity quantities described in section 2 appropriate to the backgrounds

discussed in section 3. The result takes the form(
iΓµ∇µ 1 + S

)
~χ = 0 , (55)

where 1 is the identity, ~χ is a 4-component vector containing the spinors, and S ≡ A+P+M

with A, P, and M describing gauge, Pauli, and mass type couplings, respectively. We find

that these matrices fail to commute, and the four spinors mix nontrivially. Assembling the

fermions into charge eigenstates,

χ2 = χ426 + iχ416, χ̄2 = χ426 − iχ416, χ0 = χ467 + iχ538, χ̄0 = χ467 − iχ538 , (56)

the full coupling matrix S becomes

S =


−1

4
A(3 + cosh 2λ) 0 − sinhλ 0

0 1
4
A(3 + cosh 2λ) 0 − sinhλ

− sinhλ 0 i
2
√
2
F 1

2
A sinh2 λ

0 − sinhλ 1
2
A sinh2 λ − i

2
√
2
F

 , (57)

where we have written A ≡ ΓµAµ, F ≡ ΓµνFµν .

This basis is diagonal at the ultraviolet fixed point λ = 0, and therefore corresponds to the

basis of dual operators in ABJM theory, which we will work out momentarily. One can see

that χ2 and χ̄2 are charged, and as with the charged scalar, we identify this as charge ±2 in

the natural normalization of the field theory. Meanwhile χ0 and χ̄0 are neutral, but have Pauli

couplings to the field strength. All the fermions are massless at the maximally symmetric
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point. As the scalar turns on away from the boundary, it rescales the gauge couplings of χ2

and χ̄2 and, most importantly, introduces couplings between different fermions: there is an

interaction between the neutral and the charged fermion of the schematic form φχ2χ0 with

φ the charged scalar, and a coupling between the neutral fermion and its conjugate of the

form A|φ|2χ0χ̄0.

It is interesting to compare our Dirac system to other fermionic equations used in holo-

graphic superconductors. In [19] an ordinary Dirac equation with tunable charge and mass

was studied, and the superconducting character was inherited from interactions with the

background. In [20], new terms were added to the Dirac equation to emulate the effects of

the Cooper pair condensate by coupling the spinor to its conjugate, with “Majorana” terms

∆L ∼ φ∗ χTC (η + η5Γ5)χ+ h.c., (58)

leading to a Dirac equation of the form

(iΓµ∇µ −m+ qΓµAµ)χ+ (η + η5Γ5)φBχ
∗ = 0 , (59)

where η and η5 are coupling constants, Γ5 is the chirality matrix, and B is related to the

charge conjugation matrix via C ≡ BTΓ0. The scalar must have qφ = 2qχ, and its con-

densation breaks the U(1). This leads to terms like χχ + χ∗χ∗ in the effective Lagrangian,

analogous to the cc+ c†c† terms in a BCS superconductor Lagrangian.

Our system can be viewed as an elaboration of (59). Instead of coupling a single charged

field to its conjugate, our system has a “Cooper pair” coupling between the charged scalar,

the charged field χ2 and the neutral field χ0, breaking gauge invariance when the scalar con-

denses, as well as a “Majorana” coupling between the neutral field χ0 and its own conjugate

χ̄0, mediated by the gauge field and the scalar squared. We will discuss this structure further

as we examine the results.

Our fermionic fields (56) are dual to spinor ABJM operators of the form “Y ψ”, with

∆ = 3/2 and the 56s arising in the product 8v × 8c = 56s ⊕ 8s. Under SU(4) × U(1)b the

56s decomposes as

56s → 152 ⊕ 15−2 ⊕ 100 ⊕ 100 ⊕ 60 , (60)
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corresponding to the ABJM operators

152 :

(
Y AψB −

1

4
δABY

CψC

)
e2τ , 15−2 :

(
Y †Aψ

†B − 1

4
δBAY

†
Cψ
†C
)
e−2τ . (61)

100 : Y (Aψ†B) , 100 : Y †(AψB) , 60 : comb. of Y [Aψ†B] and Y †[AψB] , (62)

where the other linear combination of the antisymmetric part is part of the 8s. Under

SU(4) → SO(3) × SO(3), the 15, 10 and 10 all contain a (3,3). The fields χ2 and χ̄2 are

charged under U(1)b, and hence will lie in the 152 and 15−2, while χ0 and χ̄0 sit in the 100

and 100. Tracing through the indices one finds

χ2 ↔
(
Y 1ψ2 − Y 2ψ1 + Y 3ψ4 − Y 4ψ3

)
e2τ , (63)

χ̄2 ↔
(
Y †1 ψ

†2 − Y †2 ψ†1 + Y †3 ψ
†4 − Y †4 ψ†3

)
e−2τ , (64)

χ0 ↔ Y 1ψ†4 + Y 4ψ†1 − Y 2ψ†3 − Y 3ψ†2 , (65)

χ̄0 ↔ Y †1 ψ4 + Y †4 ψ1 − Y †2 ψ3 − Y †3 ψ2 . (66)

Looking at a coupling like (58), it is somewhat natural to think of the scalar field as being

dual to the Cooper pair fermion bilinear. Our system is a little more complicated: the two

fermionic operators are of the form Y ψ, so the Cooper pair is some part of Y ψY ψ, while

the operator dual to the scalar that condenses is either of the form Y 2 or ψ2.

In the next subsection we discuss solving the Dirac equations (55, 57) and relating the

results to Green’s functions for these operators, from which we can calculate the normal

mode spectrum and the spectral functions.

4.2 Solving the Dirac equations and spinor Green’s functions

The analysis of Dirac equations in nonzero density backgrounds is by now standard in the

literature, for more details see for example [4, 8, 9, 10]. We rescale the spinors by a factor3

(r4Ge−χ)−1/4 to cancel the spin connection term in the Dirac equations, and Fourier trans-

form as ei(kx−ωt), with frequency ω and spatial momentum k chosen to lie in the x-direction.

Next, we make a convenient choice of Clifford basis where the relevant Γ-matrices are block

3The metric function χ appearing in this factor should not be confused with the spinor.
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diagonal,

Γr̂ =

(
iσ3 0

0 iσ3

)
, Γt̂ =

(
σ1 0

0 σ1

)
, Γx̂ =

(
iσ2 0

0 −iσ2

)
. (67)

By then defining the projectors

Πα ≡
1

2

(
1− (−1)αiΓr̂Γt̂Γx̂

)
, P± ≡

1

2

(
1± iΓr̂

)
, (68)

we can write the four components of the spinor χ as

χα± ≡ ΠαP±χ , (69)

with α = 1, 2. With our choice of Clifford basis, it is fairly easy to see that the Dirac

equations do not mix spinor components with different α, meaning we can split them up into

two decoupled sets of equations, and one can show the solutions of the two sets are related

simply by k → −k. We also note that our Dirac equations have a discrete conjugation

symmetry, being unchanged under the simultaneous substitutions

ω → −ω , k → −k , χ+ ↔ χ̄+ , χ− ↔ −χ̄− , (70)

where χ± represents the ±-components of both χ2 and χ0. Thus we can restrict to k > 0

and α = 1 (dropping the α-label), using (70) to reconstruct k < 0 and obtaining α = 2

simply by changing the sign of k.

Even having restricted to half the spinor components, our system still involves eight cou-

pled first-order equations. Beginning in the deep IR, as per the usual holographic dictionary

we want to impose appropriate boundary conditions to compute retarded Green’s functions.

In the infrared limit, the coupling matrix S is off-diagonal in the charge basis {χ2, χ̄2, χ0, χ̄0},
but becomes diagonal in the “mass basis”

χW = χ538 − χ416, χX = χ467 − χ426, χY = χ538 + χ416, χZ = χ467 + χ426 , (71)

which diagonalizes the mass matrix M. As r → 0 each of the mass basis spinors a =

W,X, Y, Z obeys a second order uncoupled equation of motion of the form

0 = χ′′a +
2

r
χ′a +

(
p2 LIR

r4
+
mIR(1−mIR)

r2

)
χa , (72)
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where mIR is the dimensionless fermion mass at the IR fixed point:

mIR ≡ mLIR = ±
√

6

7
, (73)

and p is the 4-momentum combining ω and k in a way respecting the IR Lorentz invariance:

p2 ≡ k2 − ω2

v2IR
. (74)

The character of the solutions depends strongly on whether p is timelike or spacelike. When

p is spacelike, (72) admits solutions that are either regular or divergent in the IR. The regular

solutions are of the form

χa(r) = Na
1√
r
K± 1

2
−mIR

(
pLIR

r

)
, (75)

with Na a normalization constant. On the other hand, for timelike p, the solutions are

oscillatory in the IR, being either infalling or outgoing.

In the far UV, the charge basis spinors decouple and solve massless second order equations

of the form

χ′′σ +
2

r
χ′σ = 0 , (76)

where the index σ now stands for the ±-components of each charge basis spinor, and we

are suppressing an index labeling the distinct elements of the charge basis. The leading

constant solutions4 for the χ− modes are associated to the expectation values 〈O〉 of the

dual operators, and those for the χ+ modes are associated to the sources J :

χ+(r) ∼ J(ω, k) +O(r−1) , χ−(r) ∼ 〈O(ω, k)〉+O(r−1) . (77)

The choice of which of χ± is associated with the source and which with the expectation value

is determined for ABJM theory by supersymmetry [39, 40, 10].

Were the fermions decoupled, we could solve the Dirac equation for just one of them with

the others vanishing; imposing suitable boundary conditions in the IR would compute the

relationship between that dual operator’s source and its expectation value. In our system

this is not the case; a general solution to the system of equations leads to all four sources

J and all four expectation values 〈O〉 turning on. Considering the response of the four

expectation values to varying the four sources, we we obtain a matrix of Green’s functions,

4The rescaling described above (67) removed a leading factor of r−3/2.
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which schematically takes the form

Gij
R =

δ〈Oj〉
δJ i

∣∣∣
Jk=0

. (78)

To properly define this matrix Green’s function, we follow a recipe very similar to the one

advocated in [25, 44], searching for solutions to the equations of motion with suitable IR

boundary conditions in which only one ABJM operator is sourced at a time. Given such a

solution, standard application of the AdS/CFT dictionary for spinors allows us to read off

the linear response of the operators to this source, and the associated entries in the matrix

Green’s function.

In practice we proceed as follows. The IR normalization constants Na (75) can be chosen

independently for each of the bulk spinors. This is guaranteed by the linearity of the equa-

tions of motion combined with the fact that the bulk fermions completely decouple in the

IR. Imposing the proper boundary conditions in the IR, one can vary the Na and see how

the sources J in the UV change. In this way we can construct a linear map T between the

IR data ~N and the UV sources ~J ≡ (JA, JB, JC , JD):

T ~N = ~J . (79)

The inverse of this map allows us to construct the IR data needed to produce a bulk solution

with any desired values for the dual sources. Once such a solution is known, sources and

expectation values can be read off using (77) and plugged into (78) to obtain the Green’s

function matrix. From a practical standpoint, constructing the 4× 4 matrix T is a straight-

forward but computationally tedious affair. One can completely determine the 16 complex

entries by integrating the equations of motion four times, with four distinct (but arbitrary)

~N . After each integration the values of ~J are computed from the UV asymptotics of the

solution, eventually yielding 16 equations for the unknown entries of T. This process must

be repeated for each value of (ω,~k) of interest.

The appropriate boundary condition in the IR depends on whether the IR 4-momentum

p (74) is timelike or spacelike. If timelike, the choice of infalling boundary conditions leads

to calculating retarded Green’s functions. This boundary condition is complex, leading to

a non-Hermitian matrix of Green’s functions. Solutions that vanish at the boundary are

quasinormal modes and are associated with poles in the Green’s functions at complex ω and

corresponding excitations with finite lifetime. This occurs “inside” the lightcone in the ω-k

plane.
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Figure 5: Cartoon of regions with dispersionless modes, meaning regular, rather than in-
falling, boundary conditions in the IR. At left is an extremal horizon, such as AdSRN; in
the middle, an IR AdS region, as in the present paper; at right, an IR singularity.

If p is spacelike, the “infalling” boundary condition used to compute retarded correlators

can be analytically continued to the regular solution (75). This is a real boundary condition

on the mode in the IR, which leads to a Hermitian matrix of Green’s functions. Solutions

that vanish in the UV as well are normal modes, and are associated with poles in the Green’s

functions at real ω, and excitations that are dispersionless.

Thus, the light-cone structure given by (74) divides the ω-k plane into a region inside the

light-cone where modes decay, and a “stable wedge” outside the light-cone with dispersionless

excitations. We will see this in the next subsection, where we will focus on the normal

modes and associated dispersionless excitations. This can be contrasted with other types of

geometries: Reissner-Nordström and its cousins with regular horizons have the light cone fill

up the entire k-ω plane, and hence have unstable modes except potentially at ω = 0 itself,

while the IR singular geometries of [9, 10] have a dispersionless region for |ω| ≤ ∆ for a

constant ∆, independent of k; these are contrasted in figure 5.

4.3 Fermion Normal Modes

The matrix T(ω,~k) contains all of the information necessary for identifying the locations

of any fermion normal modes which may appear in the bulk. Any such normal mode can

be defined as a solution to the equations of motion which decays in the far IR and whose

“source” falloff in the UV vanishes—in other words, a regular solution to the bulk spinor

equations at some (ωN , ~kN) such that ~J = 0. Clearly any non-trivial solution with this

property implies a zero eigenvalue of T, and thus one discovers that

det T(ωN , ~kN) = 0 . (80)
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This expression provides a powerful method for locating the fermion normal modes, and can

be used to determine their location to very high accuracy.

The result of applying the diagnostic tool (80) to the fermionic perturbations of the

Massive Boson domain wall solution is shown in figure 6, and for the Massive Fermion

solution in figure 7. We plot the results for k > 0, but due to (70) the spectrum is invariant

under (k, ω) → (−k,−ω). As anticipated, the normal modes appear in bands that are

confined to the exterior of the IR lightcone, inside the “stable wedge”. Our numerical search

reveals two bands for each domain wall solution within the kinematic regions shown5. In

both cases, one of the bands passes through ω = 0, suggesting that the dual field theory

state possesses gapless fermionic degrees of freedom. Because these gapless fermionic modes

appear at finite momentum, their presence indicates that some fermions in the dual state of

the ABJM theory may organize into a Fermi surface. These ungapped bands in both cases

begin at the upper boundary of the light cone, and asymptote along the lower edge of the

light cone as far as our numerics can follow. Both cases also possess a gapped band, which

appears to both begin and end along the lower light cone edge. In the Massive Fermion case,

the gapped and ungapped bands come close to each other along this edge, but the gapped

band appears to terminate before they coincide.

Thus we see both states possess both gapless and gapped excitations of ABJM collective

fermionic degrees of freedom, which since they correspond to poles at real ω are perfectly

non-dissipative, at least at large N . We have set the scales of both figures so that details can

be seen, but it should be remembered that the wedge outside the lightcone where such stable

fermionic excitations can exist is much smaller for the Massive Boson case than the Massive

Fermion case (compare the light cones in figure 3). Inside the IR lightcone no additional

normal modes exist, but only quasinormal modes at complex frequencies corresponding to

excitations that decay; we will get a sense of such modes in the next subsection.

As discussed in section 3, there is a correlation between the strength of the symmetry

breaking source and the size of the IR light cone. When the U(1) symmetry breaking is

turned off entirely and only the chemical potential remains, the solution is AdSRN and the

“IR light cone” effectively fills the ω-k plane, leaving no space for stable modes; indeed, as

first demonstrated in [4] and shown for top-down ABJM fermionic fluctuations in [7], this

geometry supports fermionic zero-energy modes at finite momentum, but no stable (infinitely

long-lived) excitations at finite frequency. As the symmetry breaking is turned on weakly in

5While we do not completely exclude bands of normal modes at higher momentum than what is shown
in the figures, a rough numerical search along the edges of the IR light cone revealed no further interesting
features for k vUV /µ < 10.
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Figure 6: The band structure of fermion normal modes in the Massive Boson background.
The shaded blue triangle is the stable wedge where it is possible for normal modes to appear,
and the solid blue curves are the locations of fermion normal modes of the bulk theory, as
determined by solving (80). The intersection of the dashed line with one band indicates
the presence of a gapless mode. This band appears to terminate where it reaches the top
boundary of the shaded region, but follows it closely along the bottom edge as far as our
numerics allow us to compute.

Figure 7: The band structure of fermion normal modes in the Massive Fermion background,
determined by solving (80). Again, there is a gapless mode at finite momentum. At higher
momentum the gapped band approaches the ungapped band, but appears to meet the IR
lightcone before the two bands coincide. As in the Massive Boson background, the ungapped
band traces the bottom edge of the stable region as far as our numerics can reliably follow
it.
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the Massive Boson case, the light cone closes slightly and a kinematic wedge appears where

stable modes exist; the Massive Fermion case has symmetry breaking of the same order as

the chemical potential and a much larger stable wedge.

It is tempting to conclude that in turning on the symmetry breaking source, some sector

of the gauge theory mediating decays of the fermionic excitations has become gapped. That

the gap is defined by the boundaries of the IR lightcone and not by the size of the symmetry

breaking deformation alone can be understood as a consequence of the emergent IR conformal

symmetry. Far in the IR, the only relevant dimensionless scale is defined by the fluctuation,

like ΛIR = ω/k vIR. Dialing up the strength of the symmetry breaking source closes the

IR lightcone further. While the symmetry breaking source is not the same operator in

the Massive Boson and Massive Fermion geometries, being a scalar bilinear with monopole

operators in one case and a fermionic bilinear with monopole operators in the other, we may

speculate that in these geometries it is the size of the symmetry breaking rather than the

details of its nature that most strongly influences the IR dynamics. This can be inferred

from the fact that both sorts of deformations drive the UV theory to the same IR fixed point.

Geometries with “good” IR singularities were studied in [9], and in those cases infinitely

long lived fermionic excitations also appeared, again sometimes connected to a zero-energy

mode at finite momentum. In that case the stable region was not a wedge, but a band

defined by |ω| < ∆. Beyond the value ∆ (which is proportional to the chemical potential)

the normal modes were found to move off the real ω axis and the fluctuations consequently

acquired a finite width. It is likely something similar happens in the present case as well.

The normal mode analysis does not, in and of itself, provide any information about

which ABJM fermions are participating in these excitations. By virtue of our top-down

holographic approach to this system, we can address this question, and at the same time

better understand the fate of the normal modes beyond the boundary of the stable region.

4.4 Spectral Functions

The calculation of the normal modes (80) treats all four fermions symmetrically. However,

the fermions do not all participate in each mode equally. A normal mode may be thought

of as a solution for which all the sources vanish; however, the four expectation values may

behave differently, as some may vanish in the normal mode and some may not. Equivalently,

one may imagine approaching a normal mode in the ω-k plane while keeping a source fixed,

and some expectation values will then diverge. Expectation values that are nonzero in a

normal mode will thus be associated to poles in the matrix of Green’s functions. It is
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interesting to determine which fermionic operators participate in which collective normal

modes.

A natural way to explore this is to study the spectral function matrix, proportional

to the anti-Hermitian part of the retarded matrix Green’s function i(G(ω, k) − G†(ω, k)).

This spectral function quantifies the fermionic degrees of freedom at a given frequency and

momentum which overlap with the fermionic operators of the ABJM theory. Unlike the

normal mode bands found in the last subsection, the spectral function will be nonzero outside

the stable wedge, and will provide a sense of the existence of unstable modes in this region.

However, inside the stable wedge the spectral function itself is hard to examine. This is

because since all excitations there are perfectly stable, the spectral function is zero except

for delta function singularities; our numerical solutions cannot pick up these peaks, meaning

the plots of these regions would be quite boring. To remedy this problem, we recall the

Kramers-Kronig relations require the real parts of the Green’s function matrix to possess

1/ω–type poles when the imaginary parts have delta functions. Hence we choose to study

the quantity G†G(ω, k), which will bring together both the real and imaginary parts of the

Green’s functions. We can then plot trG†G, which will be a basis independent quantity

capturing both excitations in the stable wedge outside the IR lightcone and finite-width

excitations inside the IR lightcone.

Finally, we can define matrices that project onto the subspaces of definite charge:

P+ = diag{1, 0, 0, 0} P− = diag{0, 1, 0, 0} P0 = diag{0, 0, 1, 1} (81)

(c.f. equation (56)). Then, trP+G
†G will measure the excitations of χ2 alone, etc.

In figures 8 and 9 various projections of trG†G are plotted for the Massive Boson and

Massive Fermion backgrounds, respectively. Our first observation is that the spectral density

inside the stable region is strong along the curves of the normal modes, as we would expect.

This density continues outside the stable wedge, pointing to the presence of nearby unstable

modes. Most of the bands of density along the normal mode curves are strong; the exception

is the region of the gapped band in the Massive Fermion background, which is weak enough

to show up in our plot as a series of distinct points. We continue to plot k > 0, but the

spectrum is again invariant under (ω, k)→ (−ω,−k); thus the band in the lower-left corner

of the Massive Fermion plots is the continuation of the band that exits the plot in the upper

left.

By projecting onto the charged and neutral subspaces, we can identify which fermions

participate in which bands of spectral density and associated normal modes. For both
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Figure 8: Plots of G†G for the Massive Boson background. Within the wedge marked by red
edges, all excitations are stable.
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Figure 9: Plots of G†G for the Massive Fermion background. Within the wedge marked by
red edges, all excitations are stable.
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backgrounds, it is χ̄2 and χ̄0 that dominate both the gapped and gapless bands of normal

modes for k > 0. χ2 (and χ0) participates only very slightly along these same curves. We

stress that this asymmetry is in part arbitrary: the conjugation symmetry (70) tells us

that χ2 and χ0 will have similar strong excitations for (ω, k) → (−ω,−k), or in the α = 2

components with ω → −ω. We note that for the Massive Boson background the gapped

band continues in the P− projection out of the stable wedge and into the light cone. The

symmetry described above also involves charged conjugation in the charged subspaces, and

this curve can be seen to finish in a small tail just above the vertex of the light cone in

the P+ projection; this feature will be shown to be a remnant of a stronger band when we

consider modifying the couplings in the next subsection.

It is interesting to quantify the relative participation of different fermionic modes at a

particular point on these bands; we choose to look at the Fermi surface point along the corre-

sponding curve, at zero frequency (relative to the chemical potential) but finite momentum

k = kF . One can turn on a unit source at ω = 0 and k = kF for each of the four supergravity

fermions and catalog the response of the system to this source in the rows and columns of

the retarded Green’s function. Diagonalizing the Green’s function at ω = 0 and k = kF

explicitly reveals an eigenmode with diverging eigenvalue. Denoting this eigenmode ξkF , one

can then write

ξkF =
∑
I

cIχ
I (82)

where the χI are the bulk supergravity fermions dual to the ABJM operators we study. The

amplitudes cI thus quantify the amount in which various ABJM fermions are involved in the

fermionic zero-energy mode. This decomposition is shown in figure 10 for the Massive Boson

and Massive Fermion backgrounds, quantifying how the normal mode is primarily composed

of χ̄2 and χ̄0; this is readily understandable as being a result of the direct mixing of these

modes due to the symmetry-breaking “Cooper pair” coupling of the form φχ0χ2. We see

also that χ0 and χ2 barely participate at all. This suggests that the Majorana self-coupling

term |φ|2χ̄0χ0 does not have much effect on the collective mode at the Fermi surface.

4.5 Modifying couplings

The previous results were obtained in the full dynamics of gauged N = 8 supergravity.

However, it is interesting to ask how these results change as we modify the background or

the couplings. This can give us an idea of which couplings are “responsible” for the effects

we see. For example, figure 10 suggests that the charged-neutral coupling is much more
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Figure 10: The squared amplitude |cI |2 of each ABJM operator participating in the “Fermi
surface” zero-energy mode in the AdS-RN background with no scalar (left), and the Massive
Boson (middle) and Massive Fermion (right) backgrounds. The normalized Fermi momentum
kF vUV/µ in the three cases are 0.53 (AdS-RN), 0.58 (MB), and 0.48 (MF). Note that in all
cases the contributions from Oχ2 and Oχ0 are insignificant.

important than the neutral-neutral coupling, because the χ̄2-χ̄0 mixing is strong and the

χ0-χ̄0 mixing is weak, and we will see that indeed this is true. It should be kept in mind

that modified couplings take us outside the top-down approach, since we do not know any

explicit embedding in M-theory for the modified fermion equations that we will study below.

We will comment on three modifications of our system, as follows:

1. We will keep the Lagrangian the same (i.e. still use N = 8 supergravity) but turn off

the scalar field λ while keeping the chemical potential. The result is the AdSRN black

brane corresponding to ABJM theory at zero temperature, deformed only by chemical

potentials. In the terminology of [10], this is the four-charge black hole.6

2. We will consider massless charged Dirac fermions with no couplings to the scalar fields

in the Massive Boson domain wall background. This is analogous to the approach of

[19].

3. Also in the Massive Boson domain wall background, we will modify the equations of

motion (55)-(57) for N = 8 fermions in only one regard, namely by omitting the off-

diagonal “Cooper pair” and “Majorana” couplings. These couplings are similar to the

ones considered in [20].

Results for the Massive Fermion background are similar.

The existence of the “stable wedge” is a property of domain wall backgrounds with IR

AdS regions. If we pass to the AdSRN background, then the stable wedge is closed, and

all excitations away from ω = 0 are dissipative. At ω = 0, there is a Fermi surface for the

6Note that due to a triality rotation carried out in [10], the sum of all four gauge fields there corresponds
to our single gauge field here.
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Figure 11: Plots of the modulus squared of the Green’s function for massless probe fermions
of various charges.

charged fermion [7], and the neutral fermion is at a special transition point between a pole

in its Green’s function and a zero as other chemical potentials of the system are varied [10].

We include the observation that χ̄2 is entirely responsible for this Fermi surface singularity

in the AdSRN background in figure 10.

Turning the scalar back on leads to the backgrounds studied in this paper and opens

up a stable wedge. We expect there to be stable modes in this wedge for generic charged

fermions. Indeed, in figure 11, we see similar lines of poles for charged, massless fermions in

our Massive Boson background with elementary Dirac equations; only the neutral case does

not acquire a band of stable excitations. Thus we conclude the existence of stable fermionic

modes is a generic property of the background once the IR AdS region exists and the stable

wedge appears.

The Dirac equations obeyed by our top-down fermions are substantially more complicated

than these, involving additionally χ2χ0 and χ0χ̄0 couplings, as well as Pauli terms and a

running of the gauge couplings with the scalar. Faulkner et al. [20] also discussed how the

turning on of a Yukawa coupling caused bands of excitations that crossed to repel each other,

leading to a gap in the dynamics. In that case, there was only a single charged fermion, and

the coupling had a Majorana character coupling the fermion to its own conjugate as in (59).

In general if the particle has a pole at momentum k, the antiparticle will have this pole at

−k. However, one can see that the Γ5 factor mixes the α = 1 and α = 2 components, which

introduces an additional flip of the sign of k; for this reason the authors of [20] preferred the

Γ5 interaction, which couples two modes with poles at the same momentum and leads to

eigenvalue repulsion generating a gap. One may ask whether a similar principle of repulsion

between bands brought on by a mutual coupling applies in our case.

In figure 12, we plot the normal mode structure for our fermions in the Massive Boson

background, with the off-diagonal couplings in the mixing matrix (57) removed but the
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Figure 12: Normal mode structure in the Massive Boson background with the off-diagonal
couplings turned off (left), compared to the full top-down result of figure 6 (right). With
the off-diagonal couplings turned off there are three bands, associated to χ2 (orange), χ̄2

(yellow), and χ̄0 (red), intersecting in three places. Turning on the couplings between the
different fermions induces repulsion between the bands, as described in the text.

diagonal terms preserved, and compare it to the full top-down results previously shown

in figure 6. In the left plot, describing the decoupled case, there are three bands: the

gapless, yellow band stretching from top to bottom is associated to χ̄2, while the red band

crossing this coming from the lower edge of the stable wedge to the left is the neutral

fermion χ̄0. Meanwhile there is a third band in orange, associated to the oppositely charged

χ2, crossing the χ̄2 band below the upper boundary of the wedge and the χ̄0 band close to

the origin in ω-k space. This orange band is also gapless, displaying a zero-energy mode

around k vUV/µ = 0.09. We note the resemblance between the χ2 and χ̄2 bands shown there,

and the free fermion q = 2 and q = −2 cases shown in figure 11.

By comparing the band structure with and without off-diagonal couplings we can get an

idea of how the couplings modify the bands. The lower-right crossing of bands results in

both mixing and repulsion, as the crossed χ̄2 and χ̄0 bands transform into uncrossed bands

involving a mixing of both fermions. This repulsion, however, does not create a gap; unlike

the simpler case in [20] there is no reason for the repulsed crossing to exist at ω = 0, since

it involves the coupling of two distinct fermions instead of a fermion to itself. Meanwhile,

the two crossings involving the orange χ2 band lead to repulsion without mixing; the band
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of normal modes associated to χ2 is pushed off beyond the stable wedge, ending up as the

small tail visible just above the light cone vertex in the P+ projection of figure 8, while the

χ̄2 band only acquires a tiny χ2 component. As the χ2 band is pushed off in this way, its

associated zero-energy mode disappears, thus gapping χ2 (for k > 0). In this case, as in [20],

it happens that the coupling has created a gap.

The tiny amount of mixing between the χ2, χ0 sector and the χ̄2, χ̄0 sector suggests that

the Majorana χ0-χ̄0 coupling is relatively unimportant, and on the whole this proves to be

the case; turning it off alone removes the small contribution of the P+ sector to the normal

modes, but does not change any of the overall structure. The χ2-χ0 “Cooper pair” coupling

is the dominant interaction.

5 Discussion

Perhaps the most powerful aspect of our approach is the explicit holographic map between

the supergravity modes in our gravitational solutions and various operators in the ABJM

theory. This “top-down” application of gauge/gravity duality opens the door to various

interpretations of our results in the context of zero-temperature states of a field theory

whose operator content is well understood.

In our setup, we have deformed the ABJM theory in two ways which our analysis makes

precise. The first is by the addition of a chemical potential for the U(1)b current, placing

charged ABJM matter at finite density and sourcing a relevant deformation away from the

UV fixed point. In the standard presentation of ABJM theory, the scalars Y A and fermions

ψA are neutral under U(1)b, which is carried only by the monopole operators eqτ . Accordingly,

the composite monopole–fermion/scalar operators of (16) filling out the 8v,c carry U(1)b

charge, and the natural interpretation of the states we study is as zero temperature phases

of composite matter at finite density.

In fact zero-temperature phases of such composite matter have arisen in other finite-

density investigations of 2+1 dimensional field theories, beyond holography in the large-N

limit. This is perhaps most famously apparent in the context of the fractional quantum-Hall

effect [45], but related phases have also appeared more recently in e.g. [46, 47, 48]. Particle-

vortex duality in three dimensions exchanges objects charged under an “ordinary” symmetry

with those charged under a current associated to the dualized gauge field of the form (36),

conserved by virtue of the Bianchi identity. Many theories which permit such a duality are

more amenable to calculation in terms of the “magnetic” variables which generate Jb, and
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thus these variables can often provide a relatively simple description of complicated phases

of strongly coupled matter.

Our calculation of the spectral functions for composite fermions can help better under-

stand the nature of these putative phases. One of our main results is the appearance of

delta function singularities in the spectral functions within a particular kinematic window

controlled by the properties of the IR fixed point. These finite momentum singularities sig-

nal the presence of stable excitations which overlap with the fermionic operators written

in (63-66). One plausible explanation of these spectral features is that the finite density of

composite fermions (those transforming in the 8c) have arranged themselves into a Fermi

surface at ω = 0 and k = kF , and the IR excitations around this Fermi surface are weakly

interacting and thus long-lived. In this picture, the low energy features of these states are

qualitatively similar to a Fermi liquid of composite fermions.7

The other deformation we have dealt to the ABJM theory is the addition of a source

which explicitly breaks the global U(1)b. In the states that we focus on, this breaking results

in a non-vanishing expectation value for composite boson or fermion bilinears. In a sense

developed in some detail in section 4.3, it is the breaking of the monopole number density

that permits stable excitations in the vicinity of the Fermi surface. It is interesting that

the fermionic response indicates that the system remains gapless even though the U(1)b has

broken.

We are now in the position to ask how our results compare to other zero-temperature

states of composite matter. One particularly interesting example is N = 4 supersymmetric

QED, which is acted on by mirror symmetry and hence like ABJM theory permits a descrip-

tion in terms of magnetic (composite) variables. In [47] it was shown that the IR physics of

this theory with a uniform density of magnetic impurities is described by phases in which

an “emergent Fermi surface” consisting of composite fermions organizes into a Fermi liquid.

Moreover, it was found that this theory permits a phase in which composite bosons acquire

an expectation value, yet the Fermi surface persists. Understanding to what extent our

ABJM states match the expectations for these novel phases would be interesting.

In [11], it was argued that the pattern of holographic Fermi surfaces in symmetry-

preserving backgrounds of N = 4 super-Yang-Mills theory and of ABJM theory can be

predicted based on the form of the dual field theory operators. In particular, the field theory

scalars involved in the dual operators may have expectation values, and if they do, then the

7Such a picture differs from the “gaugino” Fermi surfaces discussed in [7], as the Fermi surfaces in this
case would be constructed from gauge invariant composite fields. Reconciling this interpretation with the
N3/2 scaling of the correlator and Luttinger’s theorem remains an interesting and unresolved issue.
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“boson rule” of [11] predicts the existence of a Fermi surface. A slightly subtle point is that

the scalar expectation values do not break symmetries in the large N limit; instead, the

eigenvalues of the scalar operators are distributed over the transverse directions in a manner

that respects the unbroken R-symmetries. The reasoning behind the boson rule is that a

scalar expectation value allows an insertion of the operator dual to a supergravity fermion,

generically of the form Y ψ, to deposit all of its momentum into the fermionic component

ψ, while the scalar Y is absorbed by the non- symmetry-breaking condensate. The results

of [11] are clearest in cases where at least one of the independent chemical potentials is

absent in the black hole background. That is because unequal chemical potentials demand

non-zero profiles for supergravity scalars whose field theory duals are expectation values

of operators composed entirely from the field theory scalars whose non-symmetry-breaking

condensates drive the reasoning behind the boson rule. It is unobvious how to extend the

reasoning to the present case, where all four chemical potentials are equal, because then the

non-symmetry-breaking supergravity scalars are altogether absent. It would be useful to

examine supergravity constructions in which one, two, or three of the chemical potentials

are turned off, in order to try to ascertain whether some version of the boson rule can be

applied even in the presence of a symmetry-breaking scalar like λ. In the present case, it

is interesting and suggestive to note from figure 10 and equations (63)-(66) that the field

theory operators which contribute to the fermion zero-energy mode at positive k are the ones

whose bosonic components involve Y †A not Y A. For the Massive Boson domain wall, it would

be in the spirit of the boson rule to speculate that this is because the deforming operator

OS involves Y A but not Y †A. For the Massive Fermion domain wall, where the deforming

operator OP involves only ψA but not ψ†A, it is not clear how an argument in the style of

the boson rule should go. We hope to report further on field theory interpretation in future

work.
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