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Abstract
The holographic dual of a gravitational theory around the de Sitter background is argued to be

a Euclidean conformal gravity theory in one fewer dimensions. The measure for the holographic

theory naturally includes a sum over topologies as well as conformal structures.
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I. INTRODUCTION

There has been much success in describing gravity in Anti-de-Sitter spacetime using a

holographic description on the boundary at infinity. In the holographic description, a con-

formal field theory (CFT) lives on the boundary. This marks a major step in quantizing

gravity in asymptotically anti-de-Sitter spacetime. However according to experimental ob-

servation, our universe has positive cosmological constant. Thus it is interesting to consider

a holographic description of gravity in the de-Sitter spacetime.

One way of approaching this problem is to analytically continue the AdS/CFT corre-

spondence to dS/CFT correspondence [1]. There are many successes in this approach but

there are many conceptual difficulties as well. In this paper we will try to clarify some of

these difficulties. In the paper [2], we constructed a mapping between bulk field operators

and boundary operators. As we saw in that paper, the boundary CFT has operators which

violate cluster decomposition. Cluster decomposition is one of the basic assumptions of any

interacting quantum field theory [3, 4].

To set the stage for understanding the problem in de Sitter spacetime, be begin by

considering the well-understood problem in anti de Sitter spacetime. In that case, there

is a positive energy theorem [5, 6] and the unitary representations of the conformal group

SO(d−1, 2) that appear are lowest weight. Moreover the boundary conditions on conformal

infinity I that preserve conformal flatness are compatible with the unitarity bound of [6].

In particular, with these boundary conditions, one obtains a complete set of modes for

fluctuations around the anti-de Sitter background.

For de Sitter spacetime there is no global positive energy theorem [5] and the unitary

representations of the conformal group SO(d, 1) corresponding to ordinary massive and

massless fields are neither highest nor lowest weight, but are rather the principal series

and the complementary series, which are unbounded. This leads to the problem of cluster

decomposition violation in the boundary theory, noted in [2]. In the case of de Sitter, a

complete set of modes (for the graviton) leads to configurations with a nontrivial conformal

class at conformal infinity I . Thus one cannot impose boundary conditions to maintain

conformal flatness, without truncating the linearized spectrum of the theory [7, 8]. Therefore

to describe a quantum theory with the full set of modes in a de Sitter background, the

holographic description must accommodate a path integral over boundary metrics. The
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boundary theory will be invariant under the asymptotic symmetry group of the de Sitter

spacetime that preserves this more general set of asymptotic boundary conditions. In this

case, the asymptotic symmetry group is not just the conformal group, corresponding to

isometries of de Sitter, but is rather the full group of diffeomorphisms of I . This leads us

to conjecture the holographic dual will be a theory of conformal gravity theory living at I .

At first sight, this might seem a step backward, since theories of conformal gravity seem

difficult to quantize [9]. Nevertheless, there are examples where progress has been made.

For three dimensional pure conformal gravity, a Chern-Simons gauge formulation is available

[10]. For conformal gravity arising in string theory, a twistor string formulation has been

found [11]. So there is hope that the rather different conformal gravity theories considered

here can be successfully quantized.

Having found a path integral over conformal classes of metric on I is needed to provide

a holographic description of gravity in de Sitter, it is then natural to ask whether one must

include a sum over topologies of I as well. In the case of anti-de Sitter, this question was

addressed in [12]. There it was found that if I has positive curvature, it must be connected

and cannot contain nontrivial topology, such as wormholes. This result is important for the

basic consistency of AdS/CFT.

Some related questions have been considered in the context of dS/CFT in [13, 14]. How-

ever there it quickly becomes clear that ordinary matter will lead to nontrivial topology for

I in four-dimensional de Sitter since a black hole already changes the topology from S3 for

empty de Sitter to S2×R for a black hole. Recall in AdS, the topology of I remains S2×R

for empty AdS, or the AdS Schwarzschild black hole.

One can gain a more detailed understanding of this topology change in the case of three-

dimensional de Sitter. As an example, we consider the solution for multi-black holes in

three-dimensional de Sitter spacetime [15]. We show I can be mapped from a multi-

sheeted sphere to a single cover with punctures. The resulting holographic dual is a theory

of two-dimensional gravity, identical to a worldsheet string theory. At least in this example,

there is a natural moduli space corresponding to a sum of worldsheet topologies. It remains

an interesting open question whether such a sum over topologies can be defined in the higher

dimensional case.
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II. ASYMPTOTIC SYMMETRY GROUP

To specify the asymptotic structure of a spacetime we attempt to construct a set of

boundary conditions that capture a wide-class of physically interesting solutions. The Pen-

rose conformal compactification of the geometry provides an enormous simplification in

treating these asymptotic boundary conditions, because solutions may more easily be stud-

ied on the compact unphysical spacetime (related by a Weyl transformation to the physical

spacetime) where the group of diffeomorphisms is clearly defined [16].

If one considers linearized perturbations around de Sitter, the conformal group should

have a well-defined action. In this limit, one can consider the perturbation on top of the

fixed de Sitter background, which has as an isometry group SO(d, 1). These isometries

induce a SO(d, 1) global conformal transformation on I .

A. Four dimensions

At first sight, the situation for nonlinear solutions appears much less clear. We will

restrict our discussion to four-dimensional de Sitter, and discuss the very special features

of three dimensions later. As mentioned in the introduction, already black holes will tend

to change the very topology of I and it is not clear if any precise asymptotic conditions

can be formulated. Ashtekar et al. [7, 8] deal with this by focussing on isolated gravitating

systems in de Sitter. Our approach will take a different viewpoint, and allow for arbitrary

boundary metrics that respect the asymptotic de Sitter metric conditions locally

ds2 = R2
dSη
−2 (−dη2 + (δij + hij)dx

idxj
)

(1)

where we can perform a power series expansion of hij as

hij(η, x) = h(0)ij(x) + η2h(2)ij(x) + η3h(3)ij(x) +O(η4) (2)

following [17]. For now we will take I to have topology of the 3-sphere, thus we are

considering globally asymptotically de Sitter spacetimes. We will consider more general

topologies later in the paper. As we will see later, typical matter configurations only yield

a single regular asymptotic region, so we take I to refer to either I + or I − but not a

disconnected union of the two.
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One can largely separate the issue of topology change by first restricting considerations

to theories of gravity with conformally coupled matter. There powerful nonlinear stability

theorems have been proven by Friedrich [18]. In particular, for an open set of initial data, it

has been shown that a past asymptotic de Sitter spacetime can smoothly evolve to a future

asymptotic de Sitter spacetime. The solutions obtained involve a metric at I in a nontrivial

conformal class. These correspond to the usual long wavelength gravitons of the theory of

inflation, which freeze out when stretched past the horizon scale. They induce a nontrivial

Cotton tensor on I .

As pointed out in [7, 8], demanding conformal flatness of the boundary projects out these

graviton modes from de Sitter. Therefore if the holographic theory of de Sitter gravity was

simply a conformal field theory, living on a background with a fixed conformal structure,

the CFT would not be able to reproduce the full set of graviton modes. One may of course

perturbatively correct for this by introducing sources on the boundary, however then one

must specify a path integral measure for such sources in order to reproduce bulk observables,

such as in-in correlators.

Let us try to establish the gauge symmetries of the boundary theory. If we consider

general asymptotic boundary conditions of the form (1) the asymptotic symmetry group

is much larger than the global conformal group. Instead, it consists of the full group of

diffeomorphisms of I . As we will see later, we can reconstruct part of the action of the

holographic dual by considering the boundary action of the bulk theory, evaluated on solu-

tions of the equation of motion. This boundary action then inherits the gauge symmetry of

the bulk, associated with diffeomorphisms of I .

The construction of the boundary theory is predicated on the Penrose compactification

of the bulk spacetime. This is achieved by performing a general Weyl transformation of

the bulk metric g(unphys)µ,ν = Ω2(η, x)g(phys)µ,ν for some choice of smooth function Ω that

vanishes on I , but with non-vanishing normal derivative. Again, by reconstructing part of

the action of the holographic dual involving the boundary metric, one sees the boundary

theory must inherit this Weyl invariance as a gauge symmetry. We conclude then that the

boundary theory must be a theory of Euclidean conformal gravity.

In many ways, this is not a new statement. It has been advocated that the dS/CFT
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correspondence be viewed as a computation of a wavefunction via a CFT partition function

Ψ(h) = ZCFT [h] (3)

where h denotes the boundary metric. Our point is simply to compute bulk observables,

one must make the further step of computing

〈0|O(x1)O(x2)|0〉 =

ˆ
DhΨ∗(h)OCFT (x1)OCFT (x2)Ψ(h) =

ˆ
DhZ∗CFT [h]OCFT (x1)OCFT (x2)ZCFT [h]

with some a priori unknown measureDh, and some de Sitter spacetime operatorsO. Here the

vacuum state |0〉 is to be understood as an interacting generalization of the Bunch-Davies

vacuum. The operators OCFT are the dual CFT operators. For matter fields in a fixed

de Sitter background, these can be constructed [2]. To formulate a complete holographic

description, one instead must build the integration measure into the theory. This gives rise

to our conjecture that dS gravity is dual to a theory of conformal gravity on I . In that

case, the relevant correlator would be

〈0|O(x1)O(x2)|0〉 = 〈Ocgrav(x1)Ocgrav(x2)〉 (4)

where the left-hand side is an in-in correlator in the bulk theory, and the right-hand side

represents the map of these observables into the conformal gravity theory. The next goal is

to try to specify as much as possible, this conformal gravity theory. If this can be established,

it will then be necessary to revisit the boundary to bulk operator mapping after properly

understanding the gauge invariant observables of the conformal gravity theory. In its current

formulation [2], the mapping would only make sense for small perturbations around some

classical background.

B. Quadratic action for holographic theory: 4d de Sitter

In general to build operators in the boundary theory from those in the bulk, one must

use the integral transform method described in [2], and its generalizations. This can be

viewed as an analog of the LSZ transform in constructing the S-matrix in asymptotically

flat spacetime.

In anti-de Sitter spacetime, one has a much easier task, because the bulk to boundary

mapping is much simpler, since the physical fields of interest have simple power law falloff,
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dependent on their masses. So while one must perform an integral transform to construct

quasi-local bulk fields from boundary operators, the inverse operation reduces to taking a

residue in the limit that the bulk operator approaches infinity.

Nevertheless, if we focus on the gravitational field, and massless minimally coupled

scalars, for example, the results of AdS may be continued to de Sitter. This is the ap-

proach followed in [19, 20]. See also [21] for related discussion of these issues. Here let us

generalize this to a massive scalar in de Sitter, with action

Smat =

ˆ
dηd3x

1

2

√
−detg

(
−gµν∂µφ∂νφ−m2φ2 − ξRφ2

)
. (5)

In empty de Sitter, with metric (1) the solution of the equation of motion may be decomposed

into the Bunch-Davies [22, 23] mode functions

uk =
1

25/2π
η3/2H(2)

µ (−kη)eik·x

where

µ2 =
9

4
− 12

(
m2

R
+ ξ

)
.

Let us for the moment take µ to be real, corresponding to the so-called complementary series

representations of the conformal group. Note we will work with the future half of the slicing,

so −∞ < η < 0. We wish to compute the on-shell action, which reduces to a boundary term

as η → 0−. We take a solution with some fixed behavior on some late-time slice η = ηc

φ(η, x) =
η3/2H

(2)
µ (−kη)

η
3/2
c H

(2)
µ (−kηc)

f~ke
i~k·~x

and substitute into (5) to obtain

iSmat = iR2
dS

ˆ
d3x

1

2η2
φ∂ηφ|η=ηc

= iR2
dS

ˆ
d3k

2 (2π)3
f~kf−~k

1

4η3c

(
3− 2µ−

2ηckH
(2)
µ−1(−kηc)

H
(2)
µ (−kηc)

)
. (6)

When µ is half-integer, this expression may be expanded near η → 0− (i.e. I +) and

interpreted as a series of counter-terms that must be subtracted to yield a finite boundary

action. For example, the massless minimally coupled scalar corresponds to m = 0, ξ = 0

giving µ = 3/2 and

iSmat = R2
dS

ˆ
d3k

2 (2π)3
f~kf−~k

(
ik2

2ηc
− k3

2

)
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as ηc → 0. The imaginary divergent term might then be subtracted with a local
´
d3x(∂φ)2

counterterm. The finite piece yields the expected boundary propagator of a quasi-primary

field with conformal weight ∆ = 3 = 3
2

+ µ. The boundary action for the scalar field then

has the following form, which is non-analytic in momenta

Sboundary = R2
dS

ˆ
d3x

1

2
φ (�)3/2 φ .

Another simple example is the massless conformally coupled scalar, with m = 0, ξ = 1/6

which gives µ = 1/2 and

iSmat = R2
dS

ˆ
d3k

2 (2π)3
f~kf−~k

(
i

2η3c
− k

2η2c

)
which has a vanishing finite boundary action after subtracting the divergent counterterms.

We will comment on this and the case of more general mass in a moment.

In a transverse traceless gauge, the action for metric fluctuations matches that of the

massless minimally coupled scalar with a different normalization, giving the boundary action

Sgrav,boundary =
R2
dS

64πG

ˆ
d3xhTTij (�)3/2 hijTT .

As noted in [19] this gives a negative contribution to the 2-point function of the boundary

stress energy tensor proportional to the central charge.

So far we have seen the boundary counter-term approach seems to work well for the metric

and massless minimally coupled scalar matter. As noted in [2] this approach of extracting

boundary operators for more general matter in de Sitter, by simply taking asymptotic limits

of the fields, fails in general. If one were to evaluate (6) one would get oscillating cutoff

(i.e. ηc) dependent expressions[24]. The correct approach is to apply an analog of the LSZ

reduction formula of asymptotically flat spacetime, by performing an integral transform

on the bulk fields to obtain a boundary expression that transforms covariantly under the

conformal group [2]. For scalar fields, this gives

Smatter,boundary = R2
dS

ˆ
d3x

1

2
φ (�)µ φ

for µ > 0 real, corresponding to the complementary series of the conformal group and

Smatter,boundary = R2
dS

ˆ
d3x

1

2

(
φ (�)µ φ+ φ∗ (�)−µ φ∗

)
for µ imaginary, corresponding to the principal series of the conformal group.
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In the above, we have derived the quadratic terms that appear in the conformal gravity

theory coupled to matter. Already we see the conformal gravity theory seems to be of a new

kind, due to the non-polynomial nature of its derivatives appearing in the quadratic term.

The theory appears to be free of ghosts, at least in the case when the matter is restricted so

µ > 0. At least at bulk tree-level, one should be able to recover the higher order terms in

the holographic Lagrangian. The classical stability of de Sitter would seem to indicate this

procedure should be completely well-defined.

An easy generalization of the above is to break parity in the bulk by adding an
´
RˆR

term, which corresponds to adding a Chern-Simons gravity term to the boundary. This

yields the boundary Lagrangian for the well-studied case of topologically massive gravity

[25], which is invariant under Weyl and diffeomorphism symmetries.

As has been emphasized in [2] the boundary theory violates cluster decomposition, which

is one of the central axioms of Euclidean quantum field theory [3, 4]. It will be very in-

teresting to construct interacting holographic duals. In the free limit, examples have been

constructed in the context of higher spin gravity in de Sitter [26].

C. Three dimensions

The case of three-dimensional de Sitter is special, because then I is two-dimensional,

and always locally conformally flat. In this case, the expansion of the metric (1) takes the

form

hij = h(0)ij + η2h(2)ij +O(η3) .

We can nevertheless follow the strategy described above to compute the boundary term

arising from the on-shell bulk action. Now we will find the boundary counter-term action

iSgrav =
i

16πG3

ˆ
d2x2

√
−detg − 1

2
log (−ηc)

√
deth(0)R(0) .

The anomalous contribution proportional to log ηc must be cancelled for the theory to be

conformally invariant. One way to approach the problem is to couple the boundary theory to

a Liouville field theory with central charge adjusted so that a Weyl transformation, shifting

ηc → αηc is compensated by the anomaly term coming from the Liouville theory. This

renders the boundary theory diffeomorphism invariant and Weyl invariant.
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In this way, the boundary theory takes the form of the Polyakov string. The central

charge induced by the gravitational contribution to the conformal anomaly is

c = −3RdS

2G3

. (7)

For the theory to be Weyl invariant at the quantum level, this central charge must be can-

celled by that of the Liouville field, leading to a boundary theory with vanishing conformal

anomaly.

In the usual conformal gauge of string theory, for fixed boundary topology, the theory re-

duces to an ordinary conformal field theory (coupled to the Liouville field) and the details of

conformal gravity may be forgotten. Moreover in string theory there is a well-defined path

integral involving sums over nontrivial worldsheet topologies. Each topology is equipped

with a well-defined moduli space. We expect this sum over topologies is important to prop-

erly understand the holographic theory describing quantum gravity in de Sitter, a question

we turn to in the next section.

III. TOPOLOGY CHANGE

It is important for the consistency of AdS/CFT that there are strong restrictions on

the topology of the bulk geometry M given the boundary. For example, Witten and Yau

[12] showed that the boundary must be connected, and that the bulk Euclidean geometry

satisfies Hn(M,Z) = 0 if the boundary has positive scalar curvature.

Similar topological restrictions have been explored in the context of four-dimensional

asymptotically de Sitter spacetimes in [13, 14]. For example, if I + has infinite fundamental

group, then one has the rather strong result if matter obeys the null energy condition, there

is no regular I −. Similarly if I + has positive first Betti number, then the bulk is past

null geodesically incomplete. Nevertheless, there are many examples where at least I + is

well-defined. The case we will be most interested in is the case where I + is a sphere with

punctures. Isolated gravitating systems in de Sitter can reach I + where they appear as

punctures. In the work of [7, 8] the focus is on a single isolated gravitating system. Since

here we are interested in building a holographic dual applicable to cosmology, we will be

most interested in is the case where I + is a sphere with multiple punctures.

If we wish to accommodate such isolated gravitating systems in the dual conformal gravity
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theory living on I +, we must therefore include a sum over topologies of the boundary. In

the case of three-dimensional Euclidean geometries, it is not clear whether a path integral

of conformal gravity over such a space can be defined. Though it nevertheless appears to

be a simpler problem than the original proposals for four-dimensional Euclidean quantum

gravity as a path integral over geometries.

In the case of three-dimensional asymptotically de Sitter geometries things are much

simpler. Again, I + is always conformally flat, but one nevertheless must deal with this

sum over topologies. The sum over the moduli space of compact Riemann surfaces (includ-

ing punctures), is well-understood in the context of string theory and leads to a complete

proposal for the path integral of the conformal gravity theory. That is, if we are given a

Lagrangian for a CFT with central charge (7), we can couple it to conformal gravity by

performing a Weyl rescaling, and add in the Liouville sector to cancel the overall conformal

anomaly. One can then fix conformal gauge, and treat the theory as one would with any

worldsheet string theory.

In the remainder of this section, we consider an example of a multi-black hole solution in

three-dimensional asymptotically de Sitter spacetime [15]. If the above proposal is correct,

it should be possible to view I + as a 2-sphere with punctures. However the original work

[15] expressed the Cauchy slices as a multiple cover of a sphere with only two punctures at

the north and south poles. In the following, we construct the covering space and show it is

a single cover of a sphere with multiple non-degenerate punctures.
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A. Example: multi-black hole solution in dS3

Deser and Jackiw have found the metric of 2+1 dimensional gravity asymptotically de-

Sitter spacetime [15] in the presence of N stationary massive particles. It is given by

ds2 = M2(r)dt2 + f(r)dzdz∗

f(z) =
ε

λV (z)V ∗(z∗) cosh2 (
√
ε (ζ − ζ0))

M(z) = ε tanh
(√

ε (ζ − ζ0)
)

V (z) = c−1
N∏
n=1

(z − zn)

ζ(z) =
1

2

(ˆ
dz

V (z)
+

ˆ
dz∗

V ∗(z∗)

)
= ln

(∏
n

|z − zn|cn
)

cn =
∏
n′ 6=n

c

zn − zn′

N∑
n=1

cn = 0 . (8)

Here λ > 0 is the cosmological constant. The first equation gives the metric in complex

plane in terms of f(z),M(z). V (z) is the master function in terms of which the solution is

given. zn are the punctures in the complex plane where particles are inserted and c is a free

parameter. We demand that cn be real for single valuedness of the solution. The coordinate

transformation

sinω =
1

cosh (
√
ε(ζ − ζ0))

φ =
ε

2i

(ˆ
dz

V (z)
−
ˆ

dz∗

V ∗(z∗)

)
(9)

takes us to the familiar static coordinates

ds2 = − cos2 ωdt2 + λ−1
(
dω2 + sin2 ωdφ2

)
. (10)

Note that all the particles are located at sinω = 0 so that ω = 0, π. The further coordinate

change
√
λR = sinω takes us to the static Schwarzschild-de-Sitter coordinates

ds2 = −(1− λR2)dt2 + (1− λR2)−1dR2 +R2dφ2

which covers the full space, but the range of φ goes from [0, 2παn) at the location of nth

particle where αn =
√
εcn = 1− 4Gmn. This is the familiar conical deficit of 3-dimensional

gravity. Locally the metric is same as pure de-Sitter and has constant curvature.
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Now we will investigate the geometry. First we will consider 3-particle case before gener-

alizing to the N particle case. Uniqueness of the solution requires that the 3 particles are all

in a line and cn sum to zero. Let us take c = 1, z1 = −3, z2 = 1, z3 = 2. Then let us choose

c1 =
1

(z1 − z2) (z1 − z3)
=

1

20

c2 = −1

4

c3 =
1

5

c1 + c2 + c2 = 0 .

Thus this configuration satisfies all the constraints. Now let us look at the functions that

determine the geometry

V (z) = (z + 3)(z − 1)(z − 2)

1

V (z)
=

1

20(z + 3)
− 1

4(z − 1)
+

1

5(z − 2)

ζ =
1

2

(ˆ
dz

V (z)
+

ˆ
dz∗

V ∗(z∗)

)
=

1

20
ln

(
|z + 3||z − 2|4

|z − 1|5

)
.

At z = −3, 2, ζ = −∞ and at z = 1, ζ = ∞. In z coordinates, we have punctures at 3

points. We now want to understand the picture in the ω, φ coordinates using (9)..

The points z = −3, 1, 2 correspond to sinω = 0 =⇒ ω = 0, π. Thus two of the particles

are at south pole and one at north pole. But then it is not immediately clear whether the

particles at the south pole are overlapping or they are multiple disconnected sheets or they

are sphere connected at some points etc. To understand the topology, we first note that we

can have a path between any two particles without crossing the other particle. This implies

that the sheets are connected. Secondly, the distance between any two particles is non-zero.

To see this we note that constant ω corresponds to constant |z+3||z−2|4
|z−1|5 curves in the

complex plane.

1. |z+3||z−2|4
|z−1|5 = ±∞ would correspond to north and south pole ω = 0, π.

2. |z+3||z−2|4
|z−1|5 = 1 corresponds to the equator ω = π/2.

First we note that at z = −3, 2, |z+3||z−2|4
|z−1|5 = 0 < 1 and at z = 1, |z+3||z−2|4

|z−1|5 =∞ > 1. Thus

we are sure that |z+3||z−2|4
|z−1|5 = 1 contour will pass between (−3 and 1) and also between (1

and 2). We can verify it by plotting the contours as shown in Figure (1).
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Figure 1. Contour plot of e20ζ = |z+3||z−2|4
|z−1|5 in the complex z-plane.

The plot clearly shows that from z = −3 to z = 2 we have to cross |z+3||z−2|4
|z−1|5 = 1 contour

at least twice. That is we have to cross equator at least twice. To go from z = −3, 2 to

z = 1 we have to cross |z+3||z−2|4
|z−1|5 = 1 contour or the equator at least once. Thus we are

getting a picture where we have two spheres. The south pole of one sphere corresponds

to z = −3 and the south pole of other sphere correspond to z = 2. The north pole of

both the spheres correspond to z = 1. This means the two spheres have common northern

hemispheres (ζ > 0) and separate southern hemispheres (ζ < 0).

How does this all look in the ω, φ coordinate? First let us look at the contours for

ζ > 0 =⇒ ω < π/2. These curves are connected and close around z = 1. As we move

along each contour φ ranges from [0, α12π) where 1−α1 is the conical deficit of the particle

at z = 1. For convenience let us mark the point A as φ = 0. Then as we move along

the curve we reach B(φ = α1π/2), C(φ = α1π), D(φ = 3α1π/2) and when we come back

to A, φ changes by α12π. These points are shown in figure (1). This is true for all the

contours ω < π/2. For ω = π/2, contour splits at C,D →∞. Topologically one then has a

sphere with 3 punctures, also know as the pants diagram. To see that explicitly, we do the

transformation z → 1
z′

+ 1. This sends z = 1,∞ to z′ =∞, 0 respectively. The new function

that determines the geometry is shown in Figure (2).
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Figure 2. 3D plot of e20ζ after the transformation z → 1
z′ + 1 in z’ plane. This shows that the

topology of boundary is a pair of pants.

Generalizing to N particles this will be N punctures on the Riemann sphere. Single

valuedness of the solution requires that all the punctures (position of the particles) lie on a

line. Without loss of generality we can take this line to be real axis. Mass defects are given

by absolute value of the cn, which should sum to 0. We can choose c = 1 in the solution

(8). and take the positions zn such that they satisfy
∑
cn = 0. Then the solution is given

by (8). Let us label the positions such that z1 > z2 > ... > zN−1 > zN . Then

c1 =
1

(z1 − z2)(z1 − z3)...(z1 − zN)
> 0

c2 =
1

(z2 − z1)(z2 − z3)...(z2 − zN)
< 0

c3 > 0

...

c2m+1 > 0, c2m < 0. Thus we see from equation (8) that ζ(z2m+1) = −∞, ζ(z2m) =∞. This

solution in z coordinate is transformed to the de-Sitter like metric (10) using (9). We see

that at z = zn =⇒ ω = 0, π. That is particles are either at the south or north pole,

corresponding to a multi-sheeted sphere with 2 punctures.

To see the geometry more clearly we look at the equator that is ω = π/2 =⇒ sinω =

1 =⇒ ζ(z) = ζ0 contours. Let us check these contours generate the Riemann sphere with

N punctures.

Since this is a compact manifold, all the contours must be closed. The punctures live at

|ζ(zn)| = ∞. So none of the contours with finite value of ζ0, end at the punctures. The
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second observation is that the ζ(z) = 0 contour continuously extends to z = ∞. Thus

all the contours with ζ(z) = 0 are connected at z = ∞. A third observation is that

ζ(z2m+1) = −∞, ζ(z2m) = ∞. That is ζ(z) at successive punctures are of opposite sign.

Thus, ζ(z) = 0 contour separates any two successive punctures. Thus there are N − 1

ζ(z) = 0 contours joined at z = ∞. These contours divide the Riemann sphere into N

segments. Each segment contains exactly one puncture, and we have mapped the geometry

to a single-cover of the N -punctured sphere.

IV. CONCLUSION

We have conjectured the holographic dual of an asymptotically de Sitter spacetime in

d + 1-dimensions is a d-dimensional theory of Euclidean conformal gravity living on I .

Various quadratic terms in the action of the conformal gravity have been constructed, which

indicate the boundary metric becomes a dynamical variable. This then forces one to consider

whether the path integral over the boundary metric includes a sum over topologies.

This is a sharp departure from the simplicity of the conformal field theory/anti-de Sitter

correspondence, where we have many examples of suitable large N conformal field theories

and the boundary metric is not dynamical. In the case of de Sitter, we instead get holographic

theories that violate the usual axioms of Euclidean field theory [2] and examples are hard to

come by. The massless higher spin theories have provided some examples where these issues

can be explored in detail [26, 27]. Optimistically one might hope that the new feature of

coupling to conformal gravity solves some of these problems. More pessimistically it suggests

that the natural UV completion of de Sitter gravity may not be some lower dimensional

holographic theory, but is rather to be understood as an unstable background in some larger

complete theory [28, 29].
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