
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Diffeomorphism-invariant observables and their nonlocal
algebra

William Donnelly and Steven B. Giddings
Phys. Rev. D 93, 024030 — Published 21 January 2016

DOI: 10.1103/PhysRevD.93.024030

http://dx.doi.org/10.1103/PhysRevD.93.024030


NSF-KITP-15-133

Diffeomorphism-invariant observables and their nonlocal algebra

William Donnelly1, ∗ and Steven B. Giddings1, 2, †

1Department of Physics, University of California, Santa Barbara, CA 93106
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106

Gauge-invariant observables for quantum gravity are described, with explicit constructions given
primarily to leading order in Newton’s constant, analogous to and extending constructions first given
by Dirac in quantum electrodynamics. These can be thought of as operators that create a particle,
together with its inseparable gravitational field, and reduce to usual field operators of quantum
field theory in the weak-gravity limit; they include both Wilson-line operators, and those creating a
Coulombic field configuration. We also describe operators creating the field of a particle in motion;
as in the electromagnetic case, these are expected to help address infrared problems. An important
characteristic of the quantum theory of gravity is the algebra of its observables. We show that
the commutators of the simple observables of this paper are nonlocal, with nonlocality becoming
significant in strong field regions, as predicted previously on general grounds.

∗Electronic address: donnelly@physics.ucsb.edu
†Electronic address: giddings@physics.ucsb.edu

mailto:donnelly@physics.ucsb.edu
mailto:giddings@physics.ucsb.edu


2

I. INTRODUCTION

Gravity is widely believed to be described by a quantum-mechanical theory, rather than one that requires an
extension or modification of quantum mechanics. If this is the case, the structure of quantum mechanics (suitably
generalized – see [1]) imparts certain rigid features to the theory of quantum gravity. One basic aspect is the existence
of quantum observables, which are gauge-invariant, Hermitian operators acting on the Hilbert space of states of the
theory. An outstanding problem is to understand properties of these observables.
While a complete discussion of observables in quantum gravity must obviously await more complete understanding

of its Hilbert space and dynamics, we already have a good deal of information if any such more complete formulation
is to match onto a quantum version of Einstein’s theory in weak field regimes. One can study the properties of
quantum observables in these regimes. Moreover, such properties are likely to provide further information about
the mathematical structure of the theory in the strong-gravity regime. One of the challenges of quantum gravity is
specifically to formulate gauge-invariant observables that reduce to the usual observables of local quantum field theory
(LQFT) in the weak-field limit.
In order to define gauge-invariant observables that reduce to those of LQFT, ordinarily a relational approach is

taken[2–14], where for example a particle or field operator is localized with respect to some features of the state, or
with respect to another particle or field operator. Some examples of such constructions are given in [9]. We also expect
that there should be observables that act on a state of the system, say the vacuum, and create or annihilate a particle,
as in LQFT. These are expected to be the simplest operators reducing to simple operators of a non-gravitational
LQFT. A key point, however, is that such observables must also create the gravitational field of the particle, in order
to be gauge invariant (that is, satisfy the constraints). Such operators have been constructed in gauge theories – going
back to the work of Dirac[15] – but not, to our knowledge, in gravity.
Indeed, one way to think of constructing such operators has a close parallel to construction of other relational

operators[9]; we can demand that the point at which a field operator acts is a fixed geodesic distance from a fixed
feature (or “platform”), which we may take to approach infinity. Such a specification will be diffeomorphism invariant
for diffeomorphisms vanishing at infinity. An example, in anti de Sitter (AdS) space, is to base such coordinates
on spatial infinity, which there serves as the “platform.” An equivalent way to describe these constructions defines
operators by working in a specific gauge, e.g. using Gaussian normal coordinates based on the asymptotic platform.
Such a construction was considered for AdS in [16–18]; a related construction appears in [19], based on earlier work
[20].
These observables, acting on the vacuum, create both the quantum associated with the field operator, and a non-

trivial gravitational field. The field for the “Wilson-line” observables we have just described is a singular gravitational
string. Such a string, once created, is expected to decay to a more natural, less singular gravitational configuration.
An approach to deriving the operator that directly creates such a configuration is to average over the directions of
the gravitational string. Working in the linear theory, we will find that such a procedure indeed produces an operator
that creates the gravitational analog of the Coulomb field, namely the linearized Schwarzschild solution; a parallel
construction works for quantum electrodynamics (QED), producing the Dirac dressing. These operators, and other
operators that we construct taking into account possible motion of the particles associated with the field operator,
give simple example of diffeomorphism-invariant observables in quantum gravity, which we explicitly construct to
leading order in an expansion in Newton’s constant G.
Another key question regarding gravitational observables is the algebra that they obey. In LQFT, the field algebra

closely mirrors the underlying manifold structure[21] and provides a precise characterization of locality, through
commutativity of observables associated with spacelike-separated regions. An important question for quantum gravity,
which appears critical to inferring its underlying structure and its interplay with locality, is that of determining
the structure of the algebra obeyed by its observables[22]. Since we are able to construct such gauge invariant
observables to leading order in G, we are able to infer the leading-order structure of this algebra, and we do so by
explicitly calculating commutators of the operators we have just described. We find that these operators do not have
local commutation relations,1 due to the gravitational dressings that we have described, and specifically they have
significant departures from the commutators of LQFT in regions previously characterized by the locality bounds of
[23–25]. These basic algebraic properties of the theory appear to be the universal weak-field behavior of any quantum
gravity theory that matches Einstein’s in the weak field limit, and thus should furnish important information about
the more complete theory of quantum gravity.
In outline, the next section reviews and extends the discussion of gauge-invariant observables in QED, to set the

stage for gravity. Section III describes construction of both “Wilson-line” and “Coulomb” diffeomorphism-invariant

1 Here, we differ from claims of [18], but for reasons that can and will be explained in the analogous and simpler case of QED.
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observables in gravity, as well as a generalization valid for moving particles, and performs simple checks that these
operators create the physically-expected gravitational fields. Section IV turns to the question of the algebraic structure,
first in QED, where we derive nonzero commutators for various dressings and explicitly reconcile a conflict with [26],
by also working out commutators using Dirac brackets. We then exhibit the non-trivial and nonlocal commutators of
various of the gravitational field dressings. Section V provides conclusions and discussion of further directions. There
are also three appendices: two with basic formulas for quantization of QED and of linearized gravity, and one with
other useful formulas.

II. GAUGE-INVARIANT OBSERVABLES FOR QED

We begin by reviewing and extending discussions of gauge-invariant observables in QED, which we will take to be
coupled to a scalar φ with charge q,

LQED = −1

4
FµνFµν − 1

2α
(∂µA

µ)2 − |Dµφ|2 −m2|φ|2 , (1)

where Dµ = ∂µ − iqAµ. Gauge transformations act as

Aµ(x) → Aµ(x) − ∂µΛ(x) (2)

φ(x) → e−iqΛ(x)φ(x), (3)

where the gauge transformation parameter Λ(x) vanishes at infinity. The parameter α is a gauge-fixing (more precisely,
breaking) parameter; special choices are α = 0, Lorenz or Landau gauge, α = 1, “Feynman gauge,” and α = ∞,
restoring gauge symmetry. Further conventions and useful formulas for QED appear in Appendix A.
The näıve expectation that φ acts on the vacuum to create particles is confounded by the fact that φ is not gauge

invariant. However, one may “dress” φ to make a gauge invariant, if one defines

Φ(x) = V (x)φ(x) (4)

where the dressing V transforms as V (x) → eiqΛ(x)V (x). Following [15, 27–29] such V ’s can be found in the form

V (x) = exp

(

iq

∫

d4x′fµ(x, x′)Aµ(x
′)

)

. (5)

Under a gauge transformation (2), this becomes

V (x) → V (x) exp

(

−iq
∫

d4x′fµ(x, x′)∂µΛ(x
′)

)

= V (x) exp

(

iq

∫

d4x′∂′µf
µ(x, x′)Λ(x′)

)

(6)

and will transform as needed provided

∂′µf
µ(x, x′) = δ4(x− x′) . (7)

Here we use the requirement that gauge transformations vanish at infinity. Note also that in the quantum theory, one
must give a careful definition of the operator Φ, accounting for possible ordering ambiguities.
There is a lot of freedom in choosing the function fµ. However not all of this is physical freedom. Two functions

fµ are the same if they agree when integrating against all solutions of the equations of motion. We can think of
inequivalent dressings, following [28], as corresponding to different “soft photon clouds” surrounding each particle.
However they need not be composed only of soft modes; for example string-like dressings, which we are about to
consider, have divergent energy density.

A. Faraday, or Wilson, line dressing

Indeed, a particularly simple dressing is that of a spatial Wilson line, or Faraday line, running to the boundary,
e.g. along the z direction:

ΦWz
(x) = φ(x)eiq

∫
∞

0
dsAz(x+sẑ) (8)
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where ẑ is the unit vector in the z direction. Gauge invariance of an operator may be alternately stated as the
requirement that the operator creates states satisfying the Gauss’ law constraints, and this operator does so by
creating an electric field that is localized to an infinitesimally-thin string extending to infinity along the z direction.
To see that (8) creates a line of electric flux, we can use the equal-time commutation relation (see appendix A)

[Ei(x), Aj(y)] = iδijδ
(3)(~x− ~y) to find [15] at t = t′

[Ez(x),ΦWz
(x′)] = −qδ2(~x⊥ − ~x′⊥)θ(z − z′)ΦWz

(x′) (9)

where x⊥ denotes the components orthogonal to the z direction, x⊥ = (t, x, y). Note that Ez is negative for positive q
because φ creates an antiparticle of charge −q. The other components of E commute with ΦD. The interpretation of
this equation is that acting with the operator ΦD increases the value of the electric field by the addition of an single
line of electric flux.
More explicitly, to find the field created by a general dressed operator Φ, consider

Aµ(x)Φ(x
′)|0〉 = [Aµ(x),Φ(x

′)]|0〉+Φ(x′)Aµ(x)|0〉 . (10)

If the commutator is proportional to Φ, this shows that the field after acting by Φ differs by Ãµ(x), given by

Ãµ(x)Φ(x
′) = [Aµ(x),Φ(x

′)] , (11)

from that of the vacuum.
To find the future evolution of the field associated to the electric string, we evaluate the commutator to leading

order in q in the region that is causally separated from the string, but spacelike to the point x′. In Feynman gauge,
this is given by

Ãz(x) = iq

∫ ∞

0

ds[Az(x), Az(x
′ + sẑ)] =

q ǫ(t− t′)

2π
√

−(x⊥ − x′⊥)
2
, (12)

where ǫ(x) = sign(x). This corresponds to an electric field which at time t 6= t′ is given by

Ẽz(x) = −∂0Ãz =
q|t− t′|

2π [−(x⊥ − x′⊥)
2]

3/2
. (13)

This solution describes the field lines of the initial string spreading out. There is also a corresponding magnetic field,
since the electric field is changing with time.

B. Coulomb, or Dirac, dressing

The string-like configuration considered above is of course a rather unusual electric field for a charged particle; the
operator creates a singular electric field concentrated in a single line. We expect such an operator to receive large
corrections in perturbation theory, and this raises serious doubts as to whether such an operator can be rigorously
defined in the full quantum theory. One approach to avoiding this would be to thicken out the field into a finite
diameter tube, with a finite stress energy tensor. A related approach, to which we now turn, is to distribute the field
lines even more widely – providing a more physical dressing for a charged particle.
In particular, a Coulomb-like field is anticipated to be more typical, and less singular, configuration for the electro-

magnetic field of a charged particle. Such a field can be found by averaging (8) over different directions. Specifically,
taking x = 0, we can average

∫

dzAz → 1

4π

∫

d2Ωdr r̂iAi =

∫

d3~x
Ar

4πr2
, (14)

which generalizes for x 6= 0 to give

ΦD(x) = φ(t, ~x) exp

{

iq

∫

d3~x′
(~x′ − ~x)i

4π|~x′ − ~x|3Ai(t, ~x
′)

}

≡ φ(t, ~x)VD(t, ~x) . (15)

This is the Dirac[15] dressing, which is sometimes rewritten after an integration by parts,

∫

d3~x
Ar

4πr2
=

∫

d3~x
1

4πr
∂iAi −

∫

d2Ω

4π
xiAi(∞) . (16)
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Using the canonical commutators, one may check that this creates a Coulomb field at time t:

[Ei(x),ΦD(x′)]∣
∣

t=t′

= − q

4π

(~x− ~x′)i

|~x − ~x′|3 ΦD(x) . (17)

For earlier or later times we can use the fact that the commutator [Aµ(x),Φ(x
′)] satisfies the Heisenberg equations

of motion, with initial data given by the equal-time commutators. Outside the lightcone of x′, these are, working to
linear order in q, the source-free Feynman-gauge equations �[Aµ(x),ΦD(x′)] = 0. The gauge-dependent term ∂µAµ

does not appear in this equation, since ∂µAµ generates gauge transformations (see Appendix A) and so

[∂µAµ(x),ΦD(x′)] = 0. (18)

This also means the solution Ã satisfies the Lorenz gauge condition ∂µÃµ = 0. The free field equation with these
initial conditions has solution

Ãi(x) = − q

4π
(t− t′)

(~x′ − ~x)i

|~x′ − ~x|3
, Ã0 = 0 , (19)

giving the static electric field of a particle at ~x′.
The field configuration (19) may be continued into the future lightcone of x′, but then does not in general satisfy

the equations of motion. The reason is that the solution there depends on the state of motion of the particle at and
after t′. In general, this solution will have, in addition to (19), a radiative part. The full determination of this field
depends on particle motion in the interacting theory.
As we have noted, if the Wilson line operator ΦWz

acts on the vacuum, the highly-localized electric field it creates
is not stable, and will decay [30, 31]. Another way to see its relation to the Dirac field is to rewrite the field arising
from the Wilson line as a longitudinal, Coulomb, piece, plus a transverse, radiative, piece[32], using

Ai = AL
i +AT

i =
∂i∂j
∇2

Aj +

(

δij −
∂i∂j
∇2

)

Aj . (20)

The integral
∫

dsAL
z then gives the Dirac dressing (16);

∫

dsAT
z contributes extra field energy which radiates to

infinity.

C. Worldline dressing

An electromagnetic dressing that takes particle motion into account is defined by the world-line expression

ΦWL(x) = VD(a,~0)T̃ exp

{

−iq
∫ 1

0

dλ
dxµ

dλ
Aµ(x

ν(λ))

}

φ(x) . (21)

Here VD is the Dirac dressing given in (15), T̃ anti-orders in time (latest time is to the right), and xµ(λ) is a trajectory

with xµ(0) = (a,~0) and xµ(1) = xµ. This produces the electromagnetic field that results from classical motion along
x(λ). For large m, a quantum particle approximately follows such a trajectory, and (21) produces the leading-order
field, but for general m there are quantum corrections to this field.
To see that (21) produces the field of the moving particle, we consider again the commutator Ãµ. This will contain

a term from VD as well as one from the worldline, given by

[

Aµ(x
′),−iq

∫ 1

0

dλ
dxν

dλ
Aν(x

ρ(λ))

]

= q

∫

dλDµν(x
′ − x(λ))

dxν

dλ
+O(q2) , (22)

where Dµν is the Pauli-Jordan function for Aµ, (A22). When x′ is spacelike to x and to the future of (a,~0), Dµν

agrees with the retarded propagator so this term produces the field of the moving particle. When x′ is spacelike to x
and to (a,~0), we have the Coulomb field (19).

We note that although the vector potential Aµ is discontinuous across the lightcone of (a,~0), this is a pure gauge

discontinuity and Fµν will be continuous provided the trajectory x(λ) is initially at rest. If Ãµ is initially at rest,

then the field just to the future of the lightcone of (a,~0) is

Ãµ(x
′) = −ηµ0

q

4π|~x− ~x′| , (23)
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which is related to the configuration (19) (with x↔ x′) by a gauge transformation

Λ(x′) =
q(t− t′)

4π|x− x′| . (24)

Let us examine the large-m case more closely. In the large-m limit, the four-velocity uµ of a particle is constant,
and superselected[33]. Then, from the equation of motion

DµDµφ = m2φ , (25)

one may show

iuµ∂µΦWL(x) = mΦWL − eimuµxµ
D2

2m

(

e−imuµxµφ
)

eiq
∫

1

0
AVD . (26)

Thus, to leading order in 1/m, ΦWL creates a state that is an energy eigenstate; this statement was called the “dressing
equation” in [34].
The latter feature, together with the fact that in the asymptotic regime, where particles have large separation, m

is the largest energy scale, motivated [34, 35] to use (21), with constant-velocity trajectories, to define asymptotic
states which avoid the usual infrared difficulties of describing asymptotic particle states in QED.

D. Lorenz dressing

One natural way to specify a gauge-invariant operator is to fix a gauge by some condition, and define Φ(x) to be
φ(x) in that particular gauge. If this condition completely fixes the gauge, we can solve for the gauge transformation λ
that transforms an arbitrary vector potential Aµ into this chosen gauge. This allows us to express Φ(x) in a manifestly
gauge-invariant way,

Φ(x) = e−iqλ(x)φ(x) (27)

where λ(x) is a nonlocal function of Aµ. Indeed, the preceding construction of ΦWz
, for example, gives the field

operator in axial gauge.
Another apparently natural choice for this purpose is Lorenz gauge ∂µA

µ = 0. However this is not a complete
specification of the gauge: given a vector potential Aµ, we must find the gauge transformation λ to Lorenz gauge,
which is found by solving

∂µAµ = �λ. (28)

The solutions to this equation are not unique until we specify appropriate initial (or final) data for λ.
If our initial data surface is spacelike, we should choose initial data that determine both λ and its first derivative

away from the surface. For example, we can fix nµAµ = 0, where nµ is a normal to an initial data surface, which
we take to be a spacelike of constant time. This leads to an initial condition for nµ∂µλ = nµAµ. This does not yet
determine a solution for λ, since we need to know both the initial value of λ and its time derivative. We can give

an additional constraint ∂iAi = 0, which leads to the equation ~∇2λ = ∂iAi on the initial surface. This determines λ
completely, once we include the boundary condition λ→ 0 at spacelike infinity.
Of course there are other ways to fix the gauge asymptotically. Since λ satisfies a free wave equation, it may make

more sense to fix its initial data on I −. For example, we can impose Au = 0, where u is the null generator of I −.
This leads to the equation ∂uλ = Au, which then determines λ completely on I from the condition that the gauge
transformations vanish at infinity, λ = 0 on i0.
One can therefore likewise formulate dressings based on these gauges; we leave description of these dressings to

future work.

III. GAUGE-INVARIANT OBSERVABLES FOR GRAVITY

We next turn to a discussion of gravitational observables analogous to those we have described in QED. The
nonlinearity of gravity of course is a significant complication, which we manage by working perturbatively in Newton’s
constant GD. In particular, the leading-order, linear structure of gravity has important similarities to that of QED.
This structure will describe the dominant behavior in the weak-field regime.
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Specifically, consider the gravitational Lagrangian, minimally coupled to a scalar φ with mass m,

L =
2

κ2
R− 1

ακ2

√

|g0|
√

|g|
1

|g|
[

∇0
µ

(

√

|g|gµν
)]2

− 1

2

[

(∇φ)2 +m2φ2
]

(29)

where κ2 = 32πGD, and R is the scalar curvature. The derivative ∇0 is with respect to the background metric about
which we perturb. The parameter α is a gauge fixing (more precisely, breaking) parameter; α = 0 gives de Donder
gauge, an analog of Lorenz or Landau gauge, α = 1 is an analog of Feynman gauge for QED, and α → ∞ is the
analog of unitary gauge, which restores the gauge symmetry. The perturbative expansion follows from

gµν = ηµν + κhµν , (30)

where here the background is taken to be the Minkowski metric. Further details of the perturbative theory are
supplied in appendix B.
As was the case for a charged field in QED, the field φ(x) is not a gauge-invariant operator, since under a diffeo-

morphism f :M →M , the field transforms as the pushforward

φ→ f∗φ , (f∗φ)(x) = φ(f−1(x)) (31)

If we take f to be an infinitesimal diffeomorphism, fµ(x) = xµ + κξµ,

δφ(x) = φ(f−1(x)) − φ(x) = −κξµ∂µφ +O(κ2). (32)

To find a diffeomorphism-invariant operator, we will form a composite operator that includes both φ and the gravi-
tational field sourced by φ.
A simple approach to constructing operators invariant under linearized diffeomorphisms, analogous to the approach

taken for QED, is to seek an operator of the form

Φ(x) = eiV
µ(x)Pµφ(x)e−iV µ(x)Pµ = φ(xµ + V µ(x)) = φ(x) + V µ(x)∂µφ(x) +O(V 2) , (33)

where Pµ = −i∂µ (compare the QED expression (3)). Here the “dressing” V µ(x) is a functional of the metric
perturbation that transforms under a diffeomorphism as

xµ + V µ(x) → fµ(x+ V (x)) , (34)

which at linear order becomes

δV µ(x) = κξµ(x) . (35)

Then, using the combined transformations, at linear order

δΦ(x) = δ[φ(x + V )] ≈ δφ(x) + δV µ(x)∂µφ(x) = 0 . (36)

The transformation law (35) should follow from the change in the metric, which transforms as

δgµν = −κLξgµν = −κ(∇µξν +∇νξµ) ; (37)

correspondingly the metric perturbation transforms as

δhµν = −∂µξν − ∂νξν +O(κ) . (38)

This paper will primarily (though not exclusively) consider such constructions at leading order in κ, and in so doing
will consider only linearized diffeomorphisms and drop the O(κ) term from (38). A construction to higher-order in κ
will then be constrained by this leading behavior; we save general examination of all-orders behavior for future work.
As in the case of gauge theory, we can try to find V ’s satisfying (35) that are of the form

V µ(x) = κ

∫

d4x′ fµνλ(x, x′)hνλ(x
′) , (39)

where f is assumed symmetric in its last two indices fµνλ = fµλν . Given (38), in order for V µ to transform as (35),
the function f parameterizing the dressing must satisfy

2∂′νf
µνλ(x, x′) = δ4(x− x′)ηµλ . (40)

Again, there is substantial freedom in choosing the functions f , which determine the “soft graviton cloud” (plus,
possibly, a harder component) of a φ particle, though not all freedom yields physically-inequivalent dressings.
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A. Gravitational Wilson line

As in QED, a very simple dressing is a Wilson line. One very geometrical way to think of such a line in gravity arises
if points are located by shooting a spatial geodesic in a perpendicular direction from a fixed asymptotic “platform,”
where diffeomorphisms are taken to vanish; ultimately, we might take this to reside at infinity.2 Specifically, the
location of a general point is determined by the platform point at which the geodesic originates, and the distance
along the geodesic. The field φ, expressed as a function of this data, is gauge invariant under gauge transformations
vanishing at the platform.
We can thus choose as coordinates the initial platform position, and the geodesic distance. Specifically, define new

coordinates x̆µ in which the z̆ direction is perpendicular to the platform, and choose the “axial” gauge (or, geodesic
normal coordinates)

hz̆µ̆ = 0 . (41)

In this gauge, the z̆ coordinate is the geodesic distance, and the remaining coordinates correspond to the platform
position. The diffeomorphism-invariant field is thus just the scalar field φ in these coordinates. To write this in terms
of the scalar field in arbitrary coordinates, consider a new (general) coordinate system

xµ = fµ(x̆) . (42)

Note that, for general coordinates xµ, the function fµ depends nonlocally on the metric, since it must take a general
metric to the form (41). Then,

ΦWz
(x) = φ(f(x)) (43)

is the diffeomorphism-invariant field written in terms of the field φ expressed in general coordinates. (At this stage
we drop the accent on x̆.)
The preceding statements are valid to all orders in the perturbative expansion in κ, but can also be simply explained

to leading order in this expansion. Specifically, consider a small metric perturbation and parameterize the relation
between axial coordinates x̆µ and a general coordinate xµ as

x̆µ = xµ − V µ
Wz

. (44)

Then, the relation (43) becomes

ΦWz
(x) ≈ φ(xµ + V µ

Wz
(x)) (45)

to leading order. Given the linearized gauge transformation (38), the axial gauge (41) can be fixed by a diffeomorphism
of the form

−κξz =
κ

2

∫ ∞

0

ds hzz(x+sẑ) = VWz ,z(x) −κξµ̌ = κ

∫ ∞

0

ds

[

hzµ̌(x+ sẑ) +
1

2
∂µ̌

∫ ∞

s

ds′ hzz(x+ s′ẑ)

]

= VWz ,µ̌(x)

(46)
where µ̌ denotes indices excluding z, and the platform has been taken to z = ∞.
With these expressions, one can explicitly check the leading-order diffeomorphism invariance of (43), (45). From

the metric transformation (38), VWz
transforms as in (35) for a diffeomorphism ξ that vanishes at infinity, so according

to (36), ΦWz
is diffeomorphism invariant. The gauge-invariant operator ΦWz

is the gravitational analog of the electric
Wilson line operator defined in (8).
This construction can also be characterized by solving the geodesic equation for a curve xµ = x̆µ+ sẑµ+ vµ(s) with

the boundary condition vµ(∞) = 0. The quantity V µ(x) = vµ(0) then gives the coordinate displacement between
general coordinates and axial coordinates. To find the linearized dressing V µ, we solve the linearized geodesic equation:

∂2sv
µ(s) + Γµ

zz(x
µ + sẑµ) = 0 (47)

which gives

V µ
Wz

(x) = −
∫ ∞

0

ds s Γµ
zz(x+ sẑ) + s.t. , (48)

2 For an analogous construction in anti de Sitter space, with the AdS boundary providing a platform, see [16, 18, 36].
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where s.t. denotes a surface term at infinity.3 This can be checked to be equivalent to (46).
As with the case of electromagnetism, the operator (43), (45) creates a singular metric configuration, where grav-

itational field lines are concentrated in an infinitesimal string. This can be seen by studying the commutator of hµν
with VWz

. Even in the linear theory, this is an unstable field configuration, and if it is created the field lines will then
dynamically spread out into a Coulomb-like configuration. Of course in the non-linear theory we also expect such a
concentrated gravitational field to source large non-linear corrections, and as a result at a minimum the gravitational
field configuration should be “thickened[22];” the absence of string-like solutions to the sourceless Einstein equations
moreover likewise strongly indicates that the field configuration should undergo such a decay to a more symmetric
configuration in the full theory.

B. Gravitational Coulomb dressing

1. Construction

Like with QED, an approach to finding a more symmetric dressing is to average the gravitational Wilson line over
all directions. This is most easily done starting with (48), which then becomes, specializing to x = 0, and working in
D = 4,

V µ
C (0) = − 1

4π

∫

d2Ω

∫ ∞

0

dr r Γµ
αβ r̂

αr̂β + s.t. = − 1

4π

∫

d3x
1

r
Γµ
αβ r̂

αr̂β + s.t. (49)

with r̂ the unit radial vector. While we use D = 4 for much of the following, the discussion readily generalizes to
D > 4. Specializing to the timelike component, we find

V 0
C(0) = − κ

4π

∫

d3x

(

∂0hrr
2r

+
h0r
r2

)

(50)

where the surface term has cancelled. The spatial components become

V i
C(0) =

3κ

8π

∫

d3x
r̂i

r2
hrr, (51)

where again the surface terms cancel. At a general location x, these become

V 0
C(x) = − κ

4π

∫

d3x′

(

d̂αd̂β∂0hαβ
2d

+
h0αd̂

α

d2

)

, V i
C(x) =

3κ

8π

∫

d3x′
d̂id̂αd̂β

d2
hαβ (52)

where ~d = ~x′ − ~x. One can check directly that V µ
C has the correct gauge variation; using (38), one finds

δV i
C(x) = κξi(x)− 3κ

4π

∫

d2Ω′ r
′2

d2
r̂′ · d̂ d̂ · ξ d̂i (53)

δV 0
C(x) = κξ0(x) +

κ

4π

∫

d2Ω′r′2r̂′ · d̂
(

d̂ · ξ̇
d

+
ξ0
d2

)

. (54)

Thus we recover the expected transformation law, δV µ
C (x) = κξµ(x), as in (35), for ξ satisfying falloff conditions such

that the boundary terms in these expressions vanish, i.e. ξr and rξ̇r + ξ0 vanish as r → ∞.

2. Dressing field

Comparing QED, we might expect that the operator ΦC(x) = φ(x + VC(x)) creates a gravitational analog of the
Coulomb field. In order to check this, we examine the commutator [hµν(x),ΦC(0)], which indicates, as with the QED
case, how the gravitational field is changed by action of the dressed operator.

3 This vanishes if |~x|hµz(x) vanishes in the limit ~x → ∞.
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As a first step, we need the commutator

[h̄µν(x
′), V 0

C(0)] = − κ

4π

∫

d3x

(

r̂λr̂σ

2r
∂0 +

t̂λr̂σ

r2

)

[h̄µν(x
′), hλσ(x)]

= − iκ

4π

∫

d3x

(

r̂µr̂ν
2r

∂0 +
t̂(µr̂ν)

r2

)

D(x′ − x) , (55)

where we work in Feynman gauge and D is the Pauli-Jordan propagator of a massless scalar, (A20). This can be
rewritten in terms of scalar integrals using (see appendix C)

r̂µr̂ν
r

=
qµν
r

− ∂µ∂νr,
r̂ν
r2

= −∂ν
1

r
, (56)

where the spatial metric is denoted qµν . We then integrate by parts, so that the derivatives act on D(x′ − x), and
then trade them for x′ derivatives, which can be pulled outside the integral:

[h̄µν(x
′), V 0

C(0)] =
iκ

4π

∫

d3x

(

1

2
∂µ∂νr∂0 −

qµν
2r

∂0 + t̂(µ∂ν)
1

r

)

D(x′ − x)

= − iκ

4π
~∂′µ
~∂′ν∂

′
t

(
∫

d3x
r

2
D(x′ − x)

)

+
iκ

4π

(qµν
2
∂′0 + t̂(µ~∂

′
ν)

)

(
∫

d3x
D(x′ − x)

r

)

, (57)

where ~∂ denotes the spatial gradient. The resulting scalar integrals can then be evaluated:

∫

d3x
1

r
D(x′ − x) =











−1 if t′ > r′

−t′/r′ if − r′ < t′ < r′

1 if t′ < −r′
(58)

∫

d3x r D(x′ − x) =











−t′2 − r′2

3 if t′ > r′

−t′r′ − t′3

3r′ . if − r′ < t′ < r′

t′2 + r′2

3 if t′ < −r′ .
(59)

Using these result with (57) and combining terms we find, in the region that is spacelike to the origin, −r < t < r,

[h̄µν(x), V
0
C(0)] = − iκ

4π

[

r̂µr̂ν
2r

−t t̂(µr̂ν)
r2

+ t2
qµν − 3r̂µr̂ν

2r3

]

. (60)

In the regions that are timelike to the origin, t > r and t < −r, we find [h̄µν(x), V
0
C(0)] = 0. We can check explicitly

that (60) satisfies the harmonic gauge condition ∂µh̄µν = 0 as well as the equation of motion �h̄µν = 0.
We also need the commutator [h̄µν(x), V

i
C(0)]. Only the spatial components contribute, and they are given by

[h̄jk(x
′), V i

C(0)] =
3iκ

8π

∫

d3x
r̂ir̂j r̂k
r2

D(x′ − x). (61)

We use the same trick of expressing the tensor as a derivative (see (C7)),

r̂ir̂j r̂k
r2

=
1

3
∂i∂j∂kr − q(ij∂k)

1

r
, (62)

integrate by parts, pull the derivatives outside the integral, and find

[h̄jk(x), V
i
C (0)] = −3iκ

8π

(

t

r2
r̂ir̂j r̂k +

t3

9
∂i∂j∂k

1

r

)

(63)

in the case where x is spacelike to the origin. In the timelike regions t > r and t < −r we have [h̄µν(x), V
i
C(0)] = 0.

We can again check that the result (63) satisfies the harmonic gauge condition ∂µh̄µν = 0 and the equation of motion
�h̄µν = 0.
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We first consider the dressing field due to a massive particle, which we can approximately consider to be at rest, so
that ∂0φ(x) = imφ(x) (for the creation part of the operator) and we can neglect spatial gradients. Then we have

[h̄µν(x),Φ(0)] = [h̄µν(x), V
0
C(0)]∂0φ(0) =

κm

4π

[

r̂µr̂ν
2r

−t t̂(µr̂ν)
r2

+
t2

2r3
(qµν − 3r̂µr̂ν)

]

φ(0) = ˜̄hµν(x)φ(0) , (64)

which gives the field of the particle, valid for all points spacelike to the origin, |t| < r. As noted, this satisfies the

harmonic gauge condition and the equation of motion �h̃µν = 0 in this region.
While the metric in (64) may be unfamiliar, it is simply the linearized Schwarzschild metric in an unusual gauge.

By means of an infinitesimal diffeomorphism

ξµ = − κm

16π
(12 − t2/r2)r̂µ, (65)

we can put the metric into the form:

hµν − ∂µξν − ∂νξµ =
κm

16πr
(t̂µ t̂ν + r̂µr̂ν) (66)

which is the linearized Schwarzschild solution. This can also be checked by calculating the ADM energy,

P 0
ADM =

1

16πG

∮

r2d2Ω r̂i(∂jgij − ∂igjj) =
2

κ

∮

r2d2Ω r̂i(∂jhij − ∂ihjj) . (67)

which indeed yields P 0
ADM = m for the solution in (64).

Generalizing to the case of a localized source with ∂µφ ≈ −ipµφ, we also pick up a field contribution from (63), of
the form

h̄jk = −3κ

8π
pi
(

t

r2
r̂ir̂j r̂k +

t3

9
∂i∂j∂k

1

r

)

. (68)

Again, this satisfies the harmonic gauge condition and the equation of motion �hµν = 0 in the region spacelike to the
origin.
As a check, we can calculate the ADM momentum of the solution. This is given by [37]

P i
ADM = − 2

κ

∮

r2d2Ω r̂jπ
ij = − 2

κ

∮

r2d2Ω r̂j

(

ḣij − 1

2
ḣδij

)

, (69)

where we have used the canonical conjugate πij to the metric defined in (B25), in Feynman gauge. We can verify
that the solution (68) has P i

ADM = pi, as expected. This is a general consequence of the commutation relations

[Pµ
ADM, V

ν
C (x)] = iηµν . (70)

Another check on the preceding constructions is to consider the commutator

[Pµ
ADM,Φ(x)] = i∂µφ∣

∣

x+V

= i∂µΦ(x) +O(κ) . (71)

This shows that the ADM momentum generates translations of the diffeomorphism-invariant observables. Note,
however, that at this order PADM only generates translations of the field φ and not of the dressing; this is a consequence
of truncating our perturbation theory at O(κ). Since PADM contains an explicit factor of κ−1, one has to go to order
κn+1 to see the effect of translating V in the operator Φ at order κn. We expect that the ADM D-momentum will
continue to generate translations of Φ at higher orders in perturbation theory.

3. Further comments on different dressings

We have noted above that the gravitational Wilson line will in general decay to a Coulomb-like configuration.
As with QED, the averaging procedure yielding (49) projects the Wilson-line field onto this configuration, and the
remaining transverse field, as in (20), represents the radiative part of the gravitational field.
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Other simple examples of different dressings satisfying the constraints can be obtained by adding to a V µ giving a
solution of the constraints a multiple of the deformations

∆V 0(x) =
κ

8π

∫

d3x′
d̂id̂j + qij

d
ḣij (72)

or

∆V i(x) =
κ

8π

∫

d3x′
3d̂id̂j d̂k + d̂iqjk − 2qij d̂k

d2
hjk (73)

again with ~d = ~x′ − ~x. These can be shown to be invariant under diffeomorphisms (38) which vanish sufficiently
rapidly at infinity, and thus adding them maintains the condition (35); moreover they shift the dressing field by a
diffeomorphism. Note that a linear combination of them can be added to the Coulomb dressing to cancel the leading
ξ dependence at infinity, resulting in invariance under supertranslations at spatial infinity [38, 39].

C. Gravitational worldline dressing

In parallel with QED, the dressing (49) creates the field for a particle at x that has been at rest forever. Note
also that it does not necessarily give the correct field in the future light cone of the point x, since that will depend
on the subsequent state of motion of the particle. We can consider gravitational dressings corresponding to more
general trajectories for the particle; for example, for an operator describing a particle at x, we might want to consider
gravitational dressings corresponding to different paths that the particle took to x. For completeness, we give a
construction relevant to these cases. A possible way to account for this is to construct a dressing similar to that of
(21), beginning with the Coulomb dressing (49) at a time in the distant past, and then adding a worldline component
to account for the motion of the particle up to a given time. In principle we might try to consider an arbitrary
worldline, specified in an invariant way, e.g. by specifying its acceleration in a local frame carried by parallel transport.
However, this will not yield a dressing creating a field solely generated by a particle following that worldline, since
the gravitational field must be coupled to a conserved stress tensor, which for an isolated particle must correspond
to a geodesic. Thus allowed worldlines are determined by the geometry, and the final position and momentum of the
particle.
Alternatively, we can proceed directly to construction of the worldline-dressed operator directly analogous to (45),

via a geodesic construction. Specifically, we define a worldline-dressed operator of the form

ΦWL(x) ≈ φ(xµ + V µ
WL(x, x

′) + V µ
C (x′)) (74)

where the ≈ denotes that we are again working only to linear order in the metric perturbation. Here V µ
C (x′) dresses

the point x′ = (t′, ~x) directly to the past of x = (t, ~x), and transforms as δV µ
C (x′) = κξµ(x′), as before. This is the

special case of a geodesic with zero initial velocity, and will be generalized below. Then the worldline part of the
dressing can be associated with the choice of a gaussian-normal gauge h0µ = 0 for t > t0, analogous to the axial gauge
choice. Effectively, one localizes spatial points at t = t′ with respect to the boundary, and then localizes future points
by relative to these. As in eq. (46), this gives an expression

VWL,0(x, x
′) = −κ

2

∫ t−t′

0

dλh00(x
′ + λt̂) ;

VWL,i(x, x
′) = −

∫ t−t′

0

dλ

[

κh0i(x
′ + λt̂)− 1

2
∂i

∫ λ

0

dλ′ κh00(x
′ + λ′ t̂) + ∂iVC,0(x

′)

]

. (75)

The latter term in V i
WL is needed so that

δV µ
WL(x, x

′) = κξµ(x) − κξµ(x′) , (76)

as is readily checked. Then, under a general diffeomorphism

δΦWL(x) ≈ δφ(xµ + V µ
WL(x, x

′) + V µ
C (x′)) + ∂µφ(x

µ + V µ
WL(x, x

′) + V µ
C (x′))(δV µ

WL + δV µ
C ) = 0 , (77)

as in (36).
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These expressions can be derived directly from a geometrical construction, while simultaneously generalizing to
non-zero initial velocity. Specifically, we first use the Coulomb dressing to establish a frame at the point x′ = (t′, ~x′)
on the surface defined to linear order by

xµ = x̆µ + V µ
C (x̆µ) (78)

with constant t̆′ and varying x̆i′. The spatial vectors of this frame are given by (dropping accents)

eµi = δµi + ∂iV
µ
C . (79)

The timelike vector e0 is giving by finding the unit normal to the surface defined by (78); the conditions

0 = (ηµν + κhµν)e
µ
0∂i(x

ν + V ν
C ) = κh0i + e0i + ∂iVC0 , −1 = (ηµν + κhµν)e

µ
0e

ν
0 (80)

give

eµ0 = (1 +
κ

2
h00)t̂

µ + δµi(−κh0i − ∂iVC0) . (81)

A geodesic is determined by shooting it from x′ = (t′, ~x′) with an initial four-velocity specified with respect to this
frame. The choice in (75) corresponds to an initial four-velocity purely in the normal direction, ∂0V

µ
WL = eµ0 . More

generally, we can take initial velocity

∂τV
µ(x, x′)∣

∣

∣

x=x′

= uνeµν . (82)

Solving the geodesic equation

∂2τw
µ + Γµ

uu = 0 (83)

for the perturbation wµ from the straight-line trajectory, with these initial conditions, gives the curve xµ = x̆µ +
V µ
WL(x, x

′) + V µ
C (x′). This determines the worldline dressing

V µ
WL(x, x

′) =

∫ τ

0

dλ [(λ − τ)Γµ
uu(x

′ + λu) + uνeµν (x
′)] . (84)

This can be checked to be gauge invariant, beginning with the gauge transformation for the frame field:

δeµi = ∂i(δV
µ
C ) = κ∂iξ

µ,

δeµ0 = −κ(∂0ξ0)t̂µ + δµi(κ∂0ξi + κ∂iξ0 − κ∂iξ0) = κ∂0ξ
µ . (85)

Then, (84) can be varied; a u-dependent term from varying the Christoffel symbol is cancelled by the second term,
using (85), and we again find the necessary variation, (76).
In summary the combined Coulomb and worldline dressings can be understood by the following procedure. First

we establish an equal-time surface at time t′ by the geodesic averaging/Coulomb construction, then to locate a point
at a later time t we shoot a geodesic forward from this surface for a given proper time in the direction uµ specified
with respect to the frame at the surface. One may alternately add a worldline dressing to the Wilson line-dressed
operator, analogous to (74).
The leading-order dressing field resulting from the worldline construction can also be worked out, in analogy to the

calculations of III B 2. We leave the description of this for future work.

D. Gravitational dressing equation

In Ref. [34], dressed field operators for QED were derived from the requirement that in the infinite-mass limit, the
equation of motion for the dressed field Φ should reduce to a first-order equation i d

dtΦ = mΦ. This first-order dressing
equation can be shown from the equations of motion to be solved by the worldline dressing (21), up to terms of order
1/m – see (26). The construction depends on a choice of Lorentz frame, so it selects a preferred dressing for each
frame, corresponding to different boosted Coulomb fields.
Also for completeness, we here show that a similar equation is satisfied by the gravitational worldline dressing. If

we study the large-m limit, that means we consider solutions with a rapidly oscillating phase e−imt̆, where t̆ will be
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the proper time coordinate used in defining the worldline dressing for gravity. Here we work in the rest frame of the
massive particle, corresponding to choosing a geodesic with zero initial velocity in the preceding subsection, although
the discussion may be generalized to non-zero velocity. The equation of motion for φ can be rewritten as

− i∇µt̆∇µφ− i

2
(∇2t̆)φ = mφ− e−imt̆

2m
∇2(eimt̆φ). (86)

Here we have used the fact that t̆ measures proper time, (∇µ t̆)2 = −1. To rewrite this as a gravitational dressing
equation, we need to reexpress it in terms of the dressed field, and to relate the first term to a time derivative ∂/∂t̆.
Recall that the worldline dressed operator ΦWL(x̆) is defined as the value of the field at a set of coordinates x̆ with
an invariant physical meaning. Like with the gravitational Wilson line, t̆ is the proper time along a timelike geodesic,
and x̆ labels the different geodesics. Thus

ΦWL(x̆(x)) = φ(x) ; (87)

compare (42) and (43). Using this, we can reexpress the first term in (86)

− i∇µt̆∇µφ = −i(∇µt̆)(∇µx̆
ν)

∂

∂x̆ν
ΦWL(x̆(x)). (88)

Since the worldline coordinates are Gaussian-normal, (∇µ t̆)(∇µx̆
ν) = η0ν , and the equation of motion (86) becomes

i
∂

∂t̆
ΦWL − i

2
(∇2 t̆)ΦWL = mΦWL − e−imt̆

2m
∇2(eimt̆ΦWL) , (89)

where ∂/∂t̆ is defined with the coordinates x̆i held fixed. This is first-order in time, up to O(1/m) corrections.
Dropping the O(1/m) term gives the gravitational dressing equation, analogous to that discussed for QED in [34].

IV. ALGEBRAIC STRUCTURE

An important basic question for a theory is the algebraic structure of its algebra of observables. In local theories
without long-range fields, the algebra has a net structure of subalgebras [21] that mirrors the decomposition of the
underlying manifold into spacetime regions. Long range gauge fields lead to additional subtleties with such subalgebras.
We next turn to an examination of some basic aspects of such algebraic structure, focussing on the gauge-invariant
observables that we have constructed above, beginning first with QED and then turning to gravity.

A. Algebra for observables in QED

1. Commutators for Faraday dressing

Let us first consider the scalar field operator dressed by a Faraday line introduced in section IIA. If we consider
commutators of ΦWz

(x) with ΦWz
(x′) at equal times t = t′, they will vanish because the operators only involve φ and

Az , all of which commute at equal times (see appendix A for basic commutators). However, away from equal times
there will be a nonzero commutator whenever any part of the two electric strings are causally separated.
To show this we consider one point slightly to the future of the other, which is determined by [∂0ΦWz

(x),ΦWz
(x′)]

at equal times. Using the definition of ΦWz
, (8), and the identity [34]

d

dt
eO = eO

(

Ȯ +
1

2

[

Ȯ, O
]

)

(90)

whenever [Ȯ, O] is a c-number, we find that

Φ̇Wz
(x) = eiq

∫
∞

0
dsAz(x+sẑ)

[

φ̇(x) + iqφ(x)

∫ ∞

0

dsȦz(x+ sẑ) +
i

2
q2φ(x)δ2(0)

∫ ∞

0

ds

]

. (91)

The last term arises from the commutator (see eq. (A21)) [Ȧz(x), Az(x
′)] = −iδ3(~x−~x′); it is formally infinite, and can

be interpreted as due to the infinite energy of the singular string. It can be regulated by cutting off the construction
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at z = Z, and by smearing out the singular string over a small region. However, since it is proportional to ΦWz
, it can

be alternately absorbed by a c-number phase rotation of ΦWz
, and thus also does not contribute to the commutators

of present interest.
If we now commute (91) with ΦWz

(x′) for x 6= x′, the contribution of the first term vanishes by [φ̇, φ] = 0, and we
are left with

[Φ̇Wz
(x),ΦWz

(x′)] = ΦWz
(x) · iq

∫ ∞

0

ds[Ȧz(x+ sẑ),ΦWz
(x′)]

= iq2ΦWz
(x)ΦWz

(x′)δ(2)(~x⊥ − ~x′⊥)

∫ ∞

max(z,z′)

dz′′. (92)

The last term is infrared divergent and may be again regulated by cutting off the z integration at finite Z.
To understand the appearance of the nontrivial commutator, imagine first acting on the vacuum with the operator

ΦWz
(x). This will create a charged particle, and a nontrivial configuration of the electromagnetic field, (9), (12). If we

subsequently act with ΦWz
at a slightly later point (t+ δt, ~x), there is a large phase associated with the introduction

of the new charged particle into the preexisting nontrivial field. The divergence arises since this field does not decay
as z → ∞. While the Faraday dressing provides a nice intuitive picture of the origin of the non-zero commutator, the
divergence can be eliminated by working with dressings like that of Dirac, which are better behaved.

2. Commutators for Dirac dressing

Equal-time commutators of Dirac-dressed operators (15) likewise vanish at equal times, but can be shown not to

vanish as one operator is moved into the future by considering the commutator [Φ̇D(x),ΦD(x′)]. Specifically, the
needed time derivative is

Φ̇D(x) = VD(x)

(

φ̇(x) + iqφ(x)

∫

d3x′
(~x′ − ~x)i

4π|~x′ − ~x|3 Ȧi(t, ~x
′) +

i

2
q2φ(x)

∫

d3x′
1

(4π)2
1

|~x′ − ~x|4
)

. (93)

Here, again, the last piece is interpreted in terms of field energy; here it is infrared finite, but ultraviolet divergent,
though does not contribute to the commutator of interest. The equal-time commutator arises, as with the Faraday
dressing, from the second term in (93), and takes the form

[Φ̇D(x),ΦD(x′)] = ΦD(x) · iq
∫

d3x′′
(~x′′ − ~x)i

4π|~x′′ − ~x|3 [Ȧi(t, ~x
′′),ΦD(x′)]

= iq2ΦD(x)ΦD(x′)

∫

d3x′′
(~x′′ − ~x)i

4π|~x′′ − ~x|3
(~x′′ − ~x′)i

4π|~x′′ − ~x′|3

= iq2ΦD(x)ΦD(x′)

∫

d3x′′
1

4π|~x− ~x′′|

(

−∇2
x′′

1

4π|~x′ − ~x′′|

)

=
iq2

4π|~x− ~x′|ΦD(x)ΦD(x′) . (94)

In contrast to the divergent commutator of the Faraday-dressed operators, the commutator of the Dirac-dressed
operators is nonsingular and decays with distance, reflecting the fact that the Coulomb field spreads out with distance.
Moreover, we see that the coefficient entering the commutator is precisely the Coulomb energy between charges at
points ~x and ~x′.

3. Relation to calculations with Dirac brackets

Note that [26] claims that commutators of the field φ, in axial gauge, vanish at spacelike separation, and argue that
this means microcausality is preserved. This seems in conflict with the results derived above. Here we will reanalyze
the question, in the Dirac bracket formalism used in [26], and show that the commutators in question are indeed
nonvanishing. To do this we review the Dirac bracket formalism[40], and compare it with the construction used in
the present paper.
First, we recall that the dressed operator ΦWz

(x) coincides with the value of φ(x) in axial gauge Az = 0. So
the commutation relations of ΦWz

(x) are given by the commutation relations of φ(x) in axial gauge, which can be
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evaluated using the Dirac brackets. We will encounter a possible ambiguity in this gauge choice, since Az can really
only be set to zero by a gauge transformation vanishing at infinity if

∫

dzAz = 0; correspondingly, the operator φ(x)
could be accompanied by an electric string running off to z = ∞, or to z = −∞, or a linear combination of the two,
and these are gauge-inequivalent configurations.
To carry out the Dirac quantization, we begin by treating the components of Aµ as canonical variables, and find

their momenta πµ; these are given in (A9) with α → ∞. Only πi are nonzero, and π0 = 0 gives a primary constraint.
In order that this constraint be preserved in time, we find the Gauss’ law constraint, ∂iπ

i = −j0, where j0 is the
charge density defined in (A7). These constraints Poisson-commute with each other and with the Hamiltonian, and
give a system of first-class constraints.
In order to fix a gauge and reduce the system to physical degrees of freedom, we add an additional gauge-fixing

constraint, Az = 0. This constraint does not commute with Gauss’ law, or with the Hamiltonian. To preserve the
constraint in time, we introduce its time derivative πz + ∂zA0 = 0 as a further constraint. Note that this constraint
does not commute with the primary constraint π0 = 0. We thus have a system of second-class constraints, given by

π0 = 0 , ∂iπ
i + j0 = 0 , Az = 0 , πz + ∂zA0 = 0 . (95)

Letting χi label the constraints (there are 4 per point) we can consider the matrix Cij = {χi, χj}, written in terms
of the Poisson brackets {Aµ(x), π

ν (x′)} = δνµδ
3(x− x′). If this matrix is invertible, then we can form its inverse Cij ,

and define the Dirac brackets,

{A,B}DB = {A,B} − {A,χi}Cij{χj , B} . (96)

Because the term Cij is obtained by inverting a differential operator the Dirac bracket is nonlocal.
In the case of axial gauge, the nonzero Poisson brackets are

{π0(x), πz(x′) + ∂zA0(x
′)} = ∂zδ

3(x− x′) , (97)

{∂iπi(x) + j0(x), Az(x
′)} = −∂zδ3(x− x′) , (98)

{Az(x), π
z(x′)− ∂zA0(x

′)] = δ3(x− x′) . (99)

The constraint matrix C can be expressed as a 4× 4 matrix of differential operators, which takes the form

C =







0 0 0 ∂z
0 0 −∂z 0
0 −∂z 0 I
∂z 0 −I 0






. (100)

The general antisymmetric inverse of the constraint matrix is given by

C−1(x, x′) =









0 − 1
2 |z − z′| − cz′ − dz − e 0 1

2ǫ(z − z′)− c
1
2 |z − z′|+ cz + dz′ + e 0 − 1

2ǫ(z − z′) + d 0
0 − 1

2ǫ(z − z′)− d 0 0
1
2ǫ(z − z′) + c 0 0 0









δ2(~x⊥ − ~x′⊥) .

(101)
We have to choose boundary conditions in order to invert C, which determines the constants c, d and e. The freedom
in inverting the matrix of Poisson brackets is due to the ambiguity in transforming to a gauge such that Az = 0.
The Dirac bracket defined in [40] corresponds to the choice c = d = e = 0. These different solutions define different
dressed scalar operators. The simplest way to see this is by considering the Dirac bracket of φ with the z-component
of the electric field, which measures the electric flux.
To find the Dirac bracket of φ with Ez, we need the nonzero Poisson brackets of these quantities with the constraints,

which are given by:

{∂iπi(x) + j0(x), φ(x′)} = iqδ3(x− x′)φ(x′) , (102)

{Ez(x), Az(x
′)} = δ3(x− x′) . (103)

The Dirac bracket is then given by

{Ez(x), φ(x′)}DB = −
∫

d3x′′d3x′′′{Ez(x), Az(x
′′)}
[

− 1
2ǫ(z

′′ − z′′′)− d
]

δ2(~x′′⊥ − ~x′′′⊥ ){∂iπi(x′′′) + j0(x′′′), φ(x′)}

= iq
[

1
2ǫ(z − z′) + d

]

δ2(~x⊥ − ~x′⊥)φ(x
′) . (104)
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Thus we see for d = 1/2 we have a Faraday line of flux −q pointing in the z direction, which is the dressing ΦWz
of

(9) with the identification [ , ] = i{ , }DB. The choice c = 0, used in [40], gives a particle dressed by two Faraday
lines of flux q/2 pointing in opposite directions.
We can now consider Dirac brackets between the scalar field φ and its canonical momentum πφ. The modification

entering the Dirac brackets comes because of the commutators of the matter field with Gauss’ law is nonzero. However
Cij is zero when i and j both label the Gauss’ law constraint, so these Dirac brackets coincide with the canonical
Poisson brackets. This conclusion was reached in [26], and used as part of an argument for commutativity of φ’s at
spacelike separation.
However, while this argument shows that the Poisson brackets between φ and πφ are unmodified by the coupling

to the gauge field; it does not show that φ commutes with φ at a later time. To see this we can consider the Dirac
bracket of ∂0φ = π∗

φ + iqA0φ with φ. This leads to a nontrivial Dirac bracket due the Poisson bracket of A0 with the

primary constraint π0:

{φ̇(x), φ(x′)}DB = −
∫

d3x′′d3x′′′{iqA0(x)φ(x), π
0(x′′)}

(

− 1
2 |z

′′ − z′′′| − cz′′′ − dz′′ − e
)

δ2(~x′′⊥ − ~x′′′⊥ ){j0(x′′′), φ(x′)}

= −q2
(

1
2 |z − z′|+ cz′ + dz + e

)

φ(x)φ(x′) . (105)

This indeed agrees with the commutator of the Wilson line dressing (92), if we take c = d = 1
2 and e = −Z.

Thus, in summary, while one does find that the equal-time Poisson bracket {φ(x), πφ(x′)} = 0 for x 6= x′, this does
not imply that {φ(x), φ(x′)} vanishes at spacelike separation, so the operators do not commute in general outside the
lightcone.

B. Algebra for observables in gravity

We finally turn to the important question of the algebra of gauge-invariant operators in gravity. In section III we
described the construction, at linear order in κ, of diffeomorphism-invariant observables corresponding to a matter
field and its gravitational dressing. In parallel with the preceding discussion on QED, we can now likewise investigate
the algebra obeyed by these observables. While these have only been constructed to leading order in κ, and thus we
will only find the leading-order commutators, these have interesting structure, and of course constrain the all-orders
commutators since the latter need to match our results when expanded to this leading order.
The general form of the gauge-invariant observables we have described is

Φ(x) = φ(x) + V µ(x)∂µφ(x) + κ2Φ(2)(x) +O(κ3) , (106)

where V µ is of order κ and explicit examples have been given in section III. We will consider the equal-time commu-
tators [Φ,Φ] and [Φ̇,Φ] to leading order, which is to order κ2. At this order and for x 6= x′ these commutators take
the form

[Φ(x),Φ(x′)] = [V µ(x), V ν(x′)]∂µφ(x)∂νφ(x
′) (107)

and

[Φ̇(x),Φ(x′)] = [V̇ µ(x), V ν(x′)]∂µφ(x)∂νφ(x
′) + [V µ(x), V ν(x′)]∂µφ̇(x)∂νφ(x

′) . (108)

Note that validity of (107) and (108) requires elimination of other terms that could potentially contribute at order
κ2. First, there is a possible contribution to the commutator (107) of the form

[V µ(x), φ(x′)]∂µφ(x) (109)

and similarly with x ↔ x′. However, V µ(x) as we have constructed it depends only on the metric and its first
derivative on the constant time slice, so this commutator vanishes.
There is also the possibility of a term in (108) of the form

[V̇ µ(x), φ(x′)]∂µφ(x), (110)

and likewise with x ↔ x′. Indeed, since V 0 contains time derivatives of the spatial metric (see (46) and (50)), V̇ 0

contains second time derivatives of hij . In order to find these commutators at equal time, we have to use the equation
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of motion for hµν , (B22). It is convenient to choose Feynman gauge and rewrite the equation of motion by subtracting
a multiple of the trace as (c.f. (B24))

ḧµν = ~∇2hµν +
κ

2
T̂µν , (111)

where T̂µν is the “inverse trace-reversed” stress tensor, defined as in (B8). This suggests that the nontrivial commutator

between T̂µν with φ could potentially lead to a contribution at order κ2. However, the spatial components of T̂µν =

∂µφ∂νφ+m2φ2ηµν/(D− 2), which enter V̇ 0, do not contain time derivatives of φ, so there is no such contribution to

the equal-time commutator between Φ̇ and Φ; the term in (110) vanishes.
Finally, we should consider a possible term in (107) of the form

κ2[φ(x),Φ(2)(x
′)]. (112)

with similar terms appearing in (108). It appears that this term could contain an O(κ2) contribution. However we
have defined Φ as the value of φ at a point determined in terms of the geometry, so the second-order piece takes the
form

κ2Φ(2)(x) =
1

2
V µ(x)V ν(x)∂µ∂νφ(x) + V µ

(2)(x)∂µφ(x), (113)

where V µ
(2) is a nonlocal functional of the metric hµν of order κ2. Then, the commutator [φ(x), hµν (x

′)] is O(κ) since

it vanishes in the absence of gravitational interactions, so the term in (112) is O(κ3).
We therefore conclude that (107) and (108) contain all the terms that can enter the commutators at order κ2.
As we have just noted, V 0 contains a time derivative of the spatial metric, and this implies a new feature of the

algebra, as compared to the gauge-theory case: there can be a non-zero contribution to the equal-time commutators
[Φ,Φ]. We will consider the different commutators in turn.

1. [Φ̇,Φ]

In this paper, rather than working out the full structure of the commutators in detail, our main focus will be the
question of when the commutators are nonzero, and when they become significant. We first consider commutators
[Φ̇,Φ]. These receive contributions in particular when we consider the large-mass limit, where the operators can create
massive particles at rest.
A simplest example of such commutators arises in the Wilson line case, where we find from (46), working in D = 4,

[V̇Wz ,z(x), VWz ,z(x
′)] =

κ2

4

∫ ∞

0

ds

∫ ∞

0

ds′ [ḣzz(x+ sẑ), hzz(x
′ + s′ẑ)]

= −iκ
2

8
δ2(x⊥ − x′⊥)

∫ ∞

0

ds , (114)

using the equal-time commutator (specialized to D = 4; see (B14)):

[ḣµν(x), hλσ(x
′)] = −i

[

δµ(λδ
ν
σ) − 1

2η
µνηλσ

]

δ3(~x− ~x′) , (t = t′, D = 4). (115)

Thus, from (108), there is a nonvanishing contribution to the equal-time commutator

[Φ̇Wz
(x),ΦWz

(x′)] = −iκ
2

8
∂zφ(x)∂zφ(x

′)δ2(x⊥ − x′⊥)

∫ ∞

0

ds+ · · · (116)

where we omit terms proportional to other derivatives of φ. The divergence here can be regulated by basing the
Wilson-line construction on a platform at a large, finite z = Z, cutting off the integral at Z.
We next consider commutators proportional to φ̇(x)φ̇(x′); these are the terms that make the leading contribution

in the large-mass, zero-momentum limit. These commutators arise from [V̇ 0, V 0].
An interesting case is that of the commutator of two operators with the Coulomb dressing. The time derivative of

V 0
C is, using (111) and neglecting the stress tensor terms which we have argued do not contribute to our calculation,
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and with ~r = ~y − ~x,

V̇ 0
C(x) = − κ

4π

∫

d3y

(

ḧrr(y)

2r
+
ḣ0r(y)

r2

)

= − κ

4π

∫

d3y

[

hµν ~∇2

(

r̂µr̂ν

2r

)

+
ḣ0r(y)

r2

]

− κ

4π

∮

r2d2Ω

[∇rhrr
2r

− hµν∇r

(

r̂µr̂ν

2r

)]

+ T terms

= − κ

4π

∫

d3y

[

hii − 3hrr
r3

− 2π

3
hiiδ

3(~r) +
ḣ0r
r2

]

− κ

4π

∮

r2d2Ω

[∇rhrr
2r

+
hrr
2r2

]

+ T terms . (117)

Here we have also used the identities (C4), (C6). When evaluating the commutator with V 0
C , we can neglect the

boundary terms. This is because the commutator of hµν(y) with V0(x
′) decays as 1/r, so when we commute V0(x

′)
with the boundary term in (117), the resulting integrand is 1/r3 and hence its integral vanishes as the surface is taken
to infinity.
The commutator [V̇ 0

C(x), V
0
C (x

′)] is the sum of three terms, which we denote by [ ]1,2,3. The bulk term from the

commutator of ḣ0r with h0r is, with ~r′ = ~y′ − ~x′,

[ ]1 =
κ2

16π2

∫

d3y

∫

d3y′
r̂µ

r2
r̂′ν

r′2
i

2
δµνδ

3(~y − ~y′)

=
iκ2

32π2

∫

d3y∂µ

(

1

r

)

∂µ
(

1

r′

)

=
iκ2

8π|x− x′| . (118)

The piece of the commutator coming from the 1/r3 term in (117) is

[ ]2 =
iκ2

32π2

∫

d3y
1− 3(r̂ · r̂′)2

r3r′
. (119)

This integral is evaluated in appendix C, and gives

[ ]2 = − iκ2

6π|x− x′| . (120)

Finally, the δ-function term in (117) leads to

[ ]3 =
iκ2

96π|x− x′| . (121)

Adding these terms gives

[V̇ 0
C(x), V

0
C(x

′)] = [ ]1 + [ ]2 + [ ]3 = − iκ2

32π|x− x′| . (122)

Then, if we consider ΦC(x
′) to create a static source, for which φ̇(x′) = imφ(x′), and use (108), this leads to a nonzero

commutator

[Φ̇C(x),ΦC(x
′)] = [V̇ 0

C(x), V
0
C (x

′)]φ̇(x)φ̇(x′) =
Gm

|x− x′| φ̇(x)φ(x
′) . (123)

Note the comparison between this result and the QED result (94); this is even clearer in the static limit φ̇(x) = imφ(x).

In higher dimensions, we expect a denominator |x − x′|D−3
. Thus in gravity we find nonlocal commutators, and in

particular commutators proportional to the gravitational potential.

2. [Φ,Φ]

As noted above, a difference between gravity and QED is a nonzero contribution to the equal-time commutators
[Φ,Φ]. Such contributions arise for both the Wilson line-dressed operators, and the Coulomb-dressed operators.
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These are most easily elucidated by considering the commutator [ΦWz
(x),ΦC(0)]. For simplicity, consider the case

where ~x = (0, 0, z). Then, we see from (107) that these commutators have a contribution from

[V z
Wz

(x), V 0
C (0)] = −κ2

8π

∫ ∞

z

dz′
∫

d3y[hzz(0, z
′), ḣij(y)]

yiyj

2y3

= − iκ2

32π

∫ ∞

z

dz′

z′

= − iκ2

32π
ln(Z/z) (124)

where in the last line we have introduced a large-z cutoff Z. Thus we find

[ΦWz
(x),ΦC(0)] = − iκ2

32π
ln(Z/z)∂zφ(x)φ̇(0) + · · · (125)

where we don’t include terms proportional to other operators.
While initially surprising, the log has the following explanation. The time derivative in V 0, (50), creates the

perturbation of the spatial metric which we have shown corresponds to linearized Schwarzschild,

κhrr =
κ2m

16πr
. (126)

After acting with the operator ΦC(0), the proper distance from a point near infinity is thus corrected by a term
logarithmic in r; since the Wilson-line construction uses the proper distance, this leads to the log in (124). Note
that this logarithmic term is closely similar to another logarithmic dependence seen in a related physical effect: the
Shapiro time delay. In higher dimensions, the metric perturbation created by V 0

C is

κhrr ∝
GDm

rD−3
, (127)

and so the corresponding correction does not require a cutoff, and varies ∝ z4−D.
One can likewise examine the commutator [ΦWz

(x),ΦWz
(x′)]; here one finds a result that is quadratically divergent

in the cutoff Z for D = 4.
Finally, we consider the commutator of two of the more “physical” ΦC ’s. The commutator of the dressings is

[V 0
C(x), V

i
C (x

′)] = − 3κ2

32π2

∫

d3y

∫

d3y′
r̂j r̂k

2r
[ḣjk(y), hlm(y′)]

r̂′ir̂′lr̂′m

r′2

=
3iκ2

64π2

∫

d3y
(r̂ · r̂′)2 − 1/2

rr′2
r̂′i , (128)

where ~r = ~y − ~x and ~r′ = ~y′ − ~x′; in the second line, ~y′ = ~y. The necessary integral is done in appendix C, yielding

[V 0
C(x), V

i
C(x

′)] =
iκ2

64π

x′i − xi

|x− x′| . (129)

This result, then, gives a commutator

[ΦC(x),ΦC(x
′)] = − iκ2

64π

[

φ̇(x)∂iφ(x
′) + ∂iφ(x)φ̇(x

′)
] xi − x′i

|x− x′| . (130)

This term does not decay with distance, but does vanish with the momentum of the fields, and so vanishes in the
static limit. In higher dimensions, we expect a falloff ∼ |x− x′|4−D.
Note that the commutator of the form (130) can be eliminated by adding a linear combination of ∆V 0 and ∆V i

appearing in equations (72), (73) to V µ
C . For example, the combination

V 0
N (x) = V 0

C(x) +
1

4
∆V 0(x) (131)

commutes with V k(x′), and so the resulting dressing does not produce a commutator (130). More generally, one
expects a one parameter family of dressings with linear combinations of ∆V 0 and ∆V i added to V µ

C with the same

property. Note that these will also change the commutators [V̇ 0, V 0], but the latter can be shown to still take the
same form as in (122), with different numerical coefficients.
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C. Further comments

We have only evaluated some indicative commutators, which reveal nonlocal behavior, as compared to LQFT,
of our gauge-invariant, gravitationally-dressed operators. Other commutators can be likewise evaluated, with more
effort, using similar techniques. In particular, one can evaluate the commutators of the operators with the worldline
dressing, corresponding to more general states of motion of a particle, and find similar results to the simple cases we
have shown.
We also note that there are contrary claims in the literature[18], that gravitational dressing does not modify the

local properties of commutators of field operators. The same claim was made[26] for QED, for similar reasons. But,
as we have detailed above, a closer inspection of the Dirac brackets for QED fixed to axial gauge explicitly shows
noncommutativity that matches that of the dressed operators, giving one confidence in our methods and results.
Thus, we likewise expect that the nonzero commutators for gravity – which are similar in structure to those of QED
– are also present, and could likewise be derived through a Dirac bracket analysis.

V. DISCUSSION

The diffeomorphism-invariant observables that we have constructed in this paper potentially play multiple important
roles in better understanding aspects of quantum gravity.
A first role is to control infrared divergences in scattering. While that has not been a primary focus of this paper,

we have noted that the worldline-dressed operators described in section II C have been argued by [34, 35] to regulate
IR divergences in scattering in QED.4 Section III C has constructed analogous operators in gravity. Thus, we expect
the corresponding gravitational dressings to analogously address IR divergences in gravitational scattering. We leave
development of such a treatment of scattering to future work; for related work see [43].
Another very important role is in capturing features of the fundamental structure of quantum gravity. As we

have noted, locality in LQFT is most clearly described in terms of commutativity of subalgebras of gauge-invariant
observables associated with spacelike-separated regions of spacetime. A key question for quantum gravity, if it is a
quantum-mechanical theory, is thus what algebraic structure governs its observables, and how this structure relates
to possible localization, and reduces to the locality structure of LQFT in the limit G→ 0[22].
While the strong gravitational regime still poses many puzzles, we have found that even the weak-field regime allows

us to infer apparently important aspects of this algebraic structure, since non-trivial results can be found perturbatively
in G, and since any more complete algebra relevant to arbitrarily strong fields must have these contributions at leading-
order in an expansion in G. In particular, we have found, at order G in an expansion of commutators of the gauge-
invariant observables, obstructions to commutativity of operators associated to different “regions” of spacetime. If
locality is defined in terms of such commutativity, it fails for the gravitationally-dressed operators we have considered,
and in a way that suggests that it will not necessarily be easy to restore with definitions of different operators. This
appears to be an important structural aspect of a quantum theory of gravity, if it is to agree with quantized general
relativity in the weak-field regime.
One key piece of information is that of when the noncommutativity becomes significant; that is expected to be

an important characteristic of the “correspondence boundary” where quantum gravity reduces to LQFT[22, 44]. For

example, for two particles of energy E, (123) indicates that the dressing only makes a small correction to Φ̇(x)Φ(x′)
when GE . |x− x′|, or, for general D, for

GDE . |x− x′|D−3
. (132)

This is in accord with the locality bound proposed in [23–25], which stated that LQFT ceases to give an accurate
description of the state once the bound (132) is violated. Note that we have also found significant corrections in

the [Φ(x),Φ(x′)] commutator, which appear to become relevant in a regime where GpE & |x − x′|D−4, where p
is a characteristic momentum of the particles being created. While interesting, and clearly related to the physical
effect described in (125), these commutators can be removed by modifying the dressing, as described in the preceding
section.
Notice that we can, at the order G to which we work, achieve commutativity of the gravitational Wilson line

operators of (45) associated to spacelike separated points x and x′, if we run their associate Wilson lines in different
directions so that they also stay spacelike separated. However, such operators do not have a clear identification with

4 Connections to and issues with the related analysis of [41] are discussed in [42].
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a compact spacetime region, and appear to be more clearly associated with a noncompact neighborhood, extending
to infinity and containing the flux line. Moreover, we expect important corrections[22] at higher order in G. First, the
infinitesimally-thin Wilson lines have infinite energy density, and thus are expected to receive significant corrections
once self-coupling of gravity is taken into account. This is expected to “thicken” these Wilson lines. Moreover, it
would appear that the thickness of the corresponding region would grow as the mass or energy sourcing the flux
lines increases. This suggests an important lesson for any putative subalgebra structure: a monomial in the operator
ΦWz

(x) would appear to be associated with a larger and larger region as the order of the monomial grows; moreover,
this also strongly suggests that such a monomial doesn’t commute with ΦWz

(x′) for high enough order, spoiling any
commutative subalgebra structure.
While we have treated the case of asymptotically Minkowski space, many of the features we have described should

carry over to the case of anti de Sitter space with relatively minor modification. In particular, one can likewise construct
Wilson line operators, associated with “Fefferman-Graham” gauge, there; for related discussion see [16, 18, 36]. These
can alternately be averaged over directions, as we have done in section III B, to produce a Coulomb-like dressing.
One would then find similar commutator structure for the corresponding operators. In particular, two Wilson line
operators with overlapping Wilson lines are not expected to commute, as in (92). This differs from a claim of [18],
though we have understood the origin of the conflict in the simple example of QED in section IVA3. Also note that
for many purposes working in AdS will provide an effective infrared regulator, with characteristic length ∼ RAdS, to
calculations with the flat-space operators described in this paper.
The present discussion also has interesting relations with the similar problem of observables in de Sitter space –

though here nontrivial features are encountered. In particular, [9, 12] discussed formulation of observables where field
operators are separated by a given geodesic distance; as in the present work, these will create particles together with
a gravitational flux line connecting them. Thus, for far separated particles, or if one particle is taken to be massive
and provide a “platform” with respect to which we measure, the construction for the remaining particle is very similar
to the ones we have described. However, notice that in such a picture field lines appear to terminate on the pair
of particles; none can reach asymptotic infinity since space is compact. This new feature arises from the nontrivial
nature of the de Sitter background.
Past examples[9] of diffeomorphism-invariant, approximately local observables such as those just mentioned are

relational, in that the position at which we create or measure a particle is defined in relation to other particles or
features of the background state. Interestingly, the observables constructed in this paper do not require any such
local structure to define location; the location of the field operator is defined in relation to structure at infinity. Thus
these are still relational, though in a somewhat different fashion.
A final role to consider for such observables is their connection to observation or experiment. The observables of this

paper, like those of [9, 12] are observables in the usual mathematical sense of quantum mechanics – they are Hermitian,
gauge-invariant operators on the Hilbert space. However, they do not have an a priori connection to observations
made by “observers inside the system” and thus were referred to as q-observables in [45]. Some such q-observables
are expected to be related to observations such observers can make (thus to what experimental physicists would call
“observables”); further development of this story is left for future work.

Acknowledgements. We wish to thank D. Harlow, J. Hartle, D. Kabat, and D. Marolf for discussions. The work of
SBG was supported in part by the Department of Energy under Contract DE-SC0011702, by grant FQXi-RFP3-1330
from the Foundational Questions Institute (FQXi)/Silicon Valley Community Foundation, and by the National Science
Foundation under Grant No. NSF PHY11-25915 to the Kavli Institute of Theoretical Physics, whose hospitality during
the workshop “Quantum gravity foundations: UV to IR” is also gratefully acknowledged.

Appendix A: QED basics

Here we collect some basic formulas relevant to quantization of QED.
The Lagrangian of QED takes the form

LQED = −1

4
FµνFµν − 1

2α
(∂µA

µ)2 + Lm . (A1)

The second term is a “gauge-fixing” (really, gauge-invariance breaking) term; gauge transformations act as

Aµ(x) → Aµ(x) − ∂µΛ(x) . (A2)

Gauge symmetry is restored for α = ∞, α = 1 gives “Feynman gauge,” and α → 0 gives “Lorenz” or “Landau gauge.”
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The third term is the matter Lagrangian. The corresponding equations of motion are

∂νF
µν − 1

α
∂µ∂νA

ν = −�Aµ +

(

1− 1

α

)

∂µ∂νA
ν = jµ. (A3)

where jµ = δ
δAµ

∫

d4xLm is the current; here � = ∂µ∂
µ.

A particular matter Lagrangian is that for a charged scalar,

Lm = −|Dµφ|2 −m2|φ|2, (A4)

with gauge transformation

φ(x) → e−iqΛ(x)φ(x). (A5)

and with covariant derivative

Dµφ = ∂µφ− iqAµφ . (A6)

The corresponding current is

jµ = −iq[φ∗Dµφ− (Dµφ)∗φ] . (A7)

The canonical momenta are

πφ = (D0φ)
∗ , π∗

φ = D0φ (A8)

and

πi = −∂0Ai + ∂iA0 = −F 0i = −Ei, π0 =
1

α
∂µA

µ . (A9)

At α = ∞, π0 of course vanishes, yielding a constraint. The equal-time commutators are

[πφ(x), φ(x
′)]∣
∣

t=t′

= −iδD−1(~x− ~x′) = [π∗
φ(x), φ

∗(x′)]∣
∣

t=t′

(A10)

and

[πµ(x), Aν (x
′)]∣
∣

t=t′

= −iδµν δD−1(~x− ~x′). (A11)

These commutation relations provide initial data for the unequal-time commutators. In the free limit, these satisfy
the free equations of motion. For the free scalar, we have

[φ(x), φ∗(x′)] = i∆(x− x′). (A12)

where ∆ is the massive Pauli-Jordan function, satisfying

(� −m2)∆(x) = 0 , ∆(x)∣
∣

t=0

= 0 , ∂t∆(x)∣
∣

t=0

= −δ3(~x) . (A13)

Note also that

∆(x − x′) = Ga(x, x
′)−Gr(x, x

′) , (A14)

where Gr and Ga are the retarded and advanced Green functions, respectively,

Gr(x, x
′) = iθ(t− t′)〈0|[φ(x), φ∗(x′)]|0〉 , Ga(x, x

′) = −iθ(t′ − t)〈0|[φ(x), φ∗(x′)]|0〉 . (A15)

The commutators for the electromagnetic field may be written in terms of the massless Pauli-Jordan function (again,
advanced minus retarded Green function), satisfying

�D(x) = 0 , (A16)

D(−x) = −D(x) , (A17)

D(x)∣
∣

t=0

= 0 , (A18)

∂tD(x)∣
∣

t=0

= −δD−1(~x) . (A19)
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In 4 dimensions, D(x) is given by

D(x) = − 1

2π
ǫ(t)δ(x2), (A20)

where ǫ(t) is the sign function. The commutators become

[Aµ(x), Aν(x
′)] = iDµν(x− x′) (A21)

where

Dµν(x) = ηµνD(x) + (1 − α)∂µ∂νE(x), (A22)

and �E = −D. More explicitly, E(x) is the Green function for the operator �2 with the boundary conditions

E(x)∣
∣

t=0

= ∂tE(x)∣
∣

t=0

= ∂2tE(x)∣
∣

t=0

= 0 , ∂3tE(x)∣
∣

t=0

= −δD−1(~x) . (A23)

In D = 4, it is constant in the forward lightcone, and in the backward lightcone, and is given explicitly by:

E(x) = − 1

8π
ǫ(t)θ(−x2), (A24)

Eq. (A22) can be verified by checking that the resulting commutator satisfies the equation of motion,

[

δµλ�+

(

1

α
− 1

)

∂µ∂λ

]

Dµν(x) = 0 , (A25)

with initial conditions given by:

[A0(x), Ȧ0(x
′)] = −iαδD−1(~x − ~x′) , [Ai(x), Ȧj(x

′)] = iδijδ
D−1(~x− ~x′) , (A26)

which follow from (A11).
Note that the quantity B = ∂µA

µ generates gauge transformations on both the electromagnetic and matter fields:

i[B(x′), Aµ(x)] = α∂µD(x′ − x) , i[B(x′), φ(x)] = iαqD(x′ − x)φ(x). (A27)

This is an infinitesimal gauge transformation,

i[B(x′), Aµ(x)] = δΛAµ(x) = −∂µΛ(x) , i[B(x′), φ(x)] = δΛφ(x) = −iqΛ(x)φ(x′) (A28)

with Λ(x) = αD(x− x′). Here the commutators with Aµ follow from (A21). To check the φ commutator, we first use
the equal-time commutation relations to show that it holds at equal times,

[B(x′), φ(x)]∣
∣

t=t′

= 0 , [∂0B(x′), φ(x)]∣
∣

t=t′

= −αqδ3(~x− ~x′)φ(x) , (A29)

where we have used the equation of motion to write ∂0B = α(∂iπ
i + j0). The identity (A27) then follows at unequal

times using the fact that B satisfies the free equation of motion �B = 0 when the current jν is conserved.
Thus, a gauge-invariant operator Φ constructed out of the electromagnetic field and the scalar field φ will commute

with B(x) . The physical states of the theory are those annihilated by the positive-frequency part B+ of B:

B+(x) |ψ〉 = 0 ⇔ |ψ〉 is a physical state. (A30)

Then if Φ is a gauge-invariant operator, it will commute with the positive-frequncy part of B, and hence maps physical
states to physical states.

Appendix B: Gravity basics

Here we collect some basic formulas relevant to perturbative quantization of gravity.
The scalar Lagrangian density for Einstein gravity takes the form

Lgrav =
2

κ2
R + Lgf + Lm , (B1)
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where κ2 = 32πGD, GD is the D-dimensional Newton’s constant, R is the scalar curvature and Lm is the matter
Lagrangian; a particular example is that for a scalar with mass m,

Lm = −1

2

[

(∇φ)2 +m2φ2
]

. (B2)

The second term in (B1), Lgf , denotes a “gauge-fixing” (really, gauge-invariance breaking) term. If one picks a
background metric g0, one useful choice is

√

|g|Lgf = − 1

ακ2

√

|g0|
|g|

[

∇0
µ

(

√

|g|gµν
)]2

, (B3)

where ∇0 denotes the covariant derivative with respect to g0 and g0 is used for the contraction of the ν index. Gauge
symmetry is restored for α = ∞, α = 1 is “Feynman gauge,” and α → 0 is an analog of “Landau gauge,” which
enforces the de Donder gauge condition

∇0
µ

(

√

|g|gµν
)

= 0 . (B4)

When g0 is the flat metric, this reduces to the usual harmonic gauge condition, which can be expressed in any of the
equivalent forms:

∂µ

(

√

|g|gµν
)

= 0 , gµνΓα
µν = 0 , �Xµ = 0 . (B5)

The latter says that the coordinates Xµ are harmonic functions of spacetime.
For the purposes of this paper we primarily focus on the linearization of gravity about flat space. The metric

perturbation is defined by

gµν = ηµν + κhµν . (B6)

For the linearized theory we need the quadratic-order expansion of
√

|g|LEH = 2
√

|g|R/κ2 in h. Various formulas
simplify if we define the “trace-reversed” metric perturbation,

h̄µν = hµν − 1

2
ηµνh , (B7)

with h = ηµνhµν ; the inverse to trace reversal, in D spacetime dimensions, is

ˆ̄hµν = h̄µν − 1

D − 2
ηµν h̄ = hµν . (B8)

The quadratic part of the Einstein-Hilbert action can then be simplified to

(

√

|g|LEH

)

2
= −1

2
∂σhµν∂

σh̄µν + ∂λh̄λµ∂ν h̄
νµ + t.d. (B9)

where indices are raised with the flat metric η and the last term is a total derivative. Likewise, to quadratic order,
the gauge-fixing term gives

(

√

|g|Lgf

)

2
= − 1

α

(

∂λh̄λµ
)2

, (B10)

and so the combined quadratic action for gravity is (dropping total derivatives)

[

√

|g| (LEH + Lgf )
]

2
= −1

2
∂σhµν∂

σh̄µν +

(

1− 1

α

)

(

∂λh̄λµ
)2

. (B11)

This action exhibits the simplicity of Feynman gauge, α = 1. Here, the canonical conjugate to hµν is ˙̄hµν , so we
have the equal-time commutation relations

[hµν(x),
˙̄hλσ(x′)]∣

∣

t=t′

= iδλσµν δ
D−1(~x− ~x′) , (B12)
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where we define

δλσµν = δ(λµ δ
σ)
ν (B13)

with symmetrization convention A(λσ) = (Aλσ +Aσλ)/2. Equivalently without using the trace-reversed field,

[hµν(x), ḣ
λσ(x′)]∣

∣

t=t′

= i

(

δλσµν − ηµνη
λσ

D − 2

)

δD−1(~x− ~x′) . (B14)

When κ = 0, the field equation reduces to �h̄µν = 0, from which we find the unequal-time Feynman-gauge
commutation relations for fields in the interaction picture:

[h̄µν(x), h
λσ(x′)] = iδλσµνD(x− x′) , (B15)

or

[hµν(x), h
λσ(x′)] = i

(

δλσµν − ηµνη
λσ

D − 2

)

D(x− x′) , (B16)

with D(x) given in appendix A. Alternately, the momentum-space two-point function is

〈

hµν(p)h̄
λσ(p′)

〉

= − i

p2
δλσµν (2π)

DδD(p+ p′) , (B17)

with the corresponding correlators for the metric found via the transformation (B8).
These expressions can be generalized to α 6= 1; let us introduce the variable

β = 1− 1

α
. (B18)

Then, the quadratic action (B11) takes the form

[

√

|g| (LEH + Lgf )
]

2
=

1

2
hµνLµν

λσ(β)hλσ (B19)

where Lµν
λσ(β) is the second-order linear operator defined by

Lµν
λσ(β) =

(

δλσµν − 1

2
ηµνη

λσ

)

∂ρ∂ρ − 2β

(

δα(µ∂ν) −
1

2
ηµν∂

α

)(

δ(λα ∂
σ) − 1

2
ηλσ∂α

)

. (B20)

Defining the stress tensor as

Tµν = − 2
√

|g|
δSm

δgµν
, (B21)

the linearized gravitational equations then take the form

Lµν
λσ(β)hλσ = −κ

2
Tµν , (B22)

where in this equation the metric in Tµν gets replaced with η to leading order. Then, the propagator for the metric
takes the form

〈Thµν(x)hλσ(x′)〉 = i(L−1)µν
λσ(x, x′) . (B23)

Note that the linearized gravitational equations (B22) simplify to

�h̄µν = −κ
2
Tµν (B24)

in Feynman gauge (β = 0).
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One can also work out the canonical momenta and commutators for the metric. From (B11), one finds

π0µ = ˙̄h0µ − β∂ν h̄
νµ ,

πij = ˙̄hij − β∂ν h̄
ν0δij . (B25)

When β = 1 there is no gauge fixing, so the momenta πµ0 do not contain time derivatives, and give the expected
constraints. For general β the canonical commutators are

[πµν(x), hλσ(x
′)]∣
∣

t=t′

= −iδµνλσδD−1(~x− ~x′) . (B26)

When β = 0, this agrees with the Feynman gauge result (B12).
These commutation relations provide initial data for the unequal-time commutators, which in the free limit satisfy

the free equations of motion, (B22) with T = 0. These are

[hµν(x), h̄
λσ(x′)] = iDµν

λσ(x− x′) (B27)

with

Dµν
λσ(x) = δλσµνD(x) + 2(1− α)

[

δ
(λ
(µ∂

σ)∂ν) −
1

2
ηλσ∂µ∂ν

]

E(x) (B28)

and D(x) and E(x) given in appendix A. This can be checked by verifying that

L(x)
µν

λσDλσ
γδ(x, x′) = 0 (B29)

and that Dµν
λσ satisfies the initial conditions implied by

[hµν(x), hλσ(x
′)]∣
∣

t=t′

= 0 (B30)

and (B26).
The gauge condition bν = ∂µh̄

µν generates infinitesimal diffeomorphisms, just as the gauge condition in QED
generates infinitesimal gauge transformations (c.f. (A28)). From (B27) and (B28) we find the commutator

i[bσ(x′), hµν(x)] = −∂µξ(σ)ν (x)− ∂νξ
(σ)
µ (x) , (B31)

with the infinitesimal diffeomorphism generated by the vector fields

ξ(σ)µ (x) =
α

2
δσµD(x− x′). (B32)

One can also see that

i[bσ(x′), φ(x)] = −κξ(σ)µ (x)∂µφ(x) . (B33)

To show this, one first checks the equal-time versions of it,

i[bσ(x′), φ(x)]∣
∣

t=t′

= 0 ,

i[ḃσ(x′), φ(x)]∣
∣

t=t′

= i
ακ

2
[T 0σ(x′), φ(x)] = −ακ

2
∂σφ(x)δD−1(x− x′) (B34)

where the latter commutator follows from the equations of motion (B22). Then, by taking the divergence of the same
equations of motion, we find

�bσ = 0 (B35)

when the stress tensor is conserved. Thus since (B33) satisfies this equation of motion in x′ and the initial conditions
(B34) at t = t′, it holds for all x′.
In particular, this implies that if Φ is any operator invariant under linearized diffeomorphisms, then the linearized

metric h̃ defined to leading order in κ by

h̃µν(x)Φ(x
′) = [hµν(x),Φ(x

′)] (B36)

satisfies the gauge condition ∂µ
˜̄hµν = 0.
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Appendix C: Some useful formulas

Here we collect some derivative formulas and integrals used in the main text. It will be useful to introduce a radial
vector field r̂µ such that r̂µ∂µ = ∂r; we will denote the spatial metric by qαβ Then we have the identities (given for
D = 4, though easily generalized to D 6= 4)

∂µ∂νr = ∂µr̂ν =
1

r
(qµν − r̂µr̂ν), (C1)

∂µr̂
µ =

2

r
(C2)

�r̂µ = − 2

r2
r̂µ (C3)

∂µ

(

r̂αr̂β
r

)

=
qµαr̂β + qµβ r̂α − 3r̂µr̂αr̂β

r2
(C4)

∂µ

(

r̂µr̂β
r

)

=
r̂β
r2

(C5)

�

(

r̂αr̂β
r

)

= 2
qαβ − 3r̂αr̂β

r3
− 4π

3
qαβδ

3(~x) (C6)

∂α∂β∂γr =
3

r2
(r̂αr̂β r̂γ − r̂(αqβγ)) (C7)

∂α∂β∂γ
1

r
=

9r̂(αqβγ) − 15r̂αr̂β r̂γ

r4
− 12π

5
q(αβ∂γ)δ

3(~x) , (C8)

where in the last two equations r̂(αqβγ) = (r̂αqβγ + r̂βqγα + r̂γqαβ)/3.
Calculating the commutators in section IV requires evaluation of certain integrals. The first is

∫

d3y
1− 3(r̂ · r̂′)2

r3r′
(C9)

where ~r = ~y − ~x, ~r′ = ~y − ~x′. This is evaluated by choosing spherical coordinates based at ~x = 0, and with polar

direction defined as that of ~d = ~x′ − ~x. In particular, we then find

(r̂ · r̂′)2 = 1− d2

r′2
(1− cos2 θ). (C10)

We then expand 1/r′ and 1/r′3 in Legendre and Gegenbauer polynomials respectively:

1

r′
=

1√
r2 − 2dr cos θ + d2

=

{

1
r

∑∞

l=0 Pl(cos θ)
(

d
r

)l
d < r

1
d

∑∞

l=0 Pl(cos θ)
(

r
d

)l
r < d

(C11)

1

r′3
=

1

(r2 − 2dr cos θ + d2)3/2
=

{

1
r3

∑∞

l=0 C
3/2
l (cos θ)

(

d
r

)l
d < r

1
d3

∑∞

l=0 C
3/2
l (cos θ)

(

r
d

)l
r < d

(C12)

The angular integral picks out the l = 0 term of each sum, and we find

∫

d3y
1− 3(r̂ · r̂′)2

r3r′
= 2π

∫

r2drd cos(θ)

[ −2

r3r′
+

3d2

r3r′3
(1− cos θ2)

]

= 2π

[

∫ d

0

dr

(

− 4

rd
+

4

rd

)

+

∫ ∞

d

dr

(

− 4

r2
+

4d2

r4

)

]

= − 16π

3|x− x′| . (C13)

Another needed integral is

Ii =

∫

d3y
a(r̂ · r̂′)2 + b

rr′2
r̂′i , (C14)
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where a, b are fixed constants. For this we center spherical coordinates about the point x′, with the polar axis

determined by ~d = ~x − ~x′. By symmetry, the integral must be proportional to d̂i, with coefficient d̂iIi. We also use
(C10), with ~r ↔ ~r′, giving

d̂iIi = 2π

∫

dr′d cos θ

[

a+ b

r
− a

d2(1− cos2 θ)

r3

]

cos θ . (C15)

As before, we expand 1/r and 1/r3 in Legendre and Gegenbauer polynomials, using (C11), (C12) with r ↔ r′. In
both cases the θ integral picks out the l = 1 term of the sum:

∫ 1

−1

d cos θ cos θPl(cos θ) =
2

3
δl1,

∫ 1

−1

d cos θ cos θC
3/2
l (cos θ)(1 − cos θ2) =

4

5
δl1. (C16)

Substituting this into the above integral, we find

d̂iIi = 2π

[

∫ d

0

dr′
(

2

3
(a+ b)− 4

5
a

)

r′

d2
+

∫ ∞

d

dr′
(

2

3
(a+ b)

d

r′2
− 4

5
a
d3

r′4

)

]

= 2π
(a

3
+ b
)

(C17)

and thus
∫

d3y
a(r̂ · r̂′)2 + b

rr′2
r̂′i = 2π

(a

3
+ b
) ~xi − ~x′i

|x− x′| . (C18)
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