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We conjecture a novel Generalized Second Law that can be applied in cosmology, regardless
of whether an event horizon is present: the generalized entropy increases monotonically outside
of certain hypersurfaces we call past Q-screens. A past Q-screen is foliated by surfaces whose
generalized entropy (sum of area and entanglement entropy) is stationary along one future null
direction and increasing along the other. We prove that our Generalized Second Law holds in
spacetimes obeying the Quantum Focussing Conjecture. An analogous law applies to future
Q-screens, which appear inside evaporating black holes and in collapsing regions.

Dedicated to the memory of Jacob Bekenstein

I. INTRODUCTION

The thermodynamics of gravitating systems is a fun-
damental link between quantum phenomena and gravity.
This connection is manifest in various contexts (e.g. [1–
4]), suggesting that it is borne of an underlying principle
of full quantum gravity. Hawking’s classical area theo-
rem [5], an early indication of this connection, states that
the area of a black hole event horizon cannot decrease.

Hawking’s theorem holds in spacetimes obeying the
null curvature condition, Rabkakb ≥ 0 for any null vector
ka. This will be the case if the Einstein equations are
obeyed with a stress tensor satisfying the Null Energy
Condition (NEC),

Tabk
akb ≥ 0 . (1)

The NEC is satisfied by ordinary classical matter, but it
is violated by valid quantum states (e.g., in the Standard
Model). In particular, the NEC fails in a neighborhood of
a black hole horizon when Hawking radiation is emitted.
Indeed, the area of the event horizon of an evaporating
black hole decreases, violating the Hawking area law.

Bekenstein proposed that the area of an event horizon
should be interpreted as an entropy: SBH ≡ AEH/4G~.
He further proposed the Generalized Second Law of ther-
modynamics (GSL) [1, 6, 7],

dSgen ≥ 0 , (2)

in which the Bekenstein-Hawking entropy SBH of black
holes is properly included in the total entropy budget:

Sgen ≡ Sout +
AEH
4G~

. (3)
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The quantity Sout is the von Neumann entropy of the
matter outside the black hole. With this generalization,
when matter disappears behind an event horizon, an in-
crease in horizon area can compensate for the loss of mat-
ter entropy. Thus, the GSL can prevent what would oth-
erwise be a violation of the (ordinary) second law to an
external observer.

In light of the breakdown of the area theorem dur-
ing black hole evaporation, Bekenstein’s GSL can also be
viewed as the semiclassical extension of Hawking’s area
theorem. The GSL remains valid even when the NEC is
violated and the event horizon shrinks. This is because
the exterior entropy Sout is increased by the Hawking ra-
diation, more than compensating for the area loss [8].1
Proofs of the GSL exist for nontrivial limiting regimes;
see [10] for a review and [11, 12] for recent work.

The area theorem and the GSL are associated with
the event horizon, or more generally with causal hori-
zons such as the Rindler horizon of an accelerated ob-
server. This limits their applicability: not all observers
accelerate eternally, and not all spacetimes have an event
horizon. In particular, cosmological solutions (except for
asymptotically de Sitter universes) do not have an event
horizon.

No general formulation of a second law of thermody-
namics has been known in cosmology. In the absence

1 With unitary evolution, entropy cannot increase except under
coarse-graining. For recently formed black holes, Eq. (3) suffices
since the area term implicitly entails coarse-graining. At late
times, the radiation will be the larger system; if the evaporation
process is unitary then this era is not strictly in the semiclassical
regime [9]. Nevertheless, Eq. (2) continues to hold under coarse-
graining, in the same sense in which the ordinary second law
holds in the evaporation of an ordinary matter object in a pure
state.
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of asymptotic regions, the entire spacetime is highly dy-
namical, so matter and entropy can freely move around.
There do not exist natural divisions into subsystems
whose entropy could be tracked. In a spatially homo-
geneous universe, one could consider the comoving en-
tropy density, but this is an approximate notion. It has
no fundamental status, and its definition breaks down as
density perturbations grow strong.

Even if a causal horizon can be defined, its location is
“teleological”: it depends on the arbitrarily distant future.
Thus, the very notion of a black hole requires a certain
asymptotic structure of spacetime and is not rigorously
defined in cosmology.

Since the above limitations stem from the event hori-
zon’s dependence on the asymptotic boundary, it would
be desirable to identify a more local alternative to the
event horizon: a geometric object that satisfies some area
law or GSL, but which is rigorously defined in general
spacetimes without reference to an asymptotic region.

Holographic screens [13] are quasi-locally defined, and
can be constructed in general cosmological solutions.
(See [14, 15] for pioneering work on a more restrictive
class of quasi-local horizons.) Moreover, we recently
proved that future (or past) holographic screens obey an
area theorem [16, 17], assuming the NEC holds. Thus,
they satisfy the criteria outlined above: for a black hole,
the holographic screen shares key properties with the
event horizon. But holographic screens require no asymp-
totic structure and exist in more general settings. More-
over, our proof demonstrated that a holographic screen
is uniquely associated with each choice of null foliation;
it can be constructed simply by maximizing the area on
each null slice.

In this paper, we turn to the semiclassical case, where
the NEC need not hold. Our area theorem, like Hawk-
ing’s, may fail in this case. We consider the question of
whether holographic screens satisfy a Generalized Sec-
ond Law instead. We define the notion of a Q-screen,
a quantum corrected holographic screen. A Q-screen H
is a hypersurface foliated by spatial surfaces σ(r). Each
σ(r) extremizes the generalized entropy, under variations
along a null hypersurface N(r) orthogonal to it. A Q-
screen is called past (or future) if the generalized entropy
increases (or decreases) along the opposite null direction
orthogonal to σ.

We conjecture that any past or future Q-screen sat-
isfies a novel Generalized Second Law: the generalized
entropy along the Q-screen increases monotonically. As-
suming the Quantum Focussing Conjecture (QFC) [18] (a
quantum extension of the Bousso bound), we show that a
Q-screen is again uniquely associated with any null folia-
tion of the spacetime; this in turn implies that our novel
GSL holds.
Outline In Sec. II, we follow Bekenstein’s step of re-

placing area with generalized entropy in appropriate defi-
nitions and statements. First, this modifies the notion of
holographic screen by a quantum correction, leading to
our definition of Q-screens. Second, the statement that

the area increases along a past holographic screen be-
comes our conjecture of a novel Generalized Second Law:
the generalized entropy increases monotonically outside
of a past Q-screen. We believe that this is the first ther-
modynamic law that applies in arbitrary spacetimes, and
in particular in cosmology. We also conjecture that the
generalized entropy outside of future Q-screens increases
monotonically (but towards the past).

In Sec. III, we consider some examples. In Sec. IIIA,
we show that the classical area law for holographic
screens fails for an evaporating black hole. We construct
a Q-screen, and we verify that it satisfies the new GSL,
due to the contribution of the Hawking radiation to Sout.
In Sec. III B we construct a Q-screen in cosmology. We
find that the new GSL is satisfied, because the area in-
crease greatly dominates over any changes in entropy
(much as Bekenstein’s GSL tends to be comfortably sat-
isfied when matter enters a black hole).

In Sec. IV, we show that our GSL follows from
the recently proposed Quantum Focussing Conjecture
(QFC) [18]. The QFC itself has not been proven gen-
erally, but no counterexamples are known. Moreover,
the QFC is plausible in that it unifies several nontriv-
ial statements for which proofs do exist, such as Beken-
stein’s GSL in certain regimes [11, 12], the Bousso bound
in the hydrodynamic regime [19–21], and the Quantum
Null Energy Condition [22].

Throughout this paper, we work in (3+1)-dimensions;
the generalization to higher dimensions is trivial. A hy-
persurface has codimension 1 in the spacetime; by surface
we always mean a codimension 2 spatial surface (except
in the term Cauchy surface, which as usual refers to an
achronal hypersurface).
Discussion Our GSL extends a central notion of ther-

modynamics to general spacetimes, particularly to cos-
mological settings. It adds another link to what ap-
pears to be a rich interplay between geometry, energy,
and quantum information (e.g. [3, 12, 13, 18, 19, 22–29]).
This web of relations must originate with the emergence
of classical spacetime from an underlying quantum grav-
ity theory—an expectation largely borne out in the main
example we have of such a theory, the AdS/CFT cor-
respondence [4, 30–33]). A broadened understanding of
the second law may yield insights on how to construct a
quantum gravity theory for more realistic spacetimes.

We were led to our conjecture as a natural generaliza-
tion of the area law for holographic screens [16], which
we recently identified and proved. But as far as we can
see, neither our area law nor our GSL is “necessary” in
the same sense as their analogues for event horizons were:
Hawking’s area law (in hindsight) encodes the second law
for purely gravitational systems, and Bekenstein’s GSL
preserves the second law when both matter and black
holes are present. By contrast, it is not clear which “or-
dinary second law” (or other well-established principle)
would be violated if we failed to consider the generalized
entropy outside Q-screens.

There may not be a good answer to this question, short
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of a full quantum gravity theory. This is similar to the
difference between entropy bounds that apply strictly to
black hole horizons (and which are thus suggested by the
GSL), and the more general entropy bounds that appear
to hold far more broadly [3, 13, 18], for no reason dis-
cernible in an existing framework.

The Bousso bound does single out holographic screens,
drawing attention to these particular hypersurfaces and
leading us to their further study. Similarly, the QFC
singles out Q-screens as preferred hypersurfaces in the
spacetime. Let us discuss this in more detail.
Relation to the Bousso bound and the QFC The

Bousso bound provides a notion of entropy associated to
the area of an arbitrary surface σ. The area of σ yields
a bound on the entropy of its lightsheets, null surfaces
generated by nonexpanding light-rays orthogonal to σ:

Slightsheet ≤
Aσ
4G~

. (4)

Any surface has four null congruences emanating from
it (future-outwards, future-inwards, past-outwards, and
past-inwards). At least two of these must be lightsheets
(see e.g. Fig. 1 of [3]).

For example, the event horizon of a classical black hole
to the past of any cross-section σ is a lightsheet of σ.
In this special case, the Bousso bound implies that the
area of the horizon more than compensates for the matter
entropy that entered the black hole prior to σ, consistent
with the GSL.

The Bousso bound in particular distinguishes marginal
surfaces: σ is marginal if one of its orthogonal null con-
gruences has locally vanishing expansion θ = 0 every-
where. In other words, σ locally extremizes the area on a
null hypersurface N orthogonal to it. Therefore one can
regard N as the union of two valid lightsheets. By the
Bousso bound, the area of σ bounds the entropy on an
entire null slice N .

Given a null foliation, one can find the surface σ(r) of
maximal area on each null slice N(r). The union of the
σ(r) forms a hypersurface H =

⋃
σ(r) (not necessarily

of definite signature), termed a holographic screen hy-
persurface in [13]. The Bousso bound implies that at ev-
ery time r, all the information about the null slice N(r)
can be stored on the surface σ(r), at a density of no
more than one bit per Planck area. This construction
makes concrete earlier speculations that the world is like
a hologram [24, 25, 34]. Our recent area theorem applies
to holographic screen hypersurfaces H that are subject
to an additional refinement, analogous to the distinction
between past and future event horizons [16, 17].

The QFC is a quantum generalization of the Bousso
bound, which reduces to it when matter systems are well-
isolated on the lightsheet, or when the entropy can be
treated in a hydrodynamic approximation. It is based
on a quantum generalization of the notion of expansion,
defined using the generalized entropy rather than the area
of surfaces. All relevant definitions will be presented in
the main text.

Under the QFC, a surface σ that maximizes the gener-
alized entropy outside a null slice N is a preferred cross-
section of N . The union of such surfaces σ(r) over a null
foliation N(r) defines a quantum-corrected holographic
screen H =

⋃
σ(r), which we call Q-screen. Our GSL

conjecture states that the entropy outside any past or
future Q-screen is monotonic in r.

II. GENERALIZED SECOND LAW FOR
Q-SCREENS

In this section, we state our conjecture. We will begin
by reviewing two important quantities that can be associ-
ated with a surface, given minimal additional structure:
the generalized entropy, Sgen, and the quantum expan-
sion, Θ. A quantum marginal surface, σ, has vanishing
quantum expansion in one null direction. If the quantum
expansion in the other null direction has definite sign,
then σ is said to be marginally quantum trapped or anti-
trapped.

Quantum marginal surfaces combine to form a Q-
screen, a 3-dimensional hypersurface that need not have
definite signature. A Q-screen is called future (past) if its
constituent marginal surfaces are in addition marginally
quantum (anti)trapped. We conjecture that the gener-
alized entropy outside a future or past Q-screen always
increases.

A. Generalized Entropy and Quantum Expansion

We will begin by extending [18, 27, 35, 36] the notion
of generalized entropy to surfaces that need not lie on an
event horizon. We consider a globally hyperbolic space-
time (which may be extendible to one that is not: e.g.,
a domain of dependence in asymptotically Anti-de Sitter
space). Let σ be a spacelike surface that splits a Cauchy
surface Σ into two portions; see Fig. 1. We may choose
either side of σ arbitrarily and refer to this portion of Σ
as Σout.

A'

A

k

Sout
Sout'

Σout
FIG. 1. The generalized entropy Sgen is the area A (in Planck
units) of a surface that splits a Cauchy surface, plus the von
Neumann entropy Sout of the quantum fields on one side Σout.
The quantum expansion Θk is the rate at which Sgen changes
as the splitting surface is varied in the orthogonal null direc-
tion ka.
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Definition II.1. The generalized entropy is the area of
σ (in Planck units), plus the von Neumann entropy of
the quantum state on Σout:

Sgen ≡ Sout +
A

4G~
+ counterterms , (5)

where

Sout = −tr ρout log ρout , (6)

and the reduced density operator ρout is the restriction of
the global quantum state ρ to Σout:

ρout = tr¬out ρ , (7)

where the trace is taken over the field theory degrees of
freedom in the complement of Σout on Σ.

The von Neumann entropy Sout diverges in regular
global states. For example, the entanglement of short-
distance degrees of freedom across σ in the vacuum
contributes a divergence proportional to the area of σ
in units of the short distance cutoff [37–39]. There
is compelling evidence that this divergence is cancelled
by a renormalization of Newton’s constant in the area
term [40–42]. From this viewpoint, the Bekenstein-
Hawking entropy is the first in a series of counterterms.
Subleading divergences are cancelled by other geometric
counterterms [43, 44] which can be thought of as higher-
curvature corrections to the area term [45–48]. A review
of these arguments and further references can be found
in the Appendix of Ref. [18]. Below we will assume that
Sgen is indeed finite and independent of the UV cutoff.

Generalized entropy was originally defined for the case
where σ is a cross-section of a black hole event horizon [1].
In this case one takes Σout to be the exterior of the black
hole. The GSL as formulated by Bekenstein is the state-
ment that Sgen cannot decrease under forward time evo-
lution of Σ along the event horizon.

We now turn to defining the quantum expansion.
There are four families of light-rays emanating orthogo-
nally from the surface σ: future-outward, future-inward,
past-outward, and past-inward. Consider one one of
these four families, with tangent vector ka; and consider
one of its light-rays, emanating from the point y1 ∈ σ.
Then deform σ in a neighborhood of y1, with infinites-
imal area A, by an infinitesimal affine distance λ along
the light-ray; see Fig. 1. This yields a new surface with
generalized entropy S′gen (computed with respect to the
same side as Σout).

Definition II.2. The quantum expansion is given by

Θk[σ; y1] ≡ lim
A→0

4G~
A

dSgen

dλ

∣∣∣∣
y1

. (8)

In other words, the quantum expansion is the rate of
change, per unit area, of the generalized entropy under
deformations of σ along an orthogonal light-ray. For fur-
ther details, and an equivalent definition in terms of a
functional derivative, see Ref. [18].

B. Quantum Marginal Surfaces and Q-Screens

We now require in addition that σ be compact and con-
nected. The following definitions follow [27]; they reduce
to more familiar classical definitions under the substitu-
tion Θ→ θ.

Definition II.3. Let σ be a compact, connected surface
that splits a Cauchy surface into two portions. If one of
its orthogonal null congruences, say in the ka direction,
has vanishing quantum expansion everywhere on σ, we
call σ a quantum marginal surface.

Definition II.4. A Q-screen2 H is a smooth hypersur-
face admitting a foliation by quantum marginal surfaces
called leaves.

The foliation structure implies that we can think of any
screen H as a one-parameter family of marginal surfaces
σ(r), with the (nonunique) parameter r taking values in
an open interval. Moreover, this defines a nowhere van-
ishing vector field ha on H, which is tangent to H and
normal to its leaves. For a given choice of foliation pa-
rameter, the normalization of h can be fixed by choosing
h(r) = ha(dr)a = 1, and h can be uniquely decomposed
into the null normals k and l:

ha = αla + βka . (9)

It will be convenient to impose a number of weak tech-
nical conditions on H:

Definition II.5. A Q-screen H is regular if

(a) the quantum generic condition is met: for any leaf
σ, the quantum expansion Θk at the null geodesic in-
tersecting σ at y1 does not continue to vanish when
σ is infinitesimally deformed along the null genera-
tor emanating from y2 along the ka direction, for any
y2 ∈ σ (including y2 = y1).

(b) the second generic condition holds: let H+, H−, H0

be the set of points in H with, respectively, α > 0,
α < 0, and α = 0. Then H0 = Ḣ− = Ḣ+.

(c) every inextendible portion Hi ⊂ H with definite sign
of α either contains a complete leaf, or is entirely
timelike.

Thus, a regular Q-screen contains at least one complete
leaf with definite sign of α. By shifting r we can take
this leaf to be at r = 0. Moreover, the second generic
condition implies that if a screen contains any point p
with α = 0, then an open neighborhood of p contains
points with both α > 0 and α < 0. Note that this is
indeed generic.

2 We thank Z. Fisher for suggesting this term.
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C. Past and Future Q-Screens

Given a quantum marginal surface σ, we now con-
sider the quantum expansion Θl in the opposite null
direction. For example, if σ is quantum marginal in
the future-outgoing direction, Θk = 0, we consider the
future-ingoing light-rays orthogonal to σ, with quantum
expansion Θl. In general Θl need not have uniform sign
everywhere on σ.

Definition II.6. If Θl < 0 (Θl > 0) everywhere on the
quantum marginal surface σ, we call σ marginally quan-
tum (anti)trapped.

Definition II.7. A future Q-screen H is a smooth hy-
persurface admitting a foliation by marginally quantum
trapped surfaces called leaves. Similarly, a past Q-screen
is a smooth hypersurface foliated by marginally quantum
antitrapped leaves.

Recall that α has definite sign on the leaf σ(0) of a
regular Q-screen, by our earlier convention. For a future
(past) Q-screen we shall use the additional convention
that α < 0 (α > 0) on σ(0), which can be implemented
by setting r → −r as needed.

D. New Generalized Second Law

Conjecture II.8. Let H be a regular past or future Q-
screen, with foliation σ(r). Then the generalized entropy
Sgen(r) ≡ Sgen[σ(r)] strictly increases along the foliation:

dSgen

dr
> 0 . (10)

In fact, we conjecture more strongly that the following
geometric properties are obeyed by any regular Q-screen
(which need not be past or future):

• α cannot change sign anywhere on H.

• The null hypersurface generated by the ka congru-
ence orthogonal to any leaf σ intersects H only on
σ.

As we shall see in Sec. IV (see Remark IV.4 and Corol-
lary IV.5), these two statements are equivalent, and each
implies the GSL for past and future Q-screens, Conjec-
ture II.8.

III. EXAMPLES

In this section, we consider two examples: one future
Q-screen and one past Q-screen. We verify explicitly that
they satisfy the new GSL we have proposed.

A. Evaporating Black Hole

Consider a Schwarzschild black hole formed by the col-
lapse of a spherically symmetric dust cloud. Fig. 2 shows
the resulting geometry, both with and without Hawk-
ing radiation taken into account.3 It is instructive to
study first the classical holographic screen, in both of
these spacetimes. We will then turn to the Q-screen and
verify the new GSL.

Let ρ be the radial variable usually called r (reserved
here for the screen parameter), such that a sphere with
coordinate radius ρ has proper area 4πρ2. The event
horizon is at ρ = R; in the evaporating case, R is time-
dependent.
Classical Holographic Screen The classical holo-

graphic screen is constructed by finding spheres of sta-
tionary area (θk = 0) on each of a sequence of future
light cones centered at ρ = 0 (see Fig. 2(a)). In a classi-
cal black hole geometry without evaporation, the screen
is contained entirely inside the black hole, because out-
side the black hole the area of outgoing future light cones
grows without bound. (More generally, this follows be-
cause the first generic condition of [17] guarantees the
existence of a trapped sphere near the sphere of maximal
area; and this implies a singularity further along the light
cone by Penrose’s theorem [49].)

This is a future holographic screen: the expansion in
the non-marginal direction is strictly negative everywhere
on each of its leaves. Our classical results [17] imply
that the screen evolves everywhere to its own past or
exterior and that the area grows monotonically under
this evolution. In Fig. 2(a) one can verify this behavior.

Now consider a different geometry that includes back-
reaction from the Hawking radiation, shown in Fig. 2(b).
The event horizon grows during the collapse and then
shrinks during evaporation. By continuity, sufficiently
nearby future light cones just inside or outside the black
hole, too, will have a surface that locally maximizes the
area. Therefore, the classical holographic screen will ex-
tend outside of the event horizon. Now consider a future
light cone just barely outside the black hole horizon. Its
area grows until it is focused by the collapsing matter;
then it shrinks along with the event horizon during a
phase when they are formally less than one Planck dis-
tance apart. But any light cone that lies outside the
horizon will get out to future null infinity, where the area
diverges. Therefore the light cone area must have a lo-
cal minimum during evaporation; this happens when ρ
satisfies

R(ρ−R) ∼ O(l2P ) . (11)

3 In the case without evaporation, we take a small, exponentially
descreasing density of dust to fall in at all times so as to satisfy
the classical generic condition of [16]. In the evaporating case,
the quantum generic condition can be satisfied simply by not
including any infalling matter at late times.



6

eve
nt 

ho
riz

onholographic s
cre

en

(a)

Q-
scr
een

(b)

FIG. 2. Black hole formed by dust collapse. The thin green lines are future light cones which form a null foliation of
the spacetime. (a) No Hawking radiation. A dot indicates the marginal surface on each light cone. The area of the classical
holographic screen increases towards the exterior and past (arrow). (b) Hawking radiation included. A solid (hollow) dot marks
the quantum marginal (marginal) surface(s) on each light cone. The classical screen (short dashed) now lies outside the event
horizon (long dashed) during evaporation. A future Q-screen lies inside the black hole. Its area decreases during evaporation.
But due to the production of Hawking radiation, the generalized entropy outside the Q-screen increases monotonically, as
demanded by our conjecture.

This is the coordinate radius at which the area of the out-
going light cone would classically increase by about one
Planck area per Schwarzschild time, compensating the
effect of evaporation. In a typical infalling observer’s ref-
erence frame, the sphere satisfying Eq. (11) has a proper
distance of order lP from the event horizon; thus, the
classical screen coincides with the “stretched horizon” [50]
during the evaporation phase.

Hence, each of these barely-exterior light cones con-
tributes two leaves to the classical holographic screen.
The behavior of the area in the evaporating phase can be
understood as follows. A black hole emits O(1) quanta
of energy TH ∼ ~/R per Schwarzschild time R. This de-
creases the black hole mass by O(TH), so the event hori-
zon radius decreases by O(GTH) ∼ O(l2P /R). Thus, the
area of the event horizon decreases by about one Planck
area in every Schwarzschild time R. This implies that
the area of the minimum sphere on the future light cones
just outside the black hole decreases as well. But these
are the leaves of the classical holographic screen decreases
during the evaporation phase.

We conclude that the area of the classical holographic
screen increases during the collapse phase and decreases
during evaporation, when it evolves back to its own future
and interior. Though it is a future holographic screen, it
does not satisfy our area theorem. This is as expected,
much as the event horizon fails to satisfy Hawking’s area
theorem in this setting, since the NEC is violated.

Q-Screen Bekenstein’s GSL improves on Hawking’s
area theorem for event horizons. The matter entropy
produced outside the black hole is larger, by a factor
O(1) > 1, than the loss of Bekenstein-Hawking entropy
due to the decrease in event horizon area [8, 51]:

dSout

(−dA/4G~)
− 1 ∼ O(1) > 0 . (12)

Therefore

dSgen ≡
dA

4G~
+ dSout > 0 (13)

during evaporation, and Bekenstein’s GSL is satisfied.
Similarly, we conjectured a quantum improvement of

our area theorem: the GSL for Q-screens, Eq. (10). We
will now verify that the conjecture is satisfied in the ex-
ample of the evaporating black hole. For definiteness, we
will chose Σout to be the exterior, i.e., the side with the
asymptotic boundary. The analysis is unchanged with
the opposite choice.

To construct the Q-screen, we again consider outgoing
future light cones centered at ρ = 0, but now we must
maximize the generalized entropy along each cone. Out-
side of the black hole no future cone contains such a max-
imum. This is obvious for light cones far from the black
hole, whose area increases rapidly. Sufficiently close to
the event horizon, light cones will decrease in area while
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they remain less than a Planck distance from the horizon,
as discussed above. In this regime the difference with the
event horizon is negligible, and it follows from Eq. (13)
that the generalized entropy increases despite the area
decrease. Hence the entire Q-screen lies inside the black
hole. (More generally, this property follows from Wall’s
Quantum Singularity Theorem for quantum trapped sur-
faces [27].)

On the other hand, every future light cone inside
the black hole contains a marginally quantum trapped
sphere. On this sphere, the classical decrease in area in
the future-outward direction precisely compensates the
production of Hawking radiation entropy. By Eq. (12),
this implies that at the marginally quantum trapped
sphere, the light cone’s area must shrink faster than the
event horizon (since the latter’s decrease does not fully
compensate the radiation entropy)4. By the same reason-
ing that led to Eq. (11), this will occur where ρ satisfies

R(ρ−R) ∼ −O(l2P ) , (14)

corresponding to a proper distance of order lP inside the
event horizon, as measured by an infalling observer.

In summary, we find that the Q-screen is like a “shrunk
horizon”: during the evaporation phase, it hovers a
Planck distance inside the event horizon. Thus, the Q-
screen partakes in the event horizon’s decrease; its area
is always of order a Planck area smaller than the event
horizon. It is now clear that our GSL is obeyed, for the
same reason that Bekenstein’s GSL is obeyed: we know
from Eq. (13) that the area decrease along the Q-screen
is more than compensated by the production of Hawking
radiation entropy in the black hole’s exterior.

B. Cosmology

Consider a flat, expanding Friedmann-Robertson-
Walker cosmology filled with radiation. The metric is

ds2 = −dt2 + a(t)2[dχ2 + χ2dΩ2] , (15)

with a(t) = (t/lP )1/2. Again we will construct both a
classical screen and a Q-screen. We will find that both
are past screens, and we will verify our area theorem and
our new GSL.

We begin by picking a simple null foliation of the space-
time: the past light cones of an “observer” at χ = 0, see
Fig. 3. A classical screen is constructed by maximizing
the area on each cone and combining the corresponding
spheres into a hypersurface. Consider a past light cone
with tip at the time corresponding to scale factor a0. The
area of the sphere at scale factor a is

A(a) = 16πa2(a0 − a)2l2P . (16)

4 More precisely, the light cone area must decrease by O(l2P ) as
v → v +R, where v = t+ ρ+R log

∣∣ ρ
R
− 1

∣∣.

Big Bang

χ

� +

=
0

FIG. 3. Radiation dominated expanding universe; dots and
lines as in Fig. 2b. The classical and Q-screen nearly coincide;
the area and generalized entropy both grow monotonically to
the future.

This is maximal at a = aPHS = a0/2 or tPHS = t0/4.
Thus we find that the area of the classical screen increases
monotonically towards the future,

dAPHS

dtPHS
= 32πtPHS > 0 , (17)

as guaranteed by our area theorem [16].
To construct the quantum screen, we use the same null

foliation, but now we maximize the generalized entropy
on each past light cone:

d [A+ 4G~Sout] = 0 (18)

Assuming the number of massless species to be of order
unity, the entropy per comoving volume is s ∼ l−3P , and
we have

dSout

dr
= 4πχ2 s (19)

If we choose Σout to be the exterior5 (interior) of the past
light cone, Sout will increase (decrease) monotonically as
we move to the future on the light cone. By Eq. (18), this
implies that the maximum of the generalized entropy will
not be exactly in the same place as the maximum of the
area on the same light cone. Instead, it will be shifted
slightly inward and to the future (outward and to the

5 The exterior entropy diverges since the volume is infinite. It can
be regulated by taking the edge of Σout to lie near the big bang
at some large but finite comoving radius. The edge is held fixed
as σ is varied.



8

past). The shift is of order the geometric mean of the
age of the universe and the Planck time:

|tQS − tPHS| ∼ O(
√
tPHSlP ) . (20)

The behavior of generalized entropy along the Q-screen
is dominated by the classical growth of the area. We find

l2P
dSgen,QS

dtQS
= 32πtQS ±O(

√
tQSlP ) > 0 , (21)

consistent with our conjectured GSL in the semiclassical
regime, tQS � lP .

IV. PROOF FROM THE QUANTUM
FOCUSSING CONJECTURE

In this section, we show that the Generalized Second
Law for Q-screens follows from the Quantum Focussing
Conjecture (QFC) [18].

Why derive one conjecture from another? The first
reason is that it is useful to understand the logical struc-
ture of a set of plausible and interesting conjectures. Our
result establishes that the QFC is at least as strong as
the new GSL. However, the new GSL is not obvious from
the QFC: the implication requires a nontrivial proof.

Secondly, in light of the proof below, any evidence that
makes the QFC more plausible can be regarded in partic-
ular as evidence for the new GSL. Indeed, there is consid-
erable evidence for the QFC: it implies several nontrivial
related statements which have already been proven or
extensively tested. In the classical limit of the geome-
try and the stress tensor, the QFC implies the classical
focussing property of General Relativity. For null hyper-
planes in Minkowski space, the QFC implies a novel lower
bound on the quantum stress tensor in terms of the sec-
ond derivative of the exterior entropy. This “Quantum
Null Energy Condition” was recently proven [22]. Fi-
nally, the QFC also implies the Bousso bound [3] on the
entropy crossing a lightsheet [18]. No counterexample to
this bound is known, and the bound has been proven in
certain hydrodynamic regimes [19, 20].

A. Quantum Focussing Conjecture

The Quantum Focussing Conjecture (QFC) states that
the quantum expansion cannot increase along any null
congruence [18]. More precisely,

δ

δV (y2)
Θk[V (y); y1] ≤ 0 . (22)

The quantum expansion Θ is defined as in Sec. II, except
that we characterize the surface σ that appears in Eq. (8)
in terms of its affine position V (y) on some null hyper-
surface N generated by a congruence of null geodesics y,
with tangent vector ka. Thus, the QFC states that the

quantum expansion cannot increase at y1, if σ is infinites-
imally deformed along the generator y2 of N , in the ka
direction. Here y2 can be taken to be either the same or
different from y1.

Suppose that the quantum expansion in the orthogonal
null direction ka is nonpositive (negative) somewhere on
σ, i.e., suppose that Θk[V (y); y1] ≤ 0 for some y1. Then
Θ(ν; y1) will remain nonpositive at the null geodesic y1,
under forward evolution of the surface in the ka direction.
More precisely, for two slices of N satisfying V ′(y) ≥
V (y) (for all y), the QFC implies that

Θ[V (y), y1] ≤ 0 , V (y) ≥ 0 =⇒ Θ[V (y), y1] ≤ 0 , (23)

where if the first inequality is strict, then so is the second
(unless V ′ and V coincide for all y).

In particular, if the expansion is negative everywhere
on some surface σ, then it cannot vanish on any cross-
section of N that lies entirely in the ka direction away
from σ. This will be the specific consequence of the QFC
that enters the proof below. The statement is analogous
to the classical result in General Relativity, that if light-
rays are converging in a spacetime satisfying the NEC,
then they cannot begin to diverge at any regular point of
the congruence.

B. Derivation of the New Generalized Second Law

The derivation of the new GSL from the QFC will
be closely analogous to our proof of the area law for
holographic screens from the Null Energy Condition.
Roughly, we will replace the classical expansion θ with
the quantum expansion Θ, and the assumption of the
Null Energy Condition with the assumption of the QFC.

We begin by recalling an important set of definitions
and results from Ref. [17], which are purely geometric
and carry over unchanged. Any Cauchy-splitting surface
σ defines a partition of the spacetime into sets K±(σ)
whose shared boundary is a null hypersurface N(σ) or-
thogonal to σ; see Fig. 4. Now consider any hypersur-
face H foliated by surfaces σ(r), with tangent vector
field ha = αla + βka normal to the foliation, as de-
fined in Eq. (9). Note that the surfaces σ(r) need not
be marginal; we use the notation H rather than H for
a hypersurface of this more general type. In [17] we
proved that if α has definite sign on H, then the sets
K±(r) ≡ K±(σ(r)) are monotonic under inclusion:

Lemma IV.1. Let r1 < r2. If α < 0 everywhere on H,
then K̄+(r1) ⊂ K+(r2) and K−(r1) ⊃ K̄−(r2), where an
overbar denotes closure. If α > 0 everywhere on H, then
K̄+(r2) ⊂ K+(r1) and K−(r2) ⊃ K̄−(r1).

We will also need an important result due to Wall,
which constrains the quantum expansion of a surface that
touches but does not cross a null hypersurface N . Let χ
be a spacelike surface tangent to N at a point p. That
is, we assume that one of the two future-directed null
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I +( Σ +)

    Σ + 
σ

D -(Σ +)

    Σ -   

N +

    N -   

I -( Σ -)

D +(Σ -)

(a)

K +(σ)

σ

N(σ)

K -(σ)

(b)

H

(c)

FIG. 4. (a) A surface σ that splits a Cauchy surface defines a partition of the entire spacetime into four regions, given by the
past or future domains of dependence and the chronological future or past of the two partial Cauchy surfaces Σ±. (b) The
pairwise unions K± depend only on σ, not on the choice of Cauchy surface. K± share a boundary N = N+∪N−∪σ generated
by light-rays orthogonal to σ. (c) If a hypersurface H foliated by σ(r) has α < 0 everywhere (see text for definition), then the
sets K+(r) are monotonic under inclusion, and the sets N(r) define a null foliation of spacetime.

vectors orthogonal to χ, κa, is also orthogonal to N at p.
We may normalize the (null) normal vector field to N so
that it coincides with κa at p.

We further assume that both χ, and ν ≡ N ∩ Σ, split
a Cauchy surface Σ. We pick an arbitrary side Σout(χ)
as the “outside” of χ, and we choose Σout(ν) to be the
“same” side, in the sense that they agree at p. This de-
fines generalized entropies Sgen[χ], Sgen[ν]. We define the
quantum expansions Θ[χ; y], Θ[ν; z] with respect to that
null vector field orthogonal to each surface which coin-
cides with κ at p.

Let y be Gaussian normal coordinates about p on χ.
Because χ and ν are tangent at p, they can be identified
at linear order in the distance δ from p. Thus, in a suf-
ficiently small neighborhood of p, we can use the same
coordinates z = y on ν, up to an O(δ2) ambiguity which
will be irrelevant.

Lemma IV.2. Let χ and ν be Cauchy-splitting surfaces
tangent at a point p, and let N ⊃ ν be a null hypersurface,
as described above.

• If χ lies entirely outside the past of N , then any
small open neighborhood of p contains a point y
such that Θ[χ; y] ≥ Θ[ν; y].

• If χ lies entirely outside the future of N , then any
small open neighborhood of p contains a point y
such that Θ[χ; y] ≤ Θ[ν; y].

Proof. By causality, the entire null hypersurface N(χ),
defined as the boundary of K+(χ) (Fig. 4(b)), is nowhere
to the past of N in the first case, and nowhere to the
future of N in the second case. If the outside is chosen
to be the side to which κa points, then the first claim
is identical to Theorem 1 in [27], and the second claim
follows by exchanging N with N(χ). With the opposite
choice of exterior, the proof can be reduced to the above
cases by time reversal.

The proof of Conjecture II.8 now proceeds in two steps.
First we will combine the monotonicity property of K±
with the QFC to show that α must have definite sign
on a Q-screen H. Then we show that this implies the
new GSL, Eq. (10), if in addition H is a past or future
Q-screen.

Theorem IV.3. Let H be a regular Q-screen in a space-
time satisfying the QFC, and let α be defined by Eq. (9).
Then α has definite sign on H. That is, either α < 0
everywhere on H, or α > 0 everywhere on H.

Proof. By the condition II.5.c and the subsequent con-
vention, α has definite sign on the leaf σ(0). If α > 0 at
r = 0, we can reparametrize r → −r, so without loss of
generality we may assume that α < 0 at r = 0. We will
now show that α < 0 everywhere on H.

Suppose for contradiction that H contains a point with
α ≥ 0. Then the subset H+ ⊂ H of points with α >
0 is also nonempty, by Assumption II.5.b. Continuity
guarantees that α < 0 in an open neighborhood of the
leaf σ(0), so H+ has a connected component entirely in
the r > 0 region, or entirely in the r < 0 region (or both).
We first consider the case r > 0.

It is convenient to rescale r to set

1 = inf{r : r > 0, σ(r) ∩H+ 6= ∅} . (24)

Then by the second generic condition II.5.b, α < 0 for all
leaves σ(r) with 0 < r < 1. Hence by Lemma IV.1, there
exists an open neighborhood of K̄−(1) that is contained
in K−(0), and for sufficiently small ε we have

K−(0) ⊃ K−(1 + ε) . (25)

By continuity, the set P of points on σ(1) with α = 0
is nonempty. P may consist of several connected compo-
nents Pi. We cannot assume that β is of fixed sign for
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0 < r < 1. But since α and β cannot vanish simultane-
ously, β has fixed sign in an open neighborhood O(Pi) of
each Pi. However, β need not have the same sign in all of
these neighborhoods. We distinguish two complementary
cases.
Case 1 We first consider the case where β > 0 in

every O(Pi). Then the assumed sign change from α < 0
to α > 0 corresponds to a transition of ha from spacelike-
outward (S−+) to timelike-future-directed (T++).

Let σ+(1 + ε) be the set of points with α > 0 on the
leaf σ(1 + ε). Note that σ+(1 + ε) may be disconnected,
but each disconnected component is open.

By choosing ε sufficiently small, we can ensure that
each connected component of σ+(1 + ε) is contained in a
single neighborhood O(Pi). Let Γ be the set of integral
curves of ha that pass through σ+(1 + ε). Note that each
such curve can also be parametrized by r.

Because α > 0, each curve in Γ lies inK−(1+ε) in some
range rφ < r < 1+ ε. By Eq. (25), σ(0)∩K−(1+ ε) = ∅,
so rφ > 0. At rφ, the curve intersects the boundaryN(1+
ε) of K−(1 + ε). Because β > 0 in O(p), this intersection
will be with N−(1 + ε). By smoothness and the second
generic assumption, the intersection will consist of one
point per curve, r = rφ.

Let the spatial surface φ be the set of points r = rφ of
the curves in Γ. The sets φ and σ+(1 + ε) have the same
topology because the integral curves define a continuous,
one-to-one map between them. The closures of both sets,
σ̄+(1 + ε) and φ̄, are also related by this map and share
a boundary at r = 1 + ε.

Since σ̄+(1 + ε) is a closed subset of a compact set,
it is compact; and by the fiber map, φ̄ is also compact.
Therefore the global minimum R ≡ inf{r(p) : p ∈ φ} is
attained on one or more points Q ⊂ φ̄. Since R < 1 but
φ̇ ⊂ σ(1 + ε), Q /∈ φ̇, so Q consists of stationary points
of r, viewed as a function on φ. Hence the leaf σ(R) is
tangent to the null hypersurface N−(1 + ε) at Q.

Because Q achieves a global minimum of r on φ̄, σ(R)
lies nowhere in the past of N−(1 + ε). Let the spacelike
surface ν ⊃ Q be a compact cross-section of N(1 + ε);
since N(1 + ε) is spacetime-splitting, ν will be Cauchy
splitting. Because σ(R) is tangent to N(1 + ε) at Q,
Lemma IV.1 implies that any open neighborhood of Q
contains a point y such that Θk[σ(R); y] ≥ Θk[ν; y]. By
the QFC, Θk[ν, y] ≥ Θk[σ(1 + ε), y] = 0; and by the first
generic condition, the inequality is strict, so Θk[ν, y] > 0.
Hence Θk[σ(R); y] > 0. But this contradicts the defining
property of a Q-screen, that the quantum expansion of
each leaf σ in the ka direction must vanish.
Case 2 We now consider the case where β < 0 in at

least one open neighborhood O(P1). We showed in [17]
that this implies the existence of a transition with β̃ > 0
elsewhere on H, on a leaf σ(2), under reversal of the
flow direction, r̃ ≡ 3 − r. (We use the tilde to denote
quantities defined with respect to the reverse flow.) Upon
closer inspection, one finds that our argument establishes
a stronger result that was not needed in [17]: that β̃ > 0

on all neighborhoods O(P̃j) of transition points on σ(2).

k
-l Σout

FIG. 5. The flow from leaf to leaf along a Q-screen can be
decomposed as a sequence of infinitesimal motions in the ka

and la null directions. In the ±ka direction, the generalized
entropy is locally stationary by definition of the Q-screen,
Θk = 0. Because α < 0 by Theorem IV.3, the motion is
always towards −la, along which the generalized entropy in-
creases since Θl < 0. Hence the generalized entropy increases
along the flow.

Namely, we showed that the only type of α < 0 region
that can end at σ(2) under the original flow is a timelike
region, i.e., β = −β̃ < 0; see Fig. 8 of Ref. [17]. This
implies a case 1 transition (in the sense of the present
paper) on σ(2). Since we have already shown that case
1 transitions are impossible, we can now conclude that
case 2 transitions are also impossible.
Cases 3 and 4 Now suppose that a transition to α > 0

occurs at some r < 0. Case 3 arises if β > 0 everywhere at
the onset of the transition. Case 4 is the complementary
case where β < 0 in at least one connected component. A
straightforward adaptation of the case 1 and 2 analyses as
in [17] rules out the possibility of case 3 and 4 transitions.

In summary, since α < 0 at r = 0 and no transitions
to α > 0 are possible, it follows from the second generic
condition b that α < 0 everywhere on H.

The flow along H with increasing r can be deformed
into a “zig-zag” flow along null surfaces orthogonal to the
leaves σ(r) and σ(r+dr); see Fig. 5, and see Ref. [16] for
further details. Locally the flow will be in the +ka direc-
tion where H is spacelike; it will be in the −ka direction
where H is timelike. But because α < 0, the flow will al-
ways be in the −la direction, never in the +la direction.
That is, the flow towards larger r corresponds to a flow
to the exterior or past.

We now show that Theorem IV.3 implies Conjec-
ture II.8, by applying it to the case where the regular
Q-screen H is in addition past or future, as assumed in
our conjecture.
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Proof. By the definition of a future Q-screen, each of its
leaves is marginally quantum trapped, with ka being the
marginal direction. Thus to first order in dr, the gener-
alized entropy does not change in the ka direction, and
it strictly increases in the −la direction. This implies the
new GSL, Eq. (10), for future holographic screens:

dSgen

dr
> 0 . (26)

Similarly, the new GSL follows for past Q-screens, where
the generalized entropy increases in the +la direction,
i.e., towards the exterior (in spacelike portions of H) or
the future (in the timelike portions).

We stress again that the QFC is itself unproven; we
have established a logical relation between what we re-
gard as two plausible conjectures. We also obtained The-
orem IV.3 as a key intermediate result. If we do not wish
to assume the QFC, then Theorem IV.3 can still be con-
sidered, as the first of the two stronger conjectures we
made in Sec. IID.

Remark IV.4. The above short proof establishes that
Theorem IV.3 (viewed as a conjecture) is indeed stronger
than our new GSL, Conjecture II.8.

In Sec. IID we further claimed the following equiva-
lence:

Corollary IV.5. Theorem IV.3 holds if and only if N(r)
intersects the regular Q-screen H only on σ(r).

Proof. To prove if, suppose first that α did change sign
on H. This was in fact assumed in our proof of Theo-
rem IV.3, and it was shown to imply that some N(r) will
intersect H at a point that is not contained in σ(r). To
prove only if, suppose that there existed some N(r1) that
intersects H at a point p ∈ σ(r2) with r2 6= r1. We may
assume that r2 > r1 by setting r → −r as needed. Since
σ(r2) ⊂ K̄±(r2), Lemma IV.1 implies that p ∈ K+(r1) if
α > 0 everywhere, and that p ∈ K−(r1) if α < 0 every-
where on H. But this is impossible since K± are open
sets and p ∈ N(r1) = K̇±(r1). Hence α must change sign
on H.
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