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Bd de l’Observatoire, BP 4229, 06304, Nice Cedex 4, France

2Dept. of Physics, Pennsylvania State University,
104 Davey Lab, University Park, PA 16802, USA

3 Canadian Institute for Theoretical Astrophysics, 60 St. George Street,
University of Toronto, Toronto, Ontario, M5S 3H8, Canada

4School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK

The Einstein Telescope is a conceived third generation gravitational-wave detector that is envi-
sioned to be an order of magnitude more sensitive than advanced LIGO, Virgo and Kagra, which
would be able to detect gravitational-wave signals from the coalescence of compact objects with
waveforms starting as low as 1Hz. With this level of sensitivity, we expect to detect sources at
cosmological distances. In this paper we introduce an improved method for the generation of mock
data and analyse it with a new low latency compact binary search pipeline called gstlal. We
present the results from this analysis with a focus on low frequency analysis of binary neutron stars.
Despite compact binary coalescence signals lasting hours in the Einstein Telescope sensitivity band
when starting at 5 Hz, we show that we are able to discern various overlapping signals from one
another. We also determine the detection efficiency for each of the analysis runs conducted and
show a proof of concept method for estimating the number signals as a function of redshift. Finally,
we show that our ability to recover the signal parameters has improved by an order of magnitude
when compared to the results of the first mock data and science challenge. For binary neutron stars
we are able to recover the total mass and chirp mass to within 0.5% and 0.05%, respectively.

I. INTRODUCTION

Second generation gravitational-wave (GW) detectors,
aLIGO [1] and AdVirgo [2], are planned to improve the
sensitivity over first generation detectors, LIGO [3] and
Virgo [4] by an order of magnitude. aLIGO has recently
begun operations and AdVirgo is currently in the com-
missioning stage with plans to join operations in 2016. It
is expected that the first direct detection of gravitational
waves will be made before the end of this decade.

The Einstein Telescope (ET) is a conceived third gen-
eration gravitational-wave detector that is currently in
the design stage [5] and is planned to be operational af-
ter ∼ 2025. This detector will have an improvement in
sensitivity by an order of magnitude over that of the sec-
ond generation detectors that will allow for the detection
of a large number of GW signals from a variety of pro-
cesses, out to large distances. These include, but are not
limited to, events such as the formation of neutron stars
or black holes from core collapse supernovae [6–9], ro-
tating neutron stars [10, 11], and the merger of compact
binary systems [12, 13].

ET is expected to yield a significant number of detec-
tions and the interpretation of the results will allow us to
answer questions about astrophysics, cosmology and fun-
damental interactions [14]. In order to prepare and test
our ability to extract valuable information from the data,
we initiated a series of mock data and science challenges
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(MDSCs), with increasing degrees of sophistication and
complexity with each subsequent challenge. These chal-
lenges consist of first simulating ET data that includes a
population of sources expected to be detectable via dif-
ferent astrophysical models. This is then analysed with a
variety of current data analysis algorithms, each search-
ing for a specific signal type contained within the data.
Unlike advanced detectors, ET data is expected to be
dominated by many overlapping signals which increases
the complexity of the data analysis. An important goal
of the MDSC is to test the ability of different analysis
algorithms in efficiently detecting signals and discrimi-
nating different signal populations. Finally we consider
the interpretation of these results to investigate different
areas of astrophysics and cosmology.

For the first ET MDSC [15], we produced one month
of mock data containing simulated Gaussian coloured
noise, produced using a plausible ET noise power spec-
tral density (PSD), and the GW signals from a set of
compact binary coalescence (CBC), in this case a popu-
lation of binary neutron stars (BNS) in the redshift range
z ∈[0, 6]. Using a modified version of the LIGO/Virgo
data analysis pipeline ihope [16–19], which was the main
matched filtering analysis pipeline during the initial de-
tector era, we showed that it is possible to employ the
use of a matched filtering algorithm to search for GW
signals when there is a large amount of overlap of their
waveforms. Using this pipeline we were also able to re-
cover the observed chirp mass (Mz) and observed total
mass (Mz) of the injected signals with an error of less
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than 1% and 5% respectively1. We also analysed the data
with the standard isotropic cross-correlation statistic and
measured the amplitude of an astrophysical stochastic
GW background (SGWB) [20–22] created by the popu-
lation of background BNS signals with an accuracy better
than 5%. Finally, we were able to verify the existence of
a null stream, created by the closed loop detector layout
which results in the complete cancelling of GW signals
and gives an acceptable estimate of the noise PSD of the
detectors. By subtracting the null stream from the data,
we showed that we could recover the expected shape of
the PSD of the astrophysical SGWB.

After the success of the first challenge, we extended our
data generation package to conduct a second MDSC. The
second ET MDSC contains a larger selection of sources
over that of the first, including BNS, neutron star-black
holes (NSBH), binary black holes (BBH), binary inter-
mediate mass black holes (IMBH) [23] as well as several
burst sources. In the second MDSC we have taken the
intrinsic mass distributions and time delays, the time be-
tween the formation and merger of the binary systems,
from the population synthesis code StarTrack [24–27],
as opposed to selecting the component masses from a
Gaussian distribution in the first MDSC. With this mock
data set several investigations have been carried out, each
focusing on a different scientific aspect of the MDSC.
The first of these investigations, on the measurement of
a SGWB from astrophysical sources, has already been
completed [28], while others are ongoing.

In this paper we investigate the application of a
new low-latency matched filtering analysis pipeline,
gstlal [29–32], which is built using gstreamer multi-
media processing technology. The analysis will be run
multiple times, searching for low mass systems, using a
low frequency cut-off of 25Hz, 10Hz and 5Hz, on both the
main mock data set as well as a noise only data set that is
used to make estimates of the background. The 25Hz and
10Hz runs will be conducted on the full data set while the
5Hz analysis will be run on 10% of the data. This is due
to the fact that starting at 5Hz, there are more templates
produced for the analysis and the waveform for low mass
systems will be of the order of a few hours long, both
of which significantly increases the computational cost of
the analysis.

Once the analyses have been run, we compare the list
of detections that are reported in each of the three ET
detectors against the list of injected signals. Using a
small window in both coalescence time (tc) and the ob-
served (redshifted) chirp mass (Mz) we produce a list
of matched detections. We will then make a comparison
of the recovered detection parameters (tc, Mz and Mz)

1 The observed mass parameters, Mz and Mz , differ from the
intrinsic parameters, M and M, by a factor of (1+z), due to
the redshifting of the GW frequencies from the expansion of the
Universe, which is the equivalent of observing heavier masses.
These are denoted with a subscript z, such thatMz ≡M(1+z).

against the true injected parameters.
The rest of this paper is divided into the following sec-

tions. In Section II we introduce the methods by which
we produce the mock data used for this investigation.
In Section III we discuss the analysis methods that are
used as well as our reasons for choosing a new analy-
sis pipeline. In Section IV we present our results from
the analysis runs that are conducted, with a focus on
both event detection and parameter measurements. In
Section V we highlight possible areas that can be investi-
gated in future MDSCs. Finally in section VI we discuss
the results shown in the last section and make a conclu-
sion to this investigation.

II. MOCK DATA

In this section we describe how we go about generating
the ET mock data used in this investigation. Here we
use the same data generation package as was used in
the first ET MDSC [15], which has since been updated
to simulate more sources [28, 33]. We first explain the
generation of the coloured noise and then we introduce
and describe each of the steps that are used to simulate
the GW inspiral signals that are injected into the noise.
For this we describe how the cosmological model and star
formation rate (SFR) are used to determine the rate of
coalescence of compact binary objects as a function of
redshift and how the signal parameters are selected as
well as the waveform models used in the simulation.

A. Simulation of the Noise

The current design of the Einstein Telescope is envi-
sioned to consist of three independent V-shaped Michel-
son interferometers with 60 degree opening angles, ar-
ranged in a triangle configuration, and placed under-
ground to reduce the influence of seismic noise [34, 35].
Here we make the assumption that there will be no in-
strumental or environmental correlated noise between the
detectors so that the noise is simulated independently for
each of the three ET detectors, E1, E2 and E3 [36, 37].
This is done by generating a Gaussian time series that has
a mean of zero and unit variance. This time series is then
Fourier transformed into the frequency domain, coloured
with the noise PSD of the ET detector, and then inverse
Fourier transformed back into the time domain. In or-
der to remove any potential discontinuities between ad-
jacent data segments, we gradually taper away the noise
spectral density to zero at frequencies above 4096Hz and
below 5Hz, which we set as the low frequency cut-off for
the generation of the noise and GW signals. For this
MDSC, we consider the sensitivity given by ET-D rather
than ET-B that was used in the first MDSC, as shown
in the left-hand plot in Fig. 1. ET-B is a simpler design
with just one interferometer in each V of the equilateral
triangle but due to high stored power it suffers from en-
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hanced radiation pressure noise at lower frequencies. ET-
D is a design that includes two interferometers in each
V (a high-frequency, high-power interferometer to miti-
gate photon shot noise and a low-frequency, low-power,
cryogenics interferometer to mitigate thermal noise) and
achieves a very good high-frequency sensitivity without
compromising on low-frequency sensitivity.

B. Simulation of the GW signals from BNS

We employ the use of Monte Carlo (MC) simulation
techniques for the generation of the mock data. The pro-
cess that we use to generate the various parameters is
very similar to that used in the first ET MDSC [15],
except here we take the intrinsic mass distribution of
the component masses, m1 and m2, and the time de-
lay, td, i.e. the interval between the formation of a bi-
nary and its eventual merger, from the stellar evolution
code StarTrack [24–27]. As was done in the first MDSC,
we adopt a ΛCDM cosmological model with the Hub-
ble parameter H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and
ΩΛ = 0.7 and the SFR of [38]. We first consider the co-
alescence rate for BNS per unit volume, as a function of
redshift

ρ̇c(z, td) ∝
ρ̇∗(zf (z, td))

1 + zf (z, td)
, with ρ̇c(0) = ρ̇0, (1)

where z is the redshift of the source at the point of coa-
lescence, zf is the redshift of the source at the point at
which the binary formed, ρ̇∗ is the SFR and ρ̇0 is the
local coalescence rate. A factor of (1 + zf )−1 is used to
convert the rate from the source’s frame of reference to
the observer’s frame of reference.

The redshifts z and zf are connected to each other
via the delay time, td, which is the total time that it
takes between the initial formation of the binary system,
through its evolution into a compact binary and finally
the merging time to the point of coalescence due to the
emission of gravitational radiation using

td =
1

H0

∫ zf

z

dz′

(1 + z′)E(z′)
, (2)

where

E(z) =
√

Ωm(1 + z)3 + ΩΛ. (3)

The coalescence rate per redshift bin is given by

dR

dz
(z, td) = ρ̇c(z, td)

dV

dz
(z), (4)

where dV/ dz is the comoving volume element given by

dV

dz
(z) = 4π

c

H0

r2(z)

E(z)
, (5)

where c is the speed of light in vacuum and r(z), the
proper distance, is given by

r(z) =
c

H0

∫ z

0

dz′

E(z′)
. (6)

The average time between the arrival of events, which
we define as λ, is given by taking the inverse of the coa-
lescence rate, Eq. (4), integrating over all redshifts

λ =

[∫ zmax

0

dR

dz
(z, td) dz

]−1

. (7)

Once we have a value for the average waiting time be-
tween events we then produce the parameters for each
CBC source as follows:

• The arrival time, tc, of injection i is selected as-
suming a Poisson distribution, where the difference
in arrival time, τ = tic − ti−1

c , is drawn from an
exponential distribution P (τ) = exp(−τ/λ).

• The average time between all events is set to
λ = 20 s, which is comparable to the realistic rate
given in [39] where different coalescence rates for
BNS, NSBH, BBH and IMBH are taken into ac-
count2 . This gives a total of 159,302 events which
are split up into the following proportions: 80.47%
BNS (128,244), 2% NSBH (3190), 12.46% BBH
(19,766), provided from Table 3 in [40], and 5.07%
IMBH (8102).

• The binary’s component masses, m1 andm2, shown
in Fig. 2, and the time delay, td, are selected from
a list of compact binaries generated by StarTrack.
For the given delay time and a particular model for
the cosmic SFR, we construct a redshift probabil-
ity distribution, p(z, td), by normalising the coales-
cence rate in the interval z = [0, 10], where

2 The original data sets as presented in [28] consisted of a year’s
worth of data that had an average time between all injection of
λ = 200 s, provided from Table 3 in [40] using the BZ model. In
order to reduce the computational cost of running the analysis
with a very low cut-off frequency we have reduced the amount
of data by a factor of 10 while increasing the coalescence rate by
the same factor. This means that the same injections are present
within both sets while the time of arrival between successive
events has decreased resulting in more overlap of the waveforms.
It has already been shown in [15] that this overlap does not affect
the ability of a matched filtering algorithm to detect overlapping
signals.
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FIG. 1: Left— Projected design noise power spectral density for advanced LIGO (dot-dot green), advanced Virgo (dot-dashed
black), ET-B (dashed red) and ET-D (solid blue). Right— Normalised distribution of the redshift for all BNS events, using
redshift bins of size ∆z = 0.1, as provided by StarTrack.

p(z, td) = λ
dR

dz
(z, td). (8)

In the right-hand plot of Fig. 1 we show the nor-
malised redshift distribution for BNS, produced by
using redshift bins of size ∆z = 0.1.

• The sky position, Ω̂, the cosine of the inclination
angle, ι, the polarization angle, ψ, and the phase
at the coalescence, φ0, are selected from uniform
distributions.

• The two GW polarisation amplitudes, h+(t) and
h×(t), and the antenna response functions to the
two polarisations for each of the three ET detec-
tors, FA+ (t, Ω̂, ψ) and FA× (t, Ω̂, ψ), where A = 1, 2, 3
is the index representing one of the three ET detec-
tors, are then calculated. The detector responses

hA(t) = FA+ (t, Ω̂, ψ)h+(t) + FA× (t, Ω̂, ψ)h×(t), (9)

are then added to the detector output time series
for E1, E2 and E3, where the modulation of the
signal due to the rotation of Earth is taken into
account. In this MDSC we have chosen to use the
TaylorT4 waveforms [41], which is accurate to 3.5
post-Newtonian order [42], in phase and the most
dominant lowest post-Newtonian order term in am-
plitude, for the generation of the BNS and NSBH
signals. For the BBH signals we choose the EOB-
NRv2 waveforms [43] that includes the merger and
quasi-normal ring down phases of the signal, and
it is accurate to 4th post Newtonian order in phase
and lowest order in amplitude [41].

For the sake of testing and to determine the number
of background detections we might expect to have, we
have also produced a second, noise only data set that is
produced with the same Gaussian noise as the main data
set.

III. ANALYSIS

The analysis method used here to search for the CBC
signals is generally the same as was used in the first
MDSC though we are now using a newly developed
pipeline, gstlal. This is a coincident analysis pipeline
where the data streams from each of the separate de-
tector’s are analysed individually via matched filtering
with the use of a large bank of templates. The template
bank is produced using a TaylorF2 waveform [44], which
is generated in the frequency domain to the second post
Newtonian order and terminates at the frequency of the

last stable circular orbit, where flsco '
c3

63/2πGMz
. This

waveform generator is selected as it is relatively fast to
generate (compared to the TaylorT4 waveform) and re-
duces the computational cost of the analysis which is per-
formed in the frequency domain. The analysis produces a
list of matched triggers that exceed a given SNR thresh-
old, ρT; each trigger is a list that contains the SNR and
the parameters of the template that produced the trig-
ger, such as the epoch of merger and component masses
of the binary. These are then checked against triggers
from the other two detectors for coincidence. Any dou-
ble or triple coincident triggers that result from the same
template are then reported as potential GW detections
though in this investigation we only consider the results
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FIG. 2: Left— Injected masses, m1 and m2, where m1 ≥ m2. The blue + are the intrinsic masses and the red × are the
observed (redshifted) masses, for 128244 BNS, as given by StarTrack. The diagonal solid black line represents equal masses
with η = 0.25, where η = m1m2/M

2, the diagonal dashed line represents η = 0.2475, and the dot-dashed line represents a
total mass of 12.3M�. Right— Injected total mass, M , against symmetric mass ratio, η, where the blue + are the intrinsic
values and the red × are the observed (redshifted) values, for 128244 BNS, as given by StarTrack. The dashed horizontal line
represents η = 0.2475 and the dot-dashed vertical line represents a total mass of 12.3M�.

from triple coincident events.

A. Analysis stages

The different stages for this analysis pipeline are de-
scribed here:

• Estimation of PSD: The gstlal analysis estimates
the noise PSD as function of time during filter-
ing. The method is a modified version of Welch’s
method [45] with two main differences. First, each
periodogram is derived from choosing the geomet-
ric mean of the last 7 periodograms and second, the
periodograms are weighted averages that weigh the
present periodogram slightly more than the past
ones. The result is a PSD estimate with an effec-
tive average over a few hundred seconds with 1/16
Hz resolution.

• Generation of template bank: A bank of GW in-
spiral signals are produced that are used to search
the data. This bank needs to cover the full mass
parameter range that is being considered. Because
we know the mass distributions of the signals be-
ing injected we are able to tailor the mass param-
eter limits that are used to generate the template
banks in order to cover the full range of masses
whilst keeping the number of templates produced
to a minimum. A new template bank is generated
for each search that is conducted, with the mass
parameter ranges given in Table I.

• Matched filtering: This is implemented with the
LLOID (Low Latency Online Inspiral Detection)
method, which uses singular value decomposition
(SVD) to compress the waveform parameter space
and multi-rate time domain filtering [31]. It pro-
vides the same result as standard matched filter-
ing [46] to within < 1%. The matched filtering of
each SVD bank against each detector data stream
produces an SNR time series ρ(t).

• Trigger generation: As templates are filtered
against data streams, if any SNR time series passes
a threshold value, ρT, then it is considered as a trig-
ger. Generally, using a lower SNR threshold value
is better as it allows for the possibility of detecting
weaker signals but it also results in an increase in
the number of triggers produced from background
noise. Here we set the single detector threshold to
be SNR = 4 as this is the lowest we can go without
having a trigger rate that becomes difficult to deal
with.

• Coincidence between detectors: Triggers from dif-
ferent detectors are then compared against each
other. Any that are coincident in time, within a 5
ms window to account for small time delays for the
time of flight between detectors, and have the same
masses, are considered as either double or triple co-
incident triggers. The SNR for a network of detec-
tors is given by
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ρ2 =
∑
A

ρ2
A . (10)

For triple coincident triggers this gives a minimum
SNR of ∼ 6.928.

• Clustering of triggers: The list of double and triple
coincident triggers is then clustered, where any co-
incident events that occur within a 4 second time
window of a coincident events with a higher SNR
are deleted. This is done as the same event will be
detected by multiple templates, some with a cer-
tain degree of mismatch in the signal parameters.
This results in the reporting of the best matched
template.

The output of gstlal, containing all clustered triple
coincident triggers, are then compared against the list of
injections in order to “match” any potential detections.
For this we apply a time and chirp mass window to each
detection and if an injection is found within this two di-
mensional window then we determine it to be a found
injection. If two injections are found within the same two
dimensional window then the injections with the small-
est redshift is assumed to be the more likely event. The
chirp mass is selected because, as was found in the first
MDSC and as is shown later, it is better constrained than
the total mass by the analysis. Here a time window of
±100 ms and a chirp mass window of 1% of the observed
chirp mass for BNS is used.

B. Searches

Compared to the standard advanced detector searches
there are several differences that we implement here. The
first is low frequency cut-off used to produce the signal
templates. Advanced detector will only be sensitive down
to ∼ 20Hz for the first couple of years of operations, even-
tually reduced to ∼ 10Hz when the detectors begin to
operate at the design sensitivity [47]. Starting at these
frequencies, low mass systems will have waveform lengths
of only a few minutes to tens of minutes. When consid-
ering ET, which is sensitive down to frequencies as low
as 1-3Hz, depending on the final design configuration,
signal templates can be of the order of hours to several
days in length. In this investigation will focus on the
application of different low frequency cut-offs where we
run three searches using the same template mass range
but using different fmin. We use a low frequency cut-off
of 25Hz and 10Hz where we analyse the full mock data,
and then analyse 10% of the data at 5Hz. We select one
analysis run at 25Hz so that we can make a direct com-
parison to the results from the first MDSC and we choose
to only analyse 10% of the data at 5Hz because of the
high computational cost associated with this analysis. At
this starting frequency with the injected masses shown in

Fig. 2, the template waveform lengths are already several
hours long. Because of this we also impose a cut-off at a
redshift of z = 0.2, below which our search templates will
not be sensitive. Instead we make the assumption that
we have a detection efficiency of 100%. After this point,
the signals are redshifted by a factor of (1 + z) by a sig-
nificant fraction so that the signal wavelengths become
computationally manageable. For these searches we set
a minimum component mass of 1.3M�, minimum total
mass of 2.6M�, a maximum component mass of 6.75M�
and a maximum total mass of 12.3M� with a minimum
symmetric mass ratio of η = m1m2/M

2 = 0.2475. This
minimum symmetric mass ratio is chosen to be as high as
possible to reduce the number of templates being gener-
ated whilst still including most of the population of BNS,
as can be seen in the right-hand plot of Fig. 2. Already
at this ηmin we produce ∼ 87000 templates when start-
ing at 5Hz. All the search parameters are displayed in
Table I.

All three analysis runs are repeated on the noise only
data sets in order to obtain an estimate on the num-
ber of background triggers one would expect in the main
data set. From these results an SNR threshold value
is set with which to make a cut on all triggers in the
main data sets. For this we select the SNR equal to the
100th loudest events for the 25Hz and 10Hz runs, and
the 10th loudest event for the 5Hz run. At present there
is no method for determining an estimate for the false
alarm probability with ET and so the 100th (10th) loud-
est noise event is selected as it will cover most of the
population of background noise events whilst avoiding
statistical fluctuations which produce louder SNR events
that may skew the background estimate. The results of
this are presented in Table II.

IV. RESULTS

In this section we present the results from all the anal-
ysis runs carried out as part of this investigation, which
is divided into four sub-sections. The first shows the
number of detections made for each analysis run and the
second details the detection efficiency. In the third we ex-
plore a proof of concept method for estimating the num-
ber of injected signals as a function of redshift and the
fourth presents the accuracy with which we are able to
recover the injection parameters.

A. gstlal analysis: Impact of the lower frequency
cut-off on detection efficiency

The results for the different analysis runs with different
low frequency cut-offs are summarized in Table II. Here
the first column gives the search identity, the second col-
umn gives the number of triggers that were produced
when analysing the noise only data set, and the third
column gives the SNR of the 100th (10th) loudest event.
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TABLE I: A list of all searches carried out in this investigation. The first column gives the identity of the search. The second
column indicates if the analysis was run on the noise only or main data set. The third column gives the low frequency cut-off
used for the analysis run. The fourth column gives the total length of the search in seconds. The fifth column gives the total
mass range used for the search. The sixth column gives the symmetric mass ratio range used. The final column gives the total
number of templates produced given the previous search parameters before the singular value decomposition is applied.

Search Data fmin (Hz) length (s) Mtotal range (M�) η range Ntemplates

1 Noise + Signals 25 3072000 2.6 - 12.3 0.2475 - 0.25 3603

2 Noise + Signals 10 3072000 2.6 - 12.3 0.2475 - 0.25 25252

3 Noise + Signals 5 307200 2.6 - 12.3 0.2475 - 0.25 87054

4 Noise 25 3072000 2.6 - 12.3 0.2475 - 0.25 3647

5 Noise 10 3072000 2.6 - 12.3 0.2475 - 0.25 26173

6 Noise 5 307200 2.6 - 12.3 0.2475 - 0.25 89495

TABLE II: A list of the number of triggers and detections produced for different SNR threshold values used with each search.
The first column gives the identity of the search. The second column gives the number of triggers produced when analysing
the noise only data set. The third column give the SNR of the 100th loudest event obtained from the noise only data set.
The fourth and fifth columns gives the total number of triggers and matched detections produced when no SNR threshold cut
is is applied. The sixth and seventh columns gives the total number of triggers and matched detections with an SNR larger
than that of the 100th loudest event from the noise only data set. For the two right-hand columns the number in the brackets
indicates the remaining percentage of triggers and detections compared to when the lowest SNR threshold cut is used.

Noise ρT = 6.9 ρT = SNR (100th loudest noise event)

Search Ntriggers SNR (100th loudest) Ntriggers Ndetections Ntriggers Ndetections

1 74323 8.655 82322 5708 5670 (6.89%) 4713 (82.57%)

2 291319 8.904 341747 9956 15590 (4.56%) 8138 (81.74%)

3 45183 8.964a 63709 1242 7320 (11.49%) 1095 (88.19%)

aDue to the reduced amount of data that has been analysed at
5Hz, we have selected the SNR of the 10th loudest event from the
noise only analysis run.

The fourth and fifth columns give the total number of
triggers and resulting number of matched detections that
are made with the smallest possible network SNR thresh-
old of 6.9. The sixth and seventh columns again show the
number of triggers and matched detections correspond-
ing to an SNR threshold, ρT, equal to the 100th (10th)
loudest event from the noise only data set. The number
in the brackets for the two right-hand columns indicates
the fractional number of triggers or matched detections
that remain when a higher SNR threshold is used as com-
pared to the case of smallest SNR theshold.

The results from these three analysis runs are shown
in Fig. 3, where the SNR is plotted against the observed
chirp mass. In each of the plots all the triple coincident
triggers produced by gstlal when analysing the main
data set are plotted in blue, with any of these triggers
that are then matched to an injection being plotted in
red and finally the triggers produced from the analysis of
the noise only data set are plotted in green.

In the top plot we show the results from the 25Hz
analysis where it is easy to distinguish a number of BNS
signal detections from those of background events. There

is a very clear peak of triggers with low chirp masses, im-
plying small distances, with very high SNRs. The lower
SNR events (i.e. SNR ≤ 10) are harder to differentiate
from the background events and its only by comparing
them to the list of injections that we are able to identify
them as true signal detections. There is a population of
higher chirp mass, high SNR triggers that have not been
matched to any BNS injections and clearly are not back-
ground events. These are in fact due to the presence of
GW signals from different types of CBC within the data,
in this case the population of NSBH. This shows that
the matched filtering method employed in this search
is sensitive to CBC signal whose injection parameters
lie outside of the search range. Even though these are
not optimal matches, as we would expect the resulting
SNR to be louder than what is shown here, they are still
considered as detected. In these cases one would expect
the recovered parameters to differ greatly from the true
parameters because of the search parameter limits used
when generating these template banks. Finally we ob-
serve a large number of triggers (74,323) obtained from
the noise only data set, spread across all chirp masses,
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with the loudest trigger having an SNR = 9.37 and the
100th loudest having an SNR = 8.566. These are all en-
tirely caused by the random fluctuations in the Gaussian
noise data and are labelled as background events.

In the middle plot we show the results from the 10Hz
analysis. We first note here that there is a massive in-
crease in the total number of triggers produced (341,747)
which is related to the increase in the number of tem-
plates (25,252) produced for the 10Hz analysis runs com-
pared to that of the 25Hz run (3603). Here we clearly see
the population of BNS detections that have both higher
SNRs and are detectable at higher observed chirp masses.
We also note that there is a large reduction in the num-
ber of high chirp mass, high SNR unmatched detections
from non-BNS signals than compared to the 25Hz anal-
ysis. From the analysis of the noise only data set, the
loudest background event has an SNR = 9.53 and the
100th loudest event has an SNR = 8.904.

In the bottom plot we show the results from the 5Hz
analysis. Again we clearly see the population of BNS
signals and we also find the number of non-BNS triggers
is very small. We should also note that the number of
templates has significantly increased again (87,054 tem-
plates) over that of the 10Hz analysis but we do not see
as large an increase in the number of detections due to
analysing only 10% of the data. We would expect to ob-
tain ten times as many triggers and detections as given
in Table II, giving an estimate of ∼ 637, 000 triggers and
∼ 12400 detections from this mock data set.

Finally we highlight the loudest BNS detections in
each of the analysis runs on the main data set which
are produced from the same event. Starting at 25Hz it
is detected with an SNR = 98.22, at 10Hz it is detected
with an SNR = 122.46 and at 5Hz it is detected with an
SNR = 134.97. This gives a clear example of how, when
analysing from lower frequencies, we are able to build up
more SNR for each signal which also helps us to increase
the total number of detections we are able to make.

B. Detection efficiency

The detection efficiency, as a function of redshift, for
a given analysis is given by

ε(z) =
Ndet(z)

Ninj(z)
, (11)

where Ndet is the number of detected injections per red-
shift bin, Ninj is the total number of injections per red-
shift bin and the variance is given by [48]

σ2
ε (z) =

ε(z)(1− ε(z))
Ninj(z)

. (12)

In the left-hand plot of Fig. 4 we show the smoothed de-
tection efficiencies for each of the analysis runs carried,

FIG. 3: Scatter plots of SNR against the observed chirp mass
for the three different low frequency cut-offs used in the anal-
ysis with 25Hz (top), 10Hz (middle) and 5Hz (bottom). All
triggers produced from the analysis of the main data set are
shown in blue, with the triggers produced from the analysis
of the noise only data set shown in green. Any of the triggers
from the main data set that are then matched to an injection
are then plotted in red. Finally the dashed horizontal line
represents an SNR equal to the 100th (10th) loudest trigger
from the noise only data set.
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with the ± 1σ limits contained within the shaded region.
Here we have only considered found injections that have
an SNR greater than the threshold set by the 100th loud-
est event from the analysis of the noise only data set. We
clearly see that by lowering the cut-off frequency of the
analysis we are able to increase our detection efficiency
across all redhsift bins. This can be seen clearly by the
fact that the efficiency at z = 1 doubles when going from
25Hz to 10Hz. It is also shown that the size of the uncer-
tainty in the 5Hz efficiency is considerably larger that for
the 25Hz or 10Hz as we are only considering 10% of the
data and from Eq. (12) we see that this decreases with
the inverse of the number of injections per redshift bin.

C. Rate estimation

In the previous subsection we make the assumption
that we know the true number and distribution of all the
injections in order to calculate the efficiency. If we con-
sider the case where the number of signals in the Universe
is unknown, then, by rearranging Eq. (11), it is possible
to make an estimate of this by consideration of the num-
ber of detections as a function of redshift3 along with the
detection efficiency, which can be determined from MC
simulations with prior knowledge of the BNS mass distri-
bution from the second generation of detectors [49]. In
the right-hand plot of Fig 4 we show this estimate on the
number of injections per redshift bin for each of the de-
tection efficiencies calculated previously. Here the errors
on the size of the efficiencies have been carried through.
We clearly see that for each of the analysis runs there is
a similar chance of estimating the number of events up
to a redshift of z ' 1.5. Between the 25Hz (blue) and
10Hz (red) analysis runs, which were conducted on the
full data set, there is a clear difference in the distance at
which we are able to place an estimate on the number of
injected signals, with the 25Hz extending to z ∼ 2 and
the 10Hz extending to z ∼ 3. This is directly related
to the detection efficiency presented in the previous sub-
section, with the size of the estimation increasing as the
efficiency goes to zero. The 5Hz estimation appears to
be larger than that of the 10Hz but this is a consequence
of only analysing 10% of the data, which results in larger
uncertainties in the efficiency and a smaller maximum
redshift that an estimate can be made out too.

3 We again make the assumption that we know the true redshift of
the detection. In reality we would not know the detections true
redshift though it is possible to derive estimates from various
methods, detailed in Section V.

D. Impact of lower frequency cut-off on parameter
estimation

In this subsection we present the errors we obtained in
the measurement of the epoch of coalescence, and binarys
chirp mass and total mass. We first look at the absolute
error in the recorded time of coalescence, given by ∆tc =
tc, obs − tc, inj, followed by relative error in total mass,
Mz, and chirp mass4, Mz. Table III lists the values of
the mean and standard deviation for all the errors shown
in this section.

1. Coalescence time

In this first MDSC, when matching triggers to injec-
tions, we considered a time window of ±30ms while in
this investigation, as stated above, we have increased
this to ±100ms. In Fig. 5 we show a normalised plot
of absolute error in measured coalescence time, tc, of all
the detections made when investigating the low frequency
cut-off. We find that for all three BNS runs there is a
constant bias of a few ms but nearly all detections are
constrained very well to within ±10ms. This is due to
the fact that both the injected waveform and the wave-
form used to search the data end at the same point, the
flsco. So the ±30 ms window considered for the first
MDSC is suitable when considering BNS signals.

2. Masses

We now look at the errors in the measurements of the
mass parameters. In Fig. 6 we show the impact of low-
ering the minimum search frequency.

In the top left-hand plot of Fig. 6 we show a normalised
distribution of the relative error in measured total mass
with the results from the 25Hz analysis shown in blue, the
results from the 10Hz analysis shown in red and the re-
sults from the 5Hz analysis shown in green. We first note
that the error has decreased by an order of magnitude
when compared to the results from the first MDSC (see
Fig. 7 of [15]). Also there is a constant systematic bias
to generally underestimate the total mass for all three
analysis runs, with a sudden drop off below 0.5%. The
number of events where the total mass is underestimated
does decrease as the cut-off frequency for the analysis is
lowered but this is only a small proportion. This bias
was not observed in either the first MDSC or in any of
our initial analysis runs where, in both cases, the com-
ponent masses, m1 and m2, were selected from the same

4 We note that in the case where we know exactly the redshift of
the source, the relative error in the observed masses, Mz andMz ,
is mathematically identical to the relative error in the intrinsic
masses, M and M.
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FIG. 4: Left—Detection efficiency as a function of redshift for the 25Hz (blue), 10Hz (red) and 5Hz (green) analysis runs
with the shaded areas representing the ±1σ region, as given by Eq. (12). Right— Estimation of the number of injections as a
function of redshift for the 25Hz (blue), 10Hz (red) and 5Hz (green) analysis runs with the shaded areas representing the ±1σ
region. The dashed black line represents the true number of injections, with redshift bins of size ∆z = 0.1.

FIG. 5: Normalised distribution of absolute error in recovered
coalescence time for all matched detections given by gstlal

for Search 2 at 25Hz (solid blue), Search 3 at 10Hz (dashed
red), and Search 4 at 5Hz (dot-dashed green), using time bins
of size ∆t = 1 ms, where different low frequency cut-offs were
used.

distribution, which is not the case for this main mock
data set.

In the top right-hand figure we plot the relative er-
ror in total mass against the observed total mass with
the results from the 25Hz analysis shown in blue, the
results from the 10Hz analysis shown in red and the re-
sults from the 5Hz analysis shown in green. We clearly

see that sharp cut-off at the 0.5% shown in the previous
plot. We also see that at lower observed masses, which
correspond to closer distances, the spread of error mea-
surements covers a range of values. At higher masses this
distribution decreases leaving only the larger error mea-
surements. This agrees with what we would expect, that
our error measurements increase with distance.

In the bottom left-hand plot we show a normalised
distribution of the relative error in measured chirp mass
with the results from the 25Hz analysis shown in blue,
the results from the 10Hz analysis shown in red and the
results from the 5Hz analysis shown in green. We first
note that the scale of the size of the distribution of the er-
ror has also decreased by a factor of ∼ 10 when compared
to the results from the first MDSC. Here we clearly see
that as we decrease the cut-off frequency for the analysis
we obtain a smaller distribution of the error of the chirp
mass measurement. We can also see from Table III that
the deviation of the mean of the distribution from zero
goes from 0.01% at 25Hz to 0.001% at 5Hz which shows
that we are able to recover the chirp mass to a very high
degree of accuracy in this part of the analysis.

In the bottom right-hand figure we plot the relative
error in chirp mass against the observed chirp mass with
the results from the 25Hz analysis shown in blue, the re-
sults from the 10Hz analysis shown in red and the results
from the 5Hz analysis shown in green. Here we clearly
see that by decreasing the cut-off frequency we are able
to better measure the chirp mass but also that the mea-
sured error on the chirp mass is related to the distance
to the source.
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FIG. 6: Top left— Normalised distribution of relative error in recovered total mass for Search 2 at 25Hz (solid blue), Search
3 at 10Hz (dashed red), and Search 4 at 5Hz (dot-dashed green), using mass error bins of size ∆M = 5 × 10−4. Top right—
Scatter plot of relative error in total mass as a function of the observed total mass for Search 2 at 25Hz (blue �), Search 3 at
10Hz (red N), and Search 4 at 5Hz (green •). Bottom left— Normalised distribution of relative error in recovered chirp mass
for Search 2 at 25Hz (solid blue), Search 3 at 10Hz (dashed red), and Search 4 at 5Hz (dot-dashed green), using mass error
bins of size ∆M = 5 × 10−5. Bottom right— Scatter plot of relative error in chirp mass as a function of the observed chirp
mass for Search 2 at 25Hz (blue �), Search 3 at 10Hz (red N), and Search 4 at 5Hz (green •).

TABLE III: Table showing the mean and standard deviations of the error in the measurements of injection parameters. The
first column indicates which search it is. The second column gives the mean and standard deviations of the absolute error
in measured coalescence time in milliseconds. The third column gives the mean and standard deviations of the relative error
in the measurement of the total mass. The third column gives the mean and standard deviations of the relative error in the
measurement of the chirp mass.

Search ∆tc (ms) Relative error M Relative error M
2 (25Hz) -1.694 ± 3.314 -3.301 ×10−3± 2.353 ×10−3 0.115 ×10−3± 0.369 ×10−3

3 (10Hz) -1.541 ± 5.307 -3.213 ×10−3± 2.550 ×10−3 0.044 ×10−3± 0.286 ×10−3

4 (5Hz) -1.572 ± 5.856 -2.674 ×10−3± 2.665 ×10−3 0.012 ×10−3± 0.289 ×10−3
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V. FUTURE DEVELOPMENT

Future MDSCs should aim to address increasing com-
plexity of binary waveform models, improved detector
noise models, simulating EM counterpart scenarios, and
including other third generation detectors. There are still
other GW sources that we can consider, consider, such
as continuous waves [50] from rapidly rotating galactic
neutron stars [51, 52]. The inclusion of one or more SG-
WBs of cosmological origins [53], such as phase transi-
tions [54–56], cosmic (super) strings [57–61] or pre Big
Bang models [62–64], would allow us to test whether we
can distinguish between cosmological background and as-
trophysical backgrounds [65]. The waveform models that
we choose to inject should also include additional features
such as spin [66–68] and tidal affects [69–72], for BNS and
NSBH, spin and precession [73, 74], for BBH and IMBH,
and use a larger range of burst signal models. The inspi-
ral waveforms should be generated down to even lower
frequencies, such as 3Hz or 1Hz, to investigate if it is
possible to push the low frequency cut-off used for the
matched filtering past the 5Hz used here. At this fre-
quency the low mass waveforms will be of the order of
∼ hours to days long. These would allow for investiga-
tions into areas such as rate estimation, both the SFR
and coalescence rate for various sources, measurement of
the mass functions for NSBH and BBH, testing of general
relativity, cosmological measurements, investigating dif-
ferent cosmological and astrophysical models and testing
alternate theories of gravity.

When generating the data we should also include the
two LIGO detectors with the use of the LIGO 3 Straw-
man PSD [75]. A smaller second data set should also
be constructed with the use of re-coloured aLIGO noise
(which we would expect to have at that point) into which
we inject coherent signals. This will allow to study the
behaviour of the null stream in the non-Gaussian case.

It is impossible to obtain a redshift measurement di-
rectly from a detection of a GW but it is possible to infer
one through the use of an electromagnetic counterpart
such as a sGRBs [76] or from an existing galaxy cat-
alogue [77], or consideration of either the neutron star
mass function [78], or EOS [79]. None of these meth-
ods have yet been applied within an MDSC, but some
of them, such as using sGRBs, the neutron star mass
function, or EOS, can easily be included within a future
MDSC.

VI. CONCLUSION

In this investigation we have described the generation
and analysis of the data for the second Einstein Tele-
scope mock data and science challenge with a focus on
binary neutron stars. This data consisted of Gaussian
noise, fitted to the expected ET-D sensitivity noise curve,
into which a large number of GW signals from multiple
sources are injected. The analysis was conducted with a

new matched filtering pipeline that is able to analyse sig-
nals down to lower frequencies than has been considered
before. Our motivation for this MDSC is to continue to
explore the science potential of ET, increasing the com-
plexity of the data analysis and science that is conducted
with it.

The analysis used in this investigation has far sur-
passed that carried out in the first MDSC. One of the
main goals for this investigation was to show that it
is possible to analyse gravitational-wave inspiral signals
down to a frequency of 5Hz. Starting at this frequency
the lowest mass BNS systems being considered here take
over two hours to coalesce. We have shown that, while
being very computationally intensive/expensive, it is still
possible to analyse data down to this frequency. If we
consider that in the few years since the first MDSC we
have been able to push the limit of the analysis comfort-
ably from 25Hz to 10Hz and proven that 5Hz is achiev-
able, we would like to think that in the next decade when
the Einstein Telescope is hoped to be built, given Moore’s
law, it should be possible to push GW analysis to even
lower frequency limits.

In the analysis at lower frequencies we have also shown
the improvement we obtain in both detection efficiency
and our ability to recover the injection parameters. By
searching for signals with lower frequencies we are able
build up more SNR which allows many more signals to
become detectable as well as making the already de-
tectable signals louder. The longer template waveforms
also allow us to better match up with the GW signals,
giving us better accuracy in the measurements of the pa-
rameters.

It has also been shown that analysing data at lower fre-
quencies results in a higher rate of background detections
being made with larger SNRs. Here we have just consid-
ered using an SNR threshold values that is equal to the
100th (10th) loudest background event from the analysis
of the noise only data set, to reduce the number of back-
ground events but this has the drawback of reducing the
number of true detections that are made as well. In the
future it is hoped that a method will be developed that
implements the null stream to reject background events,
thus lowering the false alarm probability, allowing for a
smaller SNR threshold to be used.

We have also shown the difference in detection efficien-
cies obtained when using lower cut-off frequencies. From
these a proof of concept method has been shown where
we attempt to estimate the number of injected signals as
a function of redshift. This is a very basic method that
makes several assumptions, mainly that we know the true
redshifts of the detected signals. More work is required
to further develop this method so that it is able to ac-
count for different parameters as well as a distribution
on the redshift from the detections.

Finally we have also shown that our ability to measure
mass parameters improved by an order of magnitude over
that of the first MDSC in the case of BNS as a result of
using a 5 Hz lower frequency cut-off instead of 25 Hz.
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We are able to recover the observed total mass to within
0.5% and the observed chirp mass to within 0.05%.

This work will now continue, were we investigate the
parameter estimation for a small subset of the BNS de-
tections.
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[69] Éanna É. Flanagan and T. Hinderer, Phys. Rev. D 77,
021502 (2008).

[70] J. S. Read, C. Markakis, M. Shibata, K. Uryu, J. D. E.
Creighton, and J. L. Friedman, Phys. Rev. D 79, 124033
(2009).

[71] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read,
Phys. Rev. D 81, 123016 (2010).

[72] F. Pannarale, L. Rezzolla, F. Ohme, and J. S. Read,
Phys. Rev. D 84, 104017 (2011).

[73] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa,
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