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WHOOMP! (There It Is)
Rapid Bayesian position reconstruction for gravitational-wave transients

Leo P. Singer* and Larry R. Pricef
LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

Within the next few years, Advanced LIGO and Virgo should detect gravitational waves (GWs)
from binary neutron star and neutron star—black hole mergers. These sources are also predicted to
power a broad array of electromagnetic transients. Because the electromagnetic signatures can be
faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the grav-
itational wave observations. Markov chain Monte Carlo (MCMC) methods for gravitational-wave
parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-
MCMC sky localization algorithm that takes just seconds to produce probability sky maps that are
comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it
possible to search electromagnetic counterparts of compact binary mergers.

PACS numbers: 04.80.Nn, 04.30.Tv, 02.50.Tt

The Laser Interferometer GW Observatory (LIGO;
[1, 2]) has just begun taking data [3] in its ‘Advanced’
configuration. The two LIGO detectors will ultimately
increase their reach in volume within the local Universe
by three orders of magnitude as compared to their initial
configurations through 2010. They form the first parts of
a sensitive global GW detector network, soon to be aug-
mented by Advanced Virgo [4] and later by the Japanese
KAGRA facility [5, 6] and LIGO-India [7].

The most readily detectable sources of GWs include bi-
nary neutron star mergers, with 0.4-400 events per year
within the reach of Advanced LIGO at final design sen-
sitivity [3]. These binary systems are not only efficient
sources of GWs, but also potential sources of detectable
electromagnetic (EM) transients from the aftermath of
the tidal disruption of the neutron stars (NSs). Metzger
and Berger [J] argue that the most promising EM coun-
terparts are the hypothesized optical/infrared “kilono-
vae” powered by the radioactivate decay of r-process ele-
ments synthesized within the neutron-rich ejecta. These
are expected to be faint, red, and peak rapidly, reach-
ing an absolute magnitude of only Mpr ~ —13 within a
week, though rising several magnitudes brighter in the
infrared [10].

Several mechanisms could make the kilonovae brighter,
bluer, and hence more readily detectable [11, 12], but
peak even earlier, within hours. If, as is widely believed
[13-16], binary neutron star (BNS) mergers are indeed
progenitors of short gamma-ray bursts (GRBs), then a
small (due to jet collimation) fraction of Advanced LIGO
events could also be accompanied by a bright optical af-
terglow, but this signature, likewise, would peak within
hours or faster.

Adding to the challenge of detecting a faint, short-lived
optical transient, there is an extreme mismatch between
the sky localization accuracy of GW detector networks,
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~10-500 deg? [17-27], and the fields of view (FOVs) of
1-8 m-class optical telescopes. Wide-field optical tran-
sient facilites such as BlackGEM (0.6 m/2.7deg?), the
Zwicky Transient Facility (ZTF; 1.2m/47 deg?) [25], the
Dark Energy Camera (DECam; 4m/3 deg?), or the Large
Synoptic Survey Telescope (LSST; 8.4m/9.6 deg?), oper-
ated in “target of opportunity” mode, may be able to tile
these large areas rapidly enough to find the one needle in
the haystack that is connected to the GW event. How-
ever, prompt and accurate GW position reconstructions
will be of the utmost importance for guiding the selection
of fields to observe.

The final science run of the initial LIGO and Virgo
instruments saw the first joint search for GW and elec-
tromagnetic emission from compact binaries. This in-
volved several advances in the GW data analysis [29],
including the first real-time matched-filter detection
pipeline (MBTA, Multi-Band Template Analysis; [30]),
a semi-coherent, ad hoc rapid triangulation code (Tim-
ing++), and the first version of a rigorous Bayesian
MCMC parameter estimation code (LALINFERENCE;
Aasi et al. 31)—all in service of the first search for X-ray
[32] and optical [33] counterparts of GW triggers, by a
consortium of facilities. Despite the technical achieve-
ments in the GW data analysis, there was an undesir-
able tradeoff between the speed as well as accuracy of the
rapid localization and the full parameter estimation: the
former could analyze a detection candidate in minutes,
whereas the latter took half a day; the latter decreased
the area on the sky by a factor of 1/20 over the former
but took 1000 times as long to run [20].

The success of EM follow-up of LIGO events will de-
pend critically on disseminating high quality sky local-
izations within a timescale of minutes to hours. To that
end, we have devised a rapid and accurate Bayesian sky
localization method that takes mere seconds to achieve
approximately the same accuracy as the full MCMC anal-
ysis. Our key insights are the following:

1. Nearly all of the information in the GW time series
that is informative for sky localization is encap-
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sulated within the matched-filter estimates of the
times, amplitudes, and phases on arrival at the de-
tectors. To infer the position and distance of a GW
event, we only have to consider three numbers per
detector rather than a densely sampled strain time
series per detector.

2. The matched-filter pipeline can be treated as a
measurement system in and of itself. Just like the
strain time series from the detectors, the resultant
times, amplitudes, and phases have a predictable
and quantifiable measurement uncertainty that can
be translated into a likelihood function suitable for
Bayesian inference.

3. The Fisher information matrix will provide clues as
to suitable forms of this likelihood function. Recent
GW parameter estimation literature has largely re-
jected the Fisher matrix," but this is mostly on the
grounds of the abuse of the related Cramér-Rao
lower bound (CRLB) outside its realm of valid-
ity (i.e., at low to moderate signal-to-noise ratio
(S/N)) [35-38]. However, we recognize that the
block structure of the Fisher matrix provides im-
portant insights, and is a useful quantity for check-
ing the validity of the aforementioned likelihood
function, quite independent of the CRLB.

4. The Fisher matrix teaches us that errors in sky
localization are semi-independent from errors in
masses. This implies that if we care only about
position reconstruction and not about jointly esti-
mating masses as well, then we can reduce the di-
mensionality of the parameter estimation problem
significantly. Moreover, this frees us of the need
to directly compute the expensive post-Newtonian
model waveforms, making the likelihood itself much
faster to evaluate.

5. Thanks to a simple likelihood function and a
well-characterized parameter space, we may dis-
pense with costly and parallelization-resistant
MCMC integration, and instead perform the
Bayesian marginalization with classic, determinis-
tic, very low order Gaussian quadrature.

6. The Bayesian inference scheme thus designed to op-
erate on the matched-filter detection pipeline out-
puts could be trivially generalized to operate on
the full GW time series within the same compu-
tational constraints. This would yield a fast and
coherent localization algorithm that is mathemati-
cally equivalent to the full MCMC parameter esti-
mation, restricted to extrinsic parameters (sky lo-
cation, binary orientation, and distance).

I Though not entirely; see [34].

We call this algorithm BAYESian TriAngulation and
Rapid localization (BAYESTAR)??. 1t is as fast as Tim-
ing++, but nearly as accurate as the rigorous full pa-
rameter estimation. It is unique in that it bridges the
detection and parameter estimation of GW signals, two
tasks that have until now involved very different numer-
ical methods and time scales. Beginning with the first
Advanced LIGO observing run, BAYESTAR is provid-
ing localizations within minutes of the detection of any
BNS merger candidate, playing a key role in enabling
rapid follow-up observations.

This paper is organized as follows. In Section I, we de-
scribe the GW signal model and sketch the standard de-
tection algorithm, the matched filter bank. In Section II,
we describe Bayesian inference formalism and the pre-
vailing method for inferring the parameters of detected
candidates, MCMC sampling. In Section III, we propose
the BAYESTAR likelihood as a model for the uncertainty
in the matched-filter parameter estimates, and discuss
its relationship to and consistency with the likelihood for
the full GW data. In Section IV, we describe the in-
put to BAYESTAR supplied by the detection pipeline,
and the prior distribution on parameters. In Section V,
we explain the integration scheme by which the posterior
probability distribution is calculated for a given sky lo-
cation. In Section VI, we show a scheme whereby the sky
posterior is sampled on an adaptive HEALPix grid. In
Section VIIIE, we report the running time of the algo-
rithm on the hardware available on the LIGO Data Grid.
Finally, in Section VIII, we quantify the sky localization
performance on a comprehensive set of simulated GW
events.

I. SIGNAL MODEL AND DETECTION

In the time domain (TD), the strain observed by a
single GW interferometer is

yi(t) = zi(t; 0) + ni(1). (1)

In the frequency domain (FD),

Yi(w) = /OO y(t)e ™tdt = X;(w; 0) + N;i(w), (2)

— 00

where X;(w; 0) is the GW signal given a parameter vec-
tor @ that describes the GW source, and N;(w) is that
detector’s Gaussian noise with one-sided power spectral

density (PSD) Si(w) = E [|[Ni()]*] + B [INi(~w)l’] =

2 A pun on the Cylon battleships in the American television series
Battlestar Galactica. The defining characteristic of the Cylons is
that they repeatedly defeat humanity by using their superhuman
information-gathering ability to coordinate overwhelming forces.

3 We do not like to mention the final ‘L’ in the acronym, because
then it would be pronounced BAYESTARL, which sounds stupid.



2F {|Nl(w)|2} We shall denote the combined observa-

tion from a network of detectors as Y (w) = {Y;(w)};-

Under the assumptions that the detector noise is Gaus-
sian and that the noise from different detectors are uncor-
related, the likelihood of the observation, y, conditioned
upon the parameters 0, is a product of Gaussian distri-
butions:

L£(Y;0) = ][ p(vilo)

1 OOY;CU—XZ'(JJ;OZ
X exp —52/0 ¥ )Sz(w)( ) dw|. (3)

A compact binary coalescence (CBC) source is speci-
fied by a vector of extrinsic parameters describing its po-
sition and orientation, and intrinsic parameters describ-
ing the physical properties of the binary components®*:

@ right ascension
é declination
r distance extrinsic
te arrival time at geocenter parameters,
L inclination angle Ocx
6=\ v polarization angle
dc coalescence phase
my | first component’s mass e
R ntrinsic
mo | second component’s mass
, . parameters,
Sy first component’s spin
So second component’s spin e

(4)

Assuming a nonprecessing circular orbit, we can write
the GW signal received by any detector as a linear com-
bination of two basis waveforms, Hy and H , [45]. Ho
and H/, are approximately “in quadrature” in the same
sense as the cosine and sine functions, being orthogo-
nal and out of phase by 7/2 at all frequencies. If Hy
and Hy /o are Fourier transforms of real functions, then
Ho(w) = Hj(—w) and Hy o (w) = H7 )»(—w), and we can

s
write

—i fw>0

Hrpa(w) = How) - 00 4 ) 2

()

4 This list of parameters involves some simplifying assumptions.
Eccentricity is omitted: although it may play a major role in the
evolution and waveforms of rare close binaries formed by dynam-
ical capture [39-411], BNS systems formed by binary stellar evolu-
tion should almost always circularize due to tidal interaction [42]
and later GW emission [13] long before the inspiral enters LIGO’s
frequency range of ~10-1000 kHz. Tidal deformabilities of the
NSs are omitted because the signal imprinted by the companions’
material properties is so small that it will only be detectable by
an Einstein Telescope-class GW observatory [44]. Furthermore,
in GW detection efforts, especially those focused on BNS sys-
tems, the component spins S; and S2 are often assumed to be
nonprecessing and aligned with the system’s total angular mo-
mentum and condensed to a single scalar parameter x, or even
neglected entirely: S; = S = 0.

For brevity, we define H = H, and write all subsequent
equations in terms of the H basis vector alone. Then,
we can write the signal model in a way that isolates all
dependence on the extrinsic parameters, 6., into a few
coefficients, and all dependence on the intrinsic parame-
ters, O;,, into the basis waveform, by taking the Fourier
transform of Equation (2.8) of [15]:

X;(w; 0) = e—m(t@—di.n)@ezmc
T

%(1—|—cos2 ) R{CY —i(cost)S{¢}| H(w;0im) (6)

for w > 0, where
(=2 (Fyi(e,0,te) +iFxi(a,6,ts)).  (7)

The quantities Fy ; and F ; are the dimensionless detec-
tor antenna factors, defined such that 0 < F+ﬂ-2+FX7i2 <
1. They depend on the orientation of detector i as well
as the sky location and sidereal time of the event and are
presented in [46]. In a coordinate system with the x and
y axes aligned with the arms of a detector, the antenna
pattern is given in spherical polar coordinates as

F, = ,%(1 + cos? 0) cos 2¢, (8)
Fy = —cosfsin2¢. (9)

The unit vector d; represents the position of detector ¢ in
units of light travel time.” The vector n is the direction of
the source. The negative sign in the dot product —d;-n is
present because the direction of travel of the GW signal
is opposite to that of its sky location. The quantity 7 ;
is a fiducial distance at which detector ¢ would register
SNR=1 for an optimally oriented binary (face-on, and in

a direction perpendicular to the interferometer’s arms):

o [ H O
o; —/0 (@) dw. (10)

r,;=1/0;,

More succinctly, we can write the signal received by
detector i in terms of observable extrinsic parameters
0; = (pi,7i,7i), the amplitude p;, phase v;, and time
delay 7; on arrival at detector i:

Xi(w; 0;,604)
= X, (w; pir Yir Tir Oin) = i) H (w03 (1)

oF}

The prevailing technique for detection of GWs from
CBGCs is to realize a maximum likelihood (ML) estima-
tor (MLE) from the likelihood in Equation (3) and the

5 When considering transient GW sources such as those that we
are concerned with in this thesis, the origin of the coordinate
system is usually taken to be the geocenter. For long-duration
signals such as those from statically deformed neutron stars, the
solar system barycenter is a more natural choice.



signal model in Equation (11). Concretely, this results in
a bank of matched filters, or cross-correlations between
the incoming data stream and a collection of template
waveforms,

(7. 0:) = 1 oo H*(w;Oin)}/}(w)ei‘”T'i y
Zz( z,@ln) Ui(ein)/o Sz(w) dw. (12)

The ML point estimates of the signakl parameters,
MLE(Y) = {{01}“ Bin} = {{ﬁi?’/}\/ii ’TA_'L}Z 3 0in}7 are given
by

Oim, {7i}i = argmax Y _ |z (733 0|, (13)
Oin {7}

pi = |7i (ﬁ’;éin) ; (14)

q; = arg z; (ﬁ-; éin) . (15)

A detection candidate consists of {{pi, i, 7i};,60m}
There are various ways to characterize the significance of
a detection candidate. In Gaussian noise, the maximum
likelihood for the network is obtained by maximizing the
network S/N, ppet,

pres = max D" | (0)° =[S (16)

this, therefore, is the simplest useful candidate ranking
statistic.

A. Uncertainty and the Fisher matrix

We can predict the uncertainty in the detection
pipeline’s ML estimates using the CRLB. The CRLB
has been widely applied in GW data analysis to esti-
mate parameter estimation uncertainty [3, 17, 18,

1°. As we noted, there are significant caveats to the
CRLB at low or moderate S/N [35-38]. However, here
we will be concerned more with gaining intuition from the
block structure of the Fisher matrix than its numerical
value. Furthermore, the Fisher matrix in its own right—
independent of its suitability to describe the parameter
covariance—is a well-defined property of any likelihood
function, and we will exploit it as such in Section III.

We will momentarily consider the likelihood for a single

6 The Fisher matrix is also used in construction of CBC matched
filter banks. The common procedure is to place templates uni-
formly according to the determinant of the signal space met-
ric, which is the Fisher matrix. This is equivalent to uniformly
sampling the Jeffreys prior. In practice, this is done either by
constructing a hexagonal lattice [50] or sampling stochastically

[51-55].

detector:
E (}/27 PiysVir Tiy ein)

1 (% Yi(w) = X (w3 pi, i T, Oin)
X exp l /0 S5(@) dw]| ,

2
(17)

with X;(w; pi, Vi, Ti, Oin) given by Equation (11).

The Fisher information matrix for a measurement y
described by the unknown parameter vector 6 is the con-
ditional expectation value

5o (25050 (B8]

The Fisher matrix describes how strongly the likeli-
hood depends, on average, on the parameters. Further-
more, it provides an estimate of the mean-square error
in the parameters. If @ is an unbiased estimator of 6,

6 = 6 — 6 is the measurement error, and ¥ = E[68 | is
the covariance of the measurement error, then the CRLB
says that ¥ > Z~!, in the sense that (E — Z_l) is posi-
tive semi-definite.

Note that if log L is twice differentiable in terms of 6,
then the Fisher matrix can also be written in terms of
second derivatives as

T, =E [—

0%log L(Y;;6) M (19)

6,00,

When (as in our assumptions) the likelihood is Gaus-
sian,” Equation (18) simplifies to

e [0l ()] e o

This form is useful because it involves manipulating the
signal X;(w) rather than the entire observation Y (w).
In terms of the kth S/N-weighted moment of angular
frequency,

=[] [ e]

the Fisher matrix for the signal in the ith detector is

To, 0, To, o )
Ii — Y% 75Yin . 22
( I;f,ﬁin pi2I0inyein ( )

The top-left block describes only the extrinsic parame-
ters, and is given by

Pi Vi Ti
Zo,o.=v| 0 p®  —plw (23)
 \ 0 —pw; pilw

7 This assumes that the merger occurs at a frequency outside the
sensitive “bucket” of the detector’s noise PSD. There are addi-
tional terms if the GW spectrum drops to zero within the sen-
sitive bandwidth of the detector, as can be the case for neutron
star-black hole (NSBH) mergers; see [50].



(This is equivalent to an expression given in [25].) The
bottom row and right column of Equation (22) describe
the intrinsic parameters and how they are coupled to the
extrinsic parameters. We show in Appendix A that we
need not consider the intrinsic parameters at all if we are
concerned only with sky localization.

For our likelihood, the CRLB implies that

b 1 0 0

5. -1 _ 2 2 2— 2
cov Vi Z yA - 0 Pi W2i/wrms,i Pi Wi/wrms,i

= 2— 2 2 2

Ti 0 pz wi/wrms,i pz /wrms,i

(24]
where wyms i = w?; — ;2. This structure implies that
errors in S/N are uncorrelated with errors in time and
phase, and that there is a particular sum and difference
of the times and phases that are measured independently
(see Appendix B).

Reading off the 77 element of the covariance matrix
reproduces the timing accuracy in Equation (24) of [17],

(-1, =P (25)

TT
Wrms, i

Std (727, — Ti) Z

Fairhurst [17] goes on to frame the characteristic posi-
tion reconstruction accuracy of a GW detector network
in terms of time delay triangulation, with the above for-
mula describing the time of arrival uncertainty for each
detector. In Appendix C, we show how to extend this for-
malism to include the phases and amplitudes on arrival
as well.

II. BAYESIAN PROBABILITY AND
PARAMETER ESTIMATION

In the Bayesian framework, parameters are inferred
from the data by forming the posterior distribution,
p(0y), which describes the probability of the parameters
given the observations. Bayes’ rule relates the likelihood
p(y|@) to the posterior p(0ly),

_ p(y|0)p(9)

p(0ly) o)

; (26)

introducing the prior distribution p(@) which encapsu-
lates previous information about the paramters (for ex-
ample, arising from earlier observations or from known
physical bounds on the parameters), and the evidence
p(y) which can be thought of as a normalization factor
or as describing the parsimoniousness of the model.

The choice of prior is determined by one’s astrophysical
assumptions. During LIGO’s sixth science run (S6) when
LIGO’s Bayesian CBC parameter estimation pipelines
were first deployed, the prior was taken to be isotropic
in sky location and binary orientation, and uniform in
volume, arrival time, and the component masses [31].

In Bayesian inference, although it is often easy to write
down the likelihood or even the full posterior in closed
form, usually one is interested in only a subset 3 of all
of the model’s parameters, the others A being nuisance
parameters. In this case, we integrate away the nuisance
parameters, forming the marginal posterior

pply) = [PRESEER x )

with @ = (8, A). For instance, for the purpose of locating
a GW source on the sky, all parameters but («,d) are
nuisance parameters.

III. THE BAYESTAR LIKELIHOOD

For the purpose of rapid sky localization, we assume
that we do not have access to the GW data Y itself,
and that our only contact with it is through the ML
parameter estimates {{p;, 3,7}, . éin}. Although this is
a significant departure from conventional GW parameter
estimation techniques, we can still apply the full Bayesian
machinery of Equation (27) to compute a posterior dis-
tribution for the sky location.

The relevant likelihood is now the probability of the
ML estimates, conditioned upon the true parameter val-
ues, and marginalized over all possible GW observations:

p(16:3:.60)6) x [pvio)p@)ay.  (29)
Y|MLE(Y)={{6:}:,6in}

Although we may not be able to evaluate this equation
directly, with some educated guesses we can create a like-
lihood that has many properties in common with it. Any
valid approximate likelihood must have the same Fisher
matrix as shown in Equation (22). It must also have
the same limiting behavior: it should be periodic in the
phase error 7; and go to zero as 7; — £oo, p; — 0, or
p; — oo. Additionally, when 7; = 0, the distribution
of p? should reduce to a noncentral x? distribution with
two degrees of freedom, centered about p;2, because the
complex matched filter time series z;(¢) is Gaussian (un-
der the ideal assumption the GW strain time series is
Gaussian).

These conditions could be satisfied by realizing a mul-
tivariate Gaussian distribution with covariance matrix
> =17, and then replacing individual quadratic terms
in the exponent of the form —62/2 with cos .

A more natural way is to plug the signal model from
Equation (11) evaluated at the ML parameter estimates
into the single-detector likelihood in Equation (17):



2

2
i(y; —wTi) H(wv Oin)

2

. . L[ i igi—wiy H(w; Oin) Pi
p(0i0) :p(Y-w:X w; @ 0)o<exp —f/ — !\ T — dw]| .
() = Xl ) 2 ) o6 S a0 5i(w)
(29)
[
If we further assume that the intrinsic parameters are to what we call the autocorrelation likelihood,
equal to their ML estimates, 0y, = 6;,, then this reduces
J
A A A Lo 15 5 %~
P (DisHis Tl pis vir i) o exp | —=p7 — =pi° + pipR {7 a; (7) } | (30)

with 4; = 4; — v, 7i = 7 — 75, and the template’s auto-
correlation function a;(t; 0i,) defined as

2

a;(t; Oi) = et duw.

1 /0°° ‘H(w; 6in) (51)

Ui2(0in) Sl(w)

Some example autocorrelation functions and correspond-
ing likelihoods are shown in Figure 1. To assemble the
joint likelihood for the whole network, we form the prod-
uct of the autocorrelation likelihoods from the individual
detectors:

p ({6i, Yi» Ti b H{pis Yis Ti };)

1 1 .~
ocexp |~ Zﬁz 3 Zpig + Zﬁi[)i%{ez%a*(ﬁ)}] .
: ' ' (32)

In the following section, we discuss some key properties
of the autocorreltion likelihood.

A. Properties

First, the autocorrelation likelihood has the elegant
feature that if we were to replace the autocorrelation
function with the S/N time series for the best-matching
template, Z(T;éin), we would recover the likelihood for
the full GW time series, evaluated at the ML estimate of
the intrinsic parameters, viz.:

1 )
exp (=3 Z pi® + Z piR{e iz ()}

(We have ommitted the term [ |V;(w)|?/S(w)dw, which
takes the place of the earlier p? term and is only im-
portant for normalization.) The numerical scheme that
we will develop is thus equally applicable for rapid,
coincidence-based localization, or as a fast extrinsic
marginalization step for the full parameter estimation.
Second, observe that at the true parameter values,
6; = 0;, the logarithms of Equation (30) and Equa-
tion (17) have the same Jacobian. This is because the

(33)

[
derivatives of the autocorrelation function are
a™(t) = i"w”,

with w” defined in Equation (21). For example, the first
few derivatives are
a(0) =1, a(0) = i@, i(0) = —w?2.
Using Equation (19), we can compute the Fisher ma-
trix elements for the autocorrelation likelihood given by
Equation (30), with detector subscript suppressed:

Lpp =1,
1,y =0,
Ipr =0,
T
Lo=o [ laloP witipi (34)
L= [ Rl O] it (35)
L= [ Sl @io]ut i (36)
where
P 2 p’ 2 P 2
exp |2 la®P] (1o |2 o) | + 1 |2 o)
] (s ]

2

T
p
2/ exp [
7 4

The notation I, denotes a modified Bessel function of
the first kind. Matrix elements that are not listed have
values that are implied by the symmetry of the Fisher
matrix. Note that the minus signs are correct but a little
confusing: despite them, Z.,,,Z, > 0 and Z,, < 0. The
time integration limits [—T, T] correspond to a flat prior
on arrival time, or a time coincidence window between
detectors.

We can show that the weighting function w(t; p) ap-
proaches a Dirac delta function as p — oo, so that

o) 1 [ ot ar
(31)
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FIG. 1. The autocorrelation likelihood for a (1.4,1.4) M binary as observed by four detector configurations: from top to
bottom, the final sensitivity achieved by the LIGO Hanford, LIGO Livingston, and Virgo detectors in their “initial” configura-
tion, and the final Advanced LIGO design sensitivity. The left panels show the noise amplitude spectral densities. The middle
panels show the absolute value of the autocorrelation function. The right panel shows the phase-marginalized autocorrelation
likelihood for S/N=1, 2, 4, and 8. In the right panel, the time scale is normalized by S/N so that one can see that as S/N
increases, a central parabola is approached (the logarithm of a Gaussian distribution with standard deviation given by the

Fisher matrix).

the Fisher matrix for the autocorrelation likelihood ap-
proaches the Fisher matrix for the full GW data, Equa-
tion (23), as p — co. The Bessel functions asymptotically
approach:

V2w

For large p, the exponents of e?” dominate Equation (37)
and we can write:

Io(x), I () — as T — 00.

e [ 2 a0

/T exp {§|a(t’)|2] dt’

-T

w(t; p) — as p — oo.

The Taylor expansion of |a(t)[? is

2 _ 1 8_2 2
@) =1+ 5 [ g5la®)

) 2+ 0t
t=0
=1 — wems2t2 + O(tY).
Substituting, we find that w(t; p) approaches a normal-
ized Gaussian distribution:

1
exp |:_ §p2wrm52t2:|

w(t; p) ~ T

; )
/ exp [——pQwrms2(t’)2] dt’
-7 2

And finally, because the Dirac delta function may be de-
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FIG. 2. CRLB on RMS timing uncertainty and phase error, using the likelihood for the full GW data (Equation 17; dashed
diagonal line) or the autocorrelation likelihood (Equation 30; solid lines) with a selection of arrival time priors.

fined as the limit of a Gaussian, w(t; p) — d(t) as p — 0.

We can now write the Fisher matrix for the autocor-
relation likelihood in a way that makes a comparison to
the full signal model explicit. Define:

Ly = p* - R4(p),
I’TT = PQE . QTT(p)a
Iy; = —p°w - 24 (p).

Now, the 2;;% contain the integrals from Equations (34,
35, 36) and encode the departure of the autocorrelation
likelihood from the likelihood of the full data at low S/N.
All of the 2;;(p) are sigmoid-type functions that asymp-
totically approach 1 as p — oo (see Figures 2 and 3). The
transition S/N peit is largely the same for all three non-
trivial matrix elements, and is determined by the time
coincidence window T and the signal bandwidth wyps.

In the limit of large S/N, our interpretation is that the
point estimates (p,9,7) contain all of the information
about the underlying extrinsic parameters.

On the other hand, in the low S/N limit, the diminish-
ing value of 2;;(p) reflects the fact that some information
is lost when the full data x is discarded. Concretely, as
the prior interval T becomes large compared to 1/pwyms,
the ML estimator becomes more and more prone to pick-
ing up spurious noise fluctuations far from the true sig-
nal. Clearly, when the coincidence window T is kept
small as possible, more information is retained in the

8 The Fish(er) factor.

Ratio

FIG. 3. Ratio between Fisher matrix elements (solid: £,
dashed: @,,, dotted: 2.,) for the autocorrelation likelihood
and the full GW data. Colors correspond to different arrival
time priors as in Figure 2.

ML point estimates. Put another way, if T' is small, then
the transition S/N peig is also small and fainter signals
become useful for parameter estimation. In this way, the
BAYESTAR likelihood exhibits the threshold effect that
is well-known in communication and radar applications
[57-59].

In the following sections, we describe our prior and our

numerical scheme to integrate over nuisance parameters,
which amounts to the BAYESTAR algorithm.



IV. PRIOR AND PROBLEM SETUP

The detection pipeline supplies a candidate,
{{ﬁi,%,ﬂ}i,éin}, and discretely sampled noise PSDs,
Si(w;), for all detectors. We compute the GW signal for
a source with intrinsic parameters equal to the detection
pipeline’s estimate, H (w; éin). Then we find the S/N=1
horizon distance 7 ; for each detector by numerically
integrating Equation (10).

We have no explicit prior on the intrinsic parameters;
in our analysis they are fixed at their ML estimates, 6;,,.°

The arrival time prior is connected to the origin of the
detector coordinate system. Given the Earth-fixed coor-
dinates of the detectors n; and the arrival times 7;, we
compute their averages weighted by the timing uncer-
tainty formula:

n; 7A'l
zi: (pAiWrms,i)2 " zz: (ﬁiwrms,i)Q

()= LI =
Z Z (ﬁiwrms,i)2

- 2
i (piwrms,i) i
Then, we subtract these means:

ni<—ni—<n>7 7A'Z<—7A'Z—<’7A'>
In these coordinates, now relative to the weighted detec-
tor array barycenter, the arrival time prior is uniform in
—T <t <T,with T = max |n;|/c+ 5 ms.

1

The distance prior is a user-selected power of distance,

p(r) o {gm

where m = 2 for a prior that is uniform in volume, and
m = —1 for a prior that is uniform in the logarithm of the
distance. If a distance prior is not specified, the default is
uniform in volume out to the maximum SNR=4 horizon
distance:

if Trin < 7 < Tmax
otherwise,

m =2, Tmin = 0, Tmax = Z mia’Xrl,i'

Finally, the prior is uniform in —1 < cos: < 1 and
0<y <.

We compute the autocorrelation function for each de-
tector from t = 0 to ¢ = T at intervals of At = 1/f;,
where f; is the smallest power of two that is greater than
or equal to the Nyquist rate. Because BNS signals typ-
ically terminate at about 1500 Hz, a typical value for

9 As noted in footnote 6, the detection template bank is typically
designed to uniformly sample the Jeffreys prior on the intrin-
sic parameters. Due to the equivalence of marginalization and
maximization with respect to a parameter under a Gaussian dis-
tribution, fixing the intrinsic parameters at their ML estimates
is roughly equivalent to selecting the Jeffreys prior.

At is (4096 Hz)~1. We use a pruned fast Fourier trans-
form (FFT) because for BNS systems, the GW signal re-
mains in LIGO’s sensitive band for ~100-1000 s, whereas
T ~ 10 ms.'”

V. MARGINAL POSTERIOR

The marginal posterior as a function of sky location is

NN

min

1 . e
exp [‘2 dop 4 pipiR{eTa (n—)}l
" d¢e drdig dcoscdy. (38)
To marginalize over the coalescence phase, we can

write 4; = 4/ 4+ 2¢.. Then integrating over ¢. and sup-
pressing normalization factors, we get

oo [T

X i)
1

1
exp l—2 E PiQ] Iy l
rdrdtg dcoscdip.  (39)

In the above equation, we need not distinguish between
4; and 4, because the likelihood is now invariant under
arbitrary phase shifts of all of the detectors’ signals.

A. Integral over angles and time

The integrand is periodic in %, so simple New-
ton—Cotes quadrature over ¢ exhibits extremely rapid
convergence (see Figure 4). We therefore sample the pos-
terior on a regular grid of 10 points from 0 to 7.

The integral over cos: converges just as rapidly with
Gauss—Legendre quadrature (see Figure 4), so we use a
10-point Gauss—Legendre rule for integration over cos¢.

We sample tg, regularly from —7 to T at intervals of
At. This is typically ~ 2(10ms)(4096 Hz) =~ 80 samples.
We use Catmull-Rom cubic splines to interpolate the real
and imaginary parts of the autocorrelation functions be-
tween samples.

B. Integral over distance

The distance integral is now performed differently from
what we initially described in [60, G1]; the method de-

10 See http://www.fftw.org/pruned.html for a discussion of meth-
ods for computing the pruned FFT, the first K samples of an
FFT of length N.
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FIG. 4. Relative error in BAYESTAR integration scheme as a function of the number of Gaussian quadrature nodes. The two
panels describe (a) the integral over the polarization angle ¢ and (b) the integral over inclination angle ¢.

scribed in the present work is about an order of magni-
tude faster. We define p; = w;/r in order to absorb all
of the distance-independent terms in the amplitudes into
wi, and then define

1
2 _ 2
=3 E w; (40)

(41)

The innermost integral over distance r may then be writ-

ten as
Tmax 2 b
F = /exp {—1)2] Iy {] r"dr
r r r

min

Tmax 2 bl — b
= /exp {_pz + } I {] r™dr (42)
T T T

T'min

or, completing the square,

2 Tmax
F = exp [pz}/exp [— (p_
To T'min r

2
= exp []32} 9,

To
where

7“0:2p2/b

Io(z) = exp(—|z|)Io(x).

The coefficients p? and b are nonnegative and indepen-
dent of distance. p has a maximum value of

Pmax = ”%Z (7”71:1‘>2'

(47)

The symbol I denotes an exponentially scaled Bessel
function. In the limit of large argument, Iy(|z|) ~
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FIG. 5. Partition of the parameter space of the distance in-
tegral into three regions for (bi)cubic interpolation.

exp(|z|)/\/2n|z| [62, 63]'*. The scaled Bessel function
is useful for evaluation on a computer because it has a
relatively small range (0,1] and varies slowly in propor-
tion to z'/2.

1. Parameter grid

This integral is not particularly amenable to low-order
Gaussian quadrature. However, luckily ¢ is a very well-
behaved function of p and rg, so we evaluate it using a
lookup table and bicubic interpolation. The lookup table

is produced in logarithmic coordinates
x = logp, y = logro. (48)

As shown in Figure 5, the function basically consists of a
plateau region in the upper-left half of the plane delim-
ited by the lines y = x and x = log pg, with

_ 1 Tmax

Po= 2 Tmin

We tabulate ¢ on a 400 x 400 regular grid spanning the
range

itfm>0

49
if m < 0. (49)

2o = log min(po, Pmax) (50)
Tmin = 7o — (1 + V2)a (51)
Tmax = 108 Pmax (52)
Ymin = 270 — V20 — Trax (53)
Ymax = To + & (54)

I http://dlmf.nist.gov/10.40.E1
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where o = 4 is a constant parameter that determines the
extent of the grid.

2. Lookup table construction

The lookup table for ¢ is populated as follows. If we
neglect both the Bessel function and the r™ prior, then
the approximate likelihood exp(—(p/r — p/r0)?) is max-
imized when r = rg. The likelihood takes on a factor 5
(say, n = 0.01) of its maximum value when

( 1 —logny > !
r=ry=|(—F —— .
To p

We have now identified up to five breakpoints that par-
tition the distance integrand into up to four intervals with
quantitatively distinct behavior. These intervals are de-
picted in Figure 6 with distance increasing from left to
right. There is a left-hand or small distance tail in which
the integrand is small and monotonically increasing, a
left- and right-hand side of the maximum likelihood peak,
and a right-hand tail in which the integrand is small and
monotonically decreasing. These breakpoints are:

(55)

Tmin

r—
Tbreak = {7’ S To

T+

Tmax

S Pmin ST < Tmax}' (56)

We use these breakpoints as initial subdivisions in an
adaptive Gaussian quadrature algorithm'?. This func-
tion estimates the integral over each subdivision and each
interval’s contribution to the total error, then subdivides
the interval whose error contribution is largest. Sub-
divisions continue until a fixed total fractional error is
reached. In this way, most integrand evaluations are ex-
pended on the most important distance interval, whether
that happens to be the tails (when the posterior is dom-
inated by the prior) or the peak (when the posterior is
dominated by the observations).

3. Interpolation

The interpolant is evaluated slightly differently de-
pending on which of the three regions marked I, II, and
IIT in Figure 5 contains the point of interest. In region
I, we use bicubic interpolation of logG in z and y. In
region II, we use univariate cubic interpolation of log G

12 for instance, GNU Scientific
gsl_integrate_qagp function,
gnu.org/software/gsl/manual/html_node/
QAGP-adaptive-integration-with-known-singular-points.
html

Library (GSL)’s
http://wuw.


http://dlmf.nist.gov/10.40.E1
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
http://www.gnu.org/software/gsl/manual/html_node/QAGP-adaptive-integration-with-known-singular-points.html
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FIG. 6. Illustration of initial subdivisions for distance inte-
gration scheme. Distance increases from left to right. In the
color version, the left-hand tail, the left- and right-hand sides
of the maximum likelihood peak, and the right-hand tail, are
colored cyan, red, green, and blue, respectively.

in x, with the sample points taken from the horizontal
boundary between regions I and II. In region III, we use
univariate cubic interpolation of logG in u = (z — y)/2,
with the sample points taken from the downward diag-
onal boundary between regions I and III. Finally, the
distance integral .# is obtained by multiplying the inter-
polated value of ¢4 by exp (p2 / r02). For a 400 x 400 grid,
the entire lookup table scheme is accurate to a relative
error of about 107° in .# (see Figure 7).

VI. ADAPTIVE HEALPIX SAMPLING

We have explained how we evaluate the marginal pos-
terior at a given sky location. Now we must specify where
we choose to evaluate it.

Our sampling of the sky relies completely on the Hier-
archical Equal Area isoLatitude Pixelization (HEALPix,
[64]), a special data structure designed for all-sky maps.
HEALPix divides the sky into equal-area pixels. There
is a hierarchy of HEALPix resolutions. A HEALPix res-
olution may be designated by its order N. The N = 0th
order or base tiling has 12 pixels. At every successive
order, each tile is sub