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We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron
star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers
may take place in globular clusters, as well as other dense stellar systems, where most neutron
stars have large spins. We find significant variability in the merger outcome as a function of initial
neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the
additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt
collapse to a black hole, while for antialigned cases the decreased total angular momentum can
facilitate the collapse to a black hole. We show that even moderate spins can significantly increase
the amount of ejected material, including the amount unbound with velocities greater than half
the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and
interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron
star spin can strongly affect the already rich phenomenology in the post-merger gravitational wave
signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our
simulations, the resulting hypermassive neutron star develops the one-arm (m = 1) spiral instability,
the most pronounced cases being those with small but non-negligible neutron star spins. For long-
lived hypermassive neutron stars, the presence of this instability leads to improved prospects for
detecting these events through gravitational waves, and thus may give information about the neutron
star equation of state.

PACS numbers: 04.25.D-,04.25.dk,04.30.-w

I. INTRODUCTION

The challenge of understanding the inspiral and merger
of compact binaries, such as neutron star–neutron star
(NSNS) and black hole–neutron star (BHNS) binaries,
has attracted considerable attention in recent years.
These systems are potential probes of fundamental
physics, from strong-field gravity to the super nuclear
density physics which determines the NS equation of
state (EOS). They are also “multimessenger” sources in
the sense that they are among the primary targets of
gravitational wave (GW) observations by ground-based
laser interferometers such as aLIGO [1], VIRGO [2],
and KAGRA [3], as well as potentially giving rise to a
number of electromagnetic (EM) transients, either be-
fore [4–10] or after [11–14] the merger event itself. The
EM transients accompanying GW events are possible
sources for current or upcoming telescopes, e.g. PTF [15],
PanSTARRS [16], or LSST [17]. Moreover, compact bi-
nary mergers could be integral to solving several out-
standing astrophysical puzzles, such as determining the
progenitors of short-hard gamma ray bursts (see e.g. [18–
20]) and the origin of r-process elements in the Universe
[21].

In this paper we focus on eccentric binary neutron star
mergers. Accurately modeling such strong-field events,

where spacetime is both strongly curved and very dy-
namic, requires the use of full general relativity (GR).
Studies of NSNS binaries with numerical relativity have
largely focused on quasicircular inspiral and mergers,
see, e.g., [22, 23] for reviews, and [24–32] and references
therein for more recent work. The predominant chan-
nel thought to lead to quasicircular NSNS mergers is the
evolution of isolated stellar binary systems, so-called pri-
mordial binaries. Here, given the typical separation at
which a binary NS system is born (after both massive
stars have collapsed to neutron stars), gravitational ra-
diation will drive the orbit to very close to circular well
before emission reaches frequencies observable by ground-
based detectors (which for simplicity we call the “LIGO
band”). Recent analysis [33–37], however, suggests that
in addition to these so-called field binaries, there may be
a population of compact binaries that are assembled in
globular clusters (GCs), galactic nuclei, and other dense
stellar systems via dynamical capture or exchange inter-
actions. Some fraction of these systems will emit GWs
in the LIGO band while the orbit is still highly eccen-
tric (for leading-order estimates of these fractions and
related timescales see the discussions in [36, 38]). While
such events will occur less frequently than quasicircular
inspirals (whether from field binaries or dynamically as-
sembled), they will have a distinct phenomenology and
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observational signature, including a repeated-burst phase
of the GW signal, and possibly distinguishable EM tran-
sients (e.g. [10]).

While there is considerable uncertainty about the rates
of eccentric NSNS mergers, there have been estimates of
up to ∼ 50 yr−1 Gpc−3 (see e.g., [35, 39, 40] and dis-
cussions therein). Although it is unknown whether high
eccentricity NSNS mergers take place with enough fre-
quency to be relevant for LIGO, or whether their ob-
servation with GWs may require third-generation GW
interferometers such as the Einstein Telescope [41], it is
plausible that they do occur at rates relevant for EM ob-
servations. For example, the spatial offset of some short
gamma-ray bursts (sGRBs) from their host galaxies is in-
consistent with merging NSNS that reside in the galactic
disks [42]. Using simulations to scale from the NSNS bi-
nary observed in the GC M15 in our Galaxy, it is argued
in [42] that NSNS mergers in GCs may be responsible
for ∼ 10 − 30% of the observed sGRBs (see also [43–
45]). On the order of a percent of NSNS mergers result-
ing from binary-single exchange interactions in GCs are
likely to take place at moderate to high eccentricities [36],
while essentially all dynamical capture mergers will have
a high eccentricity phase within the LIGO band, though
the latter class of event is expected to occur much less
frequently. Also, rate estimates are not known for less
well understood mechanisms for creating eccentric bina-
ries, like resonances in triple systems [46–48], though a
recent study [49] finds that aLIGO detection rates for
black hole mergers induced by the Lidov-Kozai mecha-
nism can be 2 yr−1, with about 20% of these entering
the aLIGO band with finite eccentricity. However, they
report that this process makes negligible contribution to
NSNS mergers.

Fully general-relativistic hydrodynamical (GR-HD)
simulations of dynamical-capture NSNS mergers with
nonspinning NSs were performed in [39, 40] (see also
[50, 51] for work on BHNS eccentric mergers with non-
spinning NSs, and [52, 53] for eccentric NSNS mergers
within Newtonian gravity). These studies revealed sev-
eral interesting properties of such events, including the
distinctive character of the GW signals, the excitation of
f-mode oscillations during close encounters, the depen-
dency on whether or not a BH forms immediately upon
merger on the initial impact parameter of the encounter
(in addition to the dependence on the NS EOS, a fact
well known from studies of quasi-circular mergers), and
the fact that the impact parameter and EOS can signifi-
cantly affect the properties of the BH accretion disk (in
the case of prompt BH formation) and ejected material.

However, as pointed out in [54], mergers stemming
from dynamically assembled NS binaries in GCs likely
involve rapidly spinning NSs, simply because the NSs
residing in GCs are primarily found to be millisec-
ond pulsars (MSPs), and MSPs have very long in-
ferred spin-down timescales. We briefly recall the argu-
ments presented in that reference here. Approximately
83% of all the observed pulsars in GCs are MSPs [55],

the fastest spinning of which has a spin period Ps of
∼ 1.4 ms. This is connected to the fact that GCs
are ideal environments for forming low-mass X-ray bi-
naries (LMXB) [56] where mass and angular momen-
tum can be transferred to the NS from its compan-
ion, spinning the star up to a period of milliseconds.
This process, referred to as pulsar “recycling,” typi-
cally occurs on the pulsar spin-relaxation time tspin ∼
107(Ps/2.5ms)−1(Ṁ/0.1ṀE)

−0.87yr (see e.g. [57]),

where Ṁ is the accretion rate and ṀE the Eddington
accretion rate. Thus, after a LMXB forms, NS spin-up
occurs very rapidly until the so-called spin-equilibrium

value Ps,eq ≃ 2.0B
6/7
8 (Ṁ/0.1ṀE)

−3/7R
18/7
NS,15 ms [58, 59],

where B8 is the NS polar magnetic field in units of 108

G and RNS,15 the NS radius in units of 15 km. In the
above estimates, a canonical NS mass of MNS = 1.4 M⊙

is assumed.

MSPs tend to have low inferred polar magnetic field
strengths (3 × 107 − 3 × 108 G [57]), and hence have
very long magnetic dipole spin-down timescales tsd ∼
3.0I45B

−2
8 P 2

s,2.5R
−6
NS,15Gyr [54], where I45 is the NS mo-

ment of inertia in units of 1045g cm2 and Ps,2.5 the spin
period in units of 2.5 ms. Since the estimates in [35] sug-
gest a rate of NSNS collisions occurring in GCs of ∼ 10
Gyr−1 per Milky Way-equivalent galaxy, the long amount
of time required for spin down makes it seem likely that
a portion of such mergers will involve MSPs.

To date, only one confirmed NSNS system in a GC
is known: the PSR B2127+11C in M15, which is a 30
ms pulsar with eccentricity e ≃ 0.68 [60]. There is also
a candidate NSNS system PSR J1807-2500B in the GC
NGC 6544 with a 4.19 ms pulsar, eccentricity e ≃ 0.75,
and the most massive companion (> 1.2 M⊙) known or-
biting a fully recycled pulsar. Here it is unlikely that the
progenitor of the companion could have recycled the pul-
sar [61], thus giving some observational evidence that dy-
namically assembled NSNS binaries with highly spinning
NSs can indeed form in GCs. A more detailed estimate
of expected distribution of spins for binary NSs at the
time of merger would necessitate a dynamical encounter
calculation along the lines of [36], but also keeping track
of the changing NS spins and magnetic field strengths.

For spinning NSs with periods on the order of millisec-
onds, spin strongly affects the NS structure — among
other things, making the star less compact and provid-
ing additional centrifugal support against collapse — and
in binaries it can change the orbital dynamics [54, 62].
Thus, realistic modeling of eccentric NSNS mergers as
they may arise in GCs should treat NS spin. To date,
the only simulations in full GR accounting for the NS
spin self-consistently have focused either on quasicircu-
lar NSNS mergers, e.g. [27, 62–65] (see also [66, 67]), or
eccentric BHNS mergers [54]. These studies showed the
importance even moderate NS spins can have on deter-
mining the dynamics of the merger and its outcome. On
the other hand, recent work in [68] adopting the confor-
mal flatness approximation to GR simulated quasicircu-
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lar NSNS mergers to study the effects of NS spin aligned
with orbital angular momentum on the post-merger oscil-
lation frequencies of hypermassive NSs (HMNSs) found
that unless the NS spin is very high, the oscillation fre-
quencies are practically unaffected. However, spin in-
creases the uncertainty of inferring the NS EOS from
these oscillation modes.

Here we perform a companion study to [54] with the
goal of understanding the role of spin in eccentric NSNS
mergers. We show that spin can have a number of impor-
tant effects including: significantly affecting the amount
and velocity distribution of the unbound material pro-
duced post-merger; modifying the qualitative structure
of the GW signal; and determining whether a merger
will produce a long-lived, but transient, HMNS versus
promptly collapsing to a BH (which also affects the two
aforementioned characteristics). A remarkable feature
discovered in a number of our simulations (and first re-
ported in [69]) is that the HMNSs formed after merger
develop the so-called one-arm (m = 1) spiral instability.

The one-arm instability in rotating stars was first dis-
covered using hydrodynamic simulations of Newtonian
polytropes with soft equations of state and a high de-
gree of differential rotation [70]. Guided by Newto-
nian hydrodynamic simulations, in [71] it was suggested
that a toroidal density configuration is necessary to trig-
ger the instability, and based on observations reported
in [72], [73] argued that like the low-T/|W | dynamical
(bar-mode) instability [74, 75], the one-arm spiral insta-
bility develops near the corotation radius, i.e., the locus
where the angular frequency of the unstable mode coin-
cides with a local rotational angular velocity of the fluid.
This expectation seems to be confirmed both by Newto-
nian [76] and general-relativistic [77] simulations of iso-
lated differentially rotating stars. In [76] it was further
shown that the one-arm spiral instability can develop
even for stiff EOSs (Γ = 2), as well as for non-toroidal
configurations, as long as the radial vortensity profile ex-
hibits a local minimum. In [78], m = 1 modes were trig-
gered in general-relativistic magnetohydrodynamic sim-
ulations of the low-T/|W | instability of isolated stars. In
addition, the instability has been found to occur in the
neutron star cores formed in hydrodynamic core-collapse
simulations [79–81]. Although growing m = 1 modes in
the equatorial plane of HMNS remnants of quasicircular
NSNS mergers with spinning neutron stars were reported
in [63], they were explained to arise due to mode cou-
plings. Here we expand upon the results presented in [69]
by probing the instability with a more complete param-
eter survey and performing a resolution study. While we
find growing m = 1 density modes in many cases follow-
ing merger, the one-arm spiral instability is fully devel-
oped (the m = 1 azimuthal density mode dominates over
all other modes) by the termination of our simulations
only for cases where the total angular momentum (spin
plus orbital) remaining at merger J/M2 ∼ 0.9−1.0. This
part of the parameter space is also of interest for quasi-
circular mergers. The characteristic growth time of the

instability is on the order of milliseconds and saturates
∼ 10 ms following merger. We demonstrate that the in-
stability is imprinted on the GWs from the post-merger
phase. In particular, the GW signal is quasi-periodic,
with the GW fundamental frequencies being commensu-
rate with the dominant frequencies of azimuthal density
modes. If the one-arm instability persists in HMNS rem-
nants that live on the order of a second, the GWs could
be detectable by aLIGO at ∼ 10 Mpc and by the Ein-
stein Telescope ∼ 100 Mpc. We speculate as to how the
instability may help to constrain the EOS of the matter
above nuclear saturation.
The remainder of the paper is structured as follows.

In Sec. II we describe the parameters we consider and
our numerical methods for constructing initial data and
evolving spinning binary NSs. In Sec. III we present
our simulation results, including detailing the dynamics,
properties of post-merger remnants, GW signals, poten-
tial EM counterparts, as well as a comprehensive analy-
sis of the development of the one-arm spiral instability,
and how NS spin affects all of the above. We conclude
in Sec. IV. Geometrized units where G = c = 1 are used
throughout, unless otherwise specified. Greek indices run
from 0 to 3 and Latin indices from 1 to 3.

II. NUMERICAL APPROACH

We use the code described in [82] to evolve the GR-HD
equations and simulate NSNS mergers with spinning NSs.
We solve the Einstein field equations in the generalized-
harmonic formulation with fourth-order accurate finite
differences. The hydrodynamic equations are evolved in
conservative form using high-resolution shock-capturing
techniques as specified in [51].

A. Initial conditions

We construct initial data for our evolutions that satis-
fies the constraint equations as explained in [69, 83]. We
begin by constructing equilibrium solutions for isolated
rigidly-rotating NSs with the code described in [84, 85].
We then determine the free-data for the metric and mat-
ter fields by superposing two such boosted NS solutions,
with the velocities and positions of a marginally unbound
Newtonian orbit at a separation of d = 50M (∼ 200
km; where M is the total ADM mass), and solve the
constraints. At this initial separation, the NSs maintain
their equilibrium profiles with only small-amplitude per-
turbations excited such that the maximum density os-
cillates with δρmax/ρmax . 5%. The NS EOS we use
is the piece-wise polytrope labelled “HB” in [86], which
yields a maximum mass for nonspinning neutron stars of
2.12M⊙—the Tolman-Oppenheimer-Volkov (TOV) limit.
Using the code of [84, 85] we find that when allow-
ing for maximal uniform rotation the maximum mass
(also known as the “supramassive” limit) for the HB
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TABLE I. Properties of isolated NS models considered in this
work. Listed are the dimensionless NS spin aNS, spin period
Ps in ms, rest-mass M0 in M⊙, circumferential equatorial ra-
dius RNS in km, compaction C = MNS/RNS, and ratio of
kinetic T to potential |W | energy. All models have a gravita-
tional mass of M = 1.35 M⊙.

aNS Ps(ms) M0(M⊙) RNS(km) C T
|W |

× 100

0.756 0.99 1.46 16.52 0.12 12.09

0.400 1.45 1.48 12.42 0.16 3.91

0.200 2.68 1.49 11.78 0.17 1.02

0.100 5.25 1.49 11.63 0.17 0.26

0.075 7.02 1.49 11.61 0.17 0.14

0.050 10.62 1.49 11.60 0.17 0.06

0.025 20.94 1.49 11.59 0.17 0.02

0.000 ∞ 1.49 11.58 0.17 0.00

EOS is 2.53M⊙, which is ∼ 19% larger than the TOV
limit – a result anticipated from the analysis presented
in [87]. To account for the possibility of heating due to
shocks, we also add a thermal component to the pres-
sure: Pth = 0.5ǫthρ0 where ǫth is the thermal part of the
internal specific energy and ρ0 is the rest mass density.

We fix the gravitational (ADM) mass of each NS to
MNS = 1.35 M⊙, and consider NSs with dimensionless
spins aNS = JNS/M

2
NS = 0, 0.025, 0.05, 0.075, 0.1, 0.2,

0.3, 0.4, and 0.75. As a result, the total ADM mass of
the binaries we construct is ∼ 6% larger than the supra-
massive limit mass. In Table I we list several properties
of the NS models we consider in this work. The spin pe-
riods of the rotating models cover the range of observed
GC MSPs. The ratio of kinetic to gravitational potential
energy T/|W | for our spinning NS models is ≤ 0.12, and
thus all of these models are stable against the develop-
ment of the dynamical bar mode instability [88, 89]. The
most rapidly spinning NS considered here has ratio of po-
lar to equatorial radius of rpo/req = 0.55, slightly above
the mass-shedding limit of this EOS of rpo/req = 0.543.
For the simulations considered here, we restrict ourselves
to cases where the NS spin is either aligned or anti-
aligned with the orbital angular momentum of the system
(the latter indicated by a negative value of aNS).

In addition to the NS spin, we also vary the initial im-
pact parameter of the binary. We label this parameter by
the periapse distance rp of the corresponding marginally
unbound Newtonian orbit (which will differ from the ac-
tual periapse of the binary, some of which, for example,
merge on the first encounter). Here we consider cases
with rp/M ∈ [5, 10] (see Table II for a list of all cases
excluding those with rp/M = 10, which were not fol-
lowed through merger). For computational expediency,
we focus on cases with smaller periapse values, since cases
with larger periapse values will undergo a series of close
encounters with lengthy elliptic orbits in between before
finally merging.

B. Diagnostics

In the analysis below, and in particular for studying
the evolution of the hypermassive NS that forms post-
merger in some cases, we will make use of several quan-
tities which we define here. One is the complex az-
imuthal mode decomposition of the conserved rest-mass
density as a function of cylindrical coordinate radius

(̟ =
√

x2 + y2) and z

Cm(̟, z) =
1

2π

∫ 2π

0

ρ0u
0
√−geimφdφ, (1)

where φ is the azimuthal angle in cylindrical coordinates,
and this quantity integrated throughout the star

Cm =

∫

ρ0u
0
√
−geimφd3x, (2)

where uµ is the fluid 4-velocity, and g the determinant of
the spacetime metric. We also track the xy-component
of the vorticity 2-form

Ωµν = ∇µ(huν)−∇ν(huµ) (3)

on the equatorial plane. Here ∇µ is the covariant deriva-
tive and h = 1+ǫ+P/ρ0 is the specific enthalpy, where ǫ
is the internal specific energy and P the pressure. In ad-
dition to the above, we compute the ratio of total kinetic
(Tkin) or rotational kinetic (Trot) energy to the gravita-
tional potential energy |W |, where [90]

Tkin =
1

2

∫

T 0
iv

i√−gd3x, (4)

vi = ui/u0,

Trot =
1

2

∫

T 0
φv

φ√−gd3x, (5)

and

W = M0 + Eint + Tkin −MADM. (6)

M0 is the rest-mass and Eint is the internal energy

Eint =

∫

ρ0u
0ǫ
√−gd3x. (7)

In Eqs. (4) and (5), T µ
ν is the stress-energy tensor of the

perfect fluid. Equations (1), (2) and (5) are computed in
a coordinate center-of-mass frame of the HMNS whose
spatial coordinates are

xi
cm =

1

M0

∫

xiρ0u
t√−gd3x. (8)

We caution that the above diagnostics are not gauge-
independent, and Eqs. (4)-(7) are strictly applicable
only in stationary and axisymmetric spacetimes, where
Eqs. (5)-(7) can be shown to be gauge invariant (see
e.g. [23] p. 464 and [84, 85]). However, they are helpful
in illustrating various features of the instability and com-
paring them to previous studies. In addition, following
merger the HMNS reaches a quasi-steady state, and the
spacetime is not too far from being axisymmetric.
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TABLE II. Summary of simulations followed through merger

rp
M

aNS,1 aNS,2
JADM

M2

a EGW×100

M
b JGW×100

M2

c 〈ǫth〉
d Eth

Eint

e M0,u
f 〈v∞〉 g Ekin,51

h L41
i tpeak

j Fν
k tF

l τmin
m

5.0 0.00 0.00 0.77 1.03 6.66 11 0.02 0.42 0.05 0.36 0.04 0.08 1.3 BH

5.0 -0.20 0.20 0.77 1.01 6.59 14 0.03 0.43 0.09 0.43 0.05 0.14 1.5 BH

5.0 0.05 0.05 0.79 1.12 7.12 10 0.02 0.40 0.05 0.35 0.04 0.07 1.4 BH

5.0 0.00 0.20 0.82 1.22 7.61 12 0.05 0.42 0.11 0.52 0.06 0.16 1.7 BH

5.0 0.10 0.10 0.82 1.23 7.69 22 0.03 0.35 0.06 0.40 0.05 0.05 1.8 BH

5.0 0.00 0.40 0.87 2.25 16.6 24 0.29 4.14 0.24 3.87 3.66 0.46 1.29 13.5 24

5.0 0.20 0.20 0.87 3.40 24.5 21 0.23 4.74 0.23 3.52 3.81 0.48 1.01 14.3 22

5.0 0.40 0.40 0.97 1.40 11.4 25 0.33 2.83 0.19 1.28 2.64 0.33 0.20 14.6 11

6.0 0.00 0.00 0.84 3.14 23.1 28 0.27 3.51 0.26 3.29 3.48 0.43 1.30 11.5 8

6.0 0.00 0.40 0.94 1.58 13.1 23 0.31 1.28 0.24 0.99 2.00 0.25 0.31 8.9 24

6.0 0.40 0.40 1.04 0.94 8.92 21 0.33 0.37 0.13 0.10 0.78 0.10 0.01 11.7 23

8.0 -0.40 -0.40 0.78 2.37 15.4 6 0.26 0.37 0.48 1.13 0.14 0.51 3.3 BH

8.0 0.00 0.00 0.98 2.11 17.8 23 0.28 0.35 0.20 0.20 0.98 0.12 0.04 6.6 26

8.0 -0.40 0.40 0.98 0.83 9.07 38 0.42 4.11 0.17 1.59 3.08 0.39 0.21 17.4 8

8.0 -0.10 0.10 0.97 1.58 14.8 22 0.29 0.29 0.22 0.19 0.92 0.12 0.05 5.6 9

8.0 0.025 0.05 0.99 1.68 16.0 20 0.28 0.65 0.19 0.29 1.28 0.16 0.05 8.6 32

8.0 0.05 0.05 1.00 1.51 15.0 20 0.28 0.78 0.19 0.33 1.39 0.17 0.05 9.2 27

8.0 0.05 0.075 1.00 1.36 14.0 18 0.28 0.84 0.19 0.36 1.46 0.18 0.06 9.3 32

8.0 0.10 0.10 1.02 1.58 15.6 18 0.25 1.13 0.18 0.46 1.66 0.21 0.07 10.5 40

8.0 0.00 0.40 1.075 n 1.01 11.0 23 0.32 5.96 o 0.182 p 2.26 q 3.80 0.48 0.34 18.1 23

8.0 0.20 0.20 1.07 1.37 14.7 15 0.27 3.39 0.17 1.10 2.78 0.35 0.14 15.9 12

8.0 0.40 0.40 1.17 0.82 10.9 13 0.24 8.07 0.18 3.01 4.44 0.56 0.47 19.7 20

8.0 0.75 0.75 1.35 0.46 8.33 12 0.27 16.73 0.22 9.00 7.00 0.87 2.29 21.0 16

9.0 0.40 0.40 1.24 2.58 41.0 7 0.12 6.28 0.12 1.06 3.22 0.40 0.06 26.8 16

For rp/M ≥ 10.0 only the first fly-by encounter was modeled and these cases are not listed.

a
JADM = global angular momentum, M = total ADM mass

b Total energy emitted in GWs through the r = 100M surface. For HMNS cases, we only include the first 8 ms after merger.
c Total angular momentum emitted in GWs. For HMNS cases, we only include the first 8 ms after merger.
d Rest-mass density weighted average of the thermal specific energy in units of MeV per neutron mass.
e Ratio of thermal (Eulerian) internal energy to total internal energy measured ≈ 7 ms after merger.
f Unbound rest mass in percent of M⊙.
g Rest-mass averaged asymptotic velocity of unbound material.
h Kinetic energy of ejecta in units of 1051 erg.
i Kilonovae bolometric luminosity in units of 1041 erg s−1 using Eq. (10).
j Kilonovae luminosity rise time in units of days using Eq. (9).
k Specific brightness of radio waves from interaction of ejecta with the ISM in units of mJy using Eq. (12). for n0 = 0.1 cm−3,
ν = 1 GHz, d = 100 Mpc.

l Rise time of Ejecta-ISM signal in units of years using Eq. (11).
m Lower limit on the HMNS lifetime in ms set by the simulated time and measured from the time the stars make contact immediately

before merger. BH implies that a BH formed promptly after merger.
n Richardson extrapolated value using all three resolutions is 1.071.
o Richardson extrapolated value using all three resolutions is 5.88.
p Richardson extrapolated value using all three resolutions is 0.177.
q Richardson extrapolated value using all three resolutions is 2.19.

C. Resolution

In the simulations described here we used adaptive
mesh refinement (AMR), and include flux corrections to
avoid breaking the conservative nature of the hydrody-
namic evolution at AMR boundaries [82]. The AMR hi-
erarchy contains six levels that are periodically adjusted
during the evolution based on estimates of the metric

truncation error. Most simulations were performed using
a base-level resolution with 2013 points, and finest-level
resolution with approximately 100 points covering the
(nonspinning) NS diameter. For several cases (rp/M = 8,
aNS,1 = 0, aNS,2 = 0.4, and spin parameters in Sec.III D
of relevance to the one-arm instability) we also ran sim-
ulations at 0.64 and 1.28× the resolution, to establish
convergence and estimate truncation error. Results from
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one such resolution study are shown in Fig. 1. There we
demonstrate that the constraint part of the field equa-
tions are converging at the expected order (second order
before merger and at latter times, and first order during
the merger when shocks form), and indicate the gravita-
tional wave signal and amount of unbound material as a
function of asymptotic velocity, measured for this case at
the three different resolutions. More convergence results
are presented later in Sec.III D.

III. RESULTS AND DISCUSSION

We simulate a number of binary neutron star mergers
with rp/M ∈ [5, 10] and various values of NS spin, finding
that for the cases considered, those with rp/M ≤ 8 merge
on the initial encounter, while those with rp/M ≥ 9 go
back out on an elliptic orbit after the fly-by. In Figs. 2
and 3 we show sequences of snapshots of the equatorial
rest-mass density in order to illustrate the dynamics of
some representative cases. In what follows we present
several results: in Sec. III A we demonstrate how the NS
spin angular momentum can affect the lifetime of the
HMNS formed post-merger; in Sec. III B we comment on
the effect of spin on the GW signal, both from fly-bys,
and from the evolution of the HMNS; and in Sec. III C
we explain how the amount of material remaining outside
the merger remnant varies with NS spin, and the effect
this will have on possible EM transients from such merg-
ers. Finally, in Sec. III D we discuss in detail the one-arm
instability arising in the resulting HMNS for a number of
cases, including how this affects the post-merger dynam-
ics and GWs from these cases.

A. Prompt collapse versus hypermassive neutron

star formation

In agreement with the results in [40], we find that the
eccentric NSNS mergers can result either in the prompt
formation of a BH, or the creation of a HMNS, and that
this outcome depends on the impact parameter. How-
ever, here we also find that NS spin can have a signifi-
cant effect on whether prompt collapse to a BH occurs.
In particular, for rp/M = 5 we find that if the NS spins
are aNS,i . 0.2, i = 1, 2 then prompt collapse to a BH oc-
curs. However, for spins aNS,i ≥ 0.2 a long lived HMNS
forms. In other words, moderately high NS spins can
prevent prompt collapse to a BH and prolong the life-
time of the HMNS. In these cases where a HMNS forms,
since the total mass of the system is above the supra-
massive limit, the prompt collapse to a BH is prevented
by some combination of thermal energy and centrifugal
support. As illustrated in Table II, there is substantial
shock heating and in most HMNS cases ∼ 30% of the in-
ternal energy is thermal. As also illustrated there, most
of the angular momentum of the system remains unradi-
ated. The HMNS cases will eventually undergo delayed
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FIG. 1. Resolution study for the case with rp/M = 8 and
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gence of the L2 norm of the constraints Ca := �xa − Ha,
scaled assuming first-order convergence. Before the merger
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function of resolution.
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collapse due to some combination of loss of thermal pres-
sure support from cooling [24] and centrifugal support
due to magnetic braking of the differential rotation (nei-
ther of which we model), as well as GW emission of an-
gular momentum [22].

To probe whether centrifugal support plays a crucial
role in the HMNS remnant in the aNS,i = 0.2 case we per-
formed a rp/M = 5 run with spins of the same magnitude
but antialigned, i.e., aNS,2 = −aNS,1 = 0.2. We find the
outcome to be the prompt formation of a BH. Since this
configuration has almost the same angular momentum
as the rp/M = 5, aNS,i = 0.0 case, which also promptly
forms a BH, total angular momentum at merger seems to
be the determining feature, as opposed to, for example,
the different compactions of spinning versus nonspinning
NSs. In Fig. 4 we show the fraction of internal energy
that is thermal for several of the rp/M = 5 cases. This
indicates that for the cases that form HMNSs, most of
the thermal energy is generated after the initial merger,
and after the time when the lower spin cases have already
collapsed to BHs. Once the hot HMNS forms, however,
it may be necessary for it to cool [24, 91], as well as lose
angular momentum, in order to collapse. The conclusion
that centrifugal support is important here is further sup-
ported by the rp/M = 8, aNS,1 = aNS,2 = −0.4 case,
which despite having more orbital angular momentum
than the rp/M = 5 case, also promptly collapses to a
BH.

These results demonstrate that following the NSNS
merger, NS spin not only can prevent prompt collapse
to a BH, but it can also trigger the collapse if the spins
are antialigned with the orbital angular momentum. The
data listed in Table II suggests that for MNS,i = 1.35M⊙

NSs which are constructed with the HB EOS, these ec-
centric mergers will form a BH promptly if the initial
total angular momentum of the NSNS is below the value
JADM/M2

ADM ≃ 0.82. The amount of angular momen-
tum carried off by GWs up until merger for these eccen-
tric mergers is JGW/M2

ADM . 0.03. Thus, the thresh-
old value of the total angular momentum at merger for
prompt collapse to a BH is JADM/M2

ADM|thres ≃ 0.79.
This demonstrates yet another example where cosmic
censorship is generically respected in astrophysical sce-
narios. Using this threshold value we may predict that
for NS spins aNS,i = −0.06 for MNS,i = 1.35M⊙ NSs,
the rp/M = 6 case will collapse promptly to a BH. We
can also use JADM/M2

ADM|thres to make predictions for
quasicircular NSNS binaries. For example, at the termi-
nation point for sequences of quasicircular, irrotational
NSNSs in quasiequilibrium with compactions C ≥ 0.16,
the ADM angular momentum satisfies JADM/M2

ADM ≃
0.9 [92]. Thus, spins aNS,i = −0.2 for MNS,i = 1.35M⊙

NSs in quasicircular binaries constructed with the HB
EOS may trigger prompt collapse to a BH. This is
because after adding spins the total angular momen-
tum near the termination point for quasiequilibrium se-
quences may be JADM ∼ 0.9M2

ADM−2×0.2(MADM/2)2 =
0.8M2

ADM ∼ JADM|thres, and at merger JADM will be re-

duced by the amount of angular momentum carried off by
GWs. However, careful calculations in full GR are nec-
essary to confirm the above predictions, which we intend
to do in the future.

B. Gravitational Waves

Spin also affects the gravitational wave signal, both
from the final merger, and to some extent the signal from
non-merging close encounters. In Figs. 5 and 6 we show
the dominant contribution to the GW signal for some
example cases with rp/M = 5, 8, 9, and 10; see also Ta-
ble II. For rp/M = 10, the first encounter (the only one
simulated) is a non-merger fly-by, and the apparent trend
is that the higher the initial NS spins, the smaller the am-
plitude of the GWs during the pericenter passage. This
is not unexpected as higher spin implies a less compact
neutron star for the same gravitational mass. The fly-
by cases also clearly demonstrate that f-mode oscillations
are excited following the close encounter. GWs from such
f-mode oscillations were first proposed in [93] and ana-
lyzed with numerical relativity simulations in [39]. In
the cases we study, we find that the higher the initial
NS spins, the larger is the initial GW amplitude corre-
sponding to these f-mode oscillations. This is likely due
to the fact that the tidal perturbations impose stronger
oscillations on less compact stars. The frequency of the
f-modes is a weak function of the NS spin (see e.g. [89])
– spin effects seem to become important only for NS spin
angular frequencies above ∼ 80% of the Keplerian (mass-
shedding) limit. The top panel of Fig. 6 shows one case
with rp/M = 9 that undergoes multiple close encounters,
exciting large f-mode oscillations, before finally merging
and creating a HMNS. Though such cases are more com-
putationally expensive to follow through merger, they
will be the more common occurrence among eccentric
mergers.
Given the relatively low amplitude and high frequency

of the f-mode GW signals, by themselves they may not
be readily detectable. However, insofar as they extract
energy and angular momentum from the orbit and thus
decrease the successive times between primary bursts in
a multiple encounter merger, they could be measurable
indirectly. We leave it to future work to ascertain how
plausible their detectability is, and whether, for example,
properties of the EOS or NS spin could be measured via
the inferred strength of f-mode excitations.
Figure 5 also demonstrates that there is significant

variability in the amplitude and frequency of the GW
oscillation modes that arise when a HMNS forms follow-
ing merger (for rp/M = 5, 8, and 9); see also Fig. 7 where
we plot the GW power spectra of several merger cases.
It is difficult to extract clear trends on how the various
initial parameters influence this variability, in particular
given the turbulent-like nature of the post-merger phase,
which in turn prevents establishing error bars on some
measurable features using convergence studies. However,
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FIG. 2. Equatorial rest-mass density snapshots for representative cases. Top row (rp/M = 5, aNS,1 = aNS,2 = 0) from left
to right: (t ≈ 192M ≈ 2.6 ms) the NSs make contact; (t ≈ 216M ≈ 2.9 ms) a BH apparent horizon forms; (t ≈ 246M ≈ 3.3
ms) the BH accretes the small disk; (t ≈ 362M ≈ 4.8 ms) little matter is left outside the BH at the end of the simulation.
Second row (rp/M = 5, aNS,1 = aNS,2 = 0.2) from left to right: (t ≈ 192M ≈ 2.6 ms) the NSs make contact; (t ≈ 276M ≈ 3.7
ms) the two cores bounce, launching shocks and ejecting matter outwards; (t ≈ 621M ≈ 8.3 ms) the cores re-coalesce and a
HMNS forms with a bar-shaped core surrounded by an extended envelope and disk; (t ≈ 1140M ≈ 15.2 ms) the one-arm spiral
instability is not evident. Third row (rp/M = 6, aNS,1 = 0.4, aNS,2 = 0.0) from left to right: (t ≈ 197M ≈ 2.6 ms) the NSs
make contact (the spinning NS is the star on the left); (t ≈ 270M ≈ 3.6 ms) the two cores bounce while the spinning NS (now
on the right) is being disrupted ejecting matter outward; (t ≈ 722M ≈ 9.6 ms) the cores recollapse forming a HMNS with an
egg-shaped core, surrounded by an extended envelope and disk; (t ≈ 1165M ≈ 15.5 ms) the one-arm spiral instability is not
evident. The radius of each NS prior to merger (RNS ≈ 12 km) sets the scale.

in some cases, qualitative properties can be deduced, the
most striking of which is when initial conditions lead to
a HMNS that is unstable to the m = 1, one-arm insta-
bility. We elaborate on this aspect of the GW signature
below in Sec. III D.

C. Post-merger matter distribution and

electromagnetic counterparts

As a general trend, we find that when the NSs are
spinning, the amount of matter that is unbound from the
system, and hence may power an electromagnetic tran-
sient, increases. We list the total rest-mass of the ejecta,
along with the mass-averaged velocity, shortly following
merger for the various cases in Table II, and for example,
for rp/M = 5 the ejecta rest-mass can reach ∼ 0.1M⊙

even for moderately high NS spins of aNS = 0.2, which is
an order of magnitude more than the corresponding non-
spinning case. Similar results hold true for rp/M = 8.

This trend with initial NS spin does not seem to hold
for rp/M = 6, as larger initial spin apparently leads to
smaller ejecta mass. This may be related to the fact that
in the rp/M = 6 case with nonspinning stars, the two
NS cores merge and then bounce strongly, ejecting a sig-
nificant amount of mass. This bounce is weaker in the
cases with spin, and as a result matter is ejected only
from tidal tails. In that sense, for this particular case
spin makes the collision milder.

In the cases where a BH forms promptly after merger,
the amount of rest-mass that remains bound and makes
up the BH’s accretion disk ranges from 10−4 M⊙ to
3×10−3 M⊙ in the cases considered here, which is compa-
rable to the amount found in quasicircular NSNS merg-
ers leading to prompt collapse to a BH (see e.g. [96, 97]).
Taking the more massive end of this range, and assum-
ing a disk lifetime equal to the average sGRB timescale
∼ 0.2 s yields an accretion rate of ∼ 0.005M⊙ s−1. Fur-
ther assuming an average conversion efficiency of 1%
for converting this to gamma-ray jet luminosity gives
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FIG. 3. Equatorial density snapshots for representative cases. Top row (rp/M = 8, aNS,1 = aNS,2 = 0.025) from left to right:
(t ≈ 212M ≈ 2.8 ms) the NSs make contact for the first time; (t ≈ 277M ≈ 3.7 ms) the two stars merge, shearing and ejecting
matter outward from the outer edges of the two stars; (t ≈ 591M ≈ 7.86 ms) shortly after a HMNS forms with an ellipsoidal core
surrounded by an extended envelope and disk; (t ≈ 1160M ≈ 15.4 ms) the one-arm spiral instability develops (see Sec. III D)
giving rise to an m = 1 deformation. Bottom row (rp/M = 8, aNS,1 = aNS,2 = −0.4) from left to right: (t ≈ 207M ≈ 2.8 ms)
the NSs make contact for the first time; (t ≈ 260M ≈ 3.5 ms) an apparent horizon is found for the first time; (t ≈ 288M ≈ 3.8
ms) the BH accretes matter while some matter is ejected; (t ≈ 500M ≈ 6.6 ms) little matter (∼ 10−3M⊙) is left outside the
BH at the of the simulation. The radius of each NS prior to merger (RNS ≈ 12km) sets the scale.
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FIG. 4. The fraction of internal energy that is thermal (as
measured by an Eulerian observer) as a function of time for
cases with rp/M = 5 and various spins. The truncated curves
are the cases that promptly collapsed to BHs around merger.
For the cases that do not promptly form BHs, most of the
heating occurs later in the evolution, after the time when
smaller spin cases have already collapsed to BHs.

a sGRB luminosity of 1050erg s−1 — on the lower end
of observed sGRB luminosities. Typical accretion rates
toward the end of the simulations forming BHs are ∼
0.01−0.05M⊙ s−1, implying disk lifetimes of up to ∼ 0.1s.

However, proper treatment of magnetic fields, which are
not accounted for here, and of the resulting magnetohy-
drodynamic turbulence, are necessary to accurately de-
termine the accretion rate and disk lifetime, and whether
jets can be launched from these systems [20, 98].

As evident in Fig. 8, which shows the asymptotic veloc-
ity distribution of the unbound matter for rp/M = 5 and
8, there is significant variability of the outcome depend-
ing on both the initial NS spin and the periapse distance.
In the cases where a BH forms promptly after merger,
the amount of unbound material is markedly suppressed.
When a HMNS forms, spin also seems to enhance the
mass in the high velocity tail of the ejecta. This interest-
ing result may have consequences for EM signatures that
may accompany these events. In particular, in [14] it was
suggested that ejected, neutron-rich matter traveling at
velocities v & 0.5c may expand so rapidly that most neu-
trons may avoid capture (slower moving ejecta will still
capture neutrons). As a result free neutron beta-decay
may power a potentially observable EM signal with rise
time of order a few hours and peaking in the U-band
even if the ejecta at such high velocities has a mass as
low as ≈ 10−4M⊙. The results in Fig. 8 thus suggest ec-
centric mergers, especially with rapidly spinning NS, may
offer favorable conditions for producing EM counterparts
powered by free neutron decay.
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FIG. 5. The l = m = 2 mode of the Newman-Penrose scalar
Ψ4 representing the GWs. The top and bottom panels show
the real part of Ψ4 from representative cases with rp/M = 5
and 8, respectively. The notation aNS1/2 = (A,B) implies
that spin aNS,1 = A and spin aNS,2 = B. Note the different
vertical scale between the two panels.

1. Kilonovae

The increase in the amount of ejected material with
increasing NS spin would also enhance the luminosity of
a kilonova (also called a macronova) that may occur af-
ter merger. Unbound NS material travelling at speeds
v . 0.5c will decompress and may form heavier elements
via the r-process. A kilonova results from subsequent
fission of the shorter-lived radioactive products of the r-
process [99, 100]. Though it was originally thought a
typical kilonovae would peak in the optical band [101],
recent calculations suggest that because of contributions
from the lanthanides, the opacity in the r-process ma-
terial is much greater than in iron-rich ejecta from su-
pernovae [102, 103], resulting in a dimmer and redder
transient that peaks in the infrared. The results of [102]
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FIG. 6. The l = m = 2 mode of the Newman-Penrose
scalar Ψ4 representing the GWs. The top panel show the
real part of Ψ4 of the one rp/M = 9 case studied, and the
bottom representative cases from rp/M = 10. The initial
encounter in all these examples is a fly-by leading to a bound
system, though only for the rp/M = 9, aNS1/2 = 0.4 case
did we followed the subsequent evolution all the way through
merger (here, as indicated by the GW signal, a second fly-by
occurs roughly 10 ms after the first, and after that a couple of
grazing close encounters before the merger at ≈ 19 ms). The
notation aNS1/2 = (A,B) implies that spin aNS,1 = A and
spin aNS,2 = B. Note the different vertical and horizontal
scales between the two panels.

suggest a rise time of

tpeak ≈ 0.25

(

M0,u

10−2M⊙

)1/2
( v

0.3c

)−1/2

d, (9)

measured from the merger, and peak luminosities of

L ≈ 2× 1041
(

M0,u

10−2M⊙

)1/2
( v

0.3c

)1/2

erg s−1 (10)

Table II lists these estimates using the corresponding
properties from the cases studied here. As can be seen
in the table, there is large variation in estimated kilo-
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FIG. 7. The characteristic strain, defined as hc = |h̃|f where

h̃ is the Fourier transform of the strain and f is frequency,
as observed at a distance of 50 Mpc and on-axis. In the top
panel we show the rp/M = 8, aNS,1 = 0, aNS,2 = 0.4 case at
the three different resolutions, and, for the medium resolution
case, the resulting curve when the waveform is extended from
12.5 to 26.3 ms. In the bottom panel we show various cases
with different spins. For comparison, we also show the pro-
posed broad-band aLIGO sensitivity curve [94] and proposed
Einstein Telescope (ET-D) sensitivity curves [95].

novae peak timescales and luminosities across the dif-
ferent cases when the NS spin is taken into account. For
rp/M = 5, this variation is indirectly attributable to spin
insofar as it contributes to prompt BH versus HMNS for-
mation. For rp/M = 8, spin causes variation in these
estimated kilonovae properties by a factor of a few over
the range simulated, with higher initial spin tending to
produce brighter, longer-lived counterparts. Thus the
detection of kilonovae from NSNS mergers with spin-
ning NSs may be easier not only because they tend to
be brighter, but also because of the longer light curve
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FIG. 8. Distribution of the asymptotic velocity of unbound
rest-mass, binned in increments of 0.05c, and computed ≈ 7.0
ms post-merger for rp/M = 5 (top) and rp/M = 8 (bottom)
and various spins.

rise time more events will straddle the observation times
of EM surveys. Factors of a few in luminosity could also
make the difference between detection and non-detection
with planned surveys. For example, an L ∼ 1041erg s−1

kilonova near the edge of LIGO’s observable volume (at
200 Mpc) would translate to an r-band magnitude of 23.5
mag [102], i.e., one magnitude above the proposed LSST
survey sensitivity.

2. Radio signal from collision with interstellar medium

Another transient proposed to arise from material
ejected in compact object mergers is radio emission
when this material collides with the interstellar medium
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(ISM) [12]. Because of the large amount of kinetic energy
and mildly relativistic velocities of the ejecta in these
eccentric mergers, such signals will evolve more slowly
and require longer surveys to identify them as transients
compared to kilonovae or sGRBs. These signals typically
peak on timescales [12]

tF ≈ 6

(

Ekin

1051 erg

)1/3
( n0

0.1 cm−3

)−1/3 ( v

0.3c

)−5/3

yr

(11)
with brightness

F (νobs) ≈ 0.6

(

Ekin

1051 erg

)

( n0

0.1 cm−3

)7/8

(12)

( v

0.3c

)11/4 ( νobs
GHz

)−3/4
(

d

100 Mpc

)−2

mJy.

Here Ekin is the kinetic energy of the ejecta, νobs is the
observation frequency, d the distance to source, and we
estimate n0 ∼ 0.1 cm−3 as the approximate density in
the cores of GC [53]. As shown in Table II, using the es-
timates from the simulations gives a time to peak bright-
ness of around a year to a couple of decades, with the
luminosity varying by as much as a couple orders of mag-
nitude with spin for a fixed initial impact parameter.

3. R-process element limits on merger rates

Besides powering transients, another potentially ob-
servable effect of NS ejecta is the contribution it makes
to the abundance of r-process elements [21, 104]. Com-
pact object mergers are an attractive explanation since
the other major channel, core-collapse supernovae, has
difficulty accounting for observed abundances of heavy
elements on its own [105–107]. Dynamically assembled
binaries, which merge faster than primordial binaries,
may even be required to account for r-process mate-
rial in carbon-enhanced metal-poor stars [108]. Inverting
this argument, the observed heavy element abundances
can be used to place limits on merger rates as in [53]
(though it should be noted that these are strictly ap-
plicable only to the early universe and not necessarily
relevant for predicting GW event rates). The average
r-process production rate of ∼ 10−6 M⊙ yr−1 [109] per
galaxy limits the most extreme cases like the rp/M = 8,
aNS,1 = aNS,2 = 0.75 with M0,u ≈ 0.2 M⊙ to at most
∼ 5× 10−6 yr−1 per galaxy. Though as the NS spins are
unlikely to be near maximal in these mergers, if we as-
sume that a typical eccentric merger with spinning NSs
will have aNS,i = 0.1, then the ejecta masses are of or-
der 0.01 M⊙, and the implied merger limits of ∼ 10−4

yr−1 are comparable to the predicted rates for primordial
NSNS mergers [110].

TABLE III. Frequency fm=1, saturation time tsat (measured
from the time of merger until the mode dominates over the
m = 2 mode), and growth time τm=1 (time it takes for the
mode to grow from 1/4 to 1/2× it’s saturation amplitude) of
the one-arm spiral mode for various rp/M = 8 cases. Also
listed are the dominant frequencies of the m=2 (fm=2) and
m=3 modes (fm=3). The results are from the high-resolution
runs. Apart from the zero-spin case (for which the low res-
olution run collapsed to a BH), the maximum fractional dif-
ference in the saturation time among the different resolutions
is 30% (occurring for the aNS,1 = 0.025, aNS,2 = 0.05 case),
which may serve as a conservative error bar for these calcu-
lations. The measurement of the growth rate is noisier and
differs by up to a factor of 2 in some cases (see also Fig. 18).
The maximum fractional difference in the frequency of the
m = 1 mode among the different resolutions is 3%.

aNS,1 aNS,2 tsat τm=1(ms) fm=1 fm=2 fm=3(kHz)

0.000 0.000 19.5 2.0 1.77 3.53 5.24

0.025 0.025 9.9 2.0 1.74 3.47 5.15

0.025 0.050 7.4 1.2 1.72 3.44 5.11

0.050 0.050 10.7 1.2 1.75 3.37 5.24

0.050 0.075 6.2 0.8 1.75 3.27 5.19

D. One-arm spiral instabilities

An unexpected feature we find in the runs with
total dimensionless angular momentum at merger of
JADM/M2

ADM ∼ 0.9−1.0, and without a strong disparity
in the spins of the two merging NSs, is that the HMNSs
that form following merger are subject to the one-arm
(m = 1) spiral instability, first discovered in [70] for soft
EOSs in Newtonian hydrodynamic simulations. We find
growing m = 1 modes in cases involving lower eccentrici-
ties and higher spins as well, but the one-arm instability
does not develop there in the sense that the m = 2 az-
imuthal density mode remains greater until termination
of these simulations. The one-arm spiral instability was
first reported to occur in binary neutron star mergers
in [69], and here we expand upon the results presented
there, elaborating further on the features of the insta-
bility as it takes place in our eccentric NSNS mergers,
and including additional cases. We describe the onset,
growth, and saturation of the instability following the
merger (Sec. III D 1); detail how the matter dynamics
are imprinted on the GW signal (Sec. III D 2); show that
these results are consistent with the instability develop-
ing near the corotation radius (Sec. III D 3); and mea-
sure the ratio of kinetic to potential energy, comment-
ing on why these cases do not seem to be dominated by
the bar mode (Sec. III D 4). We also present resolution
study results (Sec. III D 5); and speculate on the effects
of different NS EOSs (Sec. III D 6) and magnetic fields
(Sec. III D 7), which we do not include in these simula-
tions.
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1. Matter Dynamics

The dynamics during the development of the insta-
bility is similar in all cases where it was observed by
the termination of our simulations, i.e. for rp/M =
8 and spins (aNS,1, aNS,2) = (0.0, 0.0), (0.025, 0.025),
(0.05, 0.05), (0.025, 0.05), (0.05, 0.075) and (0.1, 0.1) and
for rp/M = 6 and spins (aNS,1, aNS,2) = (0.4, 0.4). In-
terestingly, these cases have total angular momentum at
merger JADM/M2

ADM ∼ 0.9 − 1.0 and this part of the
parameter space is relevant for quasicircular NSNSs, too.
Results from the aNS,1 = aNS,2 = 0.05 case were pre-
sented in [69], though we recall them here for complete-
ness. In Figs. 9 and 10 we show equatorial density and
vorticity snapshots from the rp/M = 8, aNS,1 = aNS,2 =
0.025 and aNS,1 = 0.05, aNS,2 = 0.075 cases, respec-
tively. The snapshots from these cases demonstrate the
dynamics involved, and are representative of symmetric
and asymmetric initial spins, respectively. As in [69], we
find that the instability seems to be correlated with the
generation of vortices near the surface of the HMNS that
form due to shearing between the surface and the spiral
arms (second row in Figs. 9 and 10). These vortices then
spiral in toward the center of the star and create an un-
derdense center. In other words, from the turbulent-like
environment following merger a toroidal HMNS forms,
i.e., a HMNS whose maximum density does not reside at
its center of mass, something that it was argued in [71]
is necessary for the one-arm spiral instability to operate.

The rotating one-arm spiral nature of the feature that
develops in the HMNS is evident in Fig. 11, which
shows several snasphots of the phase of the m = 1
mode. Specifically, we plot the curve given by x +
iy = ̟C1(̟, 0)/|C1(̟, 0)| at select times, where the az-
imuthal modes Cm(̟, z) were defined in Eq. (1). These
curves essentially show a density-weighted average angle
of the location of the m = 1 density pattern as a func-
tion of the cylindrical radius in the star. If there exists
a uniformly-rotating, high-density pattern in the star, it
will make these curves appear as a straight lines. This is
precisely seen in Fig. 11 for ̟ . 2M . A new feature of
this instability that has been not reported before is that
the spiral part of the phase of the m = 1 mode switches
between pointing counterclockwise for a few rotation pe-
riods to clockwise for another few rotation periods and
back. However, it does not appear that this alternating
pattern has a specific period. The feature can be seen by
noting that the spirals in the upper left panel in Fig. 11
point counterclockwise, while they point clockwise in all
other plots in this figure. Although we have observed
some correlation between modulations in the GWs and
the times at which the spiral alternates, the correlation
is not perfect and we have not been able to assign further
physical significance to the feature. In all likelihood the
spiral is due to shearing between the inner and outer lay-
ers in the star and hence the feature may be important
when magnetic fields are accounted for.

Figure 12 shows the amplitude |Cm| [see Eq. (2)] of the

FIG. 9. Equatorial density (left) and Ωxy (right) snapshots
at select times for rp/M = 8, aNS,1 = aNS,2 = 0.025. From
top to bottom, at t ≈ 3.1 ms the collision of the NSs creates
a vortex sheet at the shear interface that subsequently breaks
apart into multiple small scale vortices. Most notably, two
larger vortices form near the surface of the star due to shearing
between the HMNS and the tidal tails, evident to the left and
right of center on the snapshots in the second row (t ≈ 4.5
ms). At t ≈ 5.5 ms these two vortices are in the process of
migrating towards the center, while other smaller vortices are
stretched away. By t ≈ 6.5 ms the two vortices have merged
into one central vortex, giving rise to an underdense rotation
axis. The one-arm instability then sets in, and by t ≈ 14.6
ms it is fully developed, with the vortex now off-set from the
center and co-rotating about it.
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FIG. 10. Equatorial density (left) and Ωxy (right) snapshots
at select times for rp/M = 8, aNS,1 = 0.05, aNS,2 = 0.075.
The description is similar to that in the caption of Fig. 9, and
from top to bottom the corresponding coordinate times are
the same. Some of the main differences with the symmetric
spin case are: a) while both of the larger vortices inspiral
toward the center of the HMNS, only one of them reaches
the center to create a central underdensity, whereas the other
one is stretched out and eventually dissipates as are the other
smaller scale vortices; b) in this asymmetric case the vorticity
is overall slightly larger throughout the star.

first four density modes for various cases. For the cases
where we observe the one-arm spiral instability (top two
rows), the plots demonstrate that the power in the m = 1
mode ultimately dominates over all other modes, even
though the higher m modes are non-negligible. The bot-
tom row in Fig. 12 shows the amplitude of the density
modes corresponding to the rp/M = 5 and rp/M = 9
cases. The rp/M = 5 plot is representative of our find-
ings for larger initial NS spins or larger asymmetries at
merger; the rp/M = 9 case is the only one we followed
through several close encounters, and hence it has less
eccentricity at merger than the other cases. In particu-
lar, in these two examples we find growing m = 1 modes
but they do not dominate over the other modes or may
require a very long time for this to occur, perhaps even
longer than the timescale to collapse. For the rp/M = 8
case with the next highest spin, aNS,1 = aNS,2 = 0.1 (not
shown), the m = 1 mode begins to dominate over all
other m 6= 0 modes at t ≈ 31 ms.
From the plot of |C1| we can estimate the growth

timescale of the instability in the cases where the m = 1
mode becomes dominant, and from the Fourier transform
of C1 we can determine the frequency of the mode. In
Table III, we list the dominant frequency of the m = 1
mode, the amount of post-merger time it takes for this
mode to grow to saturation, and the dominant frequen-
cies of the m = 2 and m = 3 modes for the different
cases. The characteristic frequency of the m = 1 mode
is ∼ 1.75 kHz and the time to saturation of order 10 ms.
The higher m modes have characteristic frequency that
is ≈ m times this, which is to be expected if the dens-
est region of the star that contributes most to the mode
integrals is rigidly rotating. The m = 1 mode frequency
is approximately independent of the initial NS spin. It
is more challenging to deduce how the growth rate may
depend on the initial NS spin, in particular because in
the symmetric cases the m = 1 mode is entirely seeded
by truncation error. Moreover, it seems that the total
angular momentum at merger seems to be a more im-
portant parameter for determining the time it takes for
them = 1 mode to grow above them = 2 mode in magni-
tude. However, it appears that small m = 1 asymmetries
shorten this time interval.

2. Gravitational Waves

For all the cases which develop strong m = 1 density
modes, there is a corresponding contribution to the GW
signal, as can be seen in Fig. 13. After merger, mirror-
ing the growth of the m = 1 mode in the density, the
m = 1 component in the GW grows and eventually sat-
urates, though the (ℓ,m) = (2, 2) component makes up
the dominant contribution to the GW signal throughout
the time of the simulations. In the cases where the m = 1
mode dominates, the frequencies of the GW modes are
∼ fm, and again are given by ∼ m×f1. This can be seen
in Fig. 14, which shows the post-merger GW spectrum
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FIG. 11. The phase of C1 (thick lines) as a function of ̟ in the equatorial plane and center of mass frame for four low-spin
rp/M = 8 cases. In each plot the early time chosen corresponds to the growth phase of the instability, the intermediate time
is near the time of saturation of the m = 1 mode, and the late time is after the m = 1 mode dominates over the m = 2 mode.
For ̟/M . 1.5M the pattern of the mode exhibits almost rigid-like rotation, with the characteristic spiral feature evident at
larger radii. Overlayed on these plots are equatorial density contours (thin dashed lines) at the time of the intermediate-time
phase line, normalized to the maximum density value at that time. The numbers inlined in the contours indicate the value of
the level surface. All plots use data from the high-resolution runs.

for the four rp/M = 8 cases that undergo the one-arm
spiral instability. Though there is less GW power in the
m = 1 mode (at ∼ 1.7 kHz) than the m = 2 mode
(at ∼ 3.1 kHz), the detectability of the m = 1 mode is
helped by the fact that ground-based GW detectors like
Advanced LIGO will be more sensitive to lower frequen-
cies. Moreover, as is apparent in Fig. 13, the amplitude
of the m = 1 mode is roughly constant in the latter part

of the simulations and therefore could contribute over a
time period much longer than the approximately 15 ms
that was integrated over for Fig. 14, as long as condi-
tions favoring the instability persist — in particular the
HMNS does not collapse. For the particular cases with
rp/M = 8 considered here, except in one low resolution
case, none of the HMNSs collapsed during the span of
the simulation. We can estimate the additional time it
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FIG. 12. Amplitude of Cm normalized to C0 for various cases. The two top rows correspond to low-spin rp/M = 8 cases and
a high spin rp/M = 6 case where the m = 1 dominates over all other m 6= 0 modes by the termination of the simulations. The
bottom row corresponds to an rp/M = 5 (left) and rp/M = 9 case (right). The rp/M = 9 case is the one that we followed
through several close encounters before merging. After merger the m = 1 mode grows for rp/M = 5 and rp/M = 9, but unlike
the other cases it never dominates over the m = 2 mode by the end of the simulations. The merger time in the rp/M = 5,
rp/M = 6 and rp/M = 8 cases is ∼ 3.0 ms, whereas it is ∼ 18.0 ms in the rp/M = 9 case. Plots corresponding to rp/M = 8
use data from the high-resolution runs.
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FIG. 13. Amplitude of several spherical harmonic components of the GW signal for various cases following merger. These
correspond to the same cases shown in Fig. 12. The rp/M = 5, rp/M = 6 and rp/M = 8 cases merge at t− r ∼ 3.0 ms, while
the rp/M = 9 case merges at t− r ∼ 18.0 ms. Plots from the rp/M = 8 cases show data from the high-resolution runs.
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FIG. 14. Characteristic strain of a portion of the GW sig-
nal beginning at t ≈ 10 ms, after the onset of the one-arm
instability, and lasting for ∼ 15 ms, as would be seen by an
edge-on observer (in contrast to the on-axis signal shown in
Fig. 7). Shown are various low spin cases with rp/M = 8, as
well as the aLIGO and proposed Einstein Telescope (ET-D)
sensitivity curves [95] at a distance of 10 Mpc. The HMNS
and the one-arm instability GW signal presumably last much
longer than the 15 ms represented here (possibly on the order
of tHMNS ∼ 0.1–1 s) in which case the GW power would be
multiplied by tHMNS/(15 ms), and the SNR for this part of
the signal by roughly the square root of this factor.

will take for a HMNS to radiate away its remaining an-
gular momentum by taking the difference between the
total angular momentum and the amount radiated away
in GWs at the end of the simulation, and dividing by the
rate at which angular momentum is being lost at that
time; this gives times ranging from 0.4–3 s for the cases
considered here. On these timescales, other physical ef-
fects like cooling due to neutrino emission and magnetic
braking of the differential rotation (neither of which we
model here) will be important in determining the collapse
time of the HMNS. Nevertheless, it is not unreasonable
to expect that the integrated power in the mode could
end up being one to two orders of magnitude larger than
shown in Fig. 14, as simulations have shown that at least
in some cases HMNSs may survive for up to ∼ 3 s [91].

3. HMNS angular velocity and corotation radius

As first pointed out in [72], and later also argued in
[73], stellar shear instabilities, such as the one-arm spiral
instability, develop near the corotation radius. The re-
sults we find are consistent with this interpretation but
here for hot, differentially rotating HMNSs that form fol-
lowing NSNS mergers.
In the left panel of Fig. 15 we plot the azimuthally

averaged angular velocity profile of the HMNS at se-

lect times, including the angular frequency Ω1 of the
m = 1 mode. We show results from the rp/M = 8,
aNS,1 = aNS,2 = 0.025 case which are representative for
the low-spin cases developing the one-arm spiral insta-
bility. The plot shows that after HMNS formation, and
for times prior to the development of the one-arm spiral
instability, the HMNS has a high-degree of differential ro-
tation. Assuming that Ω1 is a good approximation to the
oscillation frequency of the unstable mode, the figure also
demonstrates that there exists a corotation radius, i.e.,
a radius at which the local angular velocity of the fluid
matches the frequency of the m = 1 mode. This result
extends earlier criteria for the development of shear in-
stabilities from isolated cold stars to hot HMNSs formed
in the NSNS mergers.

Following the development of the m = 1 instability,
the angular velocity profile of the star changes such that
for 0.5M . ̟ . 1.5M the local angular velocity of the
fluid is approximately constant and matches the pattern
speed of the m = 1 mode, which explains the almost
perfect rigid rotation of the m = 1 density pattern we
observe in our simulations. For ̟ & 1.0M we find that
the angular velocity falls off roughly like a shallow power
law: Ω ∝ ̟−0.29.

4. Kinetic to Potential Energy Ratio

For these cases, we also measure the ratio of kinetic to
potential energy given in Eqs. (4)-(6), in particular as an
indication of possible susceptiblity to a bar mode insta-
bility. This is shown in the top panel of Fig. 16. Since
the fractional difference between Trot and Tkin in all cases
we study here is less that 2%, we plot Tkin/|W | as an up-
per limit. These plots indicate that after the HMNSs
settle from the violence of the merger (at t ≃ 600M)
the stars have a high value of Tkin/|W |, but smaller than
the critical value of ≃ 0.26 which is usually quoted as
being necessary for the development of the high-T/|W |
dynamical bar mode instability, see e.g. [23, 88, 89] and
references therein. The observed trend is that for sym-
metric spins, the higher the initial NS spin the larger
the value of Tkin/|W |. Our cases with asymmetric spins
(which already have a small m = 1 asymmetry) lead
to slightly larger T/|W |. It is also interesting that the
aNS,1 = aNS,2 = 0.05 case has a smaller value of T/|W |
than the aNS,1 = 0.025, aNS,2 = 0.05 case, although the
former has slightly larger initial angular momentum. Re-
lated to this, the bottom panel of Fig. 16 shows that
following merger the initially symmetric spin cases lose
more angular momentum in GWs than the asymmetric
ones, and hence tend to lower T/|W | configurations. This
could be due to the fact that the instability develops ear-
lier if a small initial m = 1 asymmetry is present and
that the net GW signal becomes weaker following the
development of the instability as demonstrated, e.g. by
the amplitude of the GWs shown in Fig. 13.
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FIG. 15. Left: Azimuthally averaged angular velocity versus the cylindrical coordinate radius. The quantities are computed
in the HMNS center of mass at select times. Lines without (with) markers correspond to times prior to (following) the
development of the one-arm spiral instability. Also shown are a curve ∝ ̟−0.29 which approximates the angular velocity profile
for ̟ & 1.0M , and the angular velocity Ω1 of the m = 1 spiral mode. Right: the arrows indicate the flow coordinate velocity
and the black solid lines are contours of density normalized to its maximum value. The contour near the center of the image
corresponds to a value of 0.98. The (red) “x” indicates the HMNS center of mass. The plot corresponds to the t = 6.1 ms
curve shown on the left. The data for both plots are taken from the rp/M = 8, aNS,1 = aNS,2 = 0.025 case.

5. Resolution study

To confirm that the instability is robust with resolution
we performed all the cases in Table III using the low,
medium and high resolutions also used in the rp/M =
8, aNS,1 = 0.0, aNS,2 = 0.4 resolution study. We find
that for all cases the development of the one-arm spiral
instability occurs at all three resolutions, except for the
low resolution rp/M = 8, aNS,1 = 0.0, aNS,2 = 0.0 case,
where m = 1 modes clearly grow, but a BH forms before
the instability fully develops. We were not, however, able
to formally show convergence for these runs. This is most
likely due to the fact that with increasing resolution we
observe vortices that form at smaller and smaller scales
following merger, and it is difficult to obtain convergence
in such turbulent-like environments. However, we find
qualitative consistency with increasing resolution of the
growth time and early saturation amplitude of the m = 1
density modes, as indicated in Figs. 17 and 18. We plan
to explore higher resolutions in future analysis of these
instabilities.

6. Speculation on Constraining the EOS

Whether or not the one-arm spiral instability develops,
and if it does, how long it persists, will depend on how
long the HMNS lives before collapsing to a BH. This
timescale depends on the EOS, the masses of the NSs,
the orbital eccentricity, and the neutron star spins. Given
that for many EOSs and for typical NS masses the HMNS

remnant may not survive for more than ∼ 20 ms follow-
ing merger, it may be that a small, but non-negligible
neutron star spin, as well as small initial m = 1 asym-
metries, may be necessary to excite the instability for a
relevant range of NS masses. On the other hand it may
be that the instability does not develop below a threshold
mass or for certain equations of state. If the instability
develops for some EOSs and not others, then the insta-
bility and the accompanying GWs that may be detected
could prove powerful probes of the nuclear EOS. Also,
the frequency of the l = 2, m = 1 mode of the GWs
corresponding to the one-arm spiral mode is likely to de-
pend on the EOS much like other post-merger oscillation
modes do [29, 68, 111–114]. If so, uncovering correla-
tions between the frequency of the one-arm spiral GW
frequency and the EOS could also help constrain the nu-
clear EOS.

7. Magnetic fields

To assess the potential impact of magnetic fields on the
development of the one-arm spiral instability, we need to
know how fast the magnetic fields grow from a realistic
value of ∼ 1010 G for a pre-merger NS, to equipartition
levels. Although we do not model magnetic fields in our
study, we can estimate their amplification timescale, and
discuss their impact.

Magnetic fields in NSNS mergers can be amplified by
various processes including turbulence arising at the NS-
NS shear/colliding interface [115], and the magnetorota-
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FIG. 16. Ratio of total kinetic to potential energy (top) and
cumulative angular momentum emitted in GWs (bottom) for
various low-spin rp/M = 8 cases following merger. Data from
high-resolution runs are plotted here.

tional instability (MRI). The former operates during the
NSNS merger, while the latter operates following HMNS
formation as long as the HMNS angular velocity is a de-
creasing function of the cylindrical radius measured from
the HMNS rotation axis. Magnetic winding is another
possibility, though since it leads to linear rather than ex-
ponential amplification on the rotational timescale [see
Eq. (7) in [116]], it will be subdominant.

In [115] it was proposed that the turbulent eddies de-
veloping during merger can amplify the magnetic fields
to magnetar-level strengths (∼ 1016 G) in less than 1
ms. Recent global NSNS simulations, approaching the
very high resolutions required to resolve this, indicate
that this turbulent-dynamo mechanism indeed operates,
though the magnetic field amplification seems to saturate
on a longer timescale of ∼ 5 ms following merger [117]

FIG. 17. Evolution of the amplitude in the m = 1 density
mode for the high (HR), medium (MR), and low (LR) resolu-
tions used in the rp/M = 8, aNS,1 = aNS,2 = 0.025 case. We
observe qualitative convergence of the growth time and early
saturation amplitude with resolution.

and the rms value of the magnetic field strength at satu-
ration is ∼ 1015.5 G.
For initially dynamically weak magnetic fields wind-

ing occurs on the local orbital period. Once the mag-
netic field tension becomes strong, winding occurs on the
Alfvén timescale [118]. The left panel in Fig. 15 shows
that prior to saturation of the m = 1 instability (t < 13
ms), when the velocity field is approximately axisymmet-
ric (see right panel in Fig. 15), the angular velocity has
a steep profile going from > 30000 rad/s near the center
to ∼ 8000 rad/s near the HMNS surface. This corre-
sponds to orbital periods Porb < 0.2 ms near the center
to Porb ∼ 0.8 ms near the surface of the star. For a
dynamically weak initial magnetic field, magnetic wind-
ing increases the strength of the toroidal magnetic field
linearly with time [see Eq. (7) in [116]]

B ∼ Ωt(1010 G), (13)

where we have assumed an initial seed magnetic field of
1010 G and approximated derivatives by fractions. In our
HMNSs the best case scenario for magnetic winding to
build up the magnetic field fast is near the center where
P ∼ 0.2 ms. The time between HMNS formation and
settling to saturation of the one-arm instability is ∼ 10
ms, thus magnetic winding can amplify the initial mag-
netic field by at most ∼ 10/0.2 = 50 times. In practice,
the amplification factor will be O(102), because winding
will start operating during merger. Thus, winding alone
could amplify an initial magnetic field of 1010 G to ∼ 1012

G.
However, the magnetic field growth due to winding is

completely subdominant compared to the growth due to
MRI. The fact that for t < 13 ms, ∂Ω/∂̟ < 0, renders
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FIG. 18. Evolution of the amplitude in the m = 1 density
mode for the high, medium, and low resolutions used in the
rp/M = 8, (aNS,1, aNS,2) = (0.025, 0.05) (top) and (0.05, 0.05)
(bottom) cases. A time shift (indicated in the legend) is ap-
plied to each case so that curves are aligned at t−∆t = 0 with
amplitude 1/4× the maximum amplitude of the highest res-
olution (indicated by the lower horizontal line). The growth
rate τ (also indicated in the legend) measures the subsequent
time required for amplitude to grow by a factor of two (upper
horizontal line).

the HMNS unstable to the development of MRI, and un-
like magnetic winding, which increases an initially dy-
namically weak magnetic field linearly with the orbital
time, MRI increases the magnetic field exponentially on
the same timescale. The e-folding time of the fastest
growing MRI mode is [116]

tMRI ∼
1

Ω
∼ 0.1

(

Ω

104 rad s−1

)

ms. (14)

This implies that the initial seed magnetic field can be
amplified through MRI from ∼ 1010 G to ∼ 1016 G in
∆t/tMRI = 6 ln(10) ∼ 14, or ∆t ∼ 1.4 ms. Thus, within

1.4 ms from the moment the HMNS becomes unstable to
MRI, MRI can build up magnetar-level magnetic fields.
Therefore, the HMNSs formed in our simulations can
become strongly magnetized on a millisecond timescale
even if the turbulent dynamo mechanism were not to op-
erate as efficiently. The growth of the magnetic field due
to MRI terminates when equipartition is reached. The
results in the recent high-resolution NSNS simulations
in [117] indicate that at saturation the magnetic energy is
& 0.01× the bulk kinetic energy. This is consistent with
what was found in [116] following saturation of the MRI
in differentially rotating HMNSs. These results suggest
that B2/8π ∼ 0.5ρ0v

2/100, which yields a characteristic
magnetic field strength

B ∼ 3× 1015
(

ρ0
1015 gm/cm3

)1/2
( v

0.1c

)

G, (15)

where we used v = 0.1c as the characteristic velocity
shown in the right panel of Fig. 15. Note that the value
of the magnetic field in Eq. (15) is consistent with the
rms value found in [117].
However, although the magnetic fields should grow

large on a O(1) ms timescale, if we assume, as above,
that at saturation the growth of the magnetic field has
not sapped the majority of the energy in differential ro-
tation, the braking of the differential rotation will occur
on an Alfvén timescale [116]

tAlfvén ∼ 40

(

B

3× 1015 G

)−1 [
(MHMNS/RHMNS)

0.3

]1/2

ms.

(16)
Thus, the one-arm instability may have enough time to
grow and develop following saturation of the magnetic
fields, but the long-term survival will depend on the pre-
cise magnetic field strength at equipartition, and how
magnetic fields interact with an m = 1 unstable mode.
On the other hand, recent MHD simulations in full GR
of magnetized, isolated relativistic stars [78] find that
for low-T/|W | isolated stars and dynamically weak ini-
tial seed magnetic fields B < 1014 G, the magnetic field
effects do not prevent shear instabilities from occurring,
and conclude that the detection of GWs from such un-
stable modes is viable even when magnetic fields are ac-
counted for. Thus, the one-arm instability found here
may develop and thrive even in the presence of magnetic
fields, but this must be investigated with further simula-
tions that account for magnetic fields.

IV. CONCLUSIONS

In this work, we have performed simulations of dy-
namical capture NSNS mergers focusing on the effects
of NS spin. We found that NS spin in NSNS mergers
can have important consequences for the dynamics and
outcome of these events. In the case that the NS spin
is aligned with the orbital angular momentum, the ad-
ditional angular momentum can lead to the formation
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of a hypermassive NS compared to prompt BH forma-
tion with nonspinning (or lower spin) NSs. Conversely,
when the NS spins are antialigned with the orbital an-
gular momentum, the reduction in total angular momen-
tum compared to the nonspinning case can cause prompt
BH formation where otherwise a long lived hypermas-
sive NS would have formed. We also demonstrate that
even moderately high values of NS spin, corresponding
to periods above a few ms, can significantly increase the
total amount, and mean velocity, of unbound material
ejected from the merger, which could lead to significantly
brighter transients. For cases with significant NS spin we
find examples with ∼ 0.1 M⊙ of ejected material, indi-
cating that NS spin in NSNS mergers may be another
way to explain putative kilonovae observations with very
massive amounts of implied ejecta [119]. In contrast, sim-
ulations of quasicircular NSNS mergers with nonspinning
NSs [30, 120] typically find ejecta masses . 0.01M⊙ – the
upper limit reached only for soft EOS. In these simula-
tions the average ejecta velocities found are ∼ 0.1–0.3c,
comparable to what we find here.
A remarkable feature discovered in our simulations of

mergers involving NSNS binaries with total dimensionless
angular momentum at merger of JADM/M2

ADM ∼ 0.9−1.0
and not strong initial m = 1 azimuthal asymmetries is
that the HMNSs that form post-merger develop the one-
arm spiral instability [70]. We find growingm = 1 modes
in cases involving higher spins as well, but the m = 1 re-
mains subdominant to them = 2 azimuthal density mode
through the end of these simulations. The one-arm in-
stability was first reported to occur in HMNSs arising
in binary neutron star mergers in [69], and here we pro-
vided more details on the development of the instability
and studied its dependence on the NS spin. We demon-
strated that whenever the instability develops, it is man-
ifested in the GWs from the post-merger phase, e.g., in
a l = 2, m = 1 mode with similar GW frequency. This
effect is potentially observable if there is a sufficiently
large population of merger events where the instability
persists and the HMNS can survive for on the order of
seconds. Such long-lived HMNSs are believed to arise for
sufficiently stiff EOSs [91], but it remains an open ques-
tion as to whether the one-arm spiral instability can arise
for stiff EOSs.
An interesting question that we cannot resolve here

is why the instability was not observed in previous sim-
ulations. Perhaps it was present but the growth rate
was insufficient in the particular scenarios modelled that
a clear identification could not be made (e.g., growing
m = 1 modes were reported in [63], but were described
as possibly due to “mode couplings”; see also [27]). This
circumstance would not be too surprising, as we found
here that in some cases if the NSs are not spinning, the
time from merger that it takes for the m = 1 density

mode to dominate over all other modes is about twice
as long as when a small NS dimensionless spin of 0.025
is present, whereas most earlier studies of NSNS merg-
ers focused on irrotational configurations. In other cases
perhaps collapse to a BH took place before the instabil-
ity had enough time to grow. On the other hand, it may
be that only a limited range of eccentricities at merger,
EOS, mass ratio and neutron star spins create conditions
necessary for the instability to develop before collapse to
a BH occurs. If the instability occurs only for a cer-
tain set of EOSs and range of masses, the accompanying
l = 2, m = 1 mode of the GWs may prove a powerful
probe of the nuclear EOS. Even if the l = 2, m = 1 mode
of the GWs is present in all cases, correlations between
the frequency of this mode and the EOS could also place
constraints on the EOS. These are not questions we can
address here, but will be topics of future work, as will
the impact of magnetic fields and neutrino cooling on
the development and saturation of the one-arm spiral in-
stability.

Though we have focused on encounters that merge
with sizable eccentricity, a portion of binary NSs that
are dynamically assembled at large impact parameters
will radiate away most of their orbital eccentricity well
before merger. Thus, for GW detection, dense stellar
environments could provide a population of quasicircu-
lar NSNS mergers that typically involve rapidly spinning
NSs, and, moreover, where there is no preferential align-
ment of the spins relative to the orbital angular momen-
tum. Since much of how spin affects the merger dynamics
found here should carry over to that case, studying such
systems would be interesting to investigate. Additionally,
there is a larger parameter space including different or-
bital parameters, EOSs, spin orientations, etc. that need
to be explored before a comprehensive understanding of
binary NS mergers relevant to multi-messenger astron-
omy, including issues related to parameter degeneracies
and estimation, is achieved.
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