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We argue that theories with multiple axions generically contain a large number of vacua that can
account for the smallness of the cosmological constant. In a theory with N axions, the dominant
instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break
the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of
distinct vacua is given by

√
det(Q>Q) ∝ eN . Our construction motivates the existence of a landscape

with a vast number of vacua in a large class of four-dimensional effective theories.

INTRODUCTION

Einstein’s field equations famously couple the vacuum
energy density ρΛ to the curvature of spacetime. Su-
pernova data and cosmic microwave background observa-
tions are well described by general relativity with a small,
positive vacuum energy ρΛ ≈ 10−123M4

pl [1–3]. However,
known contributions to the vacuum energy correct any
bare cosmological constant by at least 10−64M4

pl [4, 5].
This vast discrepancy in scales is known as the cosmo-
logical constant problem. One of the best motivated ap-
proaches to this apparent fine-tuning is to study a large
number of populated vacua and consider selection effects:
any experiment we perform is subject to a selection bias
that skews the distribution of observed outcomes [6–11].
For example, Weinberg first pointed out that galaxies
will not form unless |ρΛ| <∼ 10−121M4

pl. In an eternally
inflating universe with a diverse vacuum structure, the
selection effect would be manifest in the form of a sur-
prisingly small vacuum energy [12–15].

Brown and Teitelboim (BT) suggested that a single
four-form field strength might cancel a bare cosmological
constant to arbitrary accuracy [16–19]. Independently,
Banks, Dine and Seiberg (BDS) noted that theories with
a single axion, but irrational decay constants, also lead
to a large landscape of vacua [20]. Unfortunately, both
proposals suffer from cosmological problems and resist an
embedding in quantum gravity [16–24]. The BT mecha-
nism was generalized to the multiple field strengths that
generically arise in string theory, which led to the dis-
covery of a string landscape that famously allows for as
many as 10500 vacua, accommodates a realistic cosmol-
ogy and contains the desired selection effect of vacuum
energies [25]. In this work we extend the BDS approach
to theories of multiple axions, such as string compact-
ifications with fixed fluxes, and discover a field theory
landscape with an exponential number of vacua and con-
sistent cosmological history. Crucially, our construction
may be embedded in a theory of quantum gravity and
provides a new framework for the study of vacua in the
string landscape.

The leading contributions to the axion potential are in-
variant under some discrete translations Qaiθ

i → Qaiθ
i+1.
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FIG. 1. Left: Axion potential (dark blue) and a subleading
contribution (light blue). Right: Vacuum energies. Selection
effects may lead to preferred vacua in the green band.

This shift symmetry is broken by subleading contribu-
tions to a periodicity θi → θi + 1. The fundamen-
tal region of the leading potential has a volume of size
1/
√

det(Q>Q), such that after including the remaining
subleading terms, the vacuum energies are split into
about Nr ∝

√
det(Q>Q) ∝ ecN distinct vacua, for some

constant c. If the charges of the dominant instantons
do not form a primitive basis of the integer lattice, we
find c > 0, leading to an exponentially large number of
non-degenerate vacua. For example, consider the case
of diagonal charges, Qai = nδai . The leading potential is
invariant under discrete shifts θi → θi + 1/n, but this
symmetry is broken by subleading terms to the original
unit periodicity, giving rise to nN distinct vacua. This
basic mechanism is illustrated in Figure 1 for the one-
axion case.

THE VACUA OF N AXIONS

Consider a theory of N axions θi, whose continuous
shift symmetries are broken only by non-perturbative ef-
fects to the discrete shift symmetry θi → θi + 1. The
instanton effects generate an axion potential of the form
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L =
1

2
Kij∂θ

i∂θj −
∑
a

Λ4
a

[
1− cos

(
2πQaiθi + δa

)]
− V0 ,

(1)
where the sum runs over all contributions to the axion
potential, V0 is some constant energy density, Kij is the
field space metric and Qa denotes the integer charge vec-
tor of the ath instanton contribution.

We are interested in the vacuum distribution in this
theory. In general, the location of minima is difficult to
obtain: the critical point equation consists of N coupled,
non-linear equations. To simplify the problem, let us
denote the number of terms that give rise to the leading
contributions by P . We can now decompose the charge
matrix according to that choice:

Qa
∣∣
a=1,...

=

(
Q

Qr

)a ∣∣∣∣
a=1,...

, (2)

where Q is a full rank, rectangular P×N matrix and Qr is
a rectangular matrix of rank R, containing all remaining
charges. The leading potential is given by

VQ =

P∑
a=1

Λ4
a [1− cos (2πQaθ + δa)] , (3)

and we call the typical scale of this potential Λ4
Q. The

charges Q specify the periodicity of vacua in terms of the
lattice L(BQ) with basis BQ, that is

L(BQ) ≡
{
BQn |n ∈ ZN

}
=

P⋂
a=1

{θ|Qaθ ∈ Z} . (4)

In the special case of a square matrix Q, the periodicity
is generated by the basis Q−1. To make the periodicity
of the potential manifest we now perform the GL(N)
transformation,

φ = B−1
Q θ , (5)

such that the leading potential is invariant under the dis-
crete shifts φi → φi+1. Let us call the number of distinct
vacua of the leading potential NQ ≥ 1. These vacua are
located at field values

φ∗α,n = φ∗α + n , n ∈ ZN , (6)

where the index α labels distinct vacua. The scale of the
vacuum energies is set by the leading dynamical scales,
i.e. V (φ∗α) ∼ Λ4

Q.

THE AXIONIC BAND STRUCTURE

While the leading terms in the potential exhibit degen-
erate vacua that are invariant under discrete shifts on the

lattice L(BQ), this symmetry is broken by the sublead-
ing potential. As in (4), let us refer to the basis that
generates the lattice of rank R, under which the sublead-
ing potential is invariant, as Br. In terms of the field φ,
the subleading potential is symmetric under the discrete
shifts [26]

B−1
r BQφ→ B−1

r BQφ+ n , n ∈ ZN . (7)

Therefore, when including the subleading terms, the
vacua of VQ are periodic on the lattice generated by the
basis B−1

r BQ, modulo ZR,

L(B) =
{

(B−1
r BQ)n| n ∈ ZN

}
/ZR , (8)

where we call the corresponding basis B. Each of the Nr

sites of the lattice L(B), that are located within the unit
R-hypercube, corresponds to a distinct, non-degenerate
vacuum. The fundamental parallelepiped of the lattice
was defined through a quotient by ZR, so it is a tiling of
the unit R-hypercube. Therefore, the number of distinct
vacua is given by the inverse volume of the fundamental
parallelepiped,

Nr =
√

det (B>B)−1 . (9)

This is the main result of our work. Each of theNQ vacua
of the leading potential is split into an energy band of
width Λ4

r , containing Nr vacua. We refer to this vacuum
distribution as the axionic band structure. If any of the
vacua of the leading potential vacua are within about Λ4

r

of zero, there exist vacua with energies as low as Λ4
r/Nr.

Returning to the simple example of P = N leading
terms and we take Qr to generate the integer lattice, such
that Br = 1, we immediately find the number of distinct
vacua to be

Nr =
√

det(Q>Q) . (10)

RANDOM AXION THEORIES

Naively, it might appear unlikely that the axionic
bands contain a large number of non-degenerate vacua.
In the one-axion case, a large number can only be
achieved by an equally large tuning of two axion de-
cay constants to an almost irrational ratio [20]. We now
consider an ensemble of random multi-axion theories de-
fined through the measure on the space of charge matrices
Q. In particular, we will consider charge matrices with
entries consisting of independent, identically distributed
(i.i.d.) random integers. This choice is motivated from
explicit flux compactifications on Calabi-Yau manifolds
[27, 28] or from gravitational instantons [29, 30]. Even
though the charge matrix may be sparse, it rapidly ap-
proaches its universal limit when a small fraction >∼ 3/N
of entries are non-vanishing [27, 31]. In the universal
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limit, the matrix Q>Q is well described by the Gaus-
sian orthogonal Wishart ensemble, i.e. the ensemble of
matrices W

W = A> ·A , (11)

where the entries of A are real, i.i.d. random numbers
with variance σ2 and vanishing mean. For a sparse,
square matrix A with δN non-vanishing integer entries
the variance in the universal regime is given by

σ2 ≈ δN

N2
>∼

3

N
. (12)

The determinant of Wishart matrices follows a product
chi-squared distribution, so that the expected value of
the determinant is given by [32, 33]〈

det(Q>Q)
〉

= σ2N
Q Γ(N + 1) . (13)

Let us now obtain a simple estimate for the number of
non-degenerate vacua. The dynamical scales Λ4

a are gen-
erated non-perturbatively, so we expect them to be dis-
tributed uniformly on a logarithmic scale. This large
hierarchy implies a small number of leading terms, so we
can take P = N . In the context of string compactifica-
tions, the scales are set by Λ4

a ∼ exp(−Qaiτ i) for some
volumes τ i. Naively, one might worry that the leading
charges are small and form a primitive basis for the in-
teger lattice. However, depending on the volumes and
other possible constraints on the charges, the dominant
contributions in general are non-trivial. On the other
hand, there is a vast number of subleading instantons
with unconstrained charges. These charges do form a
primitive basis for the integer lattice, so that we can take
Br = 1. With (10) and (13) we immediately obtain the
expected number of non-degenerate vacua〈

N 2
r

〉
= σ2N

Q Γ(N + 1) >∼
√

2πN

(
3

e

)N
. (14)

For generic, square charge matrices Q with more than
about 3N non-vanishing integer entries, there exists an
exponentially large number of non-degenerate vacua. To
give a concrete example, in the presence of 500 axions,
a charge matrix with 2% non-vanishing integer entries
suffices to generate more than 10120 distinct vacua.

COSMOLOGICAL CONSIDERATIONS

In the previous sections we argued for the existence of
an exponentially large number of vacua in theories con-
taining multiple axions. However, a successful theory for
the observed value of the cosmological constant not only
realizes a classically stable vacuum in the right energy
range, but also connects to a realistic cosmology. First,
the theory must admit a consistent quantum gravity com-
pletion and accommodate (metastable) vacua at energies

vastly smaller than the natural scale of the theory. Sec-
ond, vacua with small cosmological constant are stable
on time-scales of the age of the universe. Finally, the
theory allows for sufficient energy to drive inflation and
reheating. We now briefly discuss these considerations in
turn.

We considered generic theories of multiple axions and
demonstrated the existence of a vast number of vacua,
distributed uniformly over an energy range given by Λ4

r

in a potential with typical scale Λ4
Q
>∼ Λ4

r . Therefore,
classically stable vacua with small vacuum energy are not
atypical. Due to the discrete shift symmetry in the axion
sector, the vacuum distribution is decoupled from high
energy physics. However, a domain wall that interpo-
lates between two vacua may have access to high-energy
degrees of freedom that change the effective axion po-
tential. The extra degrees of freedom do not change the
axion symmetry and therefore the number of vacua in
each axionic band is unchanged. Finally, a large canoni-
cal field displacement during a vacuum transition may be
in conflict with quantum gravity or resist an embedding
in string theory [34–36]. The potential is approximately
periodic under discrete shifts φi → φi + 1. Therefore,
the canonical separation between two vacua cannot ex-
ceed

√
NξN , where ξ2

N is the largest eigenvalue of the ki-
netic matrix for the axions φ. While the precise form of
quantum gravitational constraints on field ranges are cur-
rently under debate, the displacement

√
NξN may well

be sub-Planckian and therefore decoupled from quantum
gravity [33, 37]. We conclude that theories containing
multiple axions can accommodate classically stable solu-
tions with exponentially small vacuum energies.

Let us now ask whether the vacua are sufficiently sta-
ble against decay. Given the age of our universe, a
sufficient condition for stability is a small decay rate,
Γ � e−103

M4
pl. In general, it is difficult to estimate

the tunneling rate between distinct vacua of the leading
potential VQ, but we can obtain an upper limit for the
tunneling rate between the vacua split by the subleading
potential contributions. Using the thin-wall approxima-
tion and neglecting gravity, the decay rate for tunneling
between two (local) minima located at Φi and Φf is given
by Γ ∼ e−B where, [38, 39]

B =
27π2σ4

2ε3
. (15)

Here, the surface tension of the Coleman-De Luccia in-
stanton is given by

σ =

∫ Φf

Φi

dΦ
√

2[V (Φ)− V (Φi)] , (16)

the integration is performed along the path of extremal
action and ε is the difference in energy density between
the two vacua. Adjacent vacua are separated by a canon-
ical distance of at least ξ1, where ξ2

1 is the smallest eigen-
value of the corresponding kinetic matrix. The difference
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in energy density between the two vacua is constrained
by the scale of the subleading potential, while a typical
field trajectory interpolates through a potential of scale
Λ4
Q. By demanding B >∼ 103 we then find a rough bound

for the scale of the smallest axion decay constant,

ξ1 >∼
Λ3

r

Λ2
Q
. (17)

Gravitational contributions to the decay rate are neg-
ligible in the relevant regime. Therefore, theories that
satisfy the constraint in (17) are expected to have vacua
that are stable on time scales long compared to the age
of the universe.

Following Coleman-De Luccia decay to a vacuum with
sufficiently small cosmological constant, the universe ex-
hibits negative spatial curvature and may undergo slow-
roll inflation. Since the vacua within one axionic band
are spread over a range of Λ4

r , the tunneling process to
our current vacuum will leave the axions at an energy of
about Λ4

r , evading the empty universe problem for suffi-
ciently large energy bands. To understand this important
point, consider tunneling from a penultimate vacuum at
φ∗α,n′ to our current vacuum with very small cosmological

constant V (φ∗α,n) � Λ4
r. For simplicity, let us consider

only one subleading term in the axion potential with dy-
namical scale Λ4

r. The degeneracy between the two vacua
is lifted by the subleading potential,

δVα;n,n′ ≈ Λ4
r cos

(
2πQrBQn

′ + δ̃α

)
, (18)

where we neglected the small vacuum energy in the final
vacuum and δ̃α is a phase. The sum inside the cosine
consists of N order one terms. Therefore, neighboring
vacua, will differ by about Λ4

r in energy density. Finding
a vacuum with energy density in a given range is a dif-
ficult problem: we need to test an exponential number
of vacua before finding one with a suitably small energy.
Since tunneling between widely separated vacua is ex-
ponentially suppressed, the energy released during the
final transition is of order Λ4

r. This feature is due to the
multi-dimensionality and absent in theories with a sin-
gle axion. This energy density can lead to a subsequent
phase of slow-roll inflation, while the tunneling event may
give rise to observable features [40, 41].

It is curious to point out that when considering the
Lagrangian (1) with N = 500 axions and P = N leading
contributions of scale Λa ∼ 0.1Mpl, some subleading con-
tributions at the GUT scale and 2% non-vanishing order
one entries in the charge matrix, we expect a sufficient
number of vacua to account for the observed smallness
of the cosmological constant and, at the same time, large
field axion inflation via kinetic alignment, which would
solve the flatness problem [27, 42]. However, the infla-
tionary dynamics are highly sensitive to heavy fields, so it
is not clear if this model can be embedded in a consistent
theory of quantum gravity.

THE STRONG CP PROBLEM

The action of QCD famously contains a CP-violating
term that is proportional to the Yang-Mills instanton
number,

δS =
θQCD

8π

∫
d4x Tr(Fµν F̃

µν) . (19)

By measuring the electric dipole moment of the neutron
one obtains an upper bound on the coupling parameter
|θQCD| <∼ 10−10. The smallness of this dimensionless
parameter constitutes the strong CP problem. One of
the most compelling approaches to this problem is to
promote the coupling constant to a dynamical field with
a continuous shift symmetry that is broken to a discrete
shift symmetry via its coupling to the QCD anomaly [43].
This generates a potential of the form

VQCD = Λ4
QCD cos(2πθQCD) , (20)

where Λ4
QCD ≈ f2

πm
2
π . In the absence of additional cou-

plings the axion is dynamically stabilized at θQCD = 0.
However, upon embedding QCD in a theory of quantum
gravity, such as string theory, there are additional contri-
butions to the QCD axion potential. These high energy
contributions take the form δV ∼ Λ4

UV cos(2πθQCD + δ),
where δ is some order one phase, set at a high energy.
Since the expectation value for the QCD axion is now
dominated by the high-energy effects this leads to a large
CP violating phase δ [44, 45]. This is precisely the situa-
tion we have when considering a general coupling between
the axions θi in Lagrangian (1) to QCD, with charges
qQCD. However, as argued above, in a multi-axion the-
ory, we expect a large number of possible values for the
CP violating phase. While this theory does not dynam-
ically favor CP conservation, the band structure is suffi-
cient to accommodate a small CP violating phase.

CONCLUSIONS

We studied the vacuum distribution of a theory con-
taining multiple axions. In general, it is difficult to pre-
cisely determine the number and location of vacua in
a multi-dimensional potential. In order to simplify the
problem, we separated the leading and the sub-leading
contributions to the axion potential: the leading terms
determine the vacuum periodicity, while sub-dominant
contributions break this discrete shift symmetry and lift
the vacuum degeneracy. In the universal regime, the
number of discrete vacua scales exponentially with the
number of axions. The splitting of the degenerate energy
levels is small compared to the typical scale of the poten-
tial energy, giving rise to energy bands containing stable
vacua. If one of the energy bands spans zero energy,
there exist vacua with very small cosmological constant.
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In an eternally inflating universe, this vacuum is popu-
lated which leads to a small observed vacuum energy.

The simple observations made in this work may have
profound implications. We demonstrated that a suffi-
ciently complex landscape to accommodate the cosmo-
logical constant and a small CP violating phase can be
realized in a large class of four dimensional effective theo-
ries. The energy density of domain walls that arise during
vacuum transitions can be low enough to decouple from
unknown, heavy degrees of freedom. The only require-
ment for a large number of vacua is that the leading in-
stanton charges do not form a primitive basis for the inte-
ger lattice. An intriguing observation is that the simplest
multi-axion model that accommodates the smallness of
the cosmological constant also gives rise to an extended
period of large-field inflation via kinetic alignment. Fi-
nally, our work motivates a more detailed study of the
axion sector in flux compactifications and provides a new
framework to pursue de Sitter vacua in string theory.
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