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We present a study of cosmological implications of generic dark matter decays. We consider two-
body and many-body decaying scenarios. In the two-body case the massive particle has a possibly
relativistic kick velocity and thus possesses a dynamical equation of state. This has implications to
the expansion history of the universe. We use recent observational data from the cosmic microwave
background, baryon acoustic oscillations and supernovae Type Ia to obtain constraints on the lifetime
of the dark matter particle. We find that for an energy splitting where more than 40% of the dark
matter particle energy is transferred to massless, relativistic particles in the two-body case, or more
than 50% in the many-body case, lifetimes less than the age of the universe are excluded at more
than 95% confidence. When the energy splitting falls to 10% the lifetime is constrained to be more
than roughly half the age.

PACS numbers: 98.80.-k, 95.35.+d

I. INTRODUCTION

The presence of dark matter in the universe necessi-
tates a fundamental mechanism of its generation. In most
dark matter scenarios, the present-day dark matter is the
lowest quantum state of a beyond the Standard Model
theory, whose longevity is guaranteed by some new global
symmetry of the theory. As such, in most dark matter
theories the dark matter particle is the product of a de-
cay scenario, and therefore in all of these cases the main
question is how and when this decay takes place in the
cosmological history of the universe [1–13].

The motivation for decaying dark matter is multi-fold:
it arises in purely theoretical considerations, phenomeno-
logical models of experimental results, as well as cos-
mological arguments regarding small scale structure in
the universe. An example of a purely theoretical mo-
tivation is in supersymmetric theories, where the dark
matter particle today is the product of the decay of the
second-to-lightest particle, that being the gravitino [14],
the gaugino[15] or the sneutrino[16] (see Ibarra et al. [17]
for a full review). Similar arguments can be made to
theories with universal extra dimensions [18].

An example of phenomenological modeling of experi-
mental results in the context of decaying particle is in the
context of the recent results from IceCube on the South
Pole [19] and the AMS-02 experiment onboard the Inter-
national Space Station [20, 21]. The hypothesis in these
cases is that these unexpected observations of very high
energy neutrinos and/or a high positron fraction with
a cutoff can be explained by the decay of a dark mat-
ter candidate (regarding the high energy neutrinos see
[22] and see [4, 5] and references therein for the AMS-
02 positron fraction). Another experimentally interest-
ing measurement is the presence of an excess of 3.5 keV
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photons along the line of sight to the Andromeda galaxy
(M31) as well as other galaxies and galaxy clusters (as
observed in a stacked analysis) [23, 24]. While at the
moment there is no obvious or generally accepted astro-
physical origin, such a measurement can be the result
of the daughter products of decaying dark matter [6, 7]
(the latter of which is a review article that also looks at
possible astrophysical explanations).

In addition, large scale structure considerations per-
haps point to the need for a dark matter particle with
non-zero thermal velocity. Such an effect can be ac-
complished by dark matter decay, where the present-day
dark matter particle possesses a “kick” velocity as a by-
product of an earlier decay from a parent heavy particle
(the mass difference between the parent particle and one
of the daughters is very slight but due to energy and mo-
mentum conservation the most massive daughter has a
higher velocity than the parent – see e.g., [25–29]).

From the examples above we see that decays are an
intrinsic part of the cosmological history of the universe
motivated by both theoretical and experimental grounds.
The goal then is to explore the mechanics of such pro-
cesses in a cosmological context.

In a previous study [13], we developed and examined
in detail the physics of a most generic model of decay-
ing dark matter in which the decay proceeds either to
two- or many-body final states as the universe expands.
One of the main features of that work was the derivation
of the equation of state of the daughter particles, thus
allowing the daughter particles (dark matter or not) to
dynamically affect the rate of expansion of the universe.
We then explored the constraints to such a generic de-
cay scenario imposed by the expansion history of the late
universe using type Ia supernova (SNe) observations[30].

In this paper we expand significantly on the analysis
presented in [13]. We consider many- and two-body de-
caying dark matter using a Markov Chain Monte Carlo
analysis that constrains against distance measurements
from Planck and WMAP CMB measurements [31, 32],
Galaxy Baryon Acoustic Observations (BAO) [33–35]
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and Lyman-α Forest BAO [36, 37] as well as the Joint
Light-Curve Analysis of 740 type Ia Supernovae [38]. In
this expanded analysis the principle remains the same.
While there are many specific models of decaying dark
matter, which due to their very specific nature can some-
times be constrained quite highly, it is useful to consider
what constraints can be put on a generic model that will
then have wide applications and implications. Consid-
ering decays into a massless, relativistic component and
possibly into a massive component which may or may
not have kinetic energy, the expansion history of the uni-
verse is changed in a manner that can be constrained by
distance observations.

The paper is organized as follows: Section II reviews
the models of decaying dark matter. In Section III we
discuss in detail the improvements between the previous
and present analyses, while in Section IV we present the
results including constraints on the parameters that were
allowed to vary in the analysis (Ωm, Ωbh

2, h and the de-
cay rate Γ) along with confidence limits on the decaying
dark matter lifetime. We conclude in section V with a
review of the recent literature.

II. DECAYING DARK MATTER IN AN
EXPANDING UNIVERSE

In this section we will briefly summarize the decaying
dark matter model of [13], which forms the basis of the
analysis carried out here.

This model assumes that there is a parent particle,
assumed to be at rest, which decays exponentially with
lifetime τ = 1/Γ. We consider two scenarios: First a
two-body decay in which the daughter products are a
single massless, relativistic daughter and a single mas-
sive daughter. The possibly relativistic velocity of this
massive daughter is set by the requirements of energy
and momentum conservation but the particle is then al-
lowed to slow with the expanding universe. Secondly we
consider a many-body decay in which there are many
massless, relativistic daughters as well as a single mas-
sive daughter. In this scenario a particular kick velocity
for the massive daughter cannot be determined and so it
is assumed to be stationary (see [13] for more details).

The parent, the massless duaghter(s) and massive
daughter particles are labeled 0, 1 and 2 respectively. We
define ε as the fraction of the parent particles’ (of mass
m0) energy that is transferred to the massless daughter
particle(s), the remainder being transferred to the mas-
sive daughter (of mass m2). In the case of the many-body
decay, ε is related to the two masses via the trivial rela-
tion

εmany =
m0 −m2

m0
(1)

while in the case of two body decay the relationship is

εtwo =
1

2

(
1− m2

2

m2
0

)
(2)

In both, two- and many-body decays, the parent par-
ticle density and the massless daughter density obey

dρ0

dt
+ 3

ȧ

a
ρ0 = −Γρ0 (3)

dρ1

dt
+ 4

ȧ

a
ρ1 = εΓρ0 (4)

respectively.
In the many-body model the massive daughter evolves

according to the equation

dρ2,many

dt
+ 3

ȧ

a
ρ2,many = (1− ε)Γρ0 (5)

Such a straight forward equation cannot be written in
the two-body case owing to the equation of state which
changes with time in a non-trivial manner as some par-
ticles are created by the decay at a high velocity while
at the same time other particles, created at an earlier
epoch, slow due to the expansion of the universe. The
density can instead be found to obey

ρ2,two =
AΓ
√

1− 2ε

a3

∫ a

a?

J (a, aD)daD

J (a, aD) ≡ e−Γt(aD)

aDHD

√
β2

2

1− β2
2

(aD
a

)2

+ 1 (6)

where A is a constant set by the present day dark matter
density, the hubble parameter is HD = H(aD) evaluated
at some earlier epoch of the expansion parameter aD,
and β2 is the initial kick velocity of the heavy daughter
determined by ε, β2

2 = ε2/(1 − ε)2 (the full derivation
is contained in [13] including the equation of state for
the massive daughter in the two-body scenario). a? is an
arbitrarily small value of the expansion parameter before
which, it is assumed, no significant number of decays have
occurred.

In the context of this paper it is computationally useful
to describe the densities in terms of first order differential
equations of a scaled quantity, r [39], as:

ρ0(a) = ρca
−3r0(a) (7)

ρ1(a) = ρca
−4r1(a) (8)

ρ2(a) = ρca
−3r2(a) (9)

For both the two- and the many-body scenarios the
evolution of the parent and massless daughter particles
can be expressed as
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dr0

d ln a
= − Γ r0

H(a)
(10)

dr1

d ln a
= ε

Γ r0

H(a)
a (11)

where we draw particular attention to the factor of a in
Eq. 11 that arises due to cosmological expansion (red-
shifting).

In the many-body decay the evolution of the heavy
daughter is simply

dr2

d ln a
= (1− ε) Γ r0

H(a)
(12)

The derivation of the evolution of the heavy daughter
in the two-body decay is a little more involved. We start
by looking at the fact that dn2(aD) = −dn0, i.e., the
change in the number density of the heavy daughter is
equal to minus the change in the number density of the
parent particles,

dn2(aD)

dtD
= −dn0

dtD

= −d(ρcr0)

m0dtD
,

which can be rewritten as

dn2(aD)

d ln a
=

Γ

H(aD)

ρcr0(aD)

m0
(13)

As the energy density of the heavy daughter is (see [13]),

ρ2(a) = a−3

∫ n(a)

n(a?)

E2(a, aD)dn2(aD), (14)

substitution of Eq. 13 in Eq. 14 gives

ρ2(a) = a−3

∫ ln a

ln a?

E2(a, aD)

m0

Γρcr0(aD)

H(aD)
d ln aD (15)

from which we can readily write the expression of the
dimensionless density variable of the heavy daughter as

r2(a) =

∫ ln a

ln a?

E2(a, aD)

m0

Γr0(aD)

H(aD)
d ln aD. (16)

Differentiating with respect to ln a then gives1

dr2(a)

d ln a
= (1− ε)Γr0(a)

H(a)

+
ζ
√

1− 2ε

a2

∫ r0(a)

r0(a?)

I(a, aD)dr0 (17)

1 This requires using the Leibniz integral rule on the right hand
side.

where

I(a, aD) ≡ a2
D

[ζ(a2
D/a

2) + 1]
1/2

(18)

and ζ = β2
2/(1− β2

2).

III. COSMOLOGICAL CONSTRAINTS ON
DECAYING DARK MATTER

To constrain any decaying dark matter scenario it is
necessary to choose boundary conditions; conditions that
fix the dark matter density at some epoch in the history
of the universe. A natural boundary condition is the
abundance of dark matter at the epoch of recombination.
This is the approach taken in [13] where initial conditions
are set by the Planck 2014 results (a combination of the
first Planck data release [31], low-l WMAP data [32] and
high-l Atakama Cosmology Telescope [40] and the South
Pole Telescope [41] data). The assumption is that these
initial conditions are true before any significant decay has
occurred (see discussion in Section V, in [13]). Under this
assumption, [13] uses the 580 type Ia supernovae of the
Union2.1 catalog [30] to constrain the decay rate Γ and
energy splitting fraction ε by evaluating a goodness-of-fit
based on the sum of χ2 values for each supernova.

Taking the Planck14 results as fixed initial conditions
at the era of recombination (z ≈ 1090) is a crude ap-
proximation. The angular scale of the sound horizon is a
ratio of the size of the sound horizon at decoupling to the
angular diameter distance to the CMB. In other words
it is a ratio of some function of the evolution of the ex-
panding universe before the CMB and the evolution of
the universe afterwards. Therefore taking it as a fixed
moment in time is imprecise.

Here, we therefore extend this approach by perform-
ing a Markov Chain Monte Carlo analysis of cosmological
parameters. We allow four important parameters to vary
(Ωm,Ωbh

2, h and Γ) for a range of set values of ε. This
allows us not to have to assume some initial fixed amount
of dark matter, instead, we only demand that the amount
of dark matter that has decayed in the very early universe
(z < 1210) is negligible. Furthermore, by not basing as-
sumptions on the results of CMB experiments, the CMB
measurements can be used to constrain the models.

We conduct the analysis by using the publicly available
code provided by Aubourg et al. [39]2. The data we use
here is the same as in [39] and are the Galaxy BAO mea-
surements [33–35], BOSS Lyman-α forest BAO [36, 37],
CMB data from the Planck14 results [31] combined with
low-l WMAP polarization [32] and the 740 type Ia super-
novae of the Joint Light-curve Analysis [38]. In the latter
there is not only an increased number of supernovae com-
pared to the Union2.1 catalog [30] used in [13] but there

2 https://github.com/slosar/april
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is also a better understanding of systematic uncertainty
and calibration [39].

We will now discuss how each one of these cosmological
probes constrains the physics of decaying dark matter.

A. Baryon Acoustic Oscillations

Baryon Acoustic Oscillations define a cosmological
standard ruler [42–46]. In the early universe, baryonic
matter and photons are very tightly coupled. If there
is a density perturbation then, as a result of the high
temperature of the photons, there will also be a pressure
perturbation. The resulting sound wave expands until
the end of drag epoch, zd, after which baryons are no
longer affected by compton drag and gravitational insta-
bility dominates [47]. This sets a fixed physical scale, a
standard ruler [48]

rd =

∫ ∞
zd

cs(z)

H(z)
dz (19)

where the speed of sound is cs(z) = 3−1/2c[1 +
3
4ρb(z)/ργ(z)]−1/2. After zd, the over density will only
continue to expand with the expanding universe.

The over density causes galaxies to be formed pref-
erentially along the edges of spheres with radius ∼ rd.
This can be seen in a small but characteristic peak in the
correlation function of the comoving separation between
galaxies [44].

The observed position of this peak is usually quoted as
a ratio of DV /rd where

DV =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

(20)

which is the cube root of a volume measurement that
comprises the square of transverse distance (where DA is
the angular diameter distance) and radial distance [49].

Interestingly though, results given in this form are
model dependent. This is because the comoving sepa-
ration between two points cannot be directly measured
and instead must be inferred from the redshift which re-
quires assuming a particular cosmological model.

The difference between two models is characterized by
the factors αt and αr which are the fractional differences
in the transverse and radial directions respectively. These
factors are defined as [50]

αt ≡
DA(z)/rd

DA,f (z)/rd,f
(21)

αr ≡
Hf (z)rd,f
H(z)rd

(22)

where f denotes the fiducial model originally used to cal-
culate the comoving separation.

The correlation function can be expressed as a func-
tion of these two factors [51]. For different combinations
of these factors, a χ2 value can be calculated based on
how well the calculated correlation function fits the ob-
servations. Thus the new model can be constrained.

The BOSS results in [33] comprise an analysis of obser-
vations from the Sloan Digital Sky Survey (SDSS) over
an area of 8377 deg2. Anderson et al. [33] split the ob-
servations into two independent samples, BOSS CMASS
and BOSS LOWZ. The CMASS sample consists of galax-
ies in the redshift range 0.43 < z < 0.7 and attempts to
select galaxies of approximately constant mass based on
models of galaxy evolution with redshift [39]. The LOWZ
sample looks for red galaxies in the range 0.15 < z < 0.43

The results in [34] come from the 6 Degree Field
Galaxy Survey (6dFGS) which looks at very low redshift
galaxies to give constraints at z = 0.106. Ross et al.
[35] contains an analysis of SDSS galaxies in the redshift
range 0.07 < z < 0.2 that reconstructs the linear fluc-
tuation based on phase information. These results are
combined with those in [33] to give a large data set of
galaxy BAO observations over a wide range of redshifts
(again following [39]).

An alternative method for observing BAO is found in
Delubac et al. [36] and Font-Ribera et al. [37]. They look
for absorption lines in the spectra of distance quasars.
Specifically they look for lines corresponding to Lyman-α
absorption by neutral hydrogen. The existence and red-
shift of large amounts of neutral hydrogen along the line
of site to the quasar can therefore be deduced allowing
the positions of large scale structure at high redshifts to
be inferred. These Lyman-α observations give measure-
ments of BAO in the redshift range 2.1 < z < 3.5, well
above the range possible from direct galaxy observations.

It should be noted that the results in Beutler et al. [34]
and Ross et al. [35] and from the LOWZ sample of [33] are
small and cannot produce a robust anisotropic analysis
(that is, with separate transverse and radial components
αt and αr), so instead a single component is defined,

α =
DV (z)/rd
DV,f (z)/rd,f

(23)

For this single component the assumption is that the
peak in the correlation function is modeled as a gaus-
sian [39].

B. Cosmic Microwave Background

Constraints from the Cosmic Microwave Background
(CMB) come from the published Planck 2014 release [31].
Just as the baryon acoustic oscillations result in an im-
print of a preferred scale on the matter component, the
CMB contains a wealth of information of the mechan-
ics of the process of recombination in the early universe.
While in the early universe baryonic matter and photons
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are tightly coupled to one another, as the universe ex-
pands the temperature of the universe falls to the point
that allows electron and proton recombination causing
photons to decouple from baryons. This occurs at red-
shift z ≈ 1090[31] although, because not all electrons and
protons combine instantaneously, there is naturally some
uncertainty about this value [52] that affects the strength
of constraints found in this paper. (Note that baryons
decouple from photons at the end of the drag epoch [47]
which occurs at approximately zd ≈ 1060[31].) These de-
coupled photons then propagate and redshift until today
where they are microwaves of temperature Tγ ≈ 2.7K
[53].

The latest CMB measurements come from the
PLANCK experiment [54]. Between 2009 and 2013 the
satellite imaged the entire sky in multiple wavelengths
and at an angular resolution that encompasses most of
the major features of the expected angular anisotropy
power spectrum of the CMB. The first major data re-
lease was published in 2014 [31], and it is these results
that are used here.

In keeping with the code and method employed by [39],
our models are constrained by the Planck observations of
the CMB in the following way. The Planck 2014 results
for the Planck low-l lowLike model (which is a combina-
tion of Planck temperature data [31] and WMAP9 po-
larization data [32]) give measurements, variances, and
co-variances of ωb, ωM and DA(z = 1090)/rd. Because
we are interested in decaying dark matter, the quantities
ωb and ωM are constrained based on what values they
would have had if there had been no decay.

C. Supernovae Type Ia

Finally observations of type Ia supernovae are used to
constrain the decaying dark matter models, in the same
spirit as in [13]. Supernovae type Ia are believed to have a
luminosity determined by their light-curve and the char-
acteristics of their host galaxy[55, 56] and thus are used
as cosmological standard candles. This property allows
the relative radial distances between them to be deduced
[38]. This is expressed as the distance modulus, µ, which
is simply the difference between the apparent and abso-
lute magnitude of the supernova. The constraining power
comes from calculating the theoretical distance modulus
for a given cosmology using the relationship between dis-
tance modulus and luminosity distance

µ(z) = 5 log10 dL(z)− 5 (24)

where

dL(z) =
c(1 + z)

H0

∫ z

0

F−1/2(z′)dz′ (25)

F(z′) ≡ Ω0(z′) + Ω1(z′) + Ω2(z′)

+ Ων(z′) + Ωγ(z′) + Ωb(z
′) + ΩΛ (26)

The analysis in this paper (as in [39]) uses the com-
pressed representation of the Joint Light-curve Analysis
results [38] of 740 supernovae. The expected distance
modulus for thirty logarithmically spaced redshift bins
between z = 0.01 up to 1.3 are calculated and then com-
pared to the observed distance moduli. A χ2 value is
found for each bin and then these values are summed
together.

IV. RESULTS

We performed a Markov Chain Monte Carlo analysis
that allowed Ωm, Ωbh

2, h and Γ to vary. This was done
for a number of different values of ε. The combined con-
straints in this 4 parameter space are given in the matrix
plots of figure 1 and the marginal constraints on the de-
cay rate are given in figure 2.

Fig. 1 summarizes the results of cosmological con-
straints to the different decaying dark matter scenar-
ios explored in this paper. The thick to thin contours
correspond to 68%, 95% and 99.7% confidence intervals
respectively, while the color of contours corresponds to
different values of ε as shown in each figure.

Every plot in the contour matrixes exhibits overlap
between the different ε values. Clearly when the lifetime
is long, tending towards infinity, all the contours should
overlap as each model approximates the ΛCDM model.
The fact that the overlap occurs over the region of ε = 0.1
is to be expected as small epsilon values more closely
resemble ΛCDM for all decay rates.

This leads to a second observation that for larger ε
values there is more spread in the allowed values of Ωm.
This is most clearly illustrated in the plot of Ωm vs Γ. It
shows a dramatic effect on the allowed dark matter den-
sity for increasing decay rates. Indeed for ε = 1 in the
many-body, and ε = 0.499 in the two-body, there is an al-
most linear relationship between an increasing decay rate
and a decreasing matter density. In a very straightfor-
ward way, this plot shows that rapid dark matter decay
decreases the present dark matter density (as one would
expect).

However the reduction in Ωm cannot be put down
solely to the direct effect of decay. There is a slight down-
ward trend in the allowed values of the physical baryon
density, Ωbh

2, for smaller allowed values of Ωm. The
column of Ωbh

2 plots indicates that smaller values of the
physical baryon density correspond to larger values of the
decay rate and also to larger values of the present rate
of the universes expansion, h. Cosmologies with larger
decay rates still fit the data if h is large. These cos-
mologies have larger dark energy densities arising in part
due to a smaller amount of dark matter (consequently re-
ducing the number of decays)and partly due to a reduced
baryon density. Furthermore these cosmologies have had,
in their recent history, more radiation because of the de-
cay, although redshifting has a damping affect on radia-
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FIG. 1: Results of the joint analysis of cosmological probes in the context of two-body decay (left) and many-body decay (right).
The contours depict the 68% (thickest line), 95% and 99.7% (thinest line) confidence, while colors correspond to different values
of the fraction ε of the parent particles’ energy that is transferred to the daughter particle(s) as shown in the legend.

tion density. The faster expansion rate is a result of this
greater dark energy density.

Interestingly, we find that the age of the universe is rel-
atively unaffected by the presence of decaying dark mat-
ter. This is naively in contrast to the apparent increase
in the present value of the hubble parameter h, where for
large values of ε we see an anticorrelation with the matter
density. However, it should be noted that the constancy
of the age of the universe is due to the fact that it is
obtained through an integral of the expansion history of
the universe, and thus even though decaying dark matter
allows values of the present value of h to vary, the age of
the universe remains relatively unaffected. Cosmologies
with large amounts of radiation produced by decays also
have larger dark energy densities. These two effectively
counterbalance leaving the present age of the universe
unaffected.

Now lets look at how the many-body and two-body
matrix of plots differ. While the two models share many
of the same features, the differences in the two decaying
scenarios are the values of ε at which they occur. The
two-body ε = 0.4 contours extend slightly further into
small values of Ωm than the many-body ε = 0.5 This
could indicate that the very elevated equation of state
that occurs for the massive daughter particles in the two-

body model at this ε is large enough to have an effect on
the evolution of the universe. However for the largest
plotted values of ε in the two-body decay model the in-
teresting feature is that, even for ε = 0.499, the allowed
region does not extend as low in Ωm compared to many-
body decay. This may initially seem curious as the two-
body body decay where ε tends towards 0.5 creates two
relativistic particles, one with zero mass, the other hav-
ing mass tending towards zero which seems fairly close
to the many-body decay model with ε = 1. However
because one of the particles does have mass it experi-
ences a different dynamical evolution (different equation
of state) from a massless particle. Specifically ω2 falls to-
wards zero and at some point the rest mass dominates the
energy of the particle. It is this property that prevents
lower values of Ωm.

Figure 2 shows the probability distribution just of Γ.
The limit at 95% confidence for the values of Γ are given
in Table I. Note that it is standard in the literature to
give the limits in terms of Γ−1 = τ . To calculate the
final column, τ and t0 were calculated at each step in the
MCMC. τ was simply equal to Γ−1 while t0 was found
by taking the integral of [aH(a)]−1 with respect to a.



7

0.00 0.05 0.10 0.15 0.20

Γ(Gyr−1)

0

5

10

15

20

25

30

35

40

45

p
ro

b
.

Two-body ε = 0.499

ε = 0.4

ε = 0.1

0.00 0.05 0.10 0.15 0.20

Γ(Gyr−1)

0

10

20

30

40

50

60

p
ro

b
.

Many-body ε = 1.0

ε = 0.1

FIG. 2: Probability distribution functions of the decay rate
Γ for two-body decay (top) and many-body decay (bottom).
Table I shows the derived 95% confidence limits on the decay
rate for various values of the parent particles’ energy transfer,
ε, to the massless daughter particle(s).

TABLE I: 95% Confidence Limits

model ε
Γ (Gyr−1)

Upper Limit
Γ−1 (Gyr)

Lower Limit
τ/t0

Lower Limit
Two 0.499 0.040 25 1.8
Two 0.49 0.045 22 1.6
Two 0.45 0.054 19 1.4
Two 0.4 0.067 15 1.1
Two 0.3 0.074 13 0.98
Two 0.2 0.12 8.4 0.61
Two 0.1 0.12 8.4 0.61
Many 1 0.037 27 2.0
Many 0.5 0.069 14 1.1
Many 0.1 0.15 6.7 0.48

V. DISCUSSION

There has been rather interesting work carried out in
decaying dark matter since the publication of [13]. Here
we discuss the relevance of this work to the rest of the
literature.

After the apparent discovery of a 3.5keV line emis-
sion from Andromeda and Perseus [23], there have been
hypotheses that claim that its presence has a decaying
dark matter origin. Lovell et al. [6] find consistency be-
tween observations of what seems to be an X-ray excess
from the galactic center [57, 58] and from Andromeda by
assuming dark matter of mass ≈ 7.1keV decaying in a
two-body decay to photons with a lifetime of ∼ 1028s or
∼ 3× 1011Gyr. (For a review of the 3.5keV emission line
and other possible explanations see Iakubovskyi [7].)

Several papers considered models equivalent to many-
body decaying dark matter with ε = 1. Audren et al.
[9] performed an MCMC using Planck14 low-l, high-l
and lensing reconstruction [31], WMAP polarization [32],
Wiggle Z [59] and the BOSS BAO measurement at red-
shift z = 0.57 [33]. They found a lower limit on the dark
matter lifetime of 160Gyr at 95% confidence.

Enqvist et al. [2] also looked at ε = 1 many-body de-
cays. They employed N-body simulations to find non-
linear corrections to the matter power spectrum. In-
terestingly when they constrained their model against
CMB data alone (Planck14 temperature maps [60] and
WMAP9 polarization [61]) they found a lower limit at
95% confidence of 140Gyr, but when comparing to a com-
bination of CMB and weak lensing data [62] the limit was
reduced to 97Gyr. Based on this Enqvist et al. [2] posited
that decaying dark matter was relieving the tension in the
measurement of the amplitude of matter fluctuations σ8

that exists between the different observations.

By considering that the daughter products of dark
matter decay might ionize and heat the interstellar
medium, Yang [12] found a 95% lower limit on the life-
time as ≈ 1.3×109Gyr. However to achieve this limit the
author assumed that f(z), the fraction of decay energy
deposited in the medium, was constant with redshift and
that the constant equaled 1 (the authors did not provide
a justification for these two approximations).

Models of decaying dark matter with specific decay
channels have been used in attempts to solve outstand-
ing problems. For example Geng et al. [4] found that
a two-component decaying dark matter, with a heavy
particle decaying to µ+µ− and a lighter particle decay-
ing to τ+τ−, could fit both AMS-02 [63] and Fermi-LAT
[64] data. Meanwhile Hamaguchi et al. [5] found that a
decay into W±l∓ could explain the AMS-02 antiproton
observation. In particular this model, in the case of a
graviton with R-parity violation, gave rise to a particle
of mass M ∼ 1TeV with lifetime ∼ 3× 1010Gyr. This is
around 9 orders of magnitude stronger than our strongest
constraints, but what Hamaguchi et al. [5] gain in con-
straining power they lose in generality by specifying a
detailed model.

Esmaili et al. [3] have found a slight preference (∼ 2σ)
in the IceCube observations [19] of high energy neutri-
nos which they assert are distributed more in the man-
ner expected of decaying dark matter than of a purely
isotropic astrophysical source. To provide the neutrinos
with enough energy, the decays would have to come from
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an ultra heavy dark matter candidate. Their paper then
makes the leap of assuming that the high energy neutri-
nos can indeed be described by astrophysical sources and
on this they then set a limit on decaying dark matter in
the TeV range of having a lifetime of at least 1026−1028s
or 3×109−3×1011Gyr. Rott et al. [11] also considered a
heavy dark matter particle decaying into a neutrino and
some other standard model particles. In particular they
assumed that the parent had mass greater than 100TeV
(breaking the unitarity bound) and therefore IceCube re-
sults bound the lifetime to τ > 3 × 1011Gyr – approxi-
mately 10 orders of magnitude in constraining strength
has been gained at the expense of a much less generally
applicable model.

If dark matter decays into standard model particles
this can give rise to gamma-rays. Ando and Ishiwata [8]
the authors consider decay into six standard model par-
ticle channels, motivated by beyond the standard models
particles. These decay products (νl+l−, ll̄,W±, q, q̄) add
to the extra-galactic gamma-ray background, EGRB, and
can be constrained using Fermi-LAT data. Over the vari-
ous decay channels (and assuming other EGRB contribu-
tions from blazars, star forming galaxies and misaligned
active galactic nuclei) the lifetime can be constrained to
be at least 3× 109 − 3× 1011Gyr. By specifying the de-
cay products, Ando and Ishiwata [8] is able to achieve a
minimum of 8 orders of magnitude improvement in con-
straints compared to our more general model.

Clearly many of the above models are more specific
than the generic models considered here and so their
bounds were correspondingly much stronger. By consid-
ering generic models of decaying dark matter, in which
some of the decay products are massless and relativistic,
broadly applicable bounds have been obtained. This is
the case in three recent papers that considered generic
models of many-body decay[2, 9, 39]. Of those, all but
Aubourg et al. [39] considered only ε = 1. Both [2, 9] re-
ported much stronger bounds on the lifetime compared
to this work. Both focus on how decaying dark mat-
ter affects the matter power spectrum. Audren et al.
[9] applies linear corrections to the matter power spec-
trum and finds a lifetime of at least 160Gyr at 95% con-
fidence, while Enqvist et al. [2] uses N-body simulations

to find non-linear corrections to the matter power spec-
trum. Note that Enqvist et al. [2] focuses on obtaining
constraints at or more than lifetimes of 100Gyr, partly
motivated by the constraints of Audren et al. [9] and the
findings of an early draft of Aubourg et al. [39] (which
has since been updated with considerably weaker decay-
ing dark matter constraints). They find a 95% confidence
lower bound of 97Gyr, which is nearly 40% weaker than
[9], however it is not clear how the assumptions of large
lifetimes affects the result.

Finally, during the final preparations of this
manuscript, Aubourg et al. [39] updated their results
and find that for h = 0.68, the lifetime is constrained
to be Γ−1 > 28 Gyr at 95% confidence level for a many-
body decay with ε = 1. This is consistent with what we
find here (see Table I). The small difference can be at-
tributed to the marginalization of h that we performed
in this work, as compared to a fixed value of h quoted in
Aubourg et al. [39].

In summary, we have taken the model derived in [13]
and placed constraints based on data from the cosmic
microwave background, baryon acoustic oscillations and
type Ia supernovae. The constraints on two-body decay
are the strongest in the literature as are those for many-
body decays with ε 6= 1. The models and results are
sufficiently general as to be widely applicable to many
possible dark matter candidates.
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V. Bhardwaj, et al., J. Cosmology Astropart. Phys. 5,
027 (2014), 1311.1767.

[38] M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin,
R. Biswas, P. Astier, P. El-Hage, M. Konig, S. Kuhlmann,
et al., A&A 568, A22 (2014), 1401.4064.
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