
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Leveraging waveform complexity for confident detection of
gravitational waves

Jonah B. Kanner, Tyson B. Littenberg, Neil Cornish, Meg Millhouse, Enia Xhakaj, Francesco
Salemi, Marco Drago, Gabriele Vedovato, and Sergey Klimenko

Phys. Rev. D 93, 022002 — Published 21 January 2016
DOI: 10.1103/PhysRevD.93.022002

http://dx.doi.org/10.1103/PhysRevD.93.022002


Leveraging waveform complexity for confident detection of gravitational waves

Jonah B. Kanner
LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA∗

Tyson B. Littenberg
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) & Department of Physics and Astronomy,

Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

Neil Cornish and Meg Millhouse
Montana State University, Bozeman, Montana 59717, USA

Enia Xhakaj
Lafayette College, 730 High St, Easton, PA 18042

Francesco Salemi and Marco Drago
Data Analysis Group, Albert-Einstein-Institut, Max-Planck-Institut fr,

Gravitationsphysik, D-30167 Hannover, Germany

Gabriele Vedovato
INFN Padova, Via Marzolo 8, Padova I-35131, Italy

Sergey Klimenko
University of Florida, Gainesville, FL 32611, USA

The recent completion of Advanced LIGO suggests that gravitational waves (GWs) may soon be
directly observed. Past searches for gravitational-wave transients have been impacted by transient
noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental
effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be
used to rank event candidates and distinguish short duration astrophysical signals from glitches. We
test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of
explicit signal and glitch models. The hierarchical pipeline is shown to have strong performance, and
in particular, allows high-confidence detections of a range of waveforms at realistic signal-to-noise
ratio with a two detector network.

I. INTRODUCTION

Installation of the Advanced LIGO [1] gravitational
wave (GW) detectors has recently been completed, and
the first observation run began in September of this year.
These new detectors are designed to make detection of
GWs a reality. For example, current estimates predict
that Advanced LIGO will eventually detect between 1
and 400 binary neutron star mergers per year [2]. A
number of other sensitive GW detectors are in various
stages of construction and installation, including Ad-
vanced Virgo [3], GEO600 [4], and Kagra [5].

The principal analysis challenge in finding transient
signals in LIGO data is separating signatures of astro-
physical sources from large populations of transient de-
tector artifacts (glitches) in the data. Researchers have
demonstrated a variety of search techniques for find-
ing transient signals with initial LIGO and initial Virgo.
Searches for specific classes of signals, including binary
neutron star mergers and mergers of solar mass black
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holes, have demonstrated performance in real LIGO data
similar to expectations based on Gaussian noise, suggest-
ing they are optimally sensitive [6]. These searches use
a matched filtering technique to reject glitches, an ap-
proach which relies on detailed knowledge of the expected
waveform.

On the other hand, LIGO data is also searched for
generic GW transients, known as GW bursts, which
are not constrained by a specific source model. Such
searches are designed to detect unmodeled and/or unex-
pected GW sources. These searches are less constrained
by waveform morphology, and so are more sensitive to
glitches which diminish detection confidence of poten-
tial GW event candidates. For example, past searches
for bursts in LIGO data have shown background distri-
butions that included high signal-to-noise ratio glitches
[7, 8] which diminish detection confidence of any poten-
tial GW events.

One approach to confident Burst detection is to care-
fully divide the parameter space, and improve detection
confidence for particular classes of signals. Recent work
by Thrane and Coughlin [9] has shown that searches for
long duration bursts, with time-scales greater than sev-
eral seconds, are insensitive to most glitch populations,
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and so can successfully identify long bursts with high
confidence. For short duration searches, it may also be
possible to carefully study background distributions, and
apply ad hoc cuts designed to isolate portions of param-
eter space that are relatively glitch free.

Taking a different approach, Cornish and Littenberg
put forward the BayesWave pipeline [10], and described
how it uses a novel detection statistic to characterize
GW data. Most Burst search algorithms apply selection
cuts to remove glitches, and then rank the remaining sig-
nals with a statistic proportional to signal-to-noise ratio
(SNR). BayesWave instead attempts to fit the data with
both a GW signal model and an explicit glitch model,
and calculate the Bayesian evidence ratio (Bayes Factor)
between the two competing hypotheses. Because of this,
BayesWave may be more robust against the high SNR
glitches which have been problematic for past searches.

In this work, we describe how BayesWave can be used
as a second stage to follow-up triggers from a leading
burst pipeline, coherentWaveBurst (cWB) [11], to create
a “hierarchical pipeline” that combines the best features
of the two tools. To test the performance, we measure
the ability of the joint search to detect simulated gravita-
tional waves while rejecting glitches using the two LIGO
detectors in Livingston and Hanford. We study the per-
formance on a range of waveforms, including both binary
black hole mergers and several ad hoc waveforms that
have been used in previous burst searches.

II. THE HIERARCHICAL PIPELINE

The cWB pipeline has been used in a number of previous
burst searches. The algorithm looks for coherent excess
power by cross-correlating data streams between two or
more detector sites, using projection coefficients that re-
ject signal power which is inconsistent with a source at a
hypothesis sky position. The detection statistic, ρ, is de-
signed to scale with the SNR of the GW signal. cWB has
shown excellent performance in several metrics. It can
analyze a large amount of data with low computational
cost. It is sensitive to GW signals with a large variety
of waveforms. It has been shown to be robust to calibra-
tion errors and other uncertainties, and it also provides
information about the reconstructed parameters of the
signal, including an estimate of the sky position, polar-
ization, and waveform. Because ρ scales with SNR, and
cWB attempts to search a very broad parameter space,
even a small number of coincident, high SNR glitches can
make high confidence detections a challenge. To address
this, cWB uses statistics based on the reconstructed noise
energy to distinguish GW signals from glitches. Also
cWB uses various search strategies to divide the parame-
ter space and single out specific glitch families.

The recently developed BayesWave pipeline computes
the Bayesian evidence for three competing models: the
data contain only Gaussian noise, the data contain an
astrophysical signal, or the data contain one or more

glitches. The algorithm uses a Reverse Jump Markov
Chain to calculate full posterior distributions for each of
these models, and thermodynamic integration to com-
pute the associated evidence. As a detection statistic,
we adopt the natural logarithm of the evidence ratio, or
“Bayes Factor”, between the signal and the glitch model
(log(BS,G)). The Bayes factor is the ratio of the Bayesian
evidence of the signal hypothesis (HS) to that of the
glitch hypothesis (HG):

BS,G =
p(d|HS)

p(d|HG)
(1)

where p(d|H) represents the marginalized likelihood that
the hypothesis H would have produced the data d.
BayesWave uses Markov Chain Monte Carlo methods to
numerically calculate the evidence for each model. Be-
cause the BayesWave detection statistic is derived from a
framework that expects glitches in the data, as opposed
to assuming Gaussian noise, it may rank events in an or-
der that better reflects the true probability that a given
candidate is astrophysical in nature. In addition, the al-
gorithm calculates posterior distributions for a number of
parameters, including the sky position, central frequency,
and bandwidth of any detected event. Such information
could aid in astrophysical interpretation. A current lim-
itation of BayesWave is that the run time is relatively
slow, so that analyzing large data sets is impractical.

The cWB detection statistic ρ is derived from a “maxi-
mum likelihood” framework, which calculates an optimal
statistic for identifying gravitational wave bursts embed-
ded in Gaussian noise. It is natural, then, that ρ scales
with the signal energy present in the data, since Gaussian
noise is extremely unlikely to produce high SNR signals.
BS,G , on the other hand, is calculated in a framework that
directly compares a signal model with a glitch model.
Under this assumption, a louder event does not necessar-
ily imply a larger likelihood of an astrophysical origin.
Indeed, very loud glitches, with SNRs of order 100, are
routinely observed in the LIGO instruments, where the
bulk of astrophysical signals are most likely to be at low
SNR. Rather, the principal scaling for the BayesWave de-
tection statistic can be expressed as [12]:

logBS,G ∼ O (N log SNR) (2)

where N represents the number of sine-gaussian wavelets
used to reconstruct the signal. This scaling can be de-
rived analytically as the ratio of the Occam factors be-
tween the two models (see [12] for details), and emerges
because real signals may be fit with both the signal and
glitch models, but the glitch model has a much larger
parameter space. The fact that the detection statistic
scales only with the logarithm of the SNR suggests that
in this framework, a very loud event does not provide
much evidence for the signal model. On the other hand,
the detection statistic does show a strong scaling with
the complexity of the signal in the time-frequency plane,
as represented by N , the number of wavelets required.
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This brings out the salient feature that distinguishes
BayesWave from other Burst pipelines - complexity in
signal morphology, rather than SNR, determines the sig-
nificance of observed events.

For GW signals that require only a single wavelet to
reconstruct (i.e. sine-gaussian waveforms), N ∼ 1, and
we expect the detection statistic to be effectively flat as
a function of SNR, since logBS,G will scale slowly as log
SNR. On the other hand, for a signal with a non-trivial
time-frequency structure (i.e. anything other than a sine-
gaussian), we expect to better resolve the signal with
higher SNR, and so require more wavelets, so that

N ∼ 1 + β SNR (3)

where β depends only on the waveform morphology, β ≥
0, and β is larger for waveform morphologies that have
complicated time-frequency structure.

In this work, we implement a hierarchical pipeline,
where BayesWave acts as a follow-up stage, which can
amplify the significance of complex GW events identi-
fied by cWB. This takes advantage of the computational
efficiency and robust trigger identification of cWB, while
leveraging the unique signal-glitch separation capabilities
of BayesWave. In our scheme, cWB was run over a large
set of interferometer data, represented in this study by
roughly 50 days of data from the last science run of initial
LIGO. A nominal threshold was set for ρ, and for each
event above threshold, BayesWave was run over 4 sec-
onds of data centered on the trigger time, with the goal
of calculating log(BS,G) for the 1 second of data around
the trigger time. This combined pipeline was run for two
different testing scenarios:

• Binary black hole merger waveforms added to
rescaled LIGO noise, to emulate the power spec-
tral density of expected noise in the early advanced
LIGO detectors.

• Ad-hoc waveforms used in previous Burst searches
added to initial LIGO data

In the following sections, we describe these two data sets
in detail, and present the results of our testing.

III. TESTING WITH BINARY BLACK HOLE
WAVEFORMS

A. Data Set

While GW signals from stellar mass black-hole merg-
ers can be best recovered using matched filters, inter-
mediate mass black hole mergers (M ∼ 100M�) may
be well detected with burst searches, since the time the
source spends in the LIGO frequency band is very short.
While matched filtering may still be ideal in many cases,
burst searches present the advantage that they are ro-
bust against modeling uncertainties. For example, ob-
taining a template bank of model waveforms is difficult

for cases where the black holes have misaligned spins or
are on eccentric orbits. Previous studies have compared
the performance of burst pipelines and matched filtering
pipelines in this regime, and found them to have similar
sensitivity [13].

To emulate a search for intermediate mass binary black
holes with Advanced LIGO, we used 26.6 days of co-
incident data from the Hanford and Livingston LIGO
detectors from the end of the last science run of initial
LIGO, in August-October of 2010. This data was “recol-
ored” to have a noise power spectral density that mim-
ics roughly what we expect from the first science run of
Advanced LIGO, with a 55 Mpc sky-averaged range for
binary neutron star mergers [14]. The recoloring process
was intended to simulate noise levels from the near future
detectors, while preserving the non-gaussian features in
the data. This was done using tools in the gstlal library
[15] to apply filters to change the frequency dependence
of the data’s power spectral density.

B. Background

In order to measure the rate of false-positives found
by our hierarchical pipeline, we created 30,000 time-slide
data sets by introducing artificial time off-sets between
the Hanford and Livingston data streams. This back-
ground data represent 1896 years of effective livetime.
cWB was run over all of this data, searching for transients
in a band from 16-512 Hz. We set a nominal threshold at
ρ > 8.1, yielding 500 background triggers from the time-
slide data. All 500 background triggers were processed
by BayesWave using the same bandwidth as cWB to de-
termine the final detection statistic, log(BS,G), for each
event. The false alarm rate (FAR) for this background
set is shown in Figure 1. The loudest background event
has log(BS,G) ∼ 19. We also show in Figure 2 the same
background set, as a function of the the cWB detection
statistic ρ. If no additional cWB selection cuts are ap-
plied, the same FAR may be achieved with a threshold of
ρ > 107. We tried applying both “Category 2” and “Cat-
egory 3” data quality cuts, as was done in initial LIGO
searches [8], and found that this makes only a small differ-
ence for the loudest several events that dominate the high
SNR “tail” of the cWB background (See Figure 2). To ad-
dress the background problem, the cWB trigger set would
require additional processing, such as dividing up the pa-
rameter space, additional selection cuts, or a follow-up
with an additional burst algorithm as described in this
work.

A novel feature of the BayesWave pipeline is that it
allows an a priori estimate of the expected background
rate, which may be compared with the results of running
the hierarchical pipeline. Based on studies of LIGO noise
properties [16], we expect coincident glitches in the LIGO
detectors roughly every 100 seconds (Rglitch = 0.01 Hz).
For glitches that mimic real signals, the Bayes Factor
BS,G is dominated by the “Occam Factor”, an estimate
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of the fraction of glitch parameter space that is consis-
tent with the signal model for a given event. This imme-
diately leads to an expectation for the background rate
of glitches that mimic real signals by chance,

FARexpected ∼ (1/BS,G)× Rglitch (4)

which is plotted as a gray dashed line in Figure 1.

C. Injections

To test the ability of the joint cWB plus BayesWave
pipeline to recover GW signals, we added two sets of
simulated black hole mergers to the data. One set con-
tained waveforms from binary black holes with compo-
nent masses of 50 M�, the other contained component
masses of 150 M�. Both sets were distributed uniformly
in co-moving volume, and generated using non-spinning
effective-one-body waveforms, known as EOBNRv2 [17].

Scatter plots of the recovered injections can be seen in
Figures 3 and 4. In each figure, the x-axis corresponds to
the cWB detection statistic ρ, while the y-axis shows the
BayesWave detection statistic logBS,G . As a demonstra-
tion that the hierarchical pipeline can make high con-
fidence detections, the blue dashed line in each figure
represents the threshold required for a “3-σ” level detec-
tion in a year of observations, corresponding to a FAR of
9× 10−11 Hz. Many injections are seen to be well above
this threshold, even with network SNR as low as ∼ 10.

For comparison, the red vertical line shows the ρ value
that would be required for the same confidence level, if
only the basic cWB cuts were used. The two dashed lines,
then, divide the figure into four quadrants which classify
each injection as detected by the hierarchical pipeline but
not the basic cWB cuts (top left), detected by cWB but not
by the hierarchical pipeline (bottom right), detected by
both approaches, or detected by neither. The thresh-
old required by the basic cWB cuts is clearly too high to
be practical - events would need a network SNR > 50
to stand above the background. Any search with cWB,
then, would need some additional layer of processing.
The events in the top-left quadrant of Figures 3 and 4
represent black hole merger signals which were detected
with low-significance by the basic cWB, but were “pro-
moted” by the BayesWave follow-up. The fact that most
of the injections with SNR 10-50 fall in this range sug-
gests that, for these waveforms, the hierarchical pipeline
described in this work represents a successful strategy.
Moreover, while the blue dashed line corresponds to a
3σ detection level, we note that the loudest background
event in the data set had a value of logBS,G ∼ 19. Many
of the events are seen to rank higher than this, suggest-
ing that detections at even higher significance levels are
possible, even with plausible SNR values.

To quantify the performance of the hierarchical
pipeline for black hole mergers, we follow the method-
ology described in [13] and plot the “sensitive radius”
at a range of FAR values in Figure 5, a statistic that

FIG. 1. Background for the hierarchical pipeline in the the
recolored data used to study IMBH signals. The background
was calculated using 1900 years of time-slide data. The loud-
est background event has logBS,G = 19. The gray curve shows
the expected background, based on the assumption that a
glitch appears in the data every 100 seconds.

FIG. 2. Background for the cWB pipeline in the the recol-
ored data used to study IMBH signals. The background was
calculated using 1900 years of time-slide data. The loudest
background event has ρ = 107. The two curves show the back-
ground after applications of “Category 2” (red) and “Cate-
gory 3” (black) data quality vetoes.

characterizes the effective range of the survey. At very
high FAR values (∼ 1 per 10 years), the pipeline presents
no advantage over a basic application of cWB. However,
moving to the left side of the plot, representing high con-
fidence detections, the hierarchical pipeline still detects
a large fraction of the injection set. This means that the
hierarchical pipeline is able to detect black hole merg-
ers at high confidence, even in the presence of glitches,
without reliance on a matched filter technique.
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FIG. 3. Scatter plot of two detection statistics with simulated
mergers of pairs 50 solar mass black holes, comparing the
hierarchical pipeline with the basic cWB cuts. The dashed lines
correspond to thresholds required for a false positive rate of
1 in 300 years. Injections in the upper-left quadrant were
“promoted” by the BayesWave follow-up.

FIG. 4. Scatter plot of two detection statistics with simulated
mergers of pairs 150 solar mass black holes, comparing the
hierarchical pipeline with the basic cWB cuts. The dashed lines
correspond to thresholds required for a false positive rate of
1 in 300 years. Injections in the upper-left quadrant were
“promoted” by the BayesWave follow-up.

IV. TESTING WITH AD-HOC WAVEFORMS

A. Data Set

In principle a burst search should be sensitive to a
wide range of possible signal morphologies. In order to
test this, without reliance on any particular astrophys-
ical models, past all-sky burst searches have made use
of a suite of ad-hoc waveforms to measure pipeline per-

FIG. 5. Sensitive distance for the 50-50 solar mass injections.
The sensitive distance is a measure of the effective radius to
which the analysis is sensitive. The shown curves apply only
category 2 data quality cuts.

formance [8]. This set includes two extremes of wave-
form complexity. At one extreme, linealy polarized sine-
gaussian, or Morlet-Gabor, waveforms represent a mini-
mum possible “time-frequency volume” [18], and so may
be described as the simplest possible signals in this do-
main. They also correspond to the basis functions used
by the BayesWave pipeline, and so are best represented
by a single wavelet (N ≈ 1). The set also contains un-
polarized “white-noise burst” waveforms, which are ran-
dom waveforms within a fixed duration and bandwidth.
In the time-frequency plane, these waveforms essentially
fill a large block with edge sizes corresponding to the
duration and bandwidth of the signal. The white noise
bursts are a very poor match to the BayesWave Morlet-
Gabor basis, and so require a large number of wavelets
to reconstruct. In this sense, they have a very complex
time-frequency structure. The unpolarized white-noise
bursts also provide an interesting test of the BayesWave
signal model, which uses an elliptical polarization model
for GW signals. To measure the performance of the hier-
archical pipeline using these ad-hoc waveforms, we used
51 days of coincident data from the H1-L1 network dur-
ing the last science run of initial LIGO, between August
and October 2010. The data and data quality informa-
tion are both available through the LIGO Open Science
Center [19].

B. Background

In order to measure the FAR of the search, the data
were time-shifted 500 times to create a background set
with 70 years of effective livetime. Following [8], we
searched through this data set using cWB in a bandwidth
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FIG. 6. Background for the hierarchical pipeline using the
LIGO data used to study ad-hoc signals. The background
was calculated using 70 years of time-slide data. The loudest
background event has logBS,G = 16. The gray curve shows
the expected background, based on the assumption that a
glitch appears in the data every 100 seconds.

from 32 to 2048 Hz. As for the black hole merger data set,
each trigger from cWB above a nominal threshold (ρ > 8)
was processed in a 1 second window using BayesWave.
In order to reduce processing time, we used the central
frequency as reported by cWB to limit the bandwidth of
some BayesWave jobs. Triggers with a central frequency
less than 200 Hz were processed with a bandwidth from
16-512 Hz, while triggers with a higher central frequency
used a band from 16-2048 Hz. The rate of background
triggers for the hierarchical pipeline is shown in Figure
6, and the corresponding FAR for the basic application
of cWB is shown in Figure 7.

The background distributions were broadly similar to
the distributions for the recolored data set. In Figure
7, we see that the basic cWB cuts lead to a “tail” in the
distribution. As in the IMBH data set, we see in Figure
6 that the hierarchical pipeline shows a distribution that
is similar to expectations based on the known glitch rate,
marked as a grey line in the figure. For this data set, the
background represents 70 years of effective livetime, so
the detection statistic of the loudest event corresponds
to a FAR threshold of 5× 10−10 Hz.

C. Injections: white noise bursts

To measure the ability of the hierarchical pipeline to
recover astrophysical signals, we added simulated signals
to the data set before running the pipeline. Tens of thou-
sands of injections were added to the 51 days of data.
As with the background set, this data was searched first
with cWB to identify triggers with ρ > 8. Unlike with the
background set, for the injections we randomly selected
a sub-set of around 200 of the cWB triggers for each wave-

FIG. 7. Background for the cWB pipeline using the S6 data
used to study ad-hoc signals. The background was calcu-
lated using 70 years of time-slide data. The two curves show
the background after applications of “Category 2” (red) and
“Category 3” (black) data quality vetoes.

form to process with BayesWave.

We tested three different white noise burst waveforms
with short duration (t < 0.1 s), each with a different cen-
tral frequency and bandwidth, as used in initial LIGO
searches [8]. A fourth waveform, with longer duration
and narrow bandwidth, was found incompatible with the
BayesWave parameters used in this search; the long du-
ration (> 0.5 s) would require a larger data segment for
power spectral density estimation and a larger maximum
number of wavelets to cover. An example scatter plot
showing the results of white noise burst waveforms with
a bandwidth from 50-150 Hz is shown in Figure 8. In the
figure, the colorbar shows the network SNR, and the X
and Y axes correspond to the cWB and BayesWave detec-
tion statistics, respectively. Also shown are the loudest
background event after category 2 data quality for both
the first stage cWB cuts (red, vertical line) and the second
stage BayesWave ranking statistic (blue, horizontal line).
These thresholds divide the figure into four quadrants,
representing if the event was detected at various stages
of the hierarchical pipeline. For example, events in the
upper left quadrant stood above the background for the
hierarchical pipeline, but would not have been detected
using only the basic version of the cWB pipeline. We say
these events were “promoted” by the BayesWave follow-
up, since their detection confidence increased due to this
step.

Since ρ scales linearly with SNR, moving from left to
right across the figure represents growing SNR. As the
network SNR grows from 10 to 30, logBS,G is seen to
grow quickly. This is expected for complex waveforms:
signals with higher SNR require more wavelets to recon-
struct, as in Equations 2 and 3. Figure 8 shows that the
typical event with network SNR > 15 has a bayes factor
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FIG. 8. Scatter plot of white noise burst injections in the 50-
150 Hz bandwidth. Events in the top-left quadrant were “pro-
moted” to possible detections by the application of BayesWave
in the second stage of the hierarchical pipeline.

that exceeds the loudest background event, and so could
be detected with high confidence. To reproduce a result
like this was not possible using only a basic application
of cWB; BayesWave or some other form of follow-up was
required for high confidence detections.

To quantify the performance of the second stage in the
hierarchical pipeline, Figure 9 shows the performance of
both the hierarchical pipeline and the first stage cWB cuts
at various FAR thresholds. The efficiency shown on the
Y-axis uses the number of triggers identified by cWB with
network SNR < 80 as the denominator, and shows the
fraction of these events recovered above the threshold on
the X-axis. The efficiency of recovering events at high
confidence is seen on the right side of the plot. The
second stage of the pipeline “promotes” 80-95% of the
events to a FAR < 1/70 years, where essentially none of
the events in this SNR range cross this threshold using
only the first stage of the pipeline.

D. Injections: Sine-gaussians

We also tested a variety of sine-gaussian waveforms
with different central frequencies and quality factors.
These waveforms match the basis wavelets used by
BayesWave, so they have minimal complexity, and in
Equation 2, N ≈ 1 (β = 0). This means that logBS,G
scales with the logarithm of SNR. This leads to a counter-
intuitive conclusion: The most challenging waveforms
for BayesWave to detect are sine-gaussians, because they
match the basis used by the pipeline. Potentially, future
versions of the code could target these signals by using a
more precisely formulated glitch model, though at some
point one would encounter the basic problem that some
LIGO glitches do, in fact, mimic sine-gaussian signals.

FIG. 9. Fraction of white noise burst injections identified in
the first stage which were recovered at various FAR thresh-
olds, after applying CAT 2 vetoes. The right side of the fig-
ure indicates higher confidence detections. The hierarchical
pipeline performs well recovering complex waveforms at high
confidence. For waveform details, see [8].

An example of this logarithmic scaling may be seen
in Figure 10. Compared with the white noise bursts
in Figure 8, the Bayes Factor of the sine-gaussian in-
jections grows very slowly with SNR. The result is that
nearly all of the events have logBS,G in the range 5− 20.
Comparing with the background distribution, we can see
this means the hierarchical pipeline will detect most sine-
gaussian signals with a FAR 10−10−10−8 Hz, or about 1
background event per 3-300 years. This FAR is too low
to make first detections, though it may be in the right
range for identifying interesting candidates, and may be
appropriate in a future scenario where GW detections are
common.

The FAR range where BayesWave detects sine-gaussian
signals loosely corresponds to the FAR levels where we
see long tails in the naive cWB background. Moreover,
experience with cWB suggests that typical glitch popula-
tions that pass basic selection cuts often have a simple
time-frequency structure. The statistical framework de-
veloped for BayesWave predicts this effect: glitches with
simple time-frequency structure may appear as coinci-
dent in both detectors, and so mimic real signals. How-
ever, glitches with complex time-frequency structure are
highly unlikely to appear identical in two or more detec-
tors, and so can typically be rejected by testing for signal
power inconsistent with the astrophysical model. One
could argue the BayesWave ranking by signal complexity
is a natural approach for this reason: signals with simple
time-frequency structure may be plausibly explained as a
glitch, while signals with complex time-frequency struc-
ture are extremely unlikely to appear consistent with
a GW signal in two detectors by chance. The conclu-
sion, then, is that short duration sine-gaussian wave-
forms represent a special case which are challenging to
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FIG. 10. Scatter plot of 153 Hz, Q9 sine-gaussian injections.
The injections have a simple time-frequency structure, so the
Bayes Factor scales only weakly with SNR.

FIG. 11. Fraction of sine-gaussian injections detected at var-
ious FAR thresholds. The simple waveforms are detected at
low confidence, but not at high confidence. For waveform
details, see [8].

detect at high confidence due to similarity with detector
glitches. The results in Figure 11 show that the hierar-
chical pipeline and basic cWB perform at a similar level for
these waveforms. If nature indeed produces simple wave-
forms, from sources like cosmic string cusps, very high
mass binary black holes, etc., perhaps they can be recov-
ered with more specialized burst searches, or populations
of such events could stand above the background.

V. DISCUSSION

In this work, we introduced a hierarchical pipeline
which combines two previously described algorithms for

finding GW burst signals. The performance of the hier-
archical pipeline was tested using a variety of simulated
waveforms embedded in data from the two detector LIGO
network. The testing demonstrated that for this data set:

• For complex waveforms requiring several wavelets
to fit, including white noise bursts and binary black
hole merger signals, the hierarchical pipeline can
make high confidence detection for low SNR events.

• For simple waveforms (for example, sine-
gaussians), the hierarchical pipeline does not
improve the detection confidence and other
alternative approaches need to be explored.

• The distribution of background events studied with
BayesWave was broadly consistent with a simple,
predictive model.

The implication for the early Advanced LIGO network
is clear: using a detection statistic that accounts for
waveform complexity, as was done here with BayesWave,
enables high-confidence detection of short GW bursts
even in the presence of loud glitches.

The fact that cWB uses a detection statistic that scales
linearly with SNR means that even a single loud glitch in
the background set requires special attention to enable
high-confidence detections. The cWB background typi-
cally contains large “tails”, and so follow-up or special-
ized cuts are required. On the other hand, glitches which
contain significant time-frequency structure, and so re-
quire multiple wavelets to reconstruct, are extremely un-
likely to have the same time-frequency structure in two
detectors. BayesWave leverages this feature of the data to
assign a high detection confidence to signals with com-
plex time-frequency structure, and a low confidence to
simple signals. This means that simple, loud glitches are
“down-weighted” by BayesWave, while complex glitches
are most likely rejected due to a lack of coherence be-
tween detectors. The fact that BayesWave uses this im-
portant morphology information to rank events, while
cWB ranks mainly by coherent SNR, are complimentary
features of the two algorithms.

Finally, we note that the strong performance shown
here is not necessarily restricted to this particular imple-
mentation. Rather, this is a result of a detection statis-
tic that better reflects the properties of LIGO data than
SNR based schemes. Such a statistic could be imple-
mented in a less computationally intensive framework,
so that a single stage pipeline may show similar perfor-
mance. In this sense, we hope that this work marks a
turning point in the culture of GW transient searches, so
that our community can move beyond only looking for
the very loudest signals, and instead give proper statis-
tical weight to waveform morphology in our searches.
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