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Two-loop anomalous dimensions and one-loop renormalization scheme matching factors are calcu-
lated for six-quark operators responsible for neutron-antineutron transitions. When combined with
lattice QCD determinations of the matrix elements of these operators, our results can be used to
reliably predict the neutron-antineutron vacuum transition time, τnn, in terms of basic parameters
of baryon-number violating beyond-the-Standard-Model theories. The operators are classified by
their chiral transformation properties, and a basis in which there is no operator mixing due to strong
interactions is identified. Operator projectors that are required for non-perturbative renormalization
of the corresponding lattice QCD six-quark operator matrix elements are constructed. A complete
calculation of δm = 1/τnn in a particular beyond-the-Standard-Model theory is presented as an
example to demonstrate how operator renormalization and results from lattice QCD are combined
with experimental bounds on δm to constrain the scale of new baryon-number violating physics. At
the present computationally accessible lattice QCD matching scale of ∼ 2 GeV, the next-to-next-
to-leading-order effects calculated in this work correct the leading-order plus next-to-leading-order
δm predictions of beyond-the-Standard-Model theories by < 26%. Next-to-next-to-next-to-leading-
order effects provide additional unknown corrections to predictions of δm that are estimated to be
< 7%.

PACS numbers: 11.30.Fs,12.38.Bx

I. INTRODUCTION

The universe contains many more baryons than antibaryons [1]. Unless this baryon asymmetry is attributed to
fine-tuning of the initial conditions of the universe, the baryon asymmetry must have been generated dynamically
during the early universe. Any mechanism describing this process of baryogenesis must include violation of baryon-
number (B) conservation, violation of C and CP , and departure from thermal equilibrium [2]. The Standard Model
includes B violation through non-perturbative electroweak processes that violate B + L but preserve B − L [3, 4].
It also includes classical C and CP violation and departure from thermal equilibrium during the electroweak phase
transition. However, the B and CP violating effects present in the Standard Model cannot reproduce the observed
magnitude of the baryon asymmetry [5–7]. As a result, Beyond-the-Standard-Model (BSM) physics is needed to
explain baryogenesis. BSM baryon number violation could occur in many different ways. Theories that allow ∆B = 1
transitions can allow B−L conserving proton decay,1 which has been experimentally constrained to a high degree [9–
11]. Other classes of BSM theories do not allow proton decay, but do allow other baryon number violating processes.
These models often instead include the ∆B = 2, B − L violating, neutron-antineutron transition [12–39].

In vacuum, neutron-antineutron (nn) transitions would manifest themselves as oscillations between neutrons and
antineutrons. The probability that a free neutron has transformed into an antineutron after time t is given by
Pnn = sin2(t/τnn), where τnn is the neutron-antineutron vacuum transition time. Experimental measurements of
magnetically shielded cold neutron beams at the Institut Laue-Langevin (ILL) have established a limit of τnn >
2.7 years [40]. There are also experimental bounds on the decay rate of neutrons bound in nuclei from large volume
underground detectors. Super-K has bounded the transition time τO16 for nn transitions in oxygen, τO16 > 1.89 ×
1032 years [41]. Nuclear structure calculations can be used to relate this nuclear transition time to the vacuum
transition time τnn. This bound on the vacuum transition time is estimated to be a factor of four or five larger than
the ILL bound, but the nuclear structure calculations introduce non-trivial systematic uncertainties.2 It is believed
that improvements in neutron transport/optics and neutron moderation technologies since the 1994 ILL experiment
would allow for new neutron beam experiments to improve the ILL bounds by an order of magnitude or more [43].
There has been a recent push from both theoretical and experimental communities in support of new, state-of-the-art
nn experiments. [43–45].

In order to constrain BSM theories predicting nn transitions, experimental results must be compared to theoretical

1 See Ref. [8] for a recent review on proton decay
2 In particular Ref. [41] cites a derived bound of τnn > 7.7 years. More recent structure calculations in Ref. [42] modify this bound to be
τnn > 10.9 years, as noted in Ref. [43].
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predictions for τnn. Making reliable predictions for τnn within a particular BSM theory is challenging. In particular,
theoretical descriptions of the nn transition process must include strong interaction physics as well as BSM physics.
These effects are important at very different scales. High-scale BSM physics gives rise to effectively local ∆B = 2
interactions turning three quarks into three antiquarks. Comparatively low-scale strong interactions bind these quarks
(antiquarks) into a neutron (antineutron). Theoretical descriptions of this high- and low-scale physics can be factorized
by using a Standard Model effective field theory description of nn transitions. In this approach, the Hamiltonian
governing nn transitions is described as a linear combination of operators built from Standard Model fields.

The most relevant Standard Model effective field theory operators contributing to nn transitions are dimension-
nine six-quark operators. A complete basis of these six-quark operators can be constructed without specializing to
a particular BSM theory. This construction was begun in Refs. [46, 47], generalized and detailed in Refs. [48, 49],
and completed in Ref. [50] where spin-color Fierz identities were used to remove redundant operators from the
basis. Higher-order operators of potential interest have also been discussed [51, 52]. The effects of low-scale strong
interaction physics on nn transitions are encoded in quantum chromodynamic (QCD) matrix elements of six-quark
operators between initial neutron and final antineutron states. All high-scale physics and BSM model dependence
is encoded in the particular numerical coefficients used to express the effective Hamiltonian for a given theory in a
six-quark operator basis. These numerical coefficients can be calculated perturbatively in BSM matching calculations
for particular theories of interest.

Testable predictions for τnn cannot be made without reliable calculations of six-quark operator QCD matrix el-
ements. Equivalently, experimental bounds on τnn cannot be used to constrain BSM theory without reliable QCD
matrix element calculations. These six-quark matrix elements have been estimated in the MIT bag model [48, 49], but
model estimates introduce uncontrolled uncertainties into the relation between BSM parameters and experimental
observables [53]. The only available method to determine hadronic matrix elements with controlled uncertainties is
lattice QCD. Preliminary lattice QCD calculations of nn matrix elements are underway [54]. Once completed, lattice
QCD nn matrix elements can be non-perturbatively renormalized and then combined with BSM matching calculations
performed with renormalized perturbation theory.

The need for perturbative nn operator renormalization arises because lattice QCD matrix elements can only be
renormalized at scales smaller than the UV cutoff of the lattice, (typical calculations today use lattice matching scales
of p0 ' 2 GeV [55]) but renormalization scales that are currently accessible in lattice QCD simulations cannot be
(directly) used for perturbative BSM matching calculations. These BSM matching calculations receive logarithmic
corrections that become large enough to invalidate perturbation theory unless the renormalization scale chosen is
comparable to high scales where BSM physics becomes important. For typical BSM theories, these scales are in the
range ΛBSM = 102 − 1016 GeV. To address this issue, renormalization group (RG) techniques can be used to sum
these large logs and reliably relate matrix elements calculated with different renormalization scales. This RG evo-
lution (“running”) and typical BSM matching calculations are both simplest in mass-independent, renormalization
schemes such as modified minimal subtraction (NDR-MS).3 The MS renormalization scheme can only be applied
directly to dimensionally regularized matrix elements, and in particular cannot be applied directly to lattice regu-
larized matrix elements. Instead, the Regularization-Independent-Momentum (RI-MOM) scheme can be introduced
as an intermediate renormalization scheme [56]. As long as the lattice matching scale p0 used for non-perturbative
renormalization is larger than hadronic scales where QCD becomes non-perturbative, it is possible to relate RI-MOM
and MS renormalized matrix elements perturbatively (“matching”). The perturbative calculation of RG running and
matching factors therefore allows non-perturbatively renormalized lattice QCD matrix elements to be combined with
perturbative BSM matching calculations to provide testable predictions for τnn in BSM theories of interest.

The largest corrections to τnn arising from RG evolution are encoded in perturbative one-loop-running factors.
These have been correctly calculated for nn operators in Ref. [50]. One-loop running provides an overall multiplicative
correction to non-perturbatively renormalized matrix elements, see Eq. (2). Further RG corrections to this result can
be organized as a power series in αs(p0). In order to verify that this perturbative expansion is well-controlled at a
given p0, it is necessary to determine the first term in this αs(p0) power series. This term is parametrically O(αs(p0)),
and includes one-loop-matching effects. When running to high scales µ where αs(µ) � αs(p0), two-loop-running
effects also contribute at O(αs(p0)) and must be included as well, see Eq. (2). This work provides the first calculation
of the one-loop-matching and two-loop-running factors needed to reliably estimate the convergence of RG relations
between nn matrix elements at low scales p0 accessible to lattice QCD simulations and high scales µ accessible to
perturbative BSM matching calculations.

3 Naive dimensional regularization (NDR) prescribes that γ5 anticommutes with γµ in D dimensions. Since closed fermion loops do
not appear in nn calculations, no complications arise from using the NDR prescription. In the remainder of this paper we abbreviate
NDR-MS as MS for brevity.
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The remainder of this paper begins with a summary of our final results in Sec. II. Results are presented for the
fixed-flavor basis commonly used in the literature and for a new chiral basis that is diagonal under RG evolution.
The construction of this chiral basis is presented in Sec. III. The RI-MOM renormalization scheme and associated
operator projectors needed for perturbative and non-perturbative nn operator renormalization are defined in Sec. IV.
Calculation of one-loop-matching factors relating RI-MOM and MS renormalized operators is discussed in Sec. V.
Calculation of two-loop-running factors is discussed in Sec. VI. Both Sec. V-VI discuss the careful treatment of
evanescent operators vanishing in D = 4 that is necessary for a correct calculation of RG effects. To demonstrate
the phenomenological application of our results, a complete calculation of τ−1

nn and resulting experimental constraints
are discussed for a simplified BSM model in Sec. VII. Physical results and implications are summarized in Sec. VIII.
Analogous one-loop-matching and two-loop-running calculations have been performed for four-quark weak matrix
elements [57–65] and proton decay [66–73], the latter of which has also recently been analyzed at the level of two-
loop-matching and three-loop-running [74]. These calculations provide useful techniques as well as cross-checks for
intermediate results. We avoid discussion of established techniques for multi-loop diagram evaluation in the main text,
but for readers unfamiliar with two-loop diagram evaluation we present a pedagogical discussion in Appendices A - B.
Our explicit evanescent operator basis (technically required for a full definition of MS operator renormalization) is
presented in Appendix C, and some intermediate results are shown in Appendix D.

II. SUMMARY OF RESULTS

The neutron-antineutron vacuum transition time τnn predicted by a particular BSM theory can be calculated from
matrix elements of the Hamiltonian density

Hnneff =
∑
I

CI(µ)QI(µ) (1)

where the QI(µ) form a complete basis of dimension-nine local six-quark operators with non-vanishing matrix elements
〈n|QI(µ) |n〉 between initial neutron and final antineutron states, the CI(µ) are Wilson coefficients, and µ is a
renormalization scale. The Wilson coefficients are renormalization scheme and scale dependent and will differ between
BSM theories. They can be calculated by matching tree- or one-loop- level nn amplitudes between the full BSM theory
and an effective theory containing only Standard Model degrees of freedom. Hadronic matrix elements of QI(µ) are
independent of the BSM theory used to calculate the CI(µ) but renormalization scheme and scale dependent.

Lattice QCD first determines matrix elements of bare, lattice regularized operators. By subsequent lattice QCD
calculations, these bare matrix elements can be non-perturbatively renormalized in the RI-MOM scheme described
in Sec. IV at a lattice matching scale p0. Provided αs(p0) � 1, dimensionally regularized perturbation theory can
be used to relate RI-MOM renormalized matrix elements to MS renormalized matrix elements. Introduction of RI-
MOM as an intermediate renormalization scheme is necessary because the MS scheme can only be directly applied to
dimensionally regularized (and not, for instance, lattice regularized) matrix elements. Setting the MS renormalization

scale µ = p0 removes large logarithms from the RI-MOM matching calculation. Perturbative calculations of CMS
I (µ)

in a particular BSM theory typically introduce additional logarithmic corrections ln(µ/ΛBSM ). Since lattice QCD
computational limits demand p0 � ΛBSM , Wilson coefficients calculated at µ = ΛBSM must be RG evolved to µ = p0

and then combined with MS renormalized matrix elements to include all large logs in BSM theory predictions of τnn.
The renormalization scale dependence of the Wilson coefficients is encoded in the MS anomalous dimension matrix

γIJ , defined in Sec. VI. In Sec. III, we use chiral flavor symmetry to construct an operator basis where the anomalous
dimension matrix is diagonal. The RG equations relating Wilson coefficients at different renormalization scales can
be solved perturbatively in this diagonal chiral basis. Including one-loop-matching and two-loop-running effects, the

relation between the desired Hamiltonian Hnneff , the BSM matching coefficients CMS
I (µ) at arbitrary scale µ, and the
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Chiral Basis Flavor Basis γ
(0)
I γ

(1)
I r

(0)
I

Q1 O3
RRR, O3

LLL 4 335/3− 34Nf/9 101/30 + 8/15 ln 2

Q2 O3
LRR, O3

RLR, O3
RLL, O3

LRL −4 91/3− 26Nf/9 −31/6 + 88/15 ln 2

Q3 O3
LLR, O3

RRL 0 64− 10Nf/3 −9/10 + 16/5 ln 2

Q4

(
4/5 O2

RRR + 1/5 O1
RRR

)
,

24 229− 46Nf/3 177/10− 64/5 ln 2(
4/5 O2

LLL + 1/5 O1
LLL

)

Q5

O1
RLL, O1

LRR, O2
RLL,

12 238− 14Nf 49/10− 24/5 ln 2

O2
LRL, O2

LRR, O2
RLR,

(2/3 O2
LLR + 1/3 O1

LLR),

(2/3 O2
LLR + 1/3 O1

LRL),

(2/3 O2
RRL + 1/3 O1

RRL),

(2/3 O2
RRL + 1/3 O1

RLR)

Q̃1

(1/3 O2
RRR − 1/3 O1

RRR),
4 797/3− 118Nf/9 −109/30 + 8/15 ln 2

(1/3 O2
LLL − 1/3 O1

LLL)

Q̃3

(1/3 O2
LLR − 1/3 O1

LLR),
0 218− 38Nf/3 −79/10 + 16/5 ln 2

(1/3 O2
RRL − 1/3 O1

RRL)

TABLE I: Summary of results. The left-most column lists the chiral basis operators QI with independent NNLO operator
renormalization factors. The second column lists the corresponding fixed-flavor basis operators used in Ref. [46–50] that
renormalize identically to QI , see Sec. III. Each QI is equal to (−4) times the first fixed-flavor basis operator listed in the
corresponding row of the second column. The other fixed-flavor basis operators listed may not be directly proportional to QI
but share the same one-loop MS anomalous dimension γ

(0)
I (third column), two-loop MS anomalous dimension γ

(1)
I (fourth

column), and one-loop Landau gauge RI-MOM matching factor r
(0)
I (fifth column) appearing in Eq. (2). γ

(1)
I and r

(0)
I depend

on the evanescent operator basis used to extend D = 4 Fierz relations to D-dimensional operator relations in dimensional
regularization. Our evanescent operator basis is presented in Appendix C. One-loop BSM matching calculations must use
the same evanescent operator basis for consistency. Tree-level BSM matching calculations are unaffected, see Sec. VII for an
example matching calculation.

non-perturbatively renormalized operators QRI
I (p0) used in lattice QCD simulations is

Hnneff =
∑
I

CMS
I (µ)UI(µ, p0)QRI

I (p0),

UI(µ, p0) =

{
U
Nf=6
I (µ,mt)U

Nf=5
I (mt,mb)U

Nf=4
I (mb, p0) for mc < p0 < mb

U
Nf=6
I (µ,mt)U

Nf=5
I (mt, p0) for mb < p0 < mt

U
Nf

I (µ1, µ2) =

(
αs(µ2)

αs(µ1)

)−γ(0)
I /2β0

[
1− δµ2,p0r

(0)
I

αs(p0)

4π
+

(
β1γ

(0)
I

2β2
0

−
γ

(1)
I

2β0

)
αs(µ2)− αs(µ1)

4π
+O(α2

s)

]
,

(2)

where r
(0)
I is a one-loop-matching factor defined in Sec. V, γ

(0)
I and γ

(1)
I are one-loop- and two-loop-running factors

defined in Sec. VI, and β0 and β1 are well-known perturbative coefficients of the QCD β-function presented for

reference in Eq. (46). Only β0, β1, and γ
(1)
I depend on the number of active quark flavors, Nf . Matching between

theories with different Nf at quark thresholds is included in the same manner as in RG evolution of weak matrix
elements without penguin contributions [75] since no penguin diagrams exist for nn operators.

Ignoring QCD effects on RG evolution gives the leading-order (LO) result UI(µ, p0) = 1. Next-to-leading-order
(NLO) QCD effects give a multiplicative correction to UI(µ, p0) whose size is determined by the one-loop-running factor

γ
(0)
I correctly calculated in Ref. [50]. Higher-order corrections due to matching and running provide additive corrections

that can be perturbatively expanded in powers of αs(p0) and αs(µ). For high scales µ where αs(µ) � αs(p0),
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Eq. (2) shows that one-loop-matching and two-loop-running effects receive similar O(αs(p0)) suppression. Both one-
loop-matching and two-loop-running effects must therefore be included in a next-to-next-to-leading-order (NNLO)
calculation of UI(µ, p0). Next-to-next-to-next-to-leading-order (N3LO) corrections not included in Eq. (2) arise from
two-loop-matching and three-loop-running effects that are both O(αs(p0)2) suppressed.

The NNLO operator renormalization factors r
(0)
I and γ

(1)
I are calculated for the first time here and summarized in

Table I. The relative size of NNLO to NLO corrections to UI(µ, p0) depends on µ and differs between operators. Taking
p0 = 2 GeV and using the four-loop parametrization of αs(µ) in Ref. [76], NNLO corrections to NLO+LO results
for δm ≡ 1/τnn are < 26% for all µ ≥ p0 and may be significantly smaller in some BSM theories. Sec. VII presents
an example calculation of the nn vacuum transition rate for one of the simplified models of Ref. [25]. In this model
the relative size of NNLO to NLO corrections to δm is 14%. Estimating that unknown N3LO O(αs(p0)2) corrections
are comparable to the square of NNLO O(αs(p0)) corrections allows systematic uncertainty due to unknown N3LO
corrections to be quantified as < 7% generically and 2% in the model discussed in Sec. VII.

III. CHIRAL OPERATOR BASIS

The operators relevant for nn transitions are Lorentz, color, and electromagnetic singlet six-quark operators of
dimension nine. Since hadronic matrix elements must be calculated in lattice QCD simulations that only maintain
approximate chiral symmetry at best, operators that are not singlets of the full electroweak gauge group should be
considered. Even so, operator renormalization is most simply performed in the limit of massless up and down quarks.
Classifying operators according to the SU(2)L × SU(2)R chiral symmetry of QCD in this limit proves quite useful.4

In this section we construct a basis of irreducible chiral tensor operators that do not mix under perturbative QCD
interactions. Fierz relations and symmetries of the color, spin, and flavor tensors used throughout this section are
detailed in Appendix A. Our notational conventions are as follows: we use i, j, k, . . . as fundamental color indices,
µ, ν, ρ, . . . as 4-vector Lorentz indices, α, β, γ, . . . as Lorentz spinor indices, a, b, c, . . . as flavor spinor indices, I, J,K, . . .
as operator basis labels, and χ’s as chirality labels L,R. We will use A,B,C, . . . to denote adjoint indices in both color
and flavor. su(3)c color generators will be denoted by tA and normalized to Tr(tAtB) = 1

2δ
AB while su(2)L and su(2)R

flavor generators will be denoted by τA and normalized as Pauli matrices Tr(τAτB) = 2δAB with τ± ≡ 1
2 (τ1 ± iτ2).

We use Euclidean (++++) metric signature and will not distinguish between raised and lowered indices. Final results
are valid in Minkowski signature; intermediate steps are not. Summation convention applies to all indices but not to
operator basis I, J,K, . . . and chirality χ labels.

Two quarks can be combined into a spin-singlet diquark by contraction with the antisymmetric charge conjugation
matrix C and projected onto definite chirality by including PL,R = 1

2 (1 ∓ γ5). In D = 4, spin Fierz identities can

be used to express any product of vector diquarks containing γµ or tensor diquarks containing σµν = i
2 [γµ, γν ] as a

product of scalar diquarks. Denoting flavor doublet quark fields by ψαia = (uαi , d
α
i ), only operators containing three

products of scalar diquarks ψαia[CPχ]αβψβjb need to be considered.
Flavor Fierz identities allow us to only consider operators where each diquark is either a flavor singlet contracted

with the antisymmetric tensor iτ2
ab or a flavor vector contracted with the symmetric tensor [iτ2τA]ab,

Dχ ≡ (ψCPχiτ
2ψ), DAχ ≡ (ψCPχiτ

2τAψ), (3)

where we have suppressed free color indices. Irreducible su(2)χ-spin-two and su(2)χ-spin-three chiral tensor operators
can then be defined as

DABχ ≡ D{Aχ DB}χ −
1

3
δABDCχDCχ ,

DABCχ ≡ D{Aχ DBχDC}χ −
1

5

[
δABD{Cχ DDχ DD}χ + δACD{Bχ DDχ DD}χ + δBCD{Aχ DDχ DD}χ

]
.

(4)

Since operators contributing to nn transitions must lower the third SU(2)V isospin component I3 isospin by one

unit,5 at least one diquark must be contracted with [iτ2τ+]ab to form a dαi d
β
j diquark. The other two diquarks

must combine to have no net effect on I3. Taking this dαi d
β
j combination to be our third diquark for convenience

4 We thank Brian Tiburzi for very helpful insights on these chiral transformation properties.
5 In particular, nn transitions only involve operators with negative parity, ∆I = 1, and ∆I3 = −1. We only explicitly enforce the latter

constraint ∆I3 = −1 in order to simplify the perturbative calculations presented here.
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Chiral Basis Fixed-Flavor Basis Chiral Tensor Structure Chiral Irrep

Q1 O3
RRR DRDRD+

RT
AAS (1L,3R)

Q2 O3
LRR DLDRD+

RT
AAS (1L,3R)

Q3 O3
LLR DLDLD+

RT
AAS (1L,3R)

Q4 4/5 O2
RRR + 1/5 O1

RRR D33+
R TSSS (1L,7R)

Q5 O1
RLL D−RD

++
L TSSS (5L,3R)

Q6 O2
RLL D3

RD3+
L TSSS (5L,3R)

Q7 2/3 O2
LLR + 1/3 O1

LLR D+
RD

33
L T

SSS (5L,3R)

Q̃1 1/3 O2
RRR − 1/3 O1

RRR DRDRD+
RT

SSS (1L,3R)

Q̃3 1/3 O2
LLR − 1/3 O1

LLR DLDLD+
RT

SSS (1L,3R)

TABLE II: The chiral basis operators QI shown in the first column are equal to (−4) times the corresponding fixed-flavor
basis operator combinations shown in the second column. Each chiral basis operator is equal to a color contraction of the
tensor operators DA...χ shown in the third column. The corresponding chiral irrep of each operator is shown in the last column.
Q1, · · · , Q7 and their parity conjugates (L ↔ R) form a complete basis for nn transition operators in D = 4. Since they are
components of the same chiral tensor operator DARDBCL , Q6 and Q7 renormalize identically to Q5 and are redundant for our

purposes. Q̃1 and Q̃3 are equal to Q1 and Q3 in D = 4, but they renormalize independently in MS at NNLO.

and enforcing antisymmetry under quark exchange, the only available tensors for constructing color singlet six-quark
operators are

TSSS{ij}{kl}{mn} = εikmεjln + εjkmεiln + εilmεjkn + εiknεjlm,

TAAS[ij][kl]{mn} = εijmεkln + εijnεklm,
(5)

where { } denotes index symmetrization and [ ] denotes index antisymmetrization. From here onward we suppress
explicit quark indices and use the diquark notation

(ψiCPRiτ
2ψj) ≡ ψαia[CPR]αβ [iτ2]abψ

β
jb. (6)

We further suppress color indices in diquark products, e.g. (ψψ)(ψψ)(ψψ)TAAS ≡ (ψiψj)(ψkψl)(ψmψn)TAAS[ij][kl]{mn}.

Using these building blocks and neglecting operators that have ∆I3 6= −1 or vanish by quark anticommutivity, we
find that at NLO there are five chiral tensor operators with independent renormalization properties,

Q1 = (ψCPRiτ
2ψ)(ψCPRiτ

2ψ)(ψCPRiτ
2τ+ψ)TAAS , (7a)

Q2 = (ψCPLiτ
2ψ)(ψCPRiτ

2ψ)(ψCPRiτ
2τ+ψ)TAAS , (7b)

Q3 = (ψCPLiτ
2ψ)(ψCPLiτ

2ψ)(ψCPRiτ
2τ+ψ)TAAS , (7c)

Q4 = (ψCPRiτ
2τ3ψ)(ψCPRiτ

2τ3ψ)(ψCPRiτ
2τ+ψ)TSSS (7d)

− 1

5
(ψCPRiτ

2τAψ)(ψCPRiτ
2τAψ)(ψCPRiτ

2τ+ψ)TSSS ,

Q5 = (ψCPRiτ
2τ−ψ)(ψCPLiτ

2τ+ψ)(ψCPLiτ
2τ+ψ)TSSS . (7e)

Symmetries of TSSS and TAAS under diquark exchange ensure that all products of flavor vector diquarks are totally
symmetric. Q4 includes a flavor trace subtraction. This ensures that all operators are irreducible chiral tensor
operators.
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There are two additional operators that cannot be expressed as linear combinations of Q1, . . . , Q5,

Q6 = (ψCPRiτ
2τ3ψ)(ψCPLiτ

2τ3ψ)(ψCPLiτ
2τ+ψ)TSSS , (8a)

Q7 = (ψCPLiτ
2τ3ψ)(ψCPLiτ

2τ3ψ)(ψCPRiτ
2τ+ψ)TSSS (8b)

− 1

3
(ψCPLiτ

2τAψ)(ψCPLiτ
2τAψ)(ψCPRiτ

2τ+ψ)TSSS .

These two operators and Q5 are different components of the same chiral tensor operator DARDBCL . This implies that
Q5, Q6, and Q7 have identical anomalous dimensions and matching factors in renormalization schemes respecting
chiral symmetry. In D = 4, Q1, · · · , Q7 and their seven parity conjugates found by taking L ↔ R everywhere and
including a relative minus sign form a complete basis of dimension-nine operators contributing to nn transitions.

We also consider two more operators Q̃1 and Q̃3 that in D = 4 are equal to Q1 and Q3 respectively by Fierz
identities,

Q̃1 =
1

3
(ψCPRiτ

2τAψ)(ψCPRiτ
2τAψ)(ψCPRiτ

2τ+ψ)TSSS , (9a)

Q̃3 =
1

3
(ψCPLiτ

2τAψ)(ψCPLiτ
2τAψ)(ψCPRiτ

2τ+ψ)TSSS . (9b)

The Fierz relations Q1 = Q̃1 and Q2 = Q̃3 are broken in dimensional regularization, and Q̃1 and Q̃3 are independent
operators in D dimensions. In principle, we could choose our physical operator basis to be Q1, . . . , Q5 and include

Q1− Q̃1 and Q3− Q̃3 as additional evanescent operators vanishing in D = 4 but present in D dimensions. In practice,

it is much easier to directly determine matrix elements of Q̃1 and Q̃3 and explicitly include them in the physical
operator basis. For the purposes of NNLO operator renormalization we take our chiral basis operators QI to include

Q1, . . . , Q5, Q̃1, Q̃3.
The basis commonly used in the literature involves fixed-flavor quark fields [46–50],

O1
χ1χ2χ3

= (uCPχ1u)(dCPχ2d)(dCPχ3d)TSSS ,

O2
χ1χ2χ3

= (uCPχ1d)(uCPχ2d)(dCPχ3d)TSSS ,

O3
χ1χ2χ3

= (uCPχ1d)(uCPχ2d)(dCPχ3d)TAAS .

(10)

These fixed-flavor basis operators satisfy the relations O1
χLR = O1

χRL and O2,3
LRχ = O2,3

RLχ. In D = 4, they also satisfy

the Fierz identities O2
χχχ′ − O1

χχχ′ = 3O3
χχχ′ . These relations reduce the number of linearly independent operators

to 14. It is straightforward to evaluate the flavor contractions of ψ = (u, d) in the QI and verify that Q1, . . . , Q7 and
their parity conjugates form 14 linearly independent combinations of fixed-flavor basis operators. One can similarly

verify that the Fierz relations Q̃1 = Q1 and Q̃3 = Q3 are equivalent to the fixed-flavor basis Fierz relation above. The
precise relations between the chiral basis and fixed-flavor basis operators and their explicit chiral tensor structures
are shown in Table II.

IV. RENORMALIZATION SCHEMES

The commonly used MS renormalization scheme simplifies RG evolution, preserves important symmetries of chiral
gauge theories such as the Standard Model, and is technically simple to implement in perturbative calculations
performed with dimensional regularization. MS is limited, however, in that its defining renormalization condition
can only be applied to regularized matrix elements calculated with dimensional regularization and not other with
regularization schemes such as lattice. The RI-MOM renormalization scheme [56], while not as technically simple to
apply to dimensionally regularized matrix elements, has the advantage of a regularization independent renormalization
condition. In this section we construct a RI-MOM operator renormalization condition for the QI that can be applied
both non-perturbatively to lattice QCD matrix elements and perturbatively to dimensionally regularized matrix
elements. This is an essential intermediate step in connecting lattice regularized and MS renormalized nn matrix
elements.

In this section we explicitly display the spacetime and renormalization scale dependence of the quark fields ψαia(x, µ)
and six-quark operators QI(x, µ). These renormalized quark fields and six-quark operators should be distinguished
from their bare (regularized) counterparts, defined for quark fields of flavor q = u, d by

qαi (x, µ) = Z−1/2
q (µ)[q0]αi (x), QI(x, µ) =

∑
J

ZIJ(µ)Q0
J(x), (11)
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where the wavefunction renormalization factor Zq(µ) and operator renormalization matrix ZIJ(µ) are formally de-
fined by the renormalization conditions of a particular renormalization scheme. We denote perturbative expansion
coefficients for either renormalization factor by

Z(µ) = 1 +

(
αs(µ)

4π

)
Z(1) +

(
αs(µ)

4π

)2

Z(2) +O(α3
s). (12)

The RI-MOM scheme wavefunction renormalization factor ZRI
q (µ) is defined by [56]

1 =
−i
48

Tr

(
γµ
∂Sq(p0, µ = p0)−1

∂pµ

)
=
−i
48
ZRI
q (p0)Tr

(
γµ
∂S0

q (p0)−1

∂pµ

)
,

(13)

where Tr denotes a trace over color and spin (quark flavor q is held fixed), p0 is the lattice matching scale, and
S0
q (p0) and Sq(p0, µ) are bare and renormalized quark propagators respectively. The normalization is chosen such

that ZRI
q (µ) = 1 + O(αs). Eq. (13) assumes that a gauge fixing condition has been imposed so that the quark

propagator is non-vanishing. In this work we consider a general Rξ gauge where the tree-level gluon propagator is
δAB

(
gµν/p

2 − (1− ξ)pµpν/p4
)
. One-loop matching is performed in Landau gauge, ξ = 0. Two-loop-running results

are gauge invariant, and for simplicity the two-loop calculation is performed in Feynman gauge, ξ = 1.
A one-loop calculation of the quark self-energy in D = 4 − 2ε dimensions shows that the counterterm needed to

renormalize the bare propagator according to the renormalization condition Eq. (13) is [56]

ZRI,(1)
q = −4

3

(
ξ

ε
+
ξ

2

)
, (14)

where 1/ε = 1/ε−γE+ln 4π. The MS wavefunction renormalization factor is defined by the condition that Zq remove
precisely the poles in 1/ε from the quark propagator. At one-loop

ZMS,(1)
q = −4

3

(
ξ

ε

)
. (15)

At two-loop order the quark propagator includes diagrams with divergent one-loop subdiagrams. These diagrams
include non-local divergences proportional to ln(µ2/p2)/ε. Renormalizability guarantees that these non-local two-
loop divergences cancel after including counterterm diagrams in which divergent subdiagrams are replaced by their
one-loop counterterms [77].6 The remaining local divergences are removed by a two-loop counterterm that in Feynman
gauge is given by [79]

ZMS,(2)
q =

44

9ε2 +
−47 + 2Nf

3ε
, (16)

where Nf is the number of active quark flavors.
A regularization independent definition of ZRI

IJ (µ) can be given in terms of a renormalization condition applied to
vertex functions for each QI . These vertex functions can be constructed, perturbatively or non-perturbatively, by Wick
contracting QI with interpolating operators for initial neutron and final antineutron states. A vertex function with
QI inserted at zero-momentum can be constructed by including three external antiquark fields carrying momentum
p and three external antiquark fields momentum −p. These antiquark fields act as interpolating operators capable
of creating initial neutron and final antineutron states. In order to simplify the non-perturbative construction of
this vertex function in lattice QCD calculations, it is convenient to work with interpolating operators built from
fixed-flavor quark fields. The quark fields must be assigned momenta symmetrically in order for the RI-MOM scheme

6 For a comprehensive review of renormalization theory with further references to the original literature, see Ref. [78]
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defined using the vertex function to preserve chiral symmetry. A suitable definition is given by [80]

[ΛI ]
αβγδηζ
ijklmn (p) =

1

5

〈
QI(0)uαi (p)uβj (p)d

γ

k(p)d
δ

l (−p)d
η

m(−p)dζn(−p)
〉∣∣∣∣
amp

+
3

5

〈
QI(0)uαi (p)uβj (−p)dγk(p)d

δ

l (p)d
η

m(−p)dζn(−p)
〉∣∣∣∣
amp

+
1

5

〈
QI(0)uαi (−p)uβj (−p)dγk(p)d

δ

l (p)d
η

m(p)d
ζ

n(−p)
〉∣∣∣∣
amp

,

(17)

where antisymmetrization of all antiquark fields of the same flavor is implied, renormalization scale dependence is
suppressed, and the subscript amp refers to the prescription of amputating external legs with the replacement

qαi (p, µ)→ qα
′

i′ (p, µ)[S−1
q (p, µ)]α

′α
i′i . (18)

When the Wick contractions for ΛI are enumerated, the 20 distinct momentum routings available for Feynman
diagrams with six indistinguishable external legs carrying momentum {p, p, p,−p,−p,−p} each appear with equal
weight. Perturbative contributions to ΛI are defined by

ΛI(p, µ) = Λ
(0)
I +

(
αs(µ)

4π

)
Λ

(1)
I (p, µ) +

(
αs(µ)

4π

)2

Λ
(2)
I (p, µ). (19)

It should also be noted that ΛI is defined with an “exceptional momentum configuration” where the momenta of some
subsets of external fields add to zero. However, vertex functions for purely baryonic operators like QI are not expected
to suffer from the non-perturbative chiral symmetry breaking artifacts that affect mesonic operators in exceptional
momentum configurations. In particular, infrared divergences in the chiral limit arising from pseudo-Goldstone poles
can lead to enhanced non-perturbative chiral symmetry violating mesonic operator mixing in lattice QCD simulations
with chiral fermions, see for example [62]. Enhancements arise from diagrams in which an external quark and antiquark
can be combined in a subdiagram with zero external momentum. For the purely baryonic operators considered here
as well as for proton decay operators, there are no pseudo-Goldstone pole enhancements from diagrams in which two
external quarks with positive baryon number are combined in a zero-momentum subdiagram.

The RI-MOM scheme is defined by a renormalization condition on ΛI(p, µ),

δIJ =Tr [PIΛJ(p0, µ = p0)]

=
∑
K

ZRI
IK(p0)

(
ZRI
q (p0)

)3
Tr
[
PJΛ0

K(p0)
]
, (20)

where Λ0
K(p0) is a bare vertex function built from bare operators and amputated with bare propagators, Tr [PIΛJ ] ≡

Pαβγδηζijklmn Λαβγδηζijklmn , and the operator projectors PI are defined by

Tr
[
PIΛ(0)

J

]
= δIJ , (21)

Each external quark in Eq. (20) carries momentum ±p0 and the renormalization scale is identified with this lattice
matching scale µ = p0. As discussed above, p0 must be chosen to be much larger than hadronic scales to allow for
perturbative matching but much smaller than the inverse lattice spacing used for non-perturbative renormalization
to control discretization errors. For many quantities, these constraints are satisfied at p0 ' 2 GeV. Comparison of
the size of O(αs(p0)) NNLO corrections to the NLO result in Eq. (2) should provide an estimate of perturbative
convergence with a chosen p0.
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A set of projectors satisfying Eq. (21) for the chiral basis operators is given by

(P1)αβγδηζijklmn = − 1

92160

(
−TSSS{ij}{kl}{mn}(CPR)αβ(CPR)γδ(CPR)ηζ + 2TAAS[ij][kl]{mn}(CPR)αδ(CPR)γβ(CPR)ηζ

)
, (22a)

(P2)αβγδηζijklmn = − 1

18432

(
−TSSS{ij}{kl}{mn}(CPL)αδ(CPR)γβ(CPR)ηζ + 2TAAS[ij][kl]{mn}(CPL)αδ(CPR)γζ(CPR)ηβ

)
, (22b)

(P3)αβγδηζijklmn = − 1

36864

(
−TSSS{ij}{kl}{mn}(CPL)αβ(CPL)γδ(CPR)ηζ + 2TAAS[ij][kl]{mn}(CPL)αδ(CPL)γβ(CPR)ηζ

)
, (22c)

(P4)αβγδηζijklmn = − 1

221184

(
TSSS{ij}{kl}{mn}(CPR)αβ(CPR)γδ(CPR)ηζ + 3TAAS[ij][kl]{mn}(CPR)αδ(CPR)γβ(CPR)ηζ

)
, (22d)

(P5)αβγδηζijklmn = − 1

221184

(
TSSS{ij}{kl}{mn}(CPR)αβ(CPL)γδ(CPL)ηζ

)
, (22e)

(P6)αβγδηζijklmn = − 1

55296

(
TSSS{ij}{kl}{mn}(CPR)αδ(CPL)γβ(CPL)ηζ + 6TAAS[ij][kl]{mn}(CPR)αδ(CPL)γζ(CPL)ηβ

)
, (22f)

(P7)αβγδηζijklmn = − 1

73728

(
TSSS{ij}{kl}{mn}(CPL)αβ(CPL)γδ(CPR)ηζ + 2TAAS[ij][kl]{mn}(CPL)αδ(CPL)γβ(CPR)ηζ

)
. (22g)

We explicitly include projectors for Q6 and Q7 since they must be analyzed separately in lattice QCD calculations
without exact chiral symmetry. The seven parity conjugates of Q1, . . . , Q7 should be analyzed separately in lattice
QCD calculations; projectors for these operators are found by taking L↔ R everywhere and including a relative minus

sign. P1 and P3 are suitable projectors for Q̃1 and Q̃3 since they are equal to Q1 and Q3 at tree level. Projectors
and for fixed-flavor basis operators differ from those of Eq. (22) by an overall normalization factor of (−4) are are
described in more detail in Ref. [81].

ZMS
IJ can be defined through a renormalization condition for dimensionally regularized vertex functions: at each

order of renormalized perturbation theory, add counterterms that remove precisely the 1/ε poles proportional to
ΛJ from ΛI . A more precise definition of both the RI-MOM and MS renormalization conditions for dimensionally
regularized amplitudes requires a careful treatment of evanescent operators. This is postponed to Sec. V B.

V. ONE-LOOP MATCHING

RI-MOM and MS renormalized operators with renormalization scale µ = p0 are related by Eq. (11),

QRI
I (p0) =

∑
J,K

ZRI
IJ (p0)

[(
ZMS

)−1

JK
(p0)

]
QMS
K (p0) ≡

∑
J

rIJQ
MS
J (p0). (23)

The matching factor rIJ relates renormalized operators and is therefore a finite quantity. rIJ can be consistently

calculated perturbatively in terms of ZRI and ZMS as long as both contain the same UV divergences and in particular
are calculated with the same regularization. This allows us to perturbatively express rIJ as

rIJ(αs) = 1 +
αs(p0)

4π

(
Z

RI,(1)
IJ − ZMS,(1)

IJ

)
+O(α2

s)

≡ 1 +
αs(p0)

4π
r

(0)
IJ +O(α2

s).

(24)

Since the chiral basis operators do not mix under renormalization, ZIJ and rIJ are diagonal and we further define r
(0)
I

to be the diagonal elements r
(0)
IJ = δIJr

(0)
I (no summation on I). Differences between definitions of the renormalized

coupling constant αs(p0) in different schemes are formally O(α2
s) and can therefore be neglected in Eq. (24). When

calculating numerical results in Sec. VII, we use an MS coupling constant definition for both two-loop running and

one-loop matching. This defines the one-loop-matching factor r
(0)
I appearing in Eq. (2) in terms of Z

(1)
IJ . The

remainder of this section describes the diagrammatic evaluation of Z
(1)
IJ from one-loop corrections to Λ

(0)
I .

A. Diagram Evaluation

Feynman diagrams representing corrections to QI involve six quark lines carrying baryon number into a local
vertex where the quark lines are joined to form three spin-singlet diquarks. To simplify the structure of these
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diagrams it is convenient to introduce charge conjugate quarks (ψC)αia = (Cψ)αia. Expressing all diquarks in QI

as (ψCPχψ) = (ψ
C
Pχψ) removes the need to introduce spin-transposed propagators and explicit factors of C at

the six-quark vertex. With this approach, one quark line contained in each spin-singlet diquark is replaced with a
conjugate-antiquark line with it’s fermion charge arrow pointing out of the six-quark vertex, as shown in Fig. 1. These
obey standard Feynman rules for quark lines carrying fermion charge away from the vertex, except that conjugate

quark-gluon vertices receive an extra minus sign and transposition of tA because (ψ
C

i γ
µtAijψ

C
j ) = −(ψiγ

µtAjiψj).

Matching between RI-MOM and MS is performed in the limit of massless quarks where SU(2)L × SU(2)R chiral
symmetry guarantees that loop-level operator corrections will contain diquarks with the same chiral structure as
the tree-level operator. When calculating diagrams with no closed fermion loops in NDR, explicit factors of Pχ
can therefore always be moved from the operator vertex to one end of the quark line representing each spin-singlet
diquark. In addition, the tree-level flavor structure of each operator is preserved diagram-by-diagram because of the
flavor-blind nature of QCD. With these considerations, the only non-trivial tensor structure that needs to be inserted

at each six-point operator vertex is (1 ⊗ 1 ⊗ 1)TAAS for Q1, Q2, and Q3 and (1 ⊗ 1 ⊗ 1)TSSS for Q4, Q5, Q̃1, and

Q̃3. Diagrams with six-quark vertex factors of (1⊗ 1⊗ 1)TAAS and (1⊗ 1⊗ 1)TSSS represent amplitudes denoted by
MA andMS respectively. These amplitudes provide loop-level operator corrections to QI once factors of CPχ, flavor
tensors, and contractions with quark fields are included. As a concrete example, diagrammatic operator corrections
to Q1 are found from the amplitude MA by making the replacement

(Γ1 ⊗ Γ2 ⊗ Γ3)T → (ψCPRΓ1iτ
2ψ)(ψCPRΓ2iτ

2ψ)(ψCPRΓ3iτ
2τ+ψ)TAAS . (25)

To determine finite O(ε0) contributions to Λ
(0)
I , all contributing diagrams should be calculated with all distinct mo-

mentum routings assigning incoming momenta {p, p, p,−p,−p,−p} to the external legs. Λ
(0)
I is then found by adding

external quark fields to build the correlation functions of Eq. (17), performing Wick contractions, and amputating
external legs. The contribution of each Wick contraction is represented by the sum of all contributing amputated
diagrams with a particular momentum routing. 1/ε pole terms are momentum independent, and can be determined
from any momentum routing free of infrared divergences.

The topologically distinct classes of one- and two-loop Feynman diagrams contributing to Λ
(1)
I and Λ

(2)
I are shown

in Fig. 1. Calculating r
(1)
I requires evaluating the 15 one-loop diagrams in classes d = 1-3. For each of the one-gluon-

exchange diagrams in d = 1-3, the two distinct momentum routings correspond to gluon exchange between quarks
with equal momenta and gluon exchange between quarks with opposite momenta. With ΛI defined by Eq. (17), a
gluon is exchanged between quarks with equal momenta in 2/5 of the Wick contractions and between quarks with
opposite momenta in 3/5 of the Wick contractions. Since external quark fields of the same flavor are antisymmetrized
when constructing ΛI , each Wick contraction contributes to ΛI with equal weight.

The amplitudes MA
d and MS

d for diagrams of class d can be evaluated using standard techniques summarized
in Appendices A - D. After expressing the resulting spin-color tensors as linear combinations of the basis tensors
introduced in Appendix A, it is straightforward to verify that most spin-color tensors contributing to MA

d and MS
d

have index exchange symmetries different from the symmetries of the tree-level operator insertion. These contributions
vanish after making the replacement of Eq. (25) and can be neglected. The remaining contributions to the one-loop
amplitudes MA

d for the relevant combination of 2/5 the equal momentum routing amplitude plus 3/5 the opposite
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LO NLO

NNLO

1 2

3 1 2 3x3 x6 x6

4 5 6 7 8 9 10x3 x6 x6 x3 x6 x6 x6

11 12 13x12 x12 x6 14 15 16 17x12 x12 x12 x12

19 20 21 22 23x12 x12 x12 x3 x318 x12 24 x3

25 26 27 28 29 30 31x6 x12 x12 x12 x3 x6 x6

32 33x6 x6 34 35 36 37 38x6 x6 x6 x6 x6

39 40 41 42 43x6 x6 x6 x6 x6 44 45x6 x6

46 x8

FIG. 1: The tree-level operator diagram, 15 one-loop diagrams, and 320 two-loop diagrams evaluated in this work (350
in the counting of qgraf [82], see Sec. VI). Operator insertions are represented by a six-point vertex joining three quarks
and three conjugate antiquarks. The operator insertions are local; the separate solid lines represent propagators for quarks
contracted into separate spin-singlet diquarks as indicated by the fermion charge arrows. The external quarks are assigned
momenta {p, p, p,−p,−p,−p}. Diagrams are organized into classes that share the same loop integrals and Dirac structures. The
number of diagrams in each class is shown. All two-loop diagrams with divergent subdiagrams are accompanied by a one-loop
counterterm diagram, not shown. The curly lines represent gluon propagators, and the gluon self-energy bubble shown in
diagrams 29-31 includes quark, gluon, and ghost loops. Diagrams 1-31 contribute to four-quark operator renormalization and
are numbered consistently with Refs. [59, 61]. Diagrams 32-46 are considered for the first time here. The 1/ε pole structure of
each diagram is summarized in Tables III - VI.
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momentum routing amplitude are given by

MA
1 =

αs(µ)

4π

(
µ2

p2

)ε(
3 + ξ

ε
+ 4 + 2ξ − 24

5
ln 2− 8ξ

5
ln 2

)
[1⊗ 1⊗ 1]TAAS , (26a)

MA
2 =

αs(µ)

4π

(
µ2

p2

)ε{(
3ξ

2ε
+

29

20
+

19ξ

10
− 8

5
ln 2− 8ξ

5
ln 2

)
[1⊗ 1⊗ 1]TAAS (26b)

+

(
− 1

8ε
− 17

60
+

2

15
ln 2

)[
(σµν ⊗ σµν ⊗ 1)TSSS + (1⊗ σµν ⊗ σµν)TASA + (σµν ⊗ 1⊗ σµν)TSAA

]
+

1

p2

(
1

15
− 11ξ

60
+

2

15
ln 2 +

2ξ

15
ln 2

)[
(γµ/p⊗ /pγµ ⊗ 1)

(
TSSS − 1

3
TAAS

)
+(1⊗ γµ/p⊗ /pγµ)

(
TASA +

5

3
TAAS

)
+ (γµ/p⊗ 1⊗ /pγµ)

(
TSAA +

5

3
TAAS

)]
,

}

MA
3 =

αs(µ)

4π

(
µ2

p2

)ε{(
3ξ

2ε
+

37

20
+

4ξ

5
− 4

5
ln 2− 4ξ

5
ln 2

)
[1⊗ 1⊗ 1]TAAS (26c)

+

(
− 1

8ε
− 17

60
+

2

15
ln 2

)[
(σµν ⊗ σµν ⊗ 1)TSSS + (1⊗ σµν ⊗ σµν)TASA + (σµν ⊗ 1⊗ σµν)TSAA

]
+

1

p2

(
1

15
− 11ξ

60
+

2

15
ln 2 +

2ξ

15
ln 2

)[
(γµ/p⊗ /pγµ ⊗ 1)

(
TSSS +

1

3
TAAS

)
+ (1⊗ γµ/p⊗ /pγµ)

(
TASA − 5

3
TAAS

)
+(γµ/p⊗ 1⊗ /pγµ)

(
TSAA − 5

3
TAAS

)]}
,

where the color tensors TASA and TSAA are defined in Appendix A. Similarly, the one-loop contributions toMS
d with

the correct index symmetries are

MS
1 =

αs(µ)

4π

(
µ2

p2

)ε(
−3 + ξ

ε
− 4− 2ξ +

24

5
ln 2 +

8ξ

5
ln 2

)
[1⊗ 1⊗ 1]TSSS , (27a)

MS
2 =

αs(µ)

4π

(
µ2

p2

)ε{(
5ξ

2ε
+

29

12
+

19ξ

6
− 8

3
ln 2− 8ξ

3
ln 2

)
[1⊗ 1⊗ 1]TSSS (27b)

+

(
− 3

8ε
− 17

20
+

2

5
ln 2

)[
(σµν ⊗ σµν ⊗ 1)TAAS + (1⊗ σµν ⊗ σµν)TSAA + (σµν ⊗ 1⊗ σµν)TASA

]
+

1

p2

(
1

5
− 11ξ

20
+

2

5
ln 2 +

2ξ

5
ln 2

)[
(γµ/p⊗ /pγµ ⊗ 1)

(
TAAS +

5

9
TSSS

)
+(1⊗ γµ/p⊗ /pγµ)

(
TSAA +

5

9
TSSS

)
+ (γµ/p⊗ 1⊗ /pγµ)

(
TASA +

5

9
TSSS

)]}
,

MS
3 =

αs(µ)

4π

(
µ2

p2

)ε{(
5ξ

2ε
+

37

12
+

4ξ

3
− 4

3
ln 2− 4ξ

3
ln 2

)
[1⊗ 1⊗ 1]TSSS (27c)

+

(
− 3

8ε
− 17

20
+

2

5
ln 2

)[
(σµν ⊗ σµν ⊗ 1)TAAS + (1⊗ σµν ⊗ σµν)TSAA + (σµν ⊗ 1⊗ σµν)TASA

]
+

(
1

5
− 11ξ

20
+

2

5
ln 2 +

2ξ

5
ln 2

)[
(γµ/p⊗ /pγµ ⊗ 1)

(
TAAS − 5

9
TSSS

)
+ (1⊗ γµ/p⊗ /pγµ)

(
TSAA − 5

9
TSSS

)
+(γµ/p⊗ 1⊗ /pγµ)

(
TASA − 5

9
TSSS

)]}
.

To complete our calculation of r
(0)
I , we need to precisely define operator counterterms that renormalize the vertex

functions associated with these amplitudes. Subtleties arise at this step. These subtleties and their resolution are
discussed in the following section.
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B. Evanescent Operators

In order to precisely define operator counterterms suitable for RI-MOM or MS renormalization, we must address
the issue that our operator basis is complete in D = 4 but incomplete in arbitrary D. This issue also arises for
four-quark operators in weak matrix element calculations. For four-quark operators it has been consistently resolved
through the introduction of evanescent operators vanishing in D = 4 [59, 83, 84]. Following this approach, in this
section we precisely define evanescent operator counterterms for the QI . It would be possible to present complete
one-loop-matching results without these precise definitions, but the definitions and notation introduced in this section
will prove essential for calculating the non-trivial evanescent contributions to two-loop running in Sec. VI.

Renormalized vertex functions include counterterms that remove the 1/ε poles in Eq. (26)-(27). The physical
operators QI mix under RG evolution with the operators used to construct these counterterms, so a complete operator
basis must include all operators used to construct counterterms. Dirac structures involving σ ⊗ σ appear in the pole
terms above, but have been eliminated from our complete basis in D = 4 by means of the Fierz transformation

[CPχσµν ]αβ [CPχ′σµν ]γδ
D=4
= δχχ′

(
8Pαδχ P γβχ − 4Pαβχ P γδχ′

)
. (28)

This relation follows from completeness of a basis of 16 Dirac matrices in D = 4 and cannot be uniquely continued to
an analytic function of D. In particular, one could prescribe that in the dimensionally regularized theory

[CPχσµν ]αβ [CPχ′σµν ]γδ → δχχ′

(
(8 + a1ε)P

αδ
χ P γβχ − (4 + a2ε)P

αβ
χ P γδχ′

)
. (29)

with a1 and a2 arbitrary. The choice a1 = a2 = 0 ensures that σµν ⊗ σµν is kept equal to its D = 4 Fierz transform.
Conversely, γµγν ⊗ γµγν is not kept equal to its D = 4 Fierz transform with a1 = a2 = 0. The necessity of breaking
one or the other Fierz relation follows from the well-known property that contraction of a tensor operator with gµν
does not commute with renormalization of the dimensionally regularized tensor operator [78].

Working in a dimensionally regularized theory, it is important to distinguish between counterterms in the span of
the D = 4 basis operators QI in D dimensions, and counterterms that are in linearly independent in D dimensions.
A convenient basis is found by including QI along with a set of evanescent operators EI that vanish in D = 4 but
are needed as counterterms to renormalize matrix elements of QI . For example, renormalization of Q1 requires a
counterterm insertion of

Ea1 = (ψCPRσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS − 12Q1. (30)

The evanescent operator Ea1 vanishes in D = 4 by Eq. (28), color-flavor Fierz relations, and the D = 4 Fierz relation

Q1
D=4
= Q̃1. Because Eq. (28) is broken in dimensional regularization, it is possible that loop-level corrections will

introduce O(αs) contributions to matrix elements of Ea1 that do not vanish in D = 4. Explicit calculation demonstrates
that this possibility is realized. The non-vanishing one-loop contributions are O(ε0) and arise from 1/ε poles in one-
loop integrals multiplied by O(ε) suppressed differences in Dirac algebra for the two terms on the RHS of Eq. (30). In
a naive definition of the MS renormalization scheme, matrix elements of RG evolved physical operators will include
non-vanishing contributions from renormalized evanescent operators.

Following Ref. [59], we adopt a definition of the MS renormalization scheme in which the renormalized evanescent
operators EI mixing with QI under RG evolution are defined to include finite O(ε0) counterterms. These counterterms
are chosen to make loop-level matrix elements of EI vanish in D = 4 at a particular scale µ. It is proven in Refs. [83, 84]
that this is sufficient to make renormalized matrix elements of generic four-quark evanescent operators vanish at all
scales. Extension of this proof to six-quark operators is straightforward and discussed in Sec. VI. The basis used here
for the EI needed as one-loop counterterms for QI is explicitly presented in Appendix C. Physical observables are
independent of evanescent basis, but renormalized Wilson coefficients and matrix elements separately are not. It is
therefore imperative that this same basis is used for loop-level BSM matching calculations. This subtlety is irrelevant
for tree-level BSM matching calculations.

Inclusion of MS counterterms in this scheme is equivalent to replacing all terms involving σ⊗σ/ε with their D = 4
Fierz transforms plus the evanescent operators of Appendix C, for instance

1

ε
(ψCPRσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+)TSSS +

(
MS counterterm

)
=

1

ε
12Q1 +

1

ε
Ea1 . (31)

Inclusion of these counterterms leads to mixing between QI and EI and we must enlarge our basis of renormalized
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operators to 
QI(µ)

EI(µ)
...

 =


ZII(µ) ZIEI

(µ) . . .

ZEII(µ) ZEIEI
(µ)

...
. . .



Q0
I

E0
I

...

 = ẐI(µ)


Q0
I

E0
I

...

 , (32)

where the ellipses indicate that increasingly many evanescent operators are required to form a complete basis for RG
evolution at increasingly high loop order. We are specializing to the case of no mixing between the QI or between the
EI , extension to the general case is straightforward.

The one-loop vertex function Λ
(1)
I can now be expressed in terms of Λ

(0)
I , tree-level vertex functions Λ

(0)
EI

built from

EI , operator counterterms δ
(1)
II , and vertex functions ΦI(p, µ) built from the non-local finite terms in Eq. (26) - (27)

including γµ/p⊗ /pγµ and ln(p2/µ2),

Λ
(1)
I (p, µ) =

(
L

(1),1
II

ε
+ L

(1),0
II + δ

(1)
II

)
Λ

(0)
I +

(
L

(1),1
IEI

ε
+ δ

(1)
IEI

)
Λ

(0)
EI

+ L
(1),0
IΦI

ΦI(p, µ) +O(ε), (33)

where all the loop diagram coefficients L(1) are pure numbers independent of µ, p, and ε. L(1) and ΦI(p, µ) are simply
obtained by expressing vertex functions constructed from Eqs. (26) - (27) in the form of Eq. (33). The one-loop vertex

function Λ
(1)
EI

for EI can similarly be expressed as

Λ
(1)
EI

(p, µ) =

(
L

(1),1
EIEI

ε
+ δ

(1)
EIEI

)
Λ

(0)
EI

+
(
L

(1),0
EII

+ δ
(1)
EII

)
Λ

(0)
I +

(
L

(1),1
EIFI

ε
+ δ

(1)
EIFI

)
Λ

(0)
FI

+O(ε), (34)

where FI is a new evanescent operator not included in the EI that should be included in the . . . ’s in Eq. (32). MS
counterterms can be defined as

δ
MS,(1)
II = −

L
(1),1
II

ε
, δ

MS,(1)
IEI

= −
L

(1),1
IEI

ε
, δ

MS,(1)
EII

= −L(1),0
EII

. (35)

The bare operator Q0
I includes UV singularities due to the presence of six bare quark fields as well as the vertex

function singularities above. In order to remove all UV singularities from QI(µ), define

ZMS
II (µ) =

(
ZMS
q (µ)

)−3
[

1 + δ
MS,(1)
II

(
αs(µ)

4π

)
+ δ

MS,(2)
II

(
αs(µ)

4π

)2

+O(α3
s)

]
, (36)

where δ
MS,(2)
II represents two-loop counterterms that will be explicitly constructed in Sec. VI. For future use, define

ZMS
IEI

(µ) =
(
ZMS
q (µ)

)−3
[
δ

MS,(1)
IEI

(
αs(µ)

4π

)
+ δ

MS,(2)
IEI

(
αs(µ)

4π

)2

+O(α3
s)

]
,

ZMS
EII(µ) =

(
ZMS
q (µ)

)−3
[
δ

MS,(1)
EII

(
αs(µ)

4π

)
+ δ

MS,(1)
EII

(
αs(µ)

4π

)2

+O(α3
s)

]
,

ZMS
EIEI

(µ) =
(
ZMS
q (µ)

)−3
[

1 + δ
MS,(1)
EIEI

(
αs(µ)

4π

)
+ δ

MS,(2)
EIEI

(
αs(µ)

4π

)2

+O(α3
s)

]
.

(37)

This completes our definition of MS operator renormalization factors in terms of diagrammatic counterterms.
The RI-MOM operator renormalization condition should also be modified so that RI-MOM renormalized evanescent

operators have vanishing matrix elements in D = 4. This is accomplished by adding a supplemental RI-MOM
renormalization condition

Tr (PIΛEJ
) = 0. (38)

Combining this with the RI-MOM condition Eq. (20) expanded to O(αs) gives

δ
RI,(1)
II = −

L
(1),1
II

ε
− L(1),0

II − L(1),0
IΦI

Tr [PIΦI(p0, µ = p0)] , (39)
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where in analogy to Eq. (36),

ZRI
II (µ) =

(
ZRI
q (µ)

)−3
[
1 + δ

RI,(1)
II

(
αs(µ)

4π

)
+O(α2

s)

]
. (40)

The one-loop-matching factor r
(0)
I defined in Eq. (23) therefore has the diagrammatic expansion

r
(0)
I = δ

RI,(1)
II − δMS,(1)

II − 3ZRI,(1)
q (p0) + 3ZMS,(1)

q (p0)

= −L(1),0
II − L(1),0

IΦI
Tr [PIΦI(p0, µ = p0)]− 3ZRI,(1)

q (p0) + 3ZMS,(1)
q (p0).

(41)

Applying the diagrammatic results of the last section gives

r
(0)
1 =

101

30
− 13ξ

15
+

8

15
ln 2 +

8ξ

3
ln 2, (42a)

r
(0)
2 = −31

6
− 7ξ

3
+

88

15
ln 2 +

56ξ

15
ln 2, (42b)

r
(0)
3 = − 9

10
− 8ξ

5
+

16

5
ln 2 +

16ξ

5
ln 2, (42c)

r
(0)
4 =

177

10
+

14ξ

5
− 64

5
ln 2, (42d)

r
(0)
5 =

49

10
+

3ξ

5
− 24

5
ln 2 +

8ξ

5
ln 2, (42e)

r̃
(0)
1 = −109

30
− 13ξ

15
+

8

15
ln 2 +

8ξ

3
ln 2, (42f)

r̃
(0)
3 = −79

10
− 8ξ

5
+

16

5
ln 2 +

16ξ

5
ln 2. (42g)

The final one-loop-matching results in Table I are obtained after choosing Landau gauge, ξ = 0.

VI. TWO-LOOP RUNNING

In order to simultaneously remove large logarithms from perturbative calculations of RI-MOM matching factors and
BSM Wilson coefficients, RG evolution can be used to relate Wilson coefficients calculated at different renormalization
scales.7 We perform this RG evolution in the MS scheme for simplicity, and all quantities in this section with suppressed
renormalization scheme labels are in the MS scheme. The renormalization scale dependence of the Wilson coefficients
can be determined from the MS anomalous dimension matrix

γIJ(αs) =
1

CI(µ)

d

d lnµ
CJ(µ) =

∑
K

ZIK(µ)
d

d lnµ
Z−1
KJ(µ)

≡ γ(0)
IJ

(
αs(µ)

4π

)
+ γ

(1)
IJ

(
αs(µ)

4π

)2

+O(α3
s),

(43)

where the first equality follows from renormalization scale independence of Hnneff and the second defines the pertur-

bative expansion coefficients γ(0) and γ(1) appearing in Eq. (2). The other factors appearing in Eq. (2) are related
to the QCD β-function, defined by

d

d lnµ
αs(µ) = 2β(αs, ε)αs(µ) = (−2ε+ 2β(αs))αs(µ)

=

(
−2ε− 2β0

αs(µ)

4π
− 2β1

(
αs(µ)

4π

)2

+O(α3
s)

)
αs(µ).

(44)

7 See Ref. [75] for a nice review of RG evolution for weak matrix elements including discussion of evanescent operators.
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The D-independent piece of the β-function has a perturbative expansion that is conventionally written as

β(αs) = −β0

(
αs(µ)

4π

)
− β1

(
αs(µ)

4π

)2

+O(α3
s), (45)

where for QCD with Nf active quark flavors the well-known perturbative coefficients are [85–88]

β0 = 11− 2

3
Nf , β1 = 102− 38

3
Nf . (46)

In MS and other minimal subtraction schemes, µ dependence of ZIJ and γIJ only enters through dependence on
αs(µ). The differential equation in Eq. (43) can be readily solved in a diagonal operator basis where γIJ = δIJγI ,

CI(µ2)

CI(µ1)
= exp

[∫ µ2

µ1

γI (αs(µ
′))

dµ′

µ′

]
= exp

[∫ αs(µ2)

αs(µ1)

γI(α
′
s)

2β(α′s)

dα′s
α′s

]

=

(
αs(µ2)

αs(µ1)

)−γ(0)
I /(2β0)

[
1 +

(
β1γ

(0)
I

2β2
0

−
γ

(1)
I

2β0

)
αs(µ2)− αs(µ1)

4π
+O(α2

s)

]
.

(47)

This equation can be used to RG evolve BSM-scale Wilson coefficients between quark mass thresholds at which the
number of active flavors Nf decreases. In Sec. V we introduced rIJ(µ) as the renormalization scheme matching factor

relating QMS
I and QRI

I . The renormalization scheme invariance of Hnneff allows CMS
I and CRI

I to be related using

rIJ(µ). This allows us to express U
Nf

I (µ, p0) appearing in Eq. (2) as

U
Nf

I (µ, p0) =
CRI
I (p0)

CMS
I (µ)

=
CMS
I (p0)

CMS
I (µ)

(
1− r(0)

I

αs(p0)

4π
+O(α2

s)

)

=

(
αs(p0)

αs(µ)

)−γ(0)
I /2β0

[
1− r(0)

I

αs(p0)

4π
+

(
β1γ

(0)
I

2β2
0

−
γ

(1)
I

2β0

)
αs(p0)− αs(µ)

4π
+O(α2

s)

]
.

(48)

The remainder of this section discusses the diagrammatic evaluation of γ
(0)
I , γ

(1)
I .

In Sec. V B we discussed the need to remove dimensional regularization artifacts by adding finite counterterms
proportional to evanescent operators EI to physical operators QI and vice versa. Without these counterterms the
renormalized EI would contribute to physical observables and therefore to BSM matching calculations of Wilson
coefficients. With these counterterms, QI mixes under renormalization with EI and the assumption of a diago-
nal anomalous dimension matrix taken above is invalidated. We must instead consider the renormalization scale
dependence of the infinite dimensional matrix of Eq. (32) and define

γ̂ =


γIJ γIEI

. . .

γEII γEIEI

...
. . .

 . (49)

Eq. (47) is preserved if and only if γEII = 0 to two-loop order. A proof that γEII vanishes to all-orders for generic
four-quark operators is given in Refs. [83, 84] and applies to our six-quark operators as well. This is discussed in
detail at the end of this section.

Since µ dependence of Ẑ only enters through explicit dependence on αs(µ), the anomalous dimension matrix γ̂ is
given by

γ̂ = −
(
µ
d

dµ
Ẑ

)
· Ẑ−1 = −

(
2β(αs, ε)αs(µ)

∂

∂αs
Ẑ

)
· Ẑ−1, (50)

where · denotes matrix multiplication. Perturbative coefficients of Ẑ defined in analogy to Eq. (43) are given by

γ̂(0) = 2εẐ(1),

γ̂(1) = 4εẐ(2) − 2εẐ(1) · Ẑ(1) + 2β0Ẑ
(1).

(51)
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The anomalous dimensions of the physical operators QI are therefore

γ
(0)
I = 2εZ

(1)
II ,

γ
(1)
I = 4εZ

(2)
II − 2ε

(
Z

(1)2

II + Z
(1)
IEI

Z
(1)
EII

)
+ 2β0Z

(1)
II .

(52)

The non-trivial effect of evanescent counterterm subtraction is the appearance of Z
(1)
IEI

Z
(1)
EII

in γ
(1)
I .

The factors above are simply related to diagrammatic counterterms. The one-loop anomalous dimension is deter-
mined by the counterterms of Sec. V B as

γ
(0)
I = 2ε

(
δ

(1)
II − 3Z(1)

q

)
, (53)

which is finite at D = 4. Calculation of γ
(1)
I requires the 1/ε pole contributions to the two-loop QI vertex functions

Λ
(2)
I (p, µ) =

(
L

(2),2
II

ε2 +
L

(2),1
II

ε
+ δ

(2)
II

)
Λ

(0)
I +

(
L

(2),2
IEI

ε2

)
Λ

(0)
EI

+

(
L

(2),2
IFI

ε2

)
Λ

(0)
FI

+O(ε0). (54)

Including one-loop counterterm diagrams with insertions of δ
(1)
II as well as quark self-energy, gluon self-energy, and

quark-gluon-vertex counterterms ensures that non-local divergences are cancelled and L
(2),1
II is a pure number. The

two-loop MS counterterm is then defined as

δ
(2)
II = −

L
(2),2
II

ε2 −
L

(2),1
II

ε
. (55)

We can then use Eqs. (36) - (37) to express the Z factors appearing in Eq. (52) in terms of these counterterms,

γ
(1)
I = 4ε

(
δ

(2)
II − 3Z(2)

q

)
− 2ε

(
δ

(1)2

II + δ
(1)
IEI

δ
(1)
EII
− 3Z(1)2

q

)
+ 2β0

(
δ

(1)
II − 3Z(1)

q

)
. (56)

Two-loop counterterms include 1/ε2 contributions, so the various terms in Eq. (56) are divergent in D = 4. Renormal-
izability of composite operators in the MS scheme guarantees that matrix elements of QI(µ) are free of UV divergences
at all renormalization scales and therefore that γI is finite order-by-order [78]. This means that divergences must
cancel between the terms of Eq. (56).8 After this cancellation, the anomalous dimension is given by

γ
(1)
I = −4L

(2),1
II − 12Z(2),1

q + 2L
(1),1
IEI

L
(1),0
EII
≡ −4[Ltot]

(2),1
II − 12Z(2),1

q (57)

where Z
(2),1
q is the 1/ε piece of Eq. (16).

It was noticed in Ref. [59] that the finite contributions to γ
(1)
I from mixing with evanescent operators contribute ex-

actly like an additional counterterm diagrams apart from the relative factor of (−1/2) between L
(2),1
II and L

(1),1
IEI

L
(1),0
EII

in

Eq. (57). As discussed after Eq. (54), L
(2)
II includes contributions with one-loop counterterm diagrams containing inser-

tions of δ
(1)
II . Suppose for each of these one-loop counterterm diagrams we include an additional counterterm diagram

with an insertion of (1/2)δ
(1)
EII

= (−1/2)L
(1),0
EII

. These diagrams make a 1/ε pole contribution of (−1/2)L
(1),1
IEI

L
(1),0
EII

/ε.

Including these additional one-loop counterterm diagrams with insertion of (1/2)δ
(1)
EII

therefore shifts the 1/ε single-

pole part of Λ
(2)
I to

[Ltot]
(2),1
II = L

(2),1
II − 1

2
L

(1),1
IEI

L
(1),0
EII

, (58)

the factor appearing directly in Eq. (57).

8 A potential point of confusion: if one naively takes Eq. (51) with Ẑ replaced by Z−1
q as a formula for the two-loop quark field anomalous

dimension and inserts Eq. (16), 1/ε2 divergences do not cancel. The subtlety is that Zq depends on the gauge parameter ξ, which in
turn depends on the renormalization scale [78]. When Eq. (50) is modified to include this additional source of renormalization scale
dependence, the resulting quark field anomalous dimension is indeed finite.
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To ensure a proper treatment of two-loop subdivergences and verify cancellation of non-local divergences diagram-
by-diagram, each two-loop diagram should be combined with a one-loop counterterm diagram in which any divergent
one-loop subdiagram present is replaced by a one-loop counterterm that cancels the subdivergence. To provide
this cancellation diagram-by-diagram, the one-loop counterterm must have the same color structure as the one-loop
subdiagram. For subdiagrams with the topology of a one-loop self-energy or vertex correction, the color structure of the
subdiagram is a simple multiple of the corresponding tree-level color structure, and this procedure is straightforward.
For subdiagrams with the topology of a one-loop operator correction d = 1-3, the color structure of the subdiagram
differs from the tree-level operator color structure, and care must be taken. In particular, the physical operator
counterterm associated with each d = 1-3 subdiagram must precisely reproduce that subdiagram’s contribution to

δ
(1)
II in D dimensions. This means that the operator used for each physical operator counterterm must be proportional

to QI in D dimensions.
To produce physical operator counterterms proportional to QI in D dimensions, it is necessary but not sufficient

that all appearances of σ ⊗ σ in d = 1-3 subdiagrams are replaced in one-loop counterterm diagrams by trivial spin
structures containing only the identity matrix. A convenient prescription that meets this necessary criterion is to use
Eq. (29) with a1 = a2 = 0. This prescription amounts to replacing all appearances of σ ⊗ σ in d = 1-3 subdiagrams
with their D = 4 Fierz transforms and clearly produces one-loop counterterm diagrams with the same color structures
as each two-loop diagram. However, one-loop counterterms defined by this prescription are not proportional to QI
in D dimensions and instead differ by terms proportional to (Q1 − Q̃1) and (Q3 − Q̃3). Applying the prescription of
Eq. (29) with a1 = a2 = 0 to the one-loop amplitude defines a basis E′I different from the one-loop counterterm basis
EI . For example, the operator Ea′1 is given by

(ψCPRσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS

≡ 8(ψα[CPR]αδiτ2ψ
β)(ψγ [CPR]γβiτ2ψ

δ)(ψη[CPR]ηζiτ2τ+ψ
ζ)TSSS + Ea′1

= 12Q1 − 6(Q1 − Q̃1) + Ea′1 ,

(59)

where the last equality follows from color-flavor algebra. Operators Ea′1 , Ea′3 , Ẽ′1, and Ẽ′3 differ from their unprimed

counterparts by factors of (Q1−Q̃1) and (Q3−Q̃3) as seen for Ea′1 by comparing Eq. (59) and Eq. (30). The remaining
operators needed to define the E′I basis and it relation to the EI basis are explicitly presented in Appendix C.

In the E′I basis, the total physical plus evanescent one-loop operator counterterm associated with two-loop diagrams
d = 4-6, 16-24, and 32-45 containing d = 1-3 subdiagrams is simply given by minus the pole part of the subdiagram
with appearances of σ ⊗ σ replaced by

σ ⊗ σ → 1

2
(σ ⊗ σ + F [σ ⊗ σ]) , (60)

where F [σ ⊗ σ] is given by the RHS of Eq. (29) with a1 = a2 = 0. The total 1/ε single-pole contribution given by a

diagrammatic two-loop calculation using this prescription we denote [L′tot]
(2),1
II and is related to [Ltot]

(2),1
II by

[Ltot]
(2),1)
II = [L′tot]

(2),1
II − 1

2
L

(1)
IEI

(
L

(1),0
EII
− L(1),0

E′
II

)
. (61)

The change of evanescent basis factors appearing in Eq. (61) can be immediately obtained from one-loop results for

(r
(0)
1 − r̃

(0)
1 ) and (r

(0)
3 − r̃

(0)
3 ) and are given in Appendix C. We have explicitly verified that after including these change

of evanescent basis factors the total contribution of one-loop physical operator counterterm diagrams is equal to the

sum of one-loop counterterm diagrams with insertions of δ
(1)
II .

With this evanescent-counterterm diagram prescriptions in hand, diagrammatic calculation of the E′I basis contri-

butions to γ
(1)
I proceeds as described in Sec. V A and Appendix A - D. There are 320 contributing two-loop diagrams,

organized into independent classes d = 4-46 in Fig. 1. The total number of two-loop diagrams can be determined
through straightforward combinatoric arguments, for example there are

(
6
3

)
= 20 diagrams involving a three-gluon

vertex with gluon lines attached to three separate quark lines and
(

6
2

)2 − 1
2

(
6
2

)(
4
2

)
= 180 diagrams involving planar

one-gluon-exchange between two quark pairs. The remaining diagram types can be grouped in multiples of
(

6
2

)
= 15,

the number of one-loop diagrams. As a check on the completeness of the set of diagrams included in this work, we
have verified that the number of diagrams in all classes shown in Fig. 1 agrees with the results of the automated
Feynman diagram generation program qgraf [82].9

9 For reference, we note that a two-loop qgraf analysis of a process with six incoming quark fields interacting with standard QCD Feynman
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Diagrams 4-31 contribute to NNLO renormalization of scalar four-quark operators, and many also contribute to
renormalization of three-quark operators. We have adopted the same numbering scheme for these diagrams used in
Ref. [59, 61], and have verified that our results for these diagrams agree with the scalar four-quark operator results
of Ref. [61] after changing to the appropriate evanescent operator basis (the “Greek projection” basis, see Appendix
A). Diagrams 32-46 are new. For future calculations, it is interesting to note that there are no additional two-loop
diagram classes appearing for operators with more than six quarks. In principle the two-loop anomalous dimension
of any ∆B = N operator composed of a product of scalar diquarks could be computed from the results of Table III,
combinatorics, and group theory.

After including all appropriate one-loop counterterms, including the E′I evanescent counterterms defined by Eq. (60),
the 1/ε pole part of each diagram can be decomposed into a color factor for each diagram times a linear combination
of Dirac structures that is identical up to diquark permutations for all diagrams in the class. The pole parts of these
Dirac structures are shown in Table III, and the corresponding color factor for a representative diagram is shown
in Table IV. The 1/ε pole coefficients of the combined spin-color tensors with non-vanishing contributions to TAAS

operators are shown in Table V. The corresponding pole coefficients contributing to TSSS operators are shown in
Table VI. After re-introducing quark fields and flavor tensors for a given operator by Eq. (25), the resulting pole
structures for each operator are related by Eq. (C1) to a multiple of the original operator plus irrelevant contributions

to L
(2),2
IEI

.

When the dust settles, these diagrammatic contributions sum to L
(2),2
II /ε2 +[L′tot]

(2),1
II /ε. We have explicitly verified

that the 1/ε2 contributions to δ
(2)
II cancel with the other divergent terms in Eq. (56). This provides a highly non-trivial

check on the calculation. The physical anomalous dimensions are then given by Eq. (57) as

γ
(1)
1 =

335

3
− 34Nf

9
, (62a)

γ
(1)
2 =

91

3
− 26Nf

9
, (62b)

γ
(1)
3 = 64− 10Nf

3
, (62c)

γ
(1)
4 = 229− 46Nf

3
, (62d)

γ
(1)
5 = 238− 14Nf , (62e)

γ̃
(1)
1 =

797

3
− 118Nf

9
, (62f)

γ̃
(1)
3 = 218− 38Nf

3
. (62g)

In the MS scheme used in this work, Fierz-conjugate operators Q1, Q̃1 and Q3, Q̃3 are equal in D = 4 but do not have
identical two-loop anomalous dimensions. Conversely, to be regularization independent the RI-MOM scheme cannot
assign different anomalous dimensions to operators identical in D = 4.10 Two-loop RI-MOM anomalous dimensions
are gauge dependent and depend on the external state appearing in the RI-MOM renormalization condition, but

γ
(1),RI
I should be independent of evanescent basis and equal for Fierz-conjugate operators. The two-loop RI-MOM

anomalous dimension

γ
(1),RI
I = γ

(1),MS
I + 2β0r

(0)
I , (63)

can be shown to be independent of the renormalization scheme and evanescent basis used to define counterterms [75,
89]. This provides a pair of consistency conditions

γ
RI,(1)
1 = γ̃

RI,(1)
1 , γ

RI,(1)
3 = γ̃

RI,(1)
3 , (64)

rules plus a six-quark vertex provides 350 one-particle-irreducible diagrams excluding “tadpoles” and “snails.” 45 of these are gluon-self-
energy diagrams that are only counted as 15 diagrams, each containing an insertion of the complete one-loop gluon-self-energy bubble,
in Fig. 1. Organizing a qgraf analysis with three incoming quarks and three incoming conjugate antiquarks requires more care; a qgraf
analysis including three incoming quarks and three incoming antiquarks interacting with a six-point vertex produces an additional 90
spurious penguin diagrams with baryon-number-violating quark-conjugate-antiquark annihilation into gluons.

10 We thank Sergey Syritsyn for bringing this point to our attention.
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that can be readily verified to hold for the results of Eq. (42) and Eq. (62) in a general Rξ gauge. Eq. (64) provides

a useful check on our calculation, and particularly on evanescent contributions to γ
(1)
I that cannot spoil the 1/ε2

cancellation consistency check. In particular, we observe that violations of Eq. (64) and 1/ε2 poles cancel independently
from the following sets of diagrams: {4-6, 16-24, 32-45} containing d = 1-3 subdiagrams; {7-9} containing crossed
gluon lines; {28, 46} containing three-gluon vertices and no divergent subdiagrams; and {10-15, 25-27, 29-31} combined

with the one-loop contribution 2β0r
(0)
I and one- and two-loop wavefunction renormalization.

It remains to verify that γEII = 0. At one-loop order

γ
(0)
EII

= 2εδ
(1)
EII

. (65)

Since δ
(1)
EII

= −L(1),0
EII

is a finite counterterm, γ
(0)
EII

trivially vanishes at D = 4. At two-loop order

γ
(1)
EII

= 4εδ
(2)
EII
− 2ε

(
δ

(1)
EII

δ
(1)
II + δ

(1)
EIEI

δ
(1)
EII

)
+ 2β0δ

(1)
EII

. (66)

Vanishing of γ
(1)
EII

is less trivial. Refs. [83, 84] prove that for generic four-quark operators a strictly stronger statement
is in fact true: the analog of γ̂ is upper-triangular to all orders. The argument of Herrlich and Nierste in Ref. [84] is
quite general and only relies on cancellation of non-local divergences and O(ε) suppression of diagrams with evanescent
operator insertions. We briefly review their argument to demonstrate that it applies to our six-quark operators without
modification.

The evanescent operators EI vanish in D = 4 by spin-color-flavor Fierz transformations. The one-loop counterterm

δ
(1)
EII

therefore includes O(ε)-suppressed tensor algebra and can only include contributions non-vanishing in D = 4 from

terms that have received a 1/ε enhancement from loop integrals. δ
(1)
EII

is therefore O(ε0), and one-loop counterterm

diagrams with insertions of δ
(1)
EII

only make 1/ε pole contributions to γ
(1)
EII

from terms that receive additional 1/ε

integral enhancements. This implies that the only 1/ε pole contributions to γ
(1)
EII

from δ
(1)
EII

δ
(1)
II and δ

(1)
EIEI

δ
(1)
EII

are single

poles and arise from integral contributions with 1/ε2 double-pole enhancements and O(ε) tensor-algebra suppression.

The sum of these one-loop counterterm diagram contributions is explicitly given by (µ2/p2)ε(δ
(1)
EII

δ
(1)
II + δ

(1)
EIEI

δ
(1)
EII
−

δ
(1)
EII

β0/ε). Without the O(ε)-suppressed tensor algebra, this expression would include non-local divergences arising

from 1/ε2 factors multiplied by (µ2/p2)ε. Cancellation of non-local divergences is independent of the tensor structure
of operator insertions, and these would-be non-local divergences must cancel with 1/ε2 two-loop integrals multiplied by

(µ2/p2)2ε and the same O(ε)-suppressed tensor algebra factors. This gives δ
(2)
EII

= 1
2 (δ

(1)
EII

δ
(1)
II +δ

(1)
EIEI

δ
(1)
EII
−δ(1)

EII
β0/ε),

which when inserted in Eq. (66) gives γ
(1)
EII

= 0. The remaining inductive step needed to prove that γ̂ is upper-
triangular to all orders does not rely on a particular evanescent operator definition [83, 84] and applies here as well.

VII. PHENOMENOLOGICAL APPLICATIONS: AN ILLUSTRATIVE EXAMPLE

The phenomenological consequences of neutron-antineutron operator renormalization are encoded in the effective

Hamiltonian Hnneff of Eq. (2) and the operator renormalization factors γ
(0)
I , γ

(1)
I , and r

(0)
I collected in Table I. These

operator renormalization factors govern the relations between matrix elements of QI with different renormalization
scheme and scale choices. Non-perturbative lattice QCD determinations of the renormalized QCD matrix elements11〈
n
∣∣QRII (p0)

∣∣n〉 can be combined with these operator renormalization factors to determine QCD matrix elements〈
n
∣∣∣QMS

I (µ)
∣∣∣n〉 at high scales µ, where BSM physics is usually assumed to be perturbative. Once high-scale QCD

matrix elements have been calculated with fully quantified uncertainties, perturbative BSM matching for a particular
BSM theory of interest can be used to predict nn transition matrix elements

1

τnn
= δm =

〈
n
∣∣Hnneff ∣∣n〉 , (67)

in terms of basic BSM parameters. Experimental constrains on the neutron-antineutron vacuum transition proba-
bility Pnn(t) = sin2(|δm|t) then unambiguously constrain the parameter space of BSM theories predicting neutron-
antineutron transitions.

11 Lattice matching scales of p0 ' 2 GeV are typically large enough for matching to be perturbative but small enough that unphysical UV
cutoff effects are minimal (ΛQCD < p0 < a−1, where a is the lattice spacing).
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The extraction of phenomenological predictions from Eq. (2) is best explained via an example of one specific BSM
model. Several broad classes of simplified models with classical baryon number violation but no proton decay were
recently discussed by Arnold, Fornal, and Wise [25]. The BSM field content of these models consists of a pair of colored
scalar fields that carry non-integer baryon or lepton number. For illustrative purposes, we will use the simplified model
discussed most heavily (Model 1 in Ref. [25]), which we’ll call the AFW1 model, to perform our calculation. Identical
steps can be used to make predictions for other, more complicated BSM theories once a six-quark effective Hamiltonian
Hnneff has been determined for those theories.

The AFW1 model adds two new scalars to the standard model, X1 and X2, which transform as X1 ∈ (6, 1,−1/3)
and X2 ∈ (6, 1, 2/3) under SU(3)c × SU(2)L × U(1)Y . The X1 and X2 couplings to the SM right-handed fermions
are given by g′1 and g2, respectively, and an additional three-scalar coupling between two-X1 and one-X2 is given
by λ. This model allows neutron-antineutron transitions at tree-level. The Hamiltonian operator Hnneff is found by
evaluating a tree-level Feynman diagram connecting six external quarks all carrying zero momentum. The resulting
Hnneff for the AFW1 model is presented in terms of fixed-flavor quark fields uαi , dαi in Eq. (12) of Ref. [25], neglecting
scalar couplings to left-handed quarks for simplicity. In the fixed-flavor and chiral operator bases, this Hamiltonian
is given at tree-level by

Hnneff = − (g′11
1 )2g11

2 λ

4M4
1M

2
2

O2
RRR =

(g′11
1 )2g11

2 λ

16M4
1M

2
2

[
Q4 +

3

5
Q̃1

]
, (68)

where g′11
1 = g11

2 are dimensionless couplings assumed to be O(1) at a high scale M and λ, M1, M2 massive couplings
assumed to be O(M). Perturbative corrections to this expression include ln(µ2/M2) factors, and so to allow the
validity of tree-level BSM matching just described µ = M is chosen. RG evolution is simplest in minimal subtraction
schemes such as MS and, as a result, we formally prescribe that these corrections should be calculated in the MS
scheme. With these renormalization choices and BSM naturalness assumptions, the AFW1 Hamiltonian can be
expressed as

Hnneff =
1

16M5

[
QMS

4 (M) +
3

5
Q̃MS

1 (M)

]
. (69)

The operator renormalization results of this work then allow the AFW1 Hamiltonian to be expressed as

Hnneff =
1

16M5

[
U4(M,p0)QRI

4 (p0) +
3

5
Ũ1(M,p0)Q̃RI

1 (p0)

]
, (70)

where UI(µ, p0) is the RG evolution and renormalization-scheme-matching factor appearing in Eq. (2). Explicit
evaluation of UI(µ, p0) for arbitrary µ, p0 requires an accurate parameterization of αs(µ). For this we take the four-

loop parametrization of αs(µ) in terms of ΛMS
Nf

and known β-function coefficients presented in Ref. [76]. The full RG

evolution between µ and p0 is included through a product of factors U
Nf

I (µ1, µ2) where Nf is varied across each quark

mass threshold. Implicit Nf dependence in the parametrization of αs(µ) in terms of the fit parameters ΛMS
Nf

must be

included along with explicit Nf dependence in β0, β1, and γ
(1)
I .

Preliminary lattice QCD neutron-antineutron simulations have been performed [54] on anisotropic Wilson lattices
with 390 MeV pions. Updated values from these anisotropic lattices are given by12

〈
n
∣∣QRI

4 (p0)
∣∣n〉 = (0.00± 2.06)× 10−5 GeV6,

〈
n
∣∣∣ Q̃RI

1 (p0)
∣∣∣n〉 = (−56.13± 2.42)× 10−5 GeV6, (71)

where the errors shown are purely statistical and fitting errors. It is important to note that these preliminary results
include several significant sources of systematic uncertainty that have not been quantified at this time. These sources
of systematics are the absence of RI-MOM non-perturbative renormalization,13 unphysically large quark masses (pion
masses of roughly 400 MeV), lattice spacing artifacts (which unphysically break chiral symmetry), and finite spatial
extent artifacts. All of these systematic uncertainties can be quantified and reduced with increased computing.14 For

12 Lattice calculations with a chiral fermion discretization (domain-wall fermions) at near-physical pion masses (140 MeV) have been
performed [80, 90] and a paper presenting these results is in progress [91]. There is currently no plan to publish the updated anisotropic
Wilson lattice results due to the high level of computational complexity of the non-perturbative renormalization on these lattices.

13 Renormalization approximated by tadpole improved tree-level renormalization [92, 93].
14 The required computational resources are expected to be similar to those used for lattice calculations of BK with physical pions and

chiral fermion discretization [94].
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this reason, these results should only be viewed as an illustrative example of how to combine the perturbative QCD
operator renormalization results of this paper, BSM calculations of Wilson coefficients, and non-perturbatively renor-
malized lattice QCD matrix elements to arrive at a physical quantity that can be measured/bounded by experiment.

The experimental limit on δm determined from Super K measurements of τO16 is [41, 43]

|δm| < 2× 10−33 GeV. (72)

Ref. [25] uses this limit and an estimate for the QCD matrix elements to relate this to a limit on the AFW1 model
scale,

M & 500 TeV. (73)

Using the operator renormalization factors of Table I and Eq. (71), it is possible to express matrix elements of Eq. (70)
in terms of M and known parameters. Substituting M = 500 TeV into Eq. (70),

|δm| = ( 6.74︸︷︷︸
LO

−2.44︸ ︷︷ ︸
NLO

+0.33︸ ︷︷ ︸
NNLO matching

−0.94︸ ︷︷ ︸
NNLO running

±0.16︸ ︷︷ ︸
Lattice Statistical

)× 10−34 GeV

= (3.68± 0.16)× 10−34 GeV,

(74)

gives rise to a nn vacuum transition time for the AFW1 model more than five times longer than the τnn predicted
by the QCD matrix element estimate used in Ref. [25]. Note that NLO one-loop running provides a multiplicative
correction to the LO matrix element and is shown as an additive correction above only to illustrate the size of the
correction for this example. Corrections beyond NLO can be organized a perturbative power series in αs(p0). This
perturbative series for |δm| appears to be converging nicely, with O(αs(p0)) NNLO corrections changing the NLO
result by 7%. Assuming further corrections have the same rate of convergence, we expect unknown O(αs(p0)2) N3LO
corrections to modify the NNLO result by ∼ 2%.

A constraint on M can be derived by inverting the experimental bound Eq. (72),

M > ( 402︸︷︷︸
LO

−34︸︷︷︸
NLO

+5︸︷︷︸
NNLO matching

−16︸︷︷︸
NNLO running

±3︸︷︷︸
Lattice Statistical

) TeV,

M > 357± 3 TeV.

(75)

This constraint is nearly one-third weaker than the constraint estimated in Ref. [25].

VIII. CONCLUSION

To determine which BSM theories are able to produce the observed baryon asymmetry of our universe, it is essential
that each make reliable predictions for CP violating and baryon-number violating processes that can be probed
experimentally. Theories with ∆B = 2 interactions can provide viable baryogenesis mechanisms while avoiding
stringent experimental bounds on ∆B = 1 proton decay rates. Some of these theories predict new physics in the
100-1000 TeV range that induce nn transitions that are just outside the reach of current experimental bounds. If
these theories can be reliably constrained by experimental measurements of the nn vacuum transition time τnn, next-
generation nn experiments can search for new physics appearing at scales comparable to, or higher than, scales probed
in next-generation collider experiments.

Reliable predictions for δm = 1/τnn, the parameter governing the neutron-antineutron vacuum transition probabil-
ity Pnn = sin2(|δm|t), can be made by perturbatively matching BSM theories to an effective field theory containing
Standard Model operators. The six-quark operator matrix elements contributing to δm can be calculated with lattice
QCD at computationally accessible lattice matching scales of 2 GeV, and large logarithmic strong interaction cor-
rections can be included using perturbative operator renormalization. At NLO, operator renormalization introduces
known multiplicative corrections to six-quark operator matrix elements [50]. Further operator renormalization cor-
rections are organized as a perturbative series in which the largest contributions arise from NNLO two-loop-running
and one-loop-matching effects. These effects are calculated for the first time here and summarized in Table I. In addi-
tion, operator projectors needed for non-perturbative renormalization of nn operators and the chiral transformation
properties of nn operators are presented.

Sec. VII discusses the calculation of δm in a simplified model from Ref. [25] in order to illustrate how perturbative
operator renormalization results are combined with lattice QCD six-quark operator matrix elements and experimental
bounds on δm to constrain the scale of new baryon-number violating physics. For fixed BSM parameters, the nn
vacuum transition time calculated with the perturbative operator renormalization results of this work and preliminary
lattice QCD results is found to be more than a factor of five longer than was previously estimated. Several features
of this simple example have generic implications for more complicated BSM theories and deserve explicit mention:
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• Hnneff is described by a linear combination of multiple chiral basis operators that make very different contributions
to nn matrix elements. Color and flavor structure matters when calculating the nn vacuum transition time
predicted by a particular model.

• Q4 has a large positive anomalous dimension and its contributions to δm are suppressed compared to other
operators.

• Q2 is the only chiral basis operator with a negative anomalous dimension and its contributions are enhanced
compared to those of other operators. It does not contribute in the simplified model considered.

• Q̃1 arises in real models. Q1 and Q̃1 should be treated on equal footing, and QMS
1 (µ) 6= Q̃MS

1 (µ) must be

remembered during BSM matching calculations. Identical considerations apply to Q3 and Q̃3.

• Q5, Q6, and Q7 violate electroweak gauge invariance. They do not appear in the simplified model considered.

• Assuming Hnneff can be expressed as linear combinations of Q1, . . . , Q7, Q̃1, Q̃3 and their parity conjugates

without the use of (spin) Fierz relations, evanescent operators do not need to be explicitly included in tree-level
BSM matching calculations.

• At a fixed BSM scale of 500 TeV, NNLO effects correct the NLO+LO δm prediction by 14%, within the generic
range of < 26%. Assuming that further perturbative corrections have the same rate of convergence, unknown
N3LO corrections are estimated to change the NNLO+NLO+LO δm prediction by 2%, within the generic
estimate of < 7%.

• Perturbative corrections to BSM scale constraints are smaller than corrections to δm. In the simplified model
considered, NNLO effects change the NLO+LO BSM scale constraint by 3%.

Without knowledge of NNLO two-loop-running and one-loop-matching factors, perturbative operator renormaliza-
tion effects contribute large unquantified systematic uncertainties to BSM nn vacuum transition time predictions.
Including NNLO effects and estimating the size of unknown N3LO corrections turns perturbative operator renormal-
ization into a few-percent-level uncertainty. This places perturbative QCD corrections to τnn firmly under control.
Electromagnetic one-loop-running corrections have also been calculated in Ref. [50], though a complete electroweak
one-loop-running calculation has not be performed.

A complete lattice QCD determination of the nn matrix elements with controlled systematic uncertainties is nec-
essary to remove the largest remaining Standard Model uncertainties present in BSM predictions of τnn [54, 91]. In
particular, RI-MOM scheme non-perturbative renormalization factors should be calculated, continuum and infinite
volume extrapolations should be performed, and nn matrix element calculations should be repeated with physical or
near-physical pion masses. All of these systematic uncertainties can be removed using existing lattice QCD technology
and computational resources available in the near future.
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Appendix A: Tensor Algebra

This appendix presents Fierz-type relations useful for resolving complicated spin, color, and flavor tensors in a
desired tensor basis. All relations are derived using a well-known tensor reduction strategy: write the tensor tab under
consideration as a linear combination of chosen basis tensors Bab1 , Bab2 , . . . with unknown coefficients c1, c2, . . . , e.g.

tab = c1B
ab
1 + c2B

ab
2 . (A1)
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It is often useful to chose basis tensors with definite index exchange symmetries. Contracting both sides of this
equation with each basis tensor gives a system of equationsBab1 tab

Bab2 tab

 =

Bab1 Bab1 Bab1 Bab2

Bab2 Bab1 Bab2 Bab2

c1
c2

 , (A2)

that can be readily solved for c1, c2.

1. Color Algebra

There are five independent su(3)C tensors that can combine six quarks into color singlet operators,

TSSS{ij}{kl}{mn}, TAAS[ij][kl]{mn}, TASA[ij]{kl}[mn], TSAA{ij}[kl][mn], TAAA[ij][kl][mn]. (A3)

These five basis tensors are constructed from

TSSS{ij}{kl}{mn} = εikmεjln + εjkmεiln + εilmεjkn + εiknεjlm,

TAAS[ij][kl]{mn} = εijmεkln + εijnεklm,

TAAA[ij][kl][mn] = εijmεkln − εijnεklm,

(A4)

where εijk is the completely antisymmetric Levi-Civita tensor for su(3). Each tensor is symmetrized { } or anti-
symmetrized [ ] in the three index pairs shown. This corresponds to combining the six 3 quarks as products of
symmetrized 6 or antisymmetrized 3 diquarks. These tensors also obey the diquark exchange symmetries

TSSS{ij}{kl}{mn} = TSSS{kl}{ij}{mn} = TSSS{mn}{kl}{ij}

TAAS[ij][kl]{mn} = TAAS[kl][ij]{mn}

TAAA[ij][kl][mn] = −TAAA[kl][ij][mn] = −TAAA[ij][mn][kl].

(A5)

The remaining basis tensors defined by

TASA[ij]{kl}[mn] = TAAS[ij][mn]{kl}, TSAA{ij}[kl][mn] = TAAS[mn][kl]{ij}. (A6)

When evaluating Feynman diagrams, one encounters contractions of the color tensors TAAS and TSSS present in
QI with the su(3) generators tA. The resulting color tensors can always be expressed in terms of index permutations
of the original color tensors. For most diagrams this is accomplished through the textbook identity

tAi′it
A
j′j =

1

2

(
δi′jδj′i −

1

3
δi′iδj′j

)
, (A7)

where we assume the normalization Tr(tAtB) = 1
2δ
AB . Certain classes of diagrams involving three-gluon interactions

require the additional identity

fABCtAi′it
B
j′jt

C
k′k =

i

4
(δi′kδj′iδk′j − δi′jδj′kδk′i) , (A8)

which we have derived by performing the tensor reduction of Eq. (A2) for a basis of Kronecker-delta products. The
color structure produced by any diagram can therefore be determined from the relations of the generators above and
color Fierz identities relating index-permuted tensors to the five basis tensors.

The symmetrized color tensor obeys the Fierz identity

TSSS{kj}{il}{mn} = −1

2
TSSS{ij}{kl}{mn} −

3

2
TAAS[ij][kl]{mn}. (A9)

The corresponding relations for interchange of any other index pair follow from the symmetries above. The mixed
symmetry color tensor obeys the Fierz identities

TAAS[kj][il]{mn} = −1

2
TSSS{ij}{kl}{mn} +

1

2
TAAS[ij][kl]{mn}

TAAS[ij][ml]{kn} = −1

2
TAAS[ij][kl]{mn} −

1

2
TASA[ij][mn]{kl} + TAAA[ij][kl][mn].
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All other index exchange relations follow by symmetry. The antisymmetrized color tensor obeys the Fierz identity

TAAA[kj][il][mn] =
1

2
TASA[ij][mn]{kl} −

1

2
TSAA[mn][kl]{ij}, (A10)

with all other relations again following by symmetry.
Color factors produced by any diagram can be expressed in this basis through repeated application of these Fierz

identities or alternatively by direct tensor reduction of color factors in the forms of Table IV. We find the second
approach more convenient at the two-loop level because it can be readily automated in a computer algebra program
such as Mathematica.

2. Dirac Algebra

QCD loop diagrams introduce additional factors of γµγν · · · into each diquark. In a theory with massless quarks
perturbative corrections will not modify the chirality of each diquark. We can therefore express any Dirac structure
produced by a loop diagram as CPχ1

Γ1 ⊗ CPχ2
Γ2 ⊗ CPχ3

Γ3, where the chirality labels are identical to those of the
tree-level operator in question. In D = 4, a suitable basis of chirality preserving Γ1 ⊗ Γ2 ⊗ Γ3 independent of quark
momenta is given by

1⊗ 1⊗ 1, σµν ⊗ σµν ⊗ 1, 1⊗ σµν ⊗ σµν , σµν ⊗ 1⊗ σµν , iσµν ⊗ σµρ ⊗ σνρ, (A11)

where σµν = i
2 [γµ, γν ] and 1 represents the 4 × 4 identity matrix. An additional independent structure σµνσρτ ⊗

σµρ ⊗ σντ is not produced in the diagrams considered here. When discussing these basis tensors we will often omit
the Lorentz indices and write shorthand expressions like σ ⊗ σ ⊗ 1 and σ ⊗ σ ⊗ σ.

These basis structures provide a convenient orthogonal basis for tensor decompositions of two-loop Dirac structures.
Operators built from these basis structures are not explicitly included in our physical operator basis. Using spin Fierz
relations, each basis tensor can be related to a combination of index permutations of 1 ⊗ 1 ⊗ 1 and therefore to the
physical basis structures. Different techniques are required to find basis decompositions for Dirac structures produced
in loop diagrams that are valid in D dimensions. Useful discussions on the D-dimensional Dirac algebra needed for
three- and four-quark operator renormalization can be found in Refs. [67, 72, 74, 75], and in particular many results
and techniques for D-dimensional tensor reduction can be found in Refs. [83, 96].

As discussed at length in Sec. V B, spin Fierz relations are broken in dimensional regularization since the 16 Dirac
matrices {1, γ5, γµ, σµν} (with µ < ν) are not a complete basis for Dirac matrices in general D. Spin Fierz relations
should instead be considered prescriptions for defining evanescent operators built from the difference between the LHS
and RHS of these identities, see Refs. [59, 75]. One has the freedom to add O(ε) terms in defining this prescription,
for example

[CPχσµν ]αβ [CPχ′σµν ]γδ → δχχ′
(
(8 + a1ε)[CPχ]αδ[CPχ]γβ − (4 + a2ε)[CPχ]αβ [CPχ]γδ

)
. (A12)

The O(ε0) coefficients can be calculated by performing a tensor reduction in D = 4. Our basis of evanescent operators
is explicitly defined in Appendix C. When applying prescriptions such as Eq. (A12) to define evanescent operators,
finite matching factors and Wilson coefficients will depend on the chosen a1, a2. Basis dependence cancels so that
physical quantities such as Hnneff are independent of a1, a2. Relations between renormalized matrix elements calculated
with different one-loop evanescent bases follow from general considerations of renormalization scheme dependence,
see Refs. [60, 84]. Alternative schemes for defining evanescent operators can be found in Refs. [67, 72, 83].

Additional Dirac structures appear in two-loop diagrams that are independent in general D. These must be treated
with analogous spin Fierz evanescent operator prescriptions, such as

CPχσρτσµν ⊗ CPχ′σµνσρτ → δχχ′ ((48 + b1ε)CPχ ⊗ CPχ + (8 + b2ε)CPχσµν ⊗ CPχσµν) , (A13)

where b1 and b2 are arbitrary parameters used to specify a basis for two-loop evanescent counterterms. Freedom to
specify b1, b2 and other two-loop spin Fierz prescriptions suggests there is an additional ambiguity in γ(1) besides
the choice of a1, a2 that determines the one-loop evanescent counterterms. This suggestion is false.15 Since one-
loop-matching factors are independent of the b’s, there is no way for γ(1) to depend on the b’s while keeping Hnneff

15 It is for this reason that we do not consider a tensor reduction technique such as the “Greek projections” used in Ref. [75] that commutes
with algebraic relations valid in D-dimensions. The Greek projections provide algebraicly consistent continuations of spin-Fierz relations
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independent of this arbitrary basis choice. Independence of γ
(1)
I on the b’s is proven for four-quark operators in

Ref. [84]. The proof only relies on cancellation of non-local divergences and the factor of 1/2 multiplying evanescent
counterterm diagrams in Eq. (60) and applies to our six-quark operators without modification. We have explicitly
verified that cancellation of b’s dependence occurs diagram-by-diagram between two-loop diagrams and one-loop
evanescent counterterm diagrams in our calculation.

In addition to Eq. (A13), two-loop diagram evaluation requires the D = 4 spin Fierz identities

CPχ1
σρτσµν ⊗ CPχ2

σρτ ⊗ CPχ3
σµν

D=4
= ∆χ (4CPχ ⊗ CPχσµν ⊗ CPχσµν

−4iCPχσµν ⊗ CPχσµρ ⊗ CPχσνρ) ,
(A14)

where

∆χ ≡ δχ1χ2
δχ2χ3

(A15)

vanishes unless all three diquarks have identical chirality. Relating the above Dirac basis tensors to permutations of
1⊗ 1⊗ 1 also requires

i[CPχ1
σµν ]αβ [CPχ2

σµρ]
γδ[CPχ3

σνρ]
ηζ D=4

= ∆χ

(
16[CPχ]αζ [CPχ]γβ [CPχ]ηδ

− 8[CPχ]αδ[CPχ]γβ [CPχ]ηζ − 8[CPχ]αβ [CPχ]γζ [CPχ]ηδ

−8[CPχ]αζ [CPχ]γδ[CPχ]ηβ + 8[CPχ]αβ [CPχ]γδ[CPχ]ηζ
)
.

(A16)

Other useful formulae are derived by combining Eq. (A12) - (A16). A particularly useful identity is

δχ1χ21αδσγβσηζ
D=4
= ∆χ

[
1

2
1⊗ σ ⊗ σ +

1

2
σ ⊗ 1⊗ σ − 1

2
σ ⊗ σ ⊗ σ

]αβγδηζ
. (A17)

Fierz relations involving /p are also useful when computing evanescent counterterm diagrams

δχχ′
1

p2
(CPχγµ/p)⊗ (CPχ/pγµ)

D=4
= δχχ′(CPχ)⊗ (CPχ) +

1

4
(CPχσµν)⊗ (CPχσµν), (A18a)

1

p2
(CPχσµνγλ/p)⊗ (CPχ′σµν/pγλ)

D=4
= 12δχχ′(CPχ)⊗ (CPχ′)− (CPχσµν)⊗ (CPχ′σµν), (A18b)

1

p2
(CPχσµνγλ/p)⊗ (CPχ′/pγλσµν)

D=4
= 12δχχ′(CPχ)⊗ (CPχ′) + 3(CPχσµν)⊗ (CPχ′σµν). (A18c)

Additional Fierz relations are useful for diagram classes 34-45, in particular

Pαζχ [Pχ′γµ/p]
γδ[Pχ/pγµ]ηβ

D=4
=

1

2
[Pχγµ/p]

αβ [Pχ′/pγµ]γδP ηζχ +
1

8
[Pχσµνγρ/p]

αβ [Pχ′/pγρ]
γδ[Pχσµν ]ηζ , (A19a)

[γµ/pPχ]αζ [Pχ′/pγµ]γδP ηβχ
D=4
=

1

2
[Pχγµ/p]

αβ [Pχ′/pγµ]γδP ηζχ +
1

8
[Pχγρ/pσµν ]αβ [Pχ′/pγρ]

γδ[Pχσµν ]ηζ . (A19b)

Additional identities are found by permutation of the tensor product structures Γ1⊗Γ2⊗Γ3 appearing on both sides
of the above equations. For example, applying the permutation Γ1 ⊗ Γ2 ⊗ Γ3 → Γ2 ⊗ Γ1 ⊗ Γ3 to the LHS of either
equation leads to a new identity with the RHS modified by 1 ⊗ σ ⊗ σ ↔ σ ⊗ 1 ⊗ σ, 1 ⊗ 1 ⊗ 1 and σ ⊗ σ ⊗ 1 left
unchanged, and σ ⊗ σ ⊗ σ → −σ ⊗ σ ⊗ σ. Identities involving general permutations of Γ1 ⊗ Γ2 ⊗ Γ3 are constructed
analogously, and in particular σ ⊗ σ ⊗ σ will change sign under any permutation of Γ1 ⊗ Γ2 ⊗ Γ3 with odd signature.
All other Dirac structures produced by two-loop diagrams can be related to those above and our basis structures by
algebra valid in general D.

between Dirac structures of the form Γ⊗Γ′ to D-dimensions and for example specify b1 = −80, b2 = −12 in Eq. (A13). Straightforward
generalizations of the Greek projections can relate structures of the form Γ1 ⊗ Γ2 ⊗ Γ3. However, there is no straightforward extension
of the Greek projections for Eq. (A12) unless σ ⊗ σ operators are included in the physical basis as in Ref. [61]. Since the nn basis of
interest for many BSM models includes the scalar diquark operators considered here, Greek projections do not give a useful way to
define our one-loop evanescent counterterm basis. After choosing this one-loop evanescent basis, γ(1) is fully determined and we have
no further need to establish concrete evanescent basis conventions.
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3. Flavor Algebra

A convenient basis for su(2)χ tensors is given by

τ2, τ2τA, τ2τAτB , . . . (A20)

where the τA are normalized as Pauli matrices Tr(τAτB) = 2.
After applying the σ ⊗ σ spin Fierz identity of Eq. (A12), the resulting spin-singlet diquarks no longer have their

flavor indices contracted with one of the basis structures above. Flavor (as well as color) Fierz relations are useful in
relating the resulting structures to the original operator basis. One-loop diagrams involving flavor singlet diquarks
require

τ2
adτ

2
cb =

1

2
τ2
abτ

2
cd +

1

2
(τ2τA)ab(τ

2τA)cd. (A21)

Similarly, flavor vector-singlet structures require

τ2
ad(τ

2τA)cb =
1

2
τ2
ab(τ

2τA)cd +
1

2
(τ2τB)ab(τ

2τAτB)cd. (A22)

Finally, flavor vector-vector structures require

(τ2τA)ad(τ
2τB)cb =

1

2

{
(τ2τA)ab(τ

2τB)cd + (τ2τB)ab(τ
2τA)cd + iεABC

[
(τ2τC)abτ

2
cd − τ2

ab(τ
2τC)cd

]
+ δAB

[
τ2
abτ

2
cd − (τ2τC)ab(τ

2τC)cd
]}
.

(A23)

Eq. (A23) implies in particular that symmetric traceless tensors are Fierz self-conjugate.

Appendix B: Two-Loop Integrals

When evaluating simple Feynman diagrams, one can often perform Dirac “numerator algebra” that reduces the
diagram to a simple product of a Dirac structure times a scalar integral. When evaluating diagrams with gluon
propagators connecting quarks in separate spin-singlet diquarks, this is not possible. One is forced to work with
tensor integrals that contain free Lorentz indices contracted with structures such as σµν ⊗ σρτ . In this case, tensor
reduction techniques similar to those described in Appendix A can be used to express tensor integrals in terms of
linear combinations of scalar integrals. In our calculation of the diagrams of Fig. 1, the complete set of two-loop
tensor integrals appearing in these diagrams was organized according to the propagator powers and loop-momentum
vectors appearing. Each tensor integral was then expressed as a linear combination of basic tensors and two-loop
scalar integrals by tensor reduction techniques. The two-loop scalar integrals were recursively evaluated as described
below and the results tabled for use in tensor integral evaluation. Computer algebra was essential for this process and
performed using Mathematica scripts written by the authors.

There exists a vast literature on evaluation of multi-loop tensor and scalar integrals. References to reviews and
original literature are given below, and it should be emphasized that none of the techniques reviewed in this appendix
are novel. Our aim is simply to consolidate known techniques needed for two-loop anomalous dimension calculations
without detailing the additional complications and generalizations needed for more complex higher-order calculations.

1. Two-Loop Scalar Integrals

We are only concerned here with calculating the 1/ε single- and double-pole pieces of two-loop diagrams. This
allows for substantial simplifications. In particular, external momenta can be freely chosen diagram by diagram. To
see this, note that in a renormalizable theory, these pole pieces can be at most polynomial in external momenta.
After factoring out possible overall dimensionful factors common to all diagrams, this means the pole pieces are
independent of external momenta. This holds for individual diagrams as long as they contain no subdivergences, and
therefore for general two-loop diagrams as long as one-loop counterterm diagrams cancelling all subdivergences are
included [78]. We may therefore freely choose a different momentum routing convenient for each two-loop diagram
under consideration as long as the same routing is used in all corresponding one-loop counterterm diagrams.

The only caveat to this statement is that the choice of external momentum routing must not introduce IR diver-
gences. For instance, if in a massless theory one sets all external momenta to zero then all integrals vanish identically
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in dimensional regularization. This means IR divergences have been introduced that are regulated as 1/ε poles and
cancel all of the original UV divergences [97]. We are interested in the counterterms needed to cancel UV divergences
only, and so we must use care to choose momentum routings free of IR divergences. See Ref. [98] for a detailed review
of this “infrared rearrangement” trick; for our purposes it is enough to note that IR divergences can be found and
avoided through standard power counting arguments used to determine a diagram’s degree of UV divergence [78].

For all diagrams in Fig. 1, a momentum routing can be chosen so that the only scalar integrals appearing are of
the form

T (n1, n2, n3, n4, n5) = µ4ε

∫
dDkdDq

(2π)2D

1

(p+ k)2n1(p+ q)2n2k2n3q2n4(k − q)2n5
, (B1)

where p is an arbitrary external momenta that serves as an IR regulator and we are suppressing omnipresent iε terms
in factors such as (k2 + iε)n3 . If one of the propagator factors does not appear (one ni equals zero), then the two
loop integral can be expressed as a product of one loop integrals. The second loop includes non-integer propagator
powers, but can still be evaluated through the textbook formula

I(α, β) = µ2ε

∫
dDk

(2π)D
1

(p+ k)2αk2β

=
(p2)2−α−β−ε

(4π)2−ε

[
Γ(α+ β − 2 + ε)Γ(2− α− ε)Γ(2− β − ε)

Γ(4− α− β − 2ε)Γ(α)Γ(β)

]
.

(B2)

Scalar two-loop integrals with (at least) one zero argument are given by

T (n1, n2, n3, n4, 0) = I(n3, n1)I(n4, n2),

T (0, n2, n3, n4, n5) = (p2)n3+n5−2+εI(n3, n5)I(n3 + n4 + n5 − 2 + ε, n2),

T (n1, n2, 0, n4, n5) = (p2)n1+n5−2+εI(n1, n5)I(n4, n1 + n2 + n5 − 2 + ε).

(B3)

The cases of n2 = 0 and n4 = 0 can be found by the (n1, n3)↔ (n2, n4) symmetry of T (n1, n2, n3, n4, n5).
This leaves the case of non-vanishing n1, · · · , n5. This case can be evaluated recursively through the “integration by

parts” technique of Refs. [99, 100], see Ref. [101] for a review. The starting point for this technique is the observation
that there are no surface terms when integrating a total derivative in dimensional regularization [78], that is

0 = µ4ε

∫
dDkdDq

(2π)2D

(
∂

∂qµ
aµ(k, q, p)

)
(B4)

where aµ(k, q, p) is an arbitrary vector that may depend on loop and external momenta. Useful identities are generated
by taking aµ to be a loop momentum vector times the integrand of Eq. (B1). Consider in particular

∂

∂qµ

[
(k − q)µ

(p+ k)2n1(p+ q)2n2k2n3q2n4(k − q)2n5

]
=

[
−D − 2n2(k − q) · (p+ q)

(p+ q)2
− 2n4(k − q) · q

q2
+ 2n5

]
1

(p+ k)2n1(p+ q)2n2k2n3q2n4(k − q)2n5
.

(B5)

Next, re-write all scalar products appearing in Eq. (B5) in terms of linear combinations of p2 and denominator factors,
for instance

2(k − q) · (p+ q) = (k + p)2 − (k − q)2 − (p+ q)2,

2(k − q) · q = k2 − (k − q)2 − q2.
(B6)

This allows us to express Eq. (B4) as

0 =
[
2n5 + n2 + n4 −D + n22

+(5− − 1−) + n44
+(5− − 3−)

]
T (n1, n2, n3, n4, n5), (B7)

where we define

1±T (n1, n2, n3, n4, n5) = T (n1 ± 1, n2, n3, n4, n5), (B8)

etc. This identity is sufficient to derive a recursive solution for T (n1, n2, n3, n4, n5) with all ni non-zero,

T (n1, n2, n3, n4, n5) =
1

D − n2 − n4 − 2n5

[
n22

+(5− − 1−) + n44
+(5− − 3−)

]
T (n1, n2, n3, n4, n5). (B9)
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This recursion terminates when each integral on the RHS has at least one ni zero and the base case Eq. (B3) can
be applied. Many other integration by parts identities and more powerful recursive algorithms can be constructed
but are not needed for the calculation at hand. For further discussions of more general one-loop scalar integrals see
Refs. [102, 103]. For further discussions of two-loop scalar integral evaluation see Refs. [104, 105] and the review
Ref. [101].

2. Two-Loop Tensor Integrals

Two-loop tensor integrals can be expressed in terms of scalar integrals through tensor reduction techniques. Consider
for example the rank two integral

T 2
µν(n1, n2, n3, n4, n5) = µ4ε

∫
dDkdDq

(2π)2D

kµkν
(p+ k)2n1(p+ q)2n2k2n3q2n4(k − q)2n5

. (B10)

By Lorentz invariance, the integral can be expressed as a linear combination

T 2
µν = T 2

δ gµν + T 2
α

1

p2
pµpν . (B11)

Contracting both sides with these same tensors gives the system of equationsT 2
δ

T 2
α

 =

4− 2ε 1

1 1

−1 gµνT 2
µν

1
p2 p

µpνT 2
µν

 . (B12)

The contractions of the RHS can be reduced to linear combinations of scalar integrals by re-writing tensor products
in terms of differences of propagator factors as before,

gµνT 2
µν(n1, n2, n3, n4, n5) = 3−T (n1, n2, n3, n4, n5)

1

p2
pµpνT 2

µν(n1, n2, n3, n4, n5) =
1

2p2
pµ
[
1− − 3− − p2

]
T 1
µ(n1, n2, n3, n4, n5).

(B13)

This final formula does not apply to the cases of n1 = 0 and n3 = 0. These must be treated separately, and a
general method can be constructed by first performing a tensor reduction of a one-loop subintegral. This problem
is systematically considered in Ref. [106]. The following recipe is sufficient for the integrals considered in this work:
first evaluate the one-loop integral for the loop momentum that only appears in two propagators by a one-loop tensor
reduction. A change of variables may be useful to ensure there is only one “external momentum” scale (which may be
a linear combination of pµ and the other loop momentum) that needs to be included in the one-loop tensor reduction.
The second integral will then be another one-loop tensor integral involving a single scale that can be readily evaluated.
For further discussion of tensor integral reduction techniques, see Ref.[107, 108] and for a review see Ref. [109].

Appendix C: Evanescent Operators

The MS and RI-MOM renormalization schemes are fully defined by the renormalization conditions of Sec. IV and
specification of the one-loop evanescent counterterms appearing in Sec. V B. Two-loop MS anomalous dimensions,
one-loop RI-MOM matching factors, and Wilson coefficients from one-loop BSM matching all separately depend on
the basis chosen for evanescent operator counterterms. In particular, loop-level BSM matching calculations must use
the same evanescent basis used in this week. Our basis includes the following evanescent operators needed as one-loop
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counterterms to QI ,

Ea1 = (ψCPRσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS − 12Q1, (C1a)

Eb1 = (ψCPRiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRσµνiτ2τ+ψ)TASA

+ (ψCPRσµνiτ2ψ)(ψCPRiτ2ψ)(ψCPRσµνiτ2τ+ψ)TSAA − 8Q1,

Ea2 = (ψCPLσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS , (C1b)

Eb2 = (ψCPLiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRσµνiτ2τ+ψ)TASA

+ (ψCPLσµνiτ2ψ)(ψCPRiτ2ψ)(ψCPRσµνiτ2τ+ψ)TSAA − 4Q2,

Ea3 = (ψCPLσµνiτ2ψ)(ψCPLσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS − 12Q1, (C1c)

Eb3 = (ψCPLiτ2ψ)(ψCPLσµνiτ2ψ)(ψCPRσµνiτ2τ+ψ)TASA

+ (ψCPLσµνiτ2ψ)(ψCPLiτ2ψ)(ψCPRσµνiτ2τ+ψ)TSAA,

E4 = (ψCPRσµνiτ2τ3ψ)(ψCPRσµνiτ2τ3ψ)(ψCPRiτ2τ+ψ)TAAS (C1d)

− 1

5
(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRiτ2τ+ψ)TAAS

+ (ψCPRiτ2τ3ψ)(ψCPRσµνiτ2τ3ψ)(ψCPRσµνiτ2τ+ψ)TSAA

− 1

5
(ψCPRiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TSAA

+ (ψCPRσµνiτ2τ3ψ)(ψCPRiτ2τ3ψ)(ψCPRσµνiτ2τ+ψ)TASA

− 1

5
(ψCPRσµνiτ2τ3ψ)(ψCPRiτ2τ3ψ)(ψCPRσµνiτ2τ+ψ)TASA − 12Q4,

E5 = (ψCPRσµνiτ2τ−ψ)(ψCPLσµνiτ2τ+ψ)(ψCPLiτ2τ+ψ)TAAS (C1e)

+ (ψCPRiτ2τ−ψ)(ψCPLσµνiτ2τ+ψ)(ψCPLσµνiτ2τ+ψ)TSAA

+ (ψCPRσµνiτ2τ−ψ)(ψCPLiτ2τ+ψ)(ψCPLσµνiτ2τ+ψ)TASA − 4Q5,

Ẽ1 =
1

3
(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRiτ2τ+ψ)TAAS (C1f)

+
1

3
(ψCPRiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TSAA

+
1

3
(ψCPRσµνiτ2τAψ)(ψCPRiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TASA +

4

3
Q̃1,

Ẽ3 =
1

3
(ψCPLσµνiτ2τAψ)(ψCPLσµνiτ2τAψ)(ψCPRiτ2τ+ψ)TAAS (C1g)

+
1

3
(ψCPLiτ2τAψ)(ψCPLσµνiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TSAA

+
1

3
(ψCPLσµνiτ2τAψ)(ψCPLiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TASA + 4Q̃3.

Above we have grouped evanescent operators that make similar contributions one-loop counterterm diagrams, see
Tables V, VI.

The coefficients of QI appearing above are determined by demanding that the RHS vanish in D = 4. We have
calculated them using two independent methods for verification: first by pen and paper application of the spin-
color-flavor Fierz relations derived in Appendix A and second by automated Mathematica application of the operator
projectors of Eq. 21 to explicit vertex functions constructed for each structure. It is straightforward to verify that all
other structures produced in amplitudes for d = 1-3 vanish by quark exchange antisymmetry.
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When constructing one-loop counterterm diagrams for two-loop diagrams d = 4-6, 16-24, and 32-45 containing d =
1-3 subdiagrams, it is useful to employ a different evanescent operator basis E′I . The E′I basis is defined by demanding
that the prescription

[CPχσµν ]αβ [CPχ′σµν ]γδ
D=4
= δχχ′

(
8[CPχ]αδ[CPχ]γβ − 4[CPχ]αβ [CPχ]γδ

)
, (C2)

always provides valid operator identities in general D when E′I operators are included. Applying this prescription to
the amplitudes for d = 1-3 provides an explicit construction of the E′I operators

Ea′1 = (ψCPRσµνiτ2ψ)(ψCPRσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS (C3a)

− 8(ψα[CPR]αδiτ2ψ
β)(ψγ [CPR]γβiτ2ψ

δ)(ψη[CPR]ηζiτ2τ+ψ
ζ)TSSS

= Ea1 + 6(Q1 − Q̃1)

Ea′3 = (ψCPLσµνiτ2ψ)(ψCPLσµνiτ2ψ)(ψCPRiτ2τ+ψ)TSSS (C3b)

− 8(ψα[CPL]αδiτ2ψ
β)(ψγ [CPL]γβiτ2ψ

δ)(ψη[CPR]ηζiτ2τ+ψ
ζ)TSSS

= Ea3 + 6(Q3 − Q̃3)

Ẽ′1 =
1

3
(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRiτ2τ+ψ)TAAS (C3c)

+
1

3
(ψCPRiτ2τAψ)(ψCPRσµνiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TSAA

+
1

3
(ψCPRσµνiτ2τAψ)(ψCPRiτ2τAψ)(ψCPRσµνiτ2τ+ψ)TASA

− 8

3
(ψα[CPR]αδiτ2τAψ

β)(ψγ [CPR]γβiτ2τAψ
δ)(ψη[CPR]ηζiτ2τ+ψ

ζ)TAAS

− 8

3
(ψα[CPR]αβiτ2τAψ

β)(ψγ [CPR]γζiτ2τAψ
δ)(ψη[CPR]ηδiτ2τ+ψ

ζ)TSAA

− 8

3
(ψα[CPR]αζiτ2τAψ

β)(ψγ [CPR]γδiτ2τAψ
δ)(ψη[CPR]ηβiτ2τ+ψ

ζ)TASA

= Ẽ1 +
10

3
(Q1 − Q̃1)

Ẽ′3 =
1

3
(ψCPLσµνiτ2τAψ)(ψCPLσµνiτ2τAψ)(ψCPRiτ2τ+ψ)TAAS (C3d)

− 8

3
(ψα[CPL]αδiτ2τAψ

β)(ψγ [CPL]γβiτ2τAψ
δ)(ψη[CPR]ηζiτ2τ+ψ

ζ)TAAS

= Ẽ3 + 2(Q3 − Q̃3)

with all other E′I equal to the corresponding EI . The E′I basis is convenient for two-loop diagram evaluation, but is

cumbersome for RG evolution because it includes one-loop mixing between Q1 and Q̃1 and between Q3 and Q̃3.

After evaluating two-loop diagrams in the E′I basis to determine the loop coefficients [L′tot]
(2),1
II defined in Eq. (61),

a change of basis to the EI basis can be performed to recover the coefficients [Ltot]
(2),1
II directly appearing in the

anomalous dimension formula Eq. (57). Reading off the coefficients L
(1)
IEI

from the entries for d = 1-3 in Tables V-VI,

the necessary change of basis formula to recover [Ltot]
(2),1
II from [L′tot]

(2),1
II are found to be

[Ltot]
(2),1
11 = [L′tot]

(2),1
11 − 3

2
(r

(0)
1 − r̃(0)

1 )

[Ltot]
(2),1
33 = [L′tot]

(2),1
33 − 3

2
(r

(0)
3 − r̃(0)

3 )

[L̃tot]
(2),1
11 = [L̃′tot]

(2),1
11 − 5

2
(r

(0)
1 − r̃(0)

1 )

[L̃tot]
(2),1
33 = [L̃′tot]

(2),1
33 − 3

2
(r

(0)
3 − r̃(0)

3 ).

(C4)

One-loop matching results give r
(0)
1 − r̃(0)

1 = 7 = r
(0)
3 − r̃(0)

3 .
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Appendix D: Diagram Results

After choosing a convenient momentum routing, each two-loop diagram in Fig. 1 and associated counterterm
diagrams are evaluated in terms of a tensor integral contracted with a Dirac tensor, as discussed in Appendix B. The
amplitude for each diagram is represented by a complicated combination of color factors and Dirac structures that
can be simplified with the tensor reduction techniques of Appendix A. We find it convenient to first perform a Dirac
tensor reduction using the prescription of Eq. (29) with a1 = a2 = 0 (that is, working in the E′I basis) that allows
us to express the diagrams in a given class as individual color factors times a common combination of Dirac basis
structures. These Dirac structures are shown in Table III. We then perform color tensor reductions of the color factors
of Table IV. This allows each diagram amplitude to be expressed as a combined spin-color tensor. While there are
25 distinct spin-color tensors that can be built from the basis tensors of Appendix A, most vanish by quark exchange
antisymmetry when contracted with external quark fields and flavor tensors to form operator corrections.

When contracted with (ψiτ2ψ)(ψiτ2ψ)(ψiτ2τAψ), the only spin-color tensors that give non-vanishing contributions
are

(1⊗ 1⊗ 1)TAAS , (σ ⊗ σ ⊗ 1)TSSS , (1⊗ σ ⊗ σ)TASA, (σ ⊗ 1⊗ σ)TAAS . (D1)

The overall contribution from each diagram class toMA
d is represented by a linear combination of these four spin-color

tensors in Table V. Analogously, when contracted with (ψiτ2τAψ)(ψiτ2τBψ)(ψiτ2τCψ), the only spin-color tensors
that give non-vanishing contributions are

(1⊗ 1⊗ 1)TSSS , (σ ⊗ σ ⊗ 1)TAAS , (1⊗ σ ⊗ σ)TSAA, (σ ⊗ 1⊗ σ)TASA, (σ ⊗ σ ⊗ σ)TAAA. (D2)

The overall contribution from each diagram class toMS
d is represented by a linear combination of these five spin-color

tensors in Table VI.
After adding the amplitudes MA

d and MS
d from each diagram class, we consider each QI independently form

operator corrections by Eq. (25). The resulting operator corrections can be expressed as a simple multiple of QI in
D = 4 through application of either the operator projectors Eq. (22) or the relations of Appendix C and

i

3
(ψCPRiτ2τAσµνψ)(ψCPRσµρiτ2τAψ)(ψCPRσνρiτ2τ+ψ)TAAA

D=4
= −8

3
(ψCPRiτ2τAψ)(ψCPRiτ2τAψ)(ψCPRiτ2τ+ψ)TSSS ,

(D3)

and

i(ψCPRiτ2τ{3σµνψ)(ψCPRσµρiτ2τ3ψ)(ψCPRσνρiτ2τ+}ψ)TAAA

− 1

5
i(ψCPRiτ2τ{Aσµνψ)(ψCPRσµρiτ2τAψ)(ψCPRσνρiτ2τ+}ψ)TAAA

D=4
= 4

[
(ψCPRiτ2τ{3σµνψ)(ψCPRiτ2τ3ψ)(ψCPRiτ2τ+}ψ)TSSS

−1

5
(ψCPRiτ2τ{Aψ)(ψCPRiτ2τAψ)(ψCPRiτ2τ+}ψ)TSSS

]
.

(D4)

The result is an operator correction proportional to QI plus irrelevant evanescent contributions. The 1/ε pole

coefficient of this amplitude represents L
(2),2
II /ε2 + [L′tot]

(2),1
II /ε. After including the change of evanescent basis factors

in Eq. (C4), γ
(1)
I is immediately given by Eq. (57).
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d Nd 1⊗ 1⊗ 1 σ ⊗ σ ⊗ 1 1⊗ σ ⊗ σ σ ⊗ 1⊗ σ σ ⊗ σ ⊗ σ
1/ε2 1/ε 1/ε2 1/ε 1/ε2 1/ε 1/ε2 1/ε 1/ε2 1/ε

1 3 - −4 - 0 - 0 - 0 - 0

2 6 - −1 - 1/4 - 0 - 0 - 0

3 6 - −1 - −1/4 - 0 - 0 - 0

4 3 −8 8 0 0 0 0 0 0 0 0

5 6 (−1− 3δχ)/2 (5 + 3δχ)/4 1/2 −1/2 0 0 0 0 0 0

6 6 (−1− 3δχ)/2 (5 + 10δχ)/4 −1/2 15/16 0 0 0 0 0 0

7 3 0 −2 0 0 0 0 0 0 0 0

8 6 0 −2 + 3δχ 0 1/4 0 0 0 0 0 0

9 6 0 −2 + 3δχ 0 −1/4 0 0 0 0 0 0

10 6 2 2 0 0 0 0 0 0 0 0

11 12 1/2 0 −1/8 −5/16 0 0 0 0 0 0

12 12 1/2 0 1/8 5/16 0 0 0 0 0 0

13 6 −2 1 0 0 0 0 0 0 0 0

14 12 −1/2 0 1/8 1/16 0 0 0 0 0 0

15 12 −1/2 0 −1/8 −1/16 0 0 0 0 0 0

16 12 −2 1 + 7δχ/4 0 −1/16 0 0 0 0 0 0

17 12 −2 −1 1/2 1/2 0 0 0 0 0 0

18 12 −2 1− 7δχ/4 0 1/16 0 0 0 0 0 0

19 12 −2 −1 −1/2 −1/2 0 0 0 0 0 0

20 12 −1/2 + 3δχ/2 (3− 3δχ)/4 −1/4 1/8 0 0 0 0 0 0

21 12 −1/2 + 3δχ/2 (3− 10δχ)/4 1/4 −9/16 0 0 0 0 0 0

22 3 −16 0 0 0 0 0 0 0 0 0

23 3 −1− 3δχ 0 1 0 0 0 0 0 0 0

24 3 −1− 3δχ 7δχ/2 −1 7/8 0 0 0 0 0 0

25 6 −6 5 0 0 0 0 0 0 0 0

26 12 −3/2 1/2 3/8 1/16 0 0 0 0 0 0

27 12 −3/2 1/2 −3/8 −1/16 0 0 0 0 0 0

28 12 0 0 0 3/4 0 0 0 0 0 0

29 3 15/2−Nf −13 + 4Nf/3 0 0 0 0 0 0 0 0

30 6 0 0 −5/8 +Nf/12 17/48−Nf/72 0 0 0 0 0 0

31 6 0 0 5/8−Nf/12 −17/48 +Nf/72 0 0 0 0 0 0

32 6 −4 0 1 0 0 0 0 0 0 0

33 6 −4 0 −1 0 0 0 0 0 0 0

34 6 −1/2 0 1/8 1/16 −∆χ/8 −1/16 + ∆χ/16 1/8 −1/16 −1/8 0

35 6 −1/2 0 1/8 1/16 ∆χ/8 1/16−∆χ/16 −1/8 1/16 1/8 0

36 6 −1/2 0 1/8 1/16 −∆χ/8 −1/16 + ∆χ/16 1/8 −1/16 1/8 0

37 6 −1/2 0 1/8 1/16 ∆χ/8 1/16−∆χ/16 −1/8 1/16 −1/8 0

38 6 −1/2 0 −1/8 −1/16 −∆χ/8 −1/16 + ∆χ/16 −1/8 1/16 −1/8 0

39 6 −1/2 0 −1/8 −1/16 ∆χ/8 1/16−∆χ/16 1/8 −1/16 1/8 0

40 6 −1/2 0 −1/8 −1/16 −∆χ/8 −1/16 + ∆χ/16 −1/8 1/16 1/8 0

41 6 −1/2 0 −1/8 −1/16 ∆χ/8 1/16−∆χ/16 1/8 −1/16 −1/8 0

42 6 −1 0 1/4 0 −∆χ/4 0 1/4 0 −1/4 0

43 6 −1 0 1/4 0 ∆χ/4 0 −1/4 0 1/4 0

44 6 −1 0 −1/4 0 ∆χ/4 0 1/4 0 1/4 0

45 6 −1 0 −1/4 0 −∆χ/4 0 −1/4 0 −1/4 0

46 8 0 0 0 0 0 0 0 0 0 3/8

TABLE III: NDR 1/ε pole structure of the diagram amplitudes in Feynman gauge without color factors. d labels the diagrams
classes of Fig. 1, Nd is the number of diagrams within class d, δχ ≡ δχ

1
χ
2

and ∆χ ≡ δχ
1
χ
2
δχ

2
χ
3
. Evanescent counterterms in

the E′I basis defined by applying Eq. (60) to diverent subdiagrams are included in these results.
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d Color Factor

1 1
2

[
T(ji)(kl){mn} − 1

3
T(ij)(kl){mn}

]
2 1

2

[
T(il)(kj){mn} − 1

3
T(ij)(kl){mn}

]
3 1

2

[
T(ik)(jl){mn} − 1

3
T(ij)(kl){mn}

]
4 1

4

[
− 2

3
T(ji)(kl){mn} + 10

9
T(ij)(kl){mn}

]
5 1

4

[
− 2

3
T(il)(kj){mn} + 10

9
T(ij)(kl){mn}

]
6 1

4

[
− 2

3
T(ik)(jl){mn} + 10

9
T(ij)(kl){mn}

]
7 1

4

[
7
3
T(ji)(kl){mn} + 1

9
T(ij)(kl){mn}

]
8 1

4

[
7
3
T(il)(kj){mn} + 1

9
T(ij)(kl){mn}

]
9 1

4

[
7
3
T(ik)(jl){mn} + 1

9
T(ij)(kl){mn}

]
10 − 1

12

[
T(ji)(kl){mn} − 1

3
T(ij)(kl){mn}

]
11 − 1

12

[
T(il)(kj){mn} − 1

3
T(ij)(kl){mn}

]
12 − 1

12

[
T(ik)(jl){mn} − 1

3
T(ij)(kl){mn}

]
13 2

3

[
T(ji)(kl){mn} − 1

3
T(ij)(kl){mn}

]
14 2

3

[
T(il)(kj){mn} − 1

3
T(ij)(kl){mn}

]
15 2

3

[
T(ik)(jl){mn} − 1

3
T(ij)(kl){mn}

]
16 1

4

[
T(jl)(ki){mn} − 1

3
T(ji)(kl){mn} − 1

3
T(il)(kj){mn} + 1

9
T(ij)(kl){mn}

]
17 1

4

[
T(li)(kj){mn} − 1

3
T(ji)(kl){mn} − 1

3
T(il)(kj){mn} + 1

9
T(ij)(kl){mn}

]
18 1

4

[
T(jk)(il){mn} − 1

3
T(ji)(kl){mn} − 1

3
T(ik)(jl){mn} + 1

9
T(ij)(kl){mn}

]
19 1

4

[
T(ki)(jl){mn} − 1

3
T(ji)(kl){mn} − 1

3
T(ik)(jl){mn} + 1

9
T(ij)(kl){mn}

]
20 1

4

[
T(ik)(lj){mn} − 1

3
T(ik)(jl){mn} − 1

3
T(il)(kj){mn} + 1

9
T(ij)(kl){mn}

]
21 1

4

[
T(il)(jk){mn} − 1

3
T(ik)(jl){mn} − 1

3
T(il)(kj){mn} + 1

9
T(ij)(kl){mn}

]
22 1

4

[
T(ji)(lk){mn} − 1

3
T(ij)(lk){mn} − 1

3
T(ji)(kl){mn} + 1

9
T(ij)(kl){mn}

]
23 1

4

[
T(kl)(ij){mn} − 1

3
T(il)(kj){mn} − 1

3
T(kj)(il){mn} + 1

9
T(ij)(kl){mn}

]
24 1

4

[
T(lk)(ji){mn} − 1

3
T(lj)(ki){mn} − 1

3
T(ik)(jl){mn} + 1

9
T(ij)(kl){mn}

]
25 − 3

4

[
T(ji)(kl){mn} − 1

3
T(ij)(kl){mn}

]
26 − 3

4

[
T(il)(kj){mn} − 1

3
T(ij)(kl){mn}

]
27 − 3

4

[
T(ik)(jl){mn} − 1

3
T(ij)(kl){mn}

]
28 1

4

[
T(jl)(ki){mn} − T(li)(kj){mn}

]
29 1

2

[
T(ji)(kl){mn} − 1

3
T(ij)(kl){mn}

]
30 1

2

[
T(il)(kj){mn} − 1

3
T(ij)(kl){mn}

]
31 1

2

[
T(ik)(jl){mn} − 1

3
T(ij)(kl){mn}

]
32 1

4

[
T(il)(kj){nm} − 1

3
T(il)(kj){mn} − 1

3
T(ij)(kl){nm} + 1

9
T(ij)(kl){mn}

]
33 1

4

[
T(lj)(ki){nm} − 1

3
T(lj)(ki){mn} − 1

3
T(ij)(kl){nm} + 1

9
T(ij)(kl){mn}

]
34 1

4

[
T(in)(kj){ml} − 1

3
T(il)(kj){mn} − 1

3
T(in)(kl){mj} + 1

9
T(ij)(kl){mn}

]
35 1

4

[
T(im)(kj){ln} − 1

3
T(il)(kj){mn} − 1

3
T(im)(kl){jn} + 1

9
T(ij)(kl){mn}

]
36 1

4

[
T(mj)(il){kn} − 1

3
T(kj)(il){mn} − 1

3
T(mj)(kl){in} + 1

9
T(ij)(kl){mn}

]
37 1

4

[
T(nj)(il){mk} − 1

3
T(kj)(il){mn} − 1

3
T(nj)(kl){mi} + 1

9
T(ij)(kl){mn}

]
38 1

4

[
T(im)(jl){kn} − 1

3
T(ik)(jl){mn} − 1

3
T(im)(kl){jn} + 1

9
T(ij)(kl){mn}

]
39 1

4

[
T(in)(jl){mk} − 1

3
T(ik)(jl){mn} − 1

3
T(in)(kl){mj} + 1

9
T(ij)(kl){mn}

]
40 1

4

[
T(nj)(ki){ml} − 1

3
T(lj)(ki){mn} − 1

3
T(nj)(kl){mi} + 1

9
T(ij)(kl){mn}

]
41 1

4

[
T(mj)(ki){ln} − 1

3
T(lj)(ki){mn} − 1

3
T(mj)(kl){in} + 1

9
T(ij)(kl){mn}

]
42 1

4

[
T(ml)(kj){in} − 1

3
T(il)(kj){mn} − 1

3
T(mj)(kl){in} + 1

9
T(ij)(kl){mn}

]
43 1

4

[
T(nl)(kj){mi} − 1

3
T(il)(kj){mn} − 1

3
T(nj)(kl){mi} + 1

9
T(ij)(kl){mn}

]
44 1

4

[
T(mk)(jl){in} − 1

3
T(ik)(jl){mn} − 1

3
T(mj)(kl){in} + 1

9
T(ij)(kl){mn}

]
45 1

4

[
T(nk)(jl){mi} − 1

3
T(ik)(jl){mn} − 1

3
T(nj)(kl){mi} + 1

9
T(ij)(kl){mn}

]
46 1

4

[
T(in)(kj){ml} − T(il)(kn){mj}

]
TABLE IV: Single diagram color factors corresponding to the explicit diagrams in Fig. 1. This table alleviates potential sign and
coefficient ambiguity in Table III due to choice of color terms factored out. T(ij)(kl){mn} represents TAAS[ij][kl]{mn} or TSSS{ij}{kl}{mn}
depending on which operator is inserted in the diagram.
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d (1⊗ 1⊗ 1)TAAS (σ ⊗ σ ⊗ 1)TSSS (1⊗ σ ⊗ σ)TASA + (σ ⊗ 1⊗ σ)TSAA

1/ε2 1/ε 1/ε2 1/ε 1/ε2 1/ε

1 - 4 - 0 - 0

2 - 3/2 - −1/8 - −1/8

3 - 3/2 - −1/8 - −1/8

4 −8 8 0 0 0 0

5 (−11− 7δ1A − 13δ2A)/12 (55 + 7δ1A + 13δ2A)/24 1/12 −1/12 1/12 −1/12

6 (−11− 7δ1A − 13δ2A)/12 (165 + 70δ1A + 130δ2A)/72 1/12 −5/32 1/12 −5/32

7 0 1 0 0 0 0

8 0 (10 + 23δ1A − 19δ2A)/12 0 −7/48 0 −7/48

9 0 (10 + 23δ1A − 19δ2A)/12 0 −7/48 0 −7/48

10 2/3 2/3 0 0 0 0

11 1/4 0 −1/48 −5/96 −1/48 −5/96

12 1/4 0 −1/48 −5/96 −1/48 −5/96

13 16/3 −8/3 0 0 0 0

14 2 0 −1/6 −1/12 −1/6 −1/12

15 2 0 −1/6 −1/12 −1/6 −1/12

16 −2/3 (24− 28δ1A + 35δ2A)/72 0 1/48 0 −1/96

17 −2/3 −1/3 1/3 1/3 1/12 1/12

18 −2/3 (24 + 28δ1A − 35δ2A)/72 0 1/48 0 −1/96

19 −2/3 −1/3 1/3 1/3 1/12 1/12

20 (−1− 13δ1A + 8δ2A)/12 (3 + 13δ1A − 8δ2A)/24 1/8 −1/16 0 0

21 (−1− 13δ1A + 8δ2A)/12 (9 + 130δ1A − 80δ2A)/72 1/8 −9/32 0 0

22 0 0 0 0 0 0

23 (−5− 7δ1A − 4δ2A) 0 1/12 0 1/3 0

24 (−5− 7δ1A − 4δ2A) (49δ1A + 28δ2A)/72 1/12 −7/96 1/3 −7/24

25 −18 15 0 0 0 0

26 −27/4 9/4 9/16 3/32 9/16 3/32

27 −27/4 9/4 9/16 3/32 9/16 3/32

28 0 0 0 −3/4 0 0

29 −15/2 +Nf 13− 4Nf/3 0 0 0 0

30 0 0 5/16−Nf/24 −17/96 +Nf/144 5/16−Nf/24 −17/96 +Nf/144

31 0 0 5/16−Nf/24 −17/96 +Nf/144 5/16−Nf/24 −17/96 +Nf/144

32 −14/3 0 −1/6 0 1/3 0

33 −14/3 0 −1/6 0 1/3 0

34 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

35 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

36 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

37 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

38 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

39 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

40 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

41 1/48 0 (10− 3∆χ)/192 (−1 + ∆χ)/128 (10− 3∆χ)/192 (−1 + ∆χ)/128

42 −11/24 0 (10− 3∆χ)/96 0 (−2− 9∆χ)/96 0

43 −11/24 0 (10− 3∆χ)/96 0 (−2− 9∆χ)/96 0

44 −11/24 0 (10− 3∆χ)/96 0 (−2− 9∆χ)/96 0

45 −11/24 0 (10− 3∆χ)/96 0 (−2− 9∆χ)/96 0

46 0 0 0 0 0 0

TABLE V: Pole structure for TAAS operators Q1, Q2, Q3 in the E′I evanescent basis. As before d labels the diagram class.
Unlike Table III, the remaining columns include the total contribution from all diagrams in the class. Only spin-color tensors
with index symmetries appropriate for these operators are shown. δ1A ≡ δχ1χ2 , δ2A ≡ δχ2χ3 + δχ1χ3 .
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d (1⊗ 1⊗ 1)TSSS
(σ ⊗ σ ⊗ 1)TAAS

(σ ⊗ σ ⊗ σ)TAAA
+(1⊗ σ ⊗ σ)TSAA + (σ ⊗ 1⊗ σ)TASA

1/ε2 1/ε 1/ε2 1/ε 1/ε2 1/ε

1 - −4 - 0 - 0

2 - 5/2 - −3/8 - 0

3 - 5/2 - −3/8 - 0

4 −8/3 8/3 0 0 0 0

5 (−13− 13δS)/12 (65 + 13δS)/24 1/4 −1/4 0 0

6 (−13− 13δS)/12 (195 + 130δS)/72 1/4 −15/32 0 0

7 0 −11/3 0 0 0 0

8 0 (38− 19δS)/12 0 −7/16 0 0

9 0 (38− 19δS)/12 0 −7/16 0 0

10 −2/3 −2/3 0 0 0 0

11 5/12 0 −1/16 −5/32 0 0

12 5/12 0 −1/16 −5/32 0 0

13 −16/3 8/3 0 0 0 0

14 10/3 0 −1/2 −1/4 0 0

15 10/3 0 −1/2 −1/4 0 0

16 10/3 (−60− 35δS)/36 0 −1/8 0 0

17 10/3 5/3 −1/2 −1/2 0 0

18 10/3 (−60 + 35δS)/36 0 −1/8 0 0

19 10/3 5/3 −1/2 −1/2 0 0

20 (1− δS)/12 (−3 + δS)/24 −3/8 3/16 0 0

21 (1− δS)/12 (−9 + 10δS)/72 −3/8 27/32 0 0

22 −16/3 0 0 0 0 0

23 (−13− 13δS)/12 0 1/4 0 0 0

24 (−13− 13δS)/12 91δS/72 1/4 −7/32 0 0

25 18 −15 0 0 0 0

26 −45/4 15/4 27/16 9/32 0 0

27 −45/4 15/4 27/16 9/32 0 0

28 0 0 0 9/4 0 0

29 15/2−Nf −13 + 4Nf/3 0 0 0 0

30 0 0 15/16−Nf/8 −17/32 +Nf/48 0 0

31 0 0 15/16−Nf/8 −17/32 +Nf/48 0 0

32 10/3 0 −1/2 0 0 0

33 10/3 0 −1/2 0 0 0

34 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

35 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

36 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

37 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

38 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

39 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

40 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

41 −25/48 0 (10− 3∆χ)/64 (−3 + 3∆χ)/128 −9/32 0

42 −25/24 0 (10− 3∆χ)/32 0 −9/16 0

43 −25/24 0 (10− 3∆χ)/32 0 −9/16 0

44 −25/24 0 (10− 3∆χ)/32 0 −9/16 0

45 −25/24 0 (10− 3∆χ)/32 0 −9/16 0

46 0 0 0 0 0 9/4

TABLE VI: Pole structure for TSSS operators Q4, Q5, Q̃1, Q̃3 analogous to Table V. δS ≡ δχ1χ2 + δχ2χ3 + δχ1χ3 .
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