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We explore the use of the Inverse Amplitude Method for unitarization of scattering amplitudes
to derive the existence and properties of possible new heavy states associated with perturbative
extensions of the electroweak breaking sector of the Standard Model starting from the low energy
effective theory. We use a toy effective theory generated by integrating out a heavy singlet scalar
and compare the pole mass and width of the unitarized amplitudes with those of the original model.
Our results show that the Inverse Amplitude Method reproduces correctly the singlet mass up to
factors of O(1–3), but its width is overestimated.

PACS numbers:

I. INTRODUCTION

The discovery of a new particle [1, 2] resembling the Standard Model (SM) Higgs boson marks the beginning of
the direct study of the electroweak symmetry breaking sector (EWSB). The complete characterization of the EWSB
requires the precise measurement of the Higgs couplings, as well as the search for new states. In this work we analyze
what we can learn from the observation of departures from the SM predictions for the Higgs couplings in the case
that no new state is observed. As is well known, anomalous Higgs couplings lead to rapid growth of the scattering
amplitudes with energy, leading to partial-wave unitarity violation [3]. Our goal is to verify how well unitarization
procedures, more specifically the Inverse Amplitude Method (IAM) [4–8] predict the existence and properties of
possible new states associated with perturbative extensions of the SM.

Here we consider the simplest extension of the SM symmetry breaking system, i.e. we add a real singlet scalar
field that is not charged under the SM gauge group. Despite its simplicity, this extension of the SM can have an
impact in the Higgs physics at the LHC [9–12], as well as offering an interesting candidate for a portal to a hidden
sector [13–16]. We assume that this singlet field is too heavy to be produced so we integrate it out to obtain the low
energy effective theory.

The IAM is based on dispersion relations to unitarize the perturbative partial wave amplitudes even in the presence
of coupled channels, and it has been applied with success to describe low energy hadronic physics [4–8]. This method
has also been extensively used to study strongly interacting EWSB sectors and models exhibiting a heavy Higgs [17–
21]. In this work we apply the IAM to the effective theory generated by integrating out a heavy singlet scalar and we
compare its predictions to the original model parameters. In Sec. II we derive the corresponding effective Lagrangian
up to O(p4) and, after briefly reviewing the elements of the IAM relevant for our calculations in Sec. III, we present
our results and draw our conclusions in Sec. IV. In particular we show that for this toy model the IAM indicates
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correctly that only the I = 0 and J = 0 channel exhibits a resonance, reproducing the singlet mass up to factors of
O(1–3) even for relatively weak couplings. Its width, however, is systematically overestimated.

II. EFFECTIVE LAGRANGIAN FOR A HEAVY SINGLET HIGGS PORTAL

Our starting point is the SM scalar sector extended by a real singlet scalar field S

L(Φ, S) = (DµΦ)†(DµΦ) +
1

2
(∂µS)(∂

µS)− V (Φ, S) (1)

where Φ stands for the SM scalar doublet and

V (Φ, S) = −µ2
H |Φ|2 + λ |Φ|4 − µ2

S

2
S2 +

λS

4
S4 +

λm

2
|Φ|2 S2 . (2)

For simplicity, we have imposed a Z2 symmetry to forbid linear and cubic terms in S. We concentrate on a scenario
in which the S develops a vacuum expectation value (vev) vS . Presently, a new heavy scalar is allowed provided the
ratio of the SM vev (v) to vS is small and the mixing between the mass eigenstates is small [22].

As we will show below, in order to conveniently parametrize the low energy effective Lagrangian it is easier to write
the SM Higgs doublet as

Φ = U

(

0
v+H√

2

)

(3)

where U is a function of the goldstone bosons ωi

U = exp

[

iω · τ
v

]

, (4)

and τi are the Pauli matrices. Therefore, we can write Eq. (1) as

L(H,S) =
1

2
(∂µH)(∂µH) +

1

2
(∂µS)(∂

µS) +
(v +H)2

4
Tr[(DµU)(DµU)†]− 1

2
M2

HH2 − 1

2
M2

SS
2 − λmvvsH S

−
[

λSvs S
3 +

λS

4
S4 +

λm

2
vs H

2S +
λm

4
(2vH +H2)S2 + λvH3 +

λ

4
H4

]

(5)

with M2
H = 2λ v2, M2

S = 2λS v2s . We have traded the mass parameters µ2
H and µ2

S for the vev’s using the the

minimization conditions, µ2
H = λ v2 + λm

2 v2s , and µ2
S = λSv

2
s +

λm

2 v2. The covariant derivative of U takes the form:

DµU ≡ ∂µU +
i

2
gW a

µ τa U − ig′

2
Bµ U τ3 . (6)

The two mass eigenstates H1, and S1 exhibit a doublet-singlet mixing due to the presence of the H S term in Eq. (5)

H1 = cos θH + sin θ S and S1 = cos θ S − sin θH (7)

with the lighter state (H1) identified with the recently discovered 125 GeV Higgs particle. The mixing angle θ and
masses are given by [23]

sin2 θ =
4 y2

4 y2 +
(

1− x2 +
√

(1 − x2)2 + 4 y2
)2 (8)

M2
H1,S1

=
M2

S

2

(

1 + x2 ∓
√

(1− x2)2 + 4 y2
)

(9)

with x ≡ MH/MS and y ≡ λmv/(2λSvS).
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In this scenario the heavier scalar S1 is unstable and decays via its mixing with the doublet or the singlet-doublet
direct coupling in Eq. (1). For MS1 ≥ 2mtop the S1 width is given by

ΓS1 = Γ(S1 → W+W−) + Γ(S1 → ZZ) + Γ(S1 → tt̄) + Γ(S1 → H1H1)

=
g2M3

S1

128πM2
W

sin2 θ

[

2

(

1− xW +
3

2
x2
W

)√
1− xW +

(

1− xZ +
3

2
x2
Z

)√
1− xZ + 3xt

√
1− xt

]

(10)

+
λ̃2

32πMS1

√

1− xH1 ,

where xi =
4m2

i

M2
S1

and λ̃/2 is the coefficient of the S1H
2
1 term obtained after we rotate Eq. (5) to the mass basis. Here,

we are interested in the scenario where S1 is heavy compared with H1 which allows us to approximate Eq. (10) by

ΓS1 =
MS1

256π
∆

[

2

(

1− xW +
3

2
x2
W

)√
1− xW +

(

1− xZ +
3

2
x2
Z

)√
1− xZ + 3xt

√
1− xt +

√

1− xH1

]

, (11)

where we have defined the parameter

∆ =
λ2
m

λS

so ∆
v2

2M2
S1

≃ sin2 θ . (12)

In the regime in which S1 is very heavy we can integrate it out and generate a low energy effective Lagrangian.
Since H1 is not a doublet field component, the corresponding effective Lagrangian cannot be expressed in terms of
higher-dimension operators obtained in the linear representation of the electroweak symmetry breaking with a doublet
scalar. As we will show below, it can, instead, be matched to an effective chiral Lagrangian with a light Higgs1.

We integrate out the S1 field to obtain the tree-level effective action using the approach of Ref. [24]: the tree-level
effective action is obtained by solving the equation of motion (EOM) and inserting the solution into the action. In
order to do so we recast Eq. (5) in the mass basis as

L(H1) +
1

2
S1

[

−∂µ∂µ −M2
S1

−R
]

S1 + S1B +∆L(H1, S1) (13)

with

B =
1

4
Tr[(DµU)(DµU)†](H1 sin 2θ + 2v sin θ) +

1

4
H3

1

[

λm sin 2θ cos 2θ + 2 sin 2θ(λS sin2 θ − λ cos2 θ)
]

+
1

2
H2

1

[

−3 sin 2θ(λv cos θ + λSvS sin θ) + λm sin 2θ(v cos θ + vS sin θ)− λm(v sin3 θ + vS cos3 θ)
]

R = −1

2
Tr[(DµU)(DµU)†] sin2 θ +

1

4
H2

1

[

2λm

(

cos2 2θ − 1

2
sin2 2θ

)

+ 3 sin2 2θ(λ+ λS)

]

+H1

[

λm(v cos3 θ − vS sin3 θ) + 3 sin 2θ(λv sin θ − λSvS cos θ) + sin 2θλm(vS cos θ − v sin θ)
]

. (14)

∆L contains the non-quadratic terms H1S
3
1 , S

3
1 and S4

1 .

The linearized solution to the EOM for the field S1 yields

S1C =
1

∂µ∂µ +M2
S1 +R

B . (15)

Replacing S1 by S1C in Eq. (13) one obtains

Leff (H1) = L(H1) +
1

2
BS1C +∆L(H1, S1C) . (16)

1 Alternatively if one integrates out the field S, ignoring the corrections due to mixing, one can match the resulting Lagrangian to an
effective expansion in terms of higher-dimension operators involving the remaining doublet field Φ as is shown in the Appendix.
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c a b d e

PC(h) 1 2− λ2
mv2

2λSM2
S1

1− λ2
mv2

λSM2
S1

− λ2
mv2

2λSM2
S1

λ2
m(9λ2

m−16λλS−10λmλS)v4

16λ2
S
M4

S1

PH 0 0
λ2
mv2

4λSM2
S1

0 0

P6
λ2
mv4

16λSM4
S1

λ2
mv4

8λSM4
S1

λ2
mv4

16λSM4
S1

0 0

P7 0 0
λ2
mv4

8λSM4
S1

0 0

TABLE I: Leading order in v/MS1 coefficients defining the functions F in Eq. (19).

Now we expand the effective Lagrangian (16) up to four derivatives and keep only terms up to dimension-six which
allows us to match the resulting chiral effective Lagrangian to that of Refs. [25, 26]2

Leff (H1) =
1

2
(∂µH1)(∂

µH1)−
1

2
M2

H1
H2

1 + cCPC(H1) + cHPH(H1) + c6P6(H1) + c7P7(H1)− V (H1) (17)

where

PC(H1) =
v2

4
[Tr(DµU)(DµU)†]FC(H1) , PH(H1) =

1

2
(∂µH1)(∂µH1)FH(H1) ,

P6(H1) = [Tr(DµU)(DµU)†]2F6(H1) , P7(H1) = [Tr(DµU)(DµU)†]∂ν∂
νF7(H1) ,

(18)

and

ciFi(H1) ≡ ci + ai
H1

v
+ bi

(

H1

v

)2

+ di

(

H1

v

)3

+ ei

(

H1

v

)4

. (19)

We present in Table II the lowest non-zero order in v/MS1 coefficients defining the functions F in Eq. (19). Within
our approximation, the H1 potential is given by

V (H1) =

(

λv − λ2
mv

4λS

)

H3
1 +

(

λ

4
− λ2

m

16λS

)

H4
1 +O

(

1

M2
S1

)

. (20)

It is interesting to notice that the operators generated at order p4 by the integration of S1 modify the Higgs
interactions with electroweak gauge-boson pairs (Pc) and quartic electroweak gauge-boson vertices (P6), as well as
introducing a rescaling of all Higgs couplings to SM particles (PH).

III. WEAK GAUGE BOSON SCATTERING AND ITS UNITARIZATION USING THE INVERSE

AMPLITUDE METHOD

The low energy effective Lagrangian in Eq. (17) implies a modification of the gauge boson scattering with respect
to the SM expectation, leading to unitarity violation at high energies. In this respect, two of the operators generated
are most relevant for this discussion: PC(h) and P6(h). PC(h) determines the H1 couplings to gauge boson pairs, in
particular the term in aC , leads to a correction to the contribution of the virtual H1 exchange required for unitarity.
P6(h), in particular the term in c6, gives a contact four gauge boson coupling3.

For example, the scattering amplitude at tree level for longitudinal gauge bosons is given by

A
(

W+
L W−

L → ZLZL

)

= A
(

W+
L W−

L → ZLZL

)

SM
+

(

−1

4
(a2C − 4)

v2

(s−M2
H1

)
+ 8a6

)

(s− 2M2
W )(s− 2M2

Z)

v4
, (21)

2 Notice despite that the UV theory is fully perturbative the effective low energy Lagrangian can be written as a theory more characteristic
of strongly interacting/composite electroweak theories with a light scalar simply because these theories allow for enough freedom to
account for the non-doublet nature of the light scalar.

3 P6(H) without the Higgs terms, corresponds to the L5 operator in Refs.[27–29] or O5 in Refs.[20, 21], while aC and bC correspond
respectively to the coefficients 2a and b of, for example, Refs. [21, 30].
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where
√
s is the center-of-mass energy. As we can see, the term associated with aC grows as s at high energy, while

the one containing a6 exhibits growth with s2, and hence lead to violation of partial wave unitarity.

The Inverse Amplitude Method (IAM) [4] is an approach, based on dispersion relations, that allows for the full
unitarization of the partial wave amplitudes. The IAM was originally developed for chiral perturbation theory for
mesons [5–8] and it was also applied to the unitarization of the one-loop weak gauge boson scattering amplitudes
without a light Higgs resonance [17]. Most recently IAM has been applied in the context of effective Lagrangians with
a light Higgs [18–21], mostly with the aim of inferring information about the possible existence of heavier resonances
associated with EWSB expected in composite models with a new strongly interacting sector. Let us briefly summarize
this approach.

The rigorous derivation of the IAM is valid only for one or several channels of particle pairs all with equal masses [18].
In order to apply the IAM to the longitudinal electroweak gauge boson scattering one has to work in the isospin
symmetry approximation, i.e. setting cw → 1 (MZ → MW ≡ M). In this case one can define the longitudinally
polarized weak-gauge boson scattering amplitudes as :

Aabcd(p1, p2, p3, p4) ≡ A
(

W a
L(p1)W

b
L(p2) → W c

L(p3)W
d
L(p4)

)

, (22)

where a, b, c, d label the third component of the isospin-one triplet with values in the range 1, 2, 3 which are related
to the charged states as W±

L ≡ |1,±1〉 = (W 1
L ± iW 2

L)/
√
2, and W 3

L ≡ |1, 0〉. Isospin symmetry implies

Aabcd(p1, p2, p3, p4) = δabδcdA1(p1, p2, p3, p4) + δacδbdA2(p1, p2, p3, p4) + δadδbcA3(p1, p2, p3, p4) (23)

so only three of these amplitudes are independent, though related by crossing symmetry, and the corresponding
scattering amplitudes in the charge basis satisfy

A±∓00(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

∓
L (p2) → W 3

L(p3)W
3
L(p4)

)

= A1(p1, p2, p3, p4)

A±0±0(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

3
L(p2) → W±

L (p3)W
3
L(p4)

)

= A2(p1, p2, p3, p4)

A±00±(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

3
L(p2) → W 3

L(p3)W
±
L (p4)

)

= A3(p1, p2, p3, p4)

A±±±±(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

±
L (p2) → W±

L (p3)W
±
L (p4)

)

= A2(p1, p2, p3, p4) +A3(p1, p2, p3, p4)

A0000(p1, p2, p3, p4) ≡ A
(

W 3
L(p1)W

3
L(p2) → W 3

L(p3)W
3
L(p4)

)

= A1(p1, p2, p3, p4) +A2(p1, p2, p3, p4) +A3(p1, p2, p3, p4)

A±∓±∓(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

∓
L (p2) → W±

L (p3)W
∓
L (p4)

)

= A1(p1, p2, p3, p4) +A2(p1, p2, p3, p4)

A±∓∓±(p1, p2, p3, p4) ≡ A
(

W±
L (p1)W

∓
L (p2) → W∓

L (p3)W
±
L (p4)

)

= A1(p1, p2, p3, p4) +A3(p1, p2, p3, p4) (24)

At this point, we project these amplitudes in the isospin basis because the isospin symmetry implies that

〈I,m|S|I ′m′〉 = TI δII′δmm′ . (25)

Using the composition of isospin representations, for example in our convention [39]

|0, 0〉 = (W+
L W−

L + W−
L W+

L +W 3
LW

3
L)/

√
3 ,

|1, 0〉 = (W+
L W−

L − W−
L W+

L )/
√
2 ,

|2, 2〉 = W+
L W+

L ,

and the relations in Eq. (24), one can express the three isospin amplitudes as

T0 = 〈00|S|00〉 = 3A+−00(p1, p2, p3, p4) +A++++(p1, p2, p3, p4) ,

T1 = 〈10|S|10〉 = 2A+−+−(p1, p2, p3, p4)− 2A+−00(p1, p2, p3, p4)−A++++(p1, p2, p3, p4) , (26)

T2 = 〈20|S|20〉 = 〈22|S|22〉 = A++++(p1, p2, p3, p4) .

Defining s = (p1 + p2)
2, t = (p1 − p3)

2 = − 1
2 (s − 4M2)(1 − cos θ), u = (p1 − p4)

2 = − 1
2 (s − 4M2)(1 + cos θ) with θ

the scattering angle in the center of mass, we expand the isospin amplitudes in partial waves as:

TI = 16π
∑

j

(2J + 1)PJ(cos θ)tIJ (27)

where the PJ (x) are the Legendre polynomials.
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Let us assume that we know the isospin partial wave amplitudes perturbatively as

tIJ = t
(0)
IJ + t

(2)
IJ + . . . , (28)

where t
(0)
IJ and t

(2)
IJ are respectively the leading order (LO) and next to leading order (NLO) contributions in the chiral

expansion. Then the IAM approximation [4, 5] of the full amplitude is

tIJ ≃ tIAM
IJ =

t
(0)
IJ

1− t
(2)
IJ /t

(0)
IJ

=
(t

(0)
IJ )

2

t
(0)
IJ − t

(2)
IJ

, (29)

which, by construction, satisfies the unitarity constraint, |tIJ | ≤ 1.

In general, one has to deal with the possibility of coupled channels [7] . For instance, in the case of chiral lagrangians
applied to EWSB [18, 19] the processes W+

L W−
L → hh and hh → hh also contribute to the partial wave I = J = 0.

If we define

A+−HH(p1, p2, p3, p4) = A(W+
L (p1)W

−
L (p2) → h(p3)h(p4)) ,

AHHHH (p1, p2, p3, p4) = A(h(p1)h(p2) → h(p3)h(p4)) , (30)

their corresponding projections in the I = 0 channel are

TH,0 =
√
3A+−HH(p1, p2, p3, p4) , THH,0 = AHHHH (p1, p2, p3, p4) (31)

so the relevant partial wave amplitudes are

t(H)H,00 =
1

64π

∫ 1

−1

d(cos θ)T(H)H,0 . (32)

Including all the 00 channels one can group the corresponding perturbatively expanded amplitudes in a matrix form
in the basis of states (WW,HH) as

M00 = M
(0)
00 +M

(2)
00 + · · · ≡

(

t
(0)
00 t

(0)
H,00

t
(0)
H,0 t

(0)
HH,00

)

+

(

t
(2)
00 t

(2)
H,00

t
(2)
H,0 t

(2)
HH,00

)

+ . . . . (33)

The unitarized matrix amplitude matrix in this case is [18]

M IAM
00 = M

(0)
00

(

M
(0)
00 −M

(2)
00

)−1

M
(0)
00 , (34)

so the unitarized amplitude for the WW → WW channel is the (1, 1) entry of the matrix above and reads:

tIAM
00 = M IAM

00 (1, 1) =

(t
(0)
00 )

2 − t
(0)
H,00

t
(0)
H,00(t

(0)
00 +t

(2)
00 )−2t

(2)
H,00t

(0)
00

t
(0)
HH,00−t

(2)
H,00

t
(0)
IJ − t

(2)
IJ − (t

(0)
H,00−t

(2)
H,00)

2

t
(0)
HH,00−t

(2)
H,00

, (35)

which clearly reduces to Eq. (29) if the amplitude of the mixed channel (tH,00) vanishes.

Besides being a method for unitarization of the amplitudes, the combination of terms appearing in the denominator
of the IAM amplitude allows for the possibility of having poles in the second Riemann sheet for some regions of the
parameter space. When they are close enough to the physical region, those poles can be interpreted as resonances. An
alternative approach [21] to identify these resonances appearing in the unitarized amplitudes is to search for values of
the center-of-mass energy (

√
spole) for which the real part of the denominator of the IAM amplitude tIAM

IJ vanishes,

and then one identifies the mass of the resonance as M2
R ≡ spole. Expanding the amplitude near the pole as

tIAM
IJ (s) ∝ 1

(s−M2
R) + i

√
sΓR

, (36)

one can also derive the value of the resonance width as ΓR ∝ Im[tIAM
IJ (s)].
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IV. RESULTS AND CONCLUSIONS

Next we apply the IAM to unitarize the gauge boson scattering amplitudes obtained in the effective Lagrangian
derived for the heavy singlet Higgs portal model Eq. (17). We will then search for poles in the corresponding unitarized
amplitudes and reconstruct the properties of the inferred “resonance(s)”. In what follows we will focus on the lowest
J partial wave amplitudes for each isospin channel, i.e. t00, t11, and t20.

Technically the mass and width of the “reconstructed” resonance are obtained by searching for poles in the denom-
inator of tIAM

IJ in Eq. (29) i.e. by solving

t
(0)
IJ (M

2
R)− Re t

(2)
IJ (M

2
R) = 0 and ΓR = − 1

MR

Im t
(2)
IJ (M

2
R)

d
(

t
(0)
IJ

(s)−Re t
(2)
IJ

(s)
)

ds

∣

∣

∣

∣

s=M2
R

. (37)

In principle for IJ = 00 we should consider the coupled channels, which, as discussed in the previous section, are
relevant to the WW → WW scattering if tH,00 is not too small. For large s, tH,00 is proportional to s[bC − (aC/2)

2]

[19] and for the effective Lagrangian in Eq. (17) this coefficient takes the value bC − (aC/2)
2 = −∆

2
v2

M2
S1

which is

assumed to be small in the effective Lagrangian expansion. So the inclusion of the coupled channels represents a small
correction which, for simplicity, we neglect in the following and we search for the resonances in the IJ = 00 channel

as in Eq. (37)4. The effect of the WW → hh channel is, nevertheless, taken into account in the evaluation of Im t
(2)
00

(see Eq. (39) below).

In this work, we evaluate tree level amplitudes using FeynArts [31] with the anomalous Higgs interactions from the
Lagrangian Eq. (17) introduced using FeynRules [32] and take the exact isospin limit. Our results agree with the
expressions in the literature [20] in the corresponding limits.

In order to organize the perturbative expansion of the tIJ we follow the counting in terms of powers of p that
is characteristic of chiral Lagrangians [33]. In this expansion the tree-level contributions from the Higgs anomalous

couplings, aC − 2, and bC − 1, are counted as being part of t
(0)
IJ , i.e. O(p2), and therefore their corresponding loop

contributions must be included in t
(2)
IJ since they are O(p4). At present, the full calculation of the loop amplitude

WLWL → WLWL in presence of the anomalous couplings is lacking in the literature. In Ref. [34] the corresponding
loop amplitude has been obtained using the equivalence theorem [35, 36] and given in the approximation of massless
external particles. That calculation contains the correct divergent pieces, required for renormalization of the anomalous
couplings, but it represents only an approximation to the finite part of the loop amplitude. In particular the divergent
parts of the loop amplitude cancels against the renormalization of some of the tree-level couplings of the O(p4)
operators defined at some renormalization scale µR. This is the case for c6 which then at a scale

√
s becomes

c6(s) ≃ c6(µ
2
R)−

1

24

1

4π





(

1− a2C
4

)2

+
3

2

(

(

1− a2C
4

)2

− (1− bC)
2

)2


 log
s

µ2
R

. (38)

In our calculations we will take the renormalization scale as the mass of the heavy scalar µR = MS1. Thus when
extrapolating the amplitudes to scales s ∼ M2

S1
we can approximate c6(s) ≃ c6(M

2
S1
) with c6(M

2
S1
) given in Eq. (18)

and in Table I5.
The remaining finite part of the loop amplitude from both the SM and the anomalous values of aC and bC has

to be included in t(2). In order to estimate the uncertainty of our final results associated with the approximations
used in the evaluation of the finite part of this loop amplitude, we have performed our calculations both with and
without including it in the evaluation of Re(t(2)). We will refer to these two calculations as O(p4)-1loop and O(p4)-

tree respectively. In what respects the Im t
(2)
00 (s), it could be obtained by the application of the cutting rules to the

corresponding approximated 1-loop amplitude of Ref. [34]. Alternatively, we follow the approach in Refs. [20, 21] and

4 We have also verified that if we artificially set bC = a2C in our calculations the reconstructed value of mass and width found in the
IJ = 00 channels are very similar to those obtained with the correct value.

5 The same loops generate a coefficient for the operator [Tr(DµU)(DνU)†][Tr(DµU)(DνU)†]. Such an operator is not generated by
integrating out S1 at the order given in Eq. (17). Thus we will take the corresponding renormalized coefficient to be zero in our
calculations.
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obtain the relevant imaginary part by perturbative application of the optical theorem

Im t
(2)
00 (s) =

2p√
s
|t(0)00 (s)|2 +

2pH√
s
|t(0)H,00(s)|2 , (39)

where p (pH) is the modulus of the three-momentum of the gauge bosons (H1 pairs) in the center of mass.

In summary:

• t
(0)
IJ is the O(p2) isospin amplitude which contains the tree-level contributions from the SM and the Higgs
anomalous couplings, aC − 2, and bC − 1.

• Re t
(2)
IJ is the real part of the O(p4) isospin amplitude which contains the anomalous tree level amplitude gener-

ated by c6 only and O(p4)-tree calculation. In what we call O(p4)-1loop calculation it includes as well the real
part of the one-loop amplitudes generated by the SM and the Higgs anomalous couplings in the approximations
given in Ref. [34].

• Im t
(2)
IJ is calculated from the optical theorem.

We first look for the presence of physical poles in the isospin amplitudes tIAM
IJ (s) as a function of the relevant

parameters of the effective Lagrangian: the coupling ratio ∆ and the mass scale MS1 which determine the values
of all relevant anomalous couplings entering the WW → WW scattering, in particular aC , bC and c6. One must
notice that for the simplified potential in Eq. (2) the condition that the electroweak breaking minimum is a global
minimum sets an upper bound for ∆ < 4λ ≃ 0.6; see Ref. [12] for a recent analysis of the bounds with a more general
potential. Nevertheless, in what follows, we will extend our study to larger values of ∆ to illustrate the results in
stronger coupled scenarios.

We show in Fig. 1 contours of the real part of the denominator of the O(p4)-1loop functions tIAM
IJ (s), i.e. Re(t

(0)
IJ −

t
(2)
IJ ), for IJ = 00 (upper panels), 11 (central panels), and 20 (lower panels) in the s ⊗ MS1 plane and for three
characteristic values of ∆ = 0.03, 0.3, and 3. Therefore, this figure illustrates that for no value of ∆ do the functions

Re(t
(0)
11 − t

(2)
11 ) and Re(t

(0)
20 − t

(2)
20 ) present a zero in the physical plane, while Re (t

(0)
00 − t

(2)
00 ) as a function of s always

possesses a zero for any value of ∆ and MS1. In other words, the effective theory after unitarization by the IAM
method is compatible with the presence of one possible physical scalar resonance in the zero-isospin channel and none
in any other spin-isospin channels, which is in agreement with the original full theory that has a scalar S1 state in
the physical spectrum and no other heavy states.

For the sake of illustration, we also present in the upper panels of Fig. 1 the line corresponding to
√
s = MS1 for

comparison with the zero value contour which determines the position of the resonance s = MR. As seen in this
figure, the larger the value of ∆ the closer the two lines, i.e. the reconstructed mass of the IAM resonance is closer
to the real mass of the scalar of the full theory for stronger couplings. The results in the figure correspond to the
O(p4)-1loop calculation, but the same qualitative results hold for the O(p4)-tree calculation.

We further quantify this comparison in Fig. 2 where the upper panels depict the ratio of the reconstructed scalar
pole mass MR over the S1 mass as a function of ∆ and MS1 for the O(p4)-1loop calculation (left upper panel) and
O(p4)-tree calculation (right upper panel). As seen in these panels, the masses agree within a factor O(1 − 3), even
for very small couplings independent of whether the approximate one-loop or tree amplitudes are included in the
calculation.

In order to verify that the scalar pole found can be interpreted as a physical state we also compute its width as
in Eq. (37). We find that for all values of the model parameters ∆ and MS1 the reconstructed width is positive, so
the interpretation of the amplitude pole as a physical scalar state with a mass relatively close to the real scalar mass
MS1 holds. Notwithstanding, when compared with the perturbatively computed S1 width in Eq. (11) we find that
the reconstructed width is considerably larger as seen in the lower panels in Fig. 2, particularly for the more weakly
interacting scenarios. This is somehow not unexpected. The IAM method was built to unitarize strong interaction
amplitudes for which the resonance-dominance approximation holds and the amplitude near the pole of a resonance is
fully determined by the resonance mass and width. However, for weakly interacting scenarios, such as that used here
for illustration, the violation of unitarity is relatively mild and the full amplitude, even near the new state, contains
a non-negligible “continuous” contribution from the SM. So the unitarization used in Eqs. (28) and (29) with the full
SM contribution included in the reconstructed amplitude as part of the resonance amplitude does not seem to be
optimum.

In summary, in this work we have explored the capability of the Inverse Amplitude Method for unitarization of
scattering amplitudes to predict the properties of possible new heavy states associated with perturbative electroweak
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FIG. 1: Contours of the functions Re[t
(0)
IJ (s) − t

(2)
IJ (s)] in the plane (

√
S,MS1) for three characteristic values of the relevant

coupling ratio ∆ = λ2
m/λS and for the three isospin channels IJ = 00 (upper panels), IJ = 11 central panels, and IJ = 20

(lower panels).

breaking extensions of the SM, using as a starting point the unitarity violating amplitudes of the low energy effective
theory. We have used as a study case that of the singlet Higgs portal. First in Sec. II we derived the effective
Lagrangian obtained after integrating out the heavier scalar while leaving the lighter scalar, a mixture of the doublet
and singlet states. We showed that in this case the effective Lagrangian can be matched to that of a chiral expansion
which we write up to O(p4). With this effective Lagrangian in hand we obtained the relevant unitarity violating
amplitudes. Working in the isospin approximation, we used the IAM method to reconstruct unitarized amplitudes
and search for possible physical poles in these amplitudes. The results in Sec. IV show that only the unitarized spin
scalar zero-isospin amplitude presents poles in the physical plane, in agreement with the full theory which has only
one additional heavy scalar. We also find that the IAM reconstructs correctly the scalar singlet mass up to factors of
O(1–3) even for relatively weak couplings. Nevertheless its width is systematically overestimated. It remains an open
question whether this is symptomatic of the applicability of the IAM for unitarization of weakly coupled pertubative
scenarios.

Acknowledgments

We thank J. Taron and D. Espriu for careful reading of the manuscript and discussions. M.C. G-G and O.J.P.E are
greatful to the CERN theory group for their generous hospitality during part of the develepment of this work. O.J.P.E.
is supported in part by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) and by Fundação de



10

FIG. 2: Upper panels: Contours of the ratio of the mass of the resonance found in the t00 channel, MR, to the mass of the
integrated out scalar, MS1 , versus the relevant ratio of Yukawa couplings ∆ = λ2

m/λS and MS1 . Lower panels: Contours the
ratio of the width of the resonance found in the t00 channel, ΓR, to the width of the scalar, ΓS1 in the plane ∆⊗MS1.
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Appendix A: Effective Lagrangian after Integrating out the S Field

Our starting point is the SM extended by the addition of a real singlet scalar field S as given in Eqs. (1) and (2).
Below the scale at which S acquires a vev vs the scalar potential can be written as [23]

V (Φ, S) = −µ̃2
H |Φ|2 + λ |Φ|4 + M2

S

2
S2 + vsλS S3 +

λS

4
S4 + λmvs |Φ|2 S +

λm

2
|Φ|2 S2 , (A1)

with µ̃2
H = µ2

H − (λmv2s )/2 and M2
S = 2λSv

2
S . Now we rewrite this Lagrangian as L = L(Φ) + ∆L(Φ, S) with

∆L =
1

2
(∂µS)

2 − 1

2
M2

SS
2 −A |Φ|2 S − 1

2
k |Φ|2 S2 − 1

3!
µS3 − 1

4!
λ̃SS

4, (A2)

where

µ = 6λSvS , λ̃S = 6λS , k = λm , A = λmvS . (A3)

In order to apply the tree level integration procedure described in Sec. II for the singlet field S we must solve the
EOM for the S field at lowest order leading to

SC =
1

∂µ∂µ +M2
S + U

B (A4)

where we have defined

B = −A |Φ2| U = k |Φ2| . (A5)

Introducing SC in Eq. (A2) and keeping the terms up to order dimension-eight, one obtains the following anomalous
interactions

∆Leff =
A2

2M2
S

|Φ|4 + A2

2M4
S

∂µ|Φ|2∂µ|Φ|2 + A2

2M4
S

(

Aµ

3M2
S

− k

)

|Φ|6 (A6)

+
A2

2M6
S

(

−A2λ̃S

12M2
S

+ k2 − Aµk

M2
S

)

|Φ|8 + 2A2

M6
S

(

Aµ

2M2
S

− k

)

|Φ2|∂µ|Φ|2∂µ|Φ|2 + A2

2M6
S

∂µ∂
µ|Φ|2∂ν∂ν |Φ|2 .
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At this point it is interesting to apply the EOM of the doublet field to the last term of the equation above to better
observe the emergence of an anomalous quartic coupling between the electroweak gauge bosons. This is possible since
the invariance of the physical observables under the associated operator redefinitions is guaranteed as it has been
proven that operators connected by the EOM lead to the same S–matrix elements [37]. The EOM for the doublet
field reads

(DµDµΦ) = µ2
HΦ− 2λΦ|Φ|2 + Fferm (A7)

where Fferm is a function involving fermionic fields from the Yukawa operators. Moreover, using this EOM we find

∂µ∂
µ|Φ|2 = 2

[

(DµΦ)†(DµΦ) + µ2
H |Φ|2 − 2λ|Φ|4

]

+ terms containing fermionic fields (A8)

Therefore, altogether we find that for terms involving only scalar and/or gauge bosons

∆Leff = −∆λ|Φ|4 + fΦ,3

M2
S

OΦ,3 +
fΦ,5

M4
S

OΦ,5 +
fΦ,2

M2
S

OΦ,2 +
fΦ,4

M2
S

OΦ,4 +
fΦ,6

M4
S

OΦ,6 +
fΦ,7

M4
S

OΦ,7 +
fS,1
M4

S

OS,1 (A9)

with ∆λ = − A2

2M2
S

(

1 +
4µ4

H

M4
S

)

= − λ2
m

4λS

(

1 +
4µ4

H

M4
S

)

and

OΦ,2 = 1
2∂µ|Φ|2∂µ|Φ|2 fΦ,2 = A2

M2
S

=
λ2
m

2λS

OΦ,3 = 1
3 |Φ|6 fΦ,3 = 3A2

2M2
S

(

Aµ

3M2
S

− k − 16λµ2
H

M2
S

)

= − 12λ2
m

λS

λµ2
H

M2
S

OΦ,4 = (DµΦ)†(DµΦ)|Φ|2 fΦ,4 =
4A2µ2

H

M4
S

=
2λ2

m

λS

λµ2
H

M2
S

OΦ,5 = 1
4 |Φ|8 fΦ,5 = 2A2

M2
S

(

−A2λ̃S

12M2
S

+ k2 − Ak µ

M2
S

+ 16λ2
)

≃ (64λ2 − 9λ2
m)

λ2
m

4λS

OΦ,6 = 1
2 |Φ|2∂µ|Φ|2∂µ|Φ|2 fΦ,6 = 4A2

M2
S

(

Aµ

2M2
S

− k
)

=
λ3
m

λS

OΦ,7 = |Φ|2(DµΦ)†(DµΦ)|Φ|2 fΦ,7 = − 8A2λ
M2

S

= −4λ
λ2
m

λS

OS,1 = (DµΦ)†(DµΦ)(D
νΦ)†(DνΦ) fS,1 =

2A2

M2
S

=
λ2
m

λS

Notice that in the last column we have introduced the relations in Eq. (A3) and we have expanded to the lowest
non-zero order in µ2

H/M2
S .

The effective Lagrangian in Eq. (A9) also leads to violation of unitarity of electroweak boson scattering. For example
the W+W− → ZZ amplitude takes the form in Eq. (21) with the identification (at the lowest order in inverse powers

of the heavy mass) aC = 2− fΦ,2
v2

M2
S

and c6 =
fS,1

16
v4

M4
S

[38] .


