
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probing new physics of cubic Higgs boson interaction via
Higgs pair production at hadron colliders

Hong-Jian He, Jing Ren, and Weiming Yao
Phys. Rev. D 93, 015003 — Published  7 January 2016

DOI: 10.1103/PhysRevD.93.015003

http://dx.doi.org/10.1103/PhysRevD.93.015003


Probing New Physics of Cubic Higgs Interaction
via Higgs Pair Production at Hadron Colliders

Hong-Jian He a∗, Jing Ren b†, Weiming Yao c‡

a Institute of Modern Physics and Center for High Energy Physics,
Tsinghua University, Beijing 100084, China;

Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA;
Institute for Advanced Study, Princeton, NJ 08540, USA

b Department of Physics, University of Toronto, Toronto ON Canada M5S1A7

c Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

Abstract

Despite the discovery of a Higgs boson h(125 GeV) at the LHC Run-1, its self-interaction has fully

evaded direct experimental probe so far. Such self-interaction is vital for electroweak symmetry

breaking, vacuum stability and electroweak phase transition. It is a most likely place to encode

new physics beyond the standard model. We parametrize such new physics by model-independent

dimension-6 effective operators, and study their tests via Higgs pair production at hadron col-

liders. We analyze three major dihiggs production channels at parton level, and compare the

parameter-dependence of total cross sections and kinematic distributions at the LHC (14TeV)

and pp(100TeV) hadron collider. We further perform full simulations for the dihiggs production

channel gg → hh→ bb̄γγ and its backgrounds at the pp (100TeV) hadron collider. We construct

four kinds of benchmark points, and study the sensitivities to probing different regions of the

parameter space of cubic Higgs interactions. We find that for one-parameter analysis and with a

3 ab−1 (30 ab−1) integrated luminosity, the gg → hh→ bb̄γγ channel can measure the SM cubic

Higgs coupling and the derivative cubic Higgs coupling to an accuracy of about 13% (4.2%) and

5% (1.6%), respectively.
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1. Introduction

The LHC discovery of the light Higgs boson h (125 GeV) [1] has become a historical turning point

of particle physics. The standard model (SM) [2] could provide such a Higgs boson [3], which joins

three types of fundamental interactions: (i) the gauge interactions mediated by spin-1 weak gauge

bosons (W,Z); (ii) the Yukawa interactions with fermions mediated by the spin-0 Higgs boson h ; (iii)

and the cubic and quartic Higgs self-interactions h3 and h4 . But the type-(ii) and type-(iii) Higgs

interactions are largely untested so far, which provide the most likely place to encode new physics

beyond the SM. The current ATLAS and CMS measurements [4] find the Higgs boson h (125 GeV)

to appear SM-like, but only have weak sensitivities to hτ τ̄ and hbb̄ Yukawa couplings, while even

the LHC run-2 could not sensitively probe most of other Yukawa couplings via direct detection [5].

Furthermore, the LHC has little sensitivity to probing the type-(iii) Higgs self-interactions. It was

shown that the high luminosity LHC (14 TeV) with an integrated luminosity of 3 ab−1 could probe

the h3 coupling to about 50% accuracy [6, 7], and the improved analysis could reach a sensitivity

about 30% − 20% [8]. With the current measurements of Higgs and top quark masses, the SM

Higgs vacuum becomes unstable around 109−11GeV [9] and is very sensitive to new physics [10].

So new physics is expected to enter the Higgs potential and modify its self-interactions well below

Planck scale [9, 10]. The Higgs self-interactions are vital for the spontaneous electroweak symmetry

breaking [2], the electroweak phase transition [11], and the Higgs inflation [12]. Hence, it is important

to probe Higgs self-interactions with precision and pin down the associated new physics deviations

from the SM.

The SM Higgs sector is described by the gauge-invariant renormalizable Higgs potential,

V = −µ2H†H + λ(H†H)2, (1.1)

where H = (π+, 1√
2
(v + h + iπ0))T is the Higgs doublet and v ' 246 GeV denotes the vacuum

expectation value (VEV). Thus, the Higgs self-interactions take the form,

Vint =
λ3

3!
h3 +

λ4

4!
h4 , (1.2)

where at tree-level we have the cubic and quartic couplings of the SM Higgs boson, λ3 = 6λv =

3M2
h/v and λ4 = 6λ = 3M2

h/v
2. Hence, given the observed Higgs mass Mh ' 125 GeV [1], the Higgs

self-couplings are completely determined in the SM. One could naively make a shift of Higgs coupling

within the SM Higgs potential (1.1), λ → λ′ = λ + δλ , but it causes no observable effect, because

this just redefines the renormalizable Higgs coupling as λ′ no matter what value δλ would take.

1



The nontrivial modification of Higgs couplings could only arise from higher dimensional effective

operators whose effects cannot be absorbed into the dimension-4 SM Lagrangian.

Given that the SM Lagrangian already contains all possible gauge-invariant and renormalizable

operators up to dimension-4 and no new physics is found yet, the possible leading new physics devia-

tions from the SM can be generally parametrized by gauge-invariant dimension-6 effective operators

in a model-independent way [13]. Since the Higgs potential acts as the core of spontaneous elec-

troweak symmetry breaking and has escaped from direct measurement so far, it stands out as a most

likely place to encode new physics beyond the SM. Such new physics will certainly modify the Higgs

self-interactions (1.2), via dimension-6 operators, which may not only shift the Higgs self-coupling

itself [due to the operator (H†H)3], but also modify the structure of Higgs self-interactions (due

to the dimension-6 derivative operators). To sensitively probe such new physics in the cubic Higgs

self-coupling, it is important to study dihiggs production at high energy hardon colliders [14, 15].1

For hadron colliders, the main dihiggs production channels include gluon fusion production, vector

boson fusion (VBF) production, and top-pair associated production. Over a wide energy range, the

total cross section of dihiggs production via gluon fusions is almost 10 times larger than the other

channels [15][17]. Hence, it provides the dominant dihiggs production. The decay mode hh→ bb̄γγ

has much cleaner background than others, so it has attracted efforts from both theoretical and

experimental sides [6][18][19] for studying the potential of the high luminosity LHC (14TeV) and the

future pp (100TeV) collider. Other dihiggs decay modes with larger signal rates are also explored,

such as hh→ bb̄ττ , hh→ bb̄WW ∗ → bb̄2`2ν, and hh→ bb̄bb̄, etc [20]. Due to large backgrounds in

these channels, more elaborated strategies like boosted kinematics are needed. Another decay mode

hh → WW ∗WW ∗ → 3`3νjj was considered with the use of mT2 observable [21]. Some rare final

states were also explored for pp(100TeV) collider [22]. In addition, two more production channels

have received recent attentions. The top-pair associated production pp → tt̄hh turns out to be

complementary to gluon fusion gg → hh with hh → bb̄bb̄ final states [23]. The VBF production

channel pp → hhjj receives a large contribution from gluon fusion production in the signal region,

which makes the VBF contribution almost negligible [24]. Most previous studies for the dihiggs

production focused on the SM Higgs potential. There are recent analyses studying the contributions

of dimension-6 operators to gg → hh with hh→ bb̄γγ [25] and hh→ bb̄ττ [26]. It was noted that

certain new operators can modify kinematic distributions of the final states as well as total cross

section. For an operator that induces tt̄hh coupling, the kinematics could be useful to increase the

sensitivity [27, 28]. In general, including these operators with associated new coefficients will enlarge

the parameter space of new physics, and thus make the probe of each individual parameter in the

cubic Higgs interaction harder. Certain simplifications are needed to reduce the large parameter

1Measuring Higgs quartic coupling would be even more challenging in the foreseeable future [16].
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space.

In this work, we will systematically analyze the new physics contributions of dimension-6 opera-

tors to the dihiggs productions. For good physics reasons, we will focus on two rather unique bosonic

dimension-6 operators which contribute to the cubic Higgs coupling and build a 2-dimensional (2d)

parameter space. In particular, we will inspect the new operator that induces derivative cubic Higgs

coupling, and thus has enhanced contributions to high energy processes. We will derive nontriv-

ial perturbative unitarity constraints on these dimension-6 operators. Then, we study the dihiggs

production via three major channels for probing cubic Higgs couplings. For this, we will perform a

parton level analysis at the LHC (14TeV) and pp (100TeV) collider. Finally, we present a full analysis

(including Delphes 3 fast detector simulations) for the dihiggs production gg → hh with hh→ bb̄γγ

at the pp (100TeV) collider. From this we study the probe of new physics scales associated with the

dimension-6 operators. We also find nontrivial interference between different operators, which can

be probed by using relevant kinematic distributions.

This paper is organized as follows. In section 2, we discuss the dimension-6 operators relevant

to Higgs self-interactions, and identify the unique operators (2.16) which spans a 2d parameter

space. We also motivate these operators by nonminimal Higgs-gravity interaction. We further study

the perturbative unitarity constraints on the cutoff scales associated with dimension-6 operators.

In section 3, we analyze three major dihiggs production channels at parton level and compare the

parameter-dependence of total cross sections and kinematic distributions. In section 4, we perform

full simulations for gg → hh→ bb̄γγ at the 100 TeV hadron collider, and study the sensitivity to the

2d parameter space for three benchmarks. We conclude in section 5. Finally, Appendix A discusses

the redundancy of dimension-6 operators, and Appendix B summarizes the loop functions of triangle

and box diagrams for the analyses of sections 3–4.

2. New Higgs Self-Interactions from Dimension-6 Operators

2.1. Identifying Relevant Dimension-6 Operators

The SM Lagrangian is a fairly good effective theory up to gauge-invariant renormalizable operators of

dimension-4. The possible leading new physics deviations are generally parametrized via dimension-6
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effective operators,2

Leff =
∑
n

fn
Λ2
On , (2.3)

where Λ characterizes the cutoff scale, and the dimensionless coupling fn is expected to be around

O(0.1− 1) for each given operator (unless suppressed by extra symmetry). The LHC Run-1 data [4]

have constrained the 125 GeV Higgs boson to be fairly SM-like and found no new light particle beyond

the SM. Hence, it is well-motivated to use the standard effective theory formulation of possible new

physics effects via dimension-6 operators [13], and assume that no other light field exists below its

cutoff scale. The full set of gauge-invariant dimension-6 operators that modify Higgs self-interactions

includes [30],

OΦ,1 = (DµH)†HH†(DµH) , OΦ,2 =
1

2
∂µ(H†H)∂µ(H†H) ,

OΦ,3 =
1

3
(H†H)3, OΦ,4 = (DµH)†(DµH)(H†H) . (2.4)

Among all four operators, OΦ,2 and OΦ,3 modify scalar sectors only, while OΦ,1 and OΦ,4 also

contribute to gauge boson masses and couplings. The operator OΦ,1 contributes to the mass mZ , but

not to mW . Thus, it violates the custodial symmetry and is severely constrained by the electroweak

precision parameter T . For collider searches, it is safe to neglect the effects of OΦ,1 [31]. With

the equation of motion (EOM), there is redundancy among dimension-6 operators. As explained in

Appendix A, the subset operators (OΦ,2, OΦ,3, OΦ,4) in (2.4) are not independent. Including the SM

Yukawa interactions, another type of dimension-6 operators OΦ,f become relevant,

OΦ,f = (H†H)LHfR + h.c., (2.5)

where L = (fuL, f
d
L)T denotes the SU(2)L doublet, and fR the SU(2)L singlet. Among all operators

mentioned above, one operator can be eliminated via EOM. We choose to drop OΦ,4 hereafter. Thus,

we have two rather unique bosonic dimension-6 operators (OΦ,2, OΦ,3) relevant to the present study

of Higgs self-couplings.

Next, we inspect the contributions of (OΦ,2, OΦ,3, OΦ,f ) to the Higgs self-couplings, as well as the

Higgs-gauge and Higgs-fermion couplings. For later convenience, we define a dimensionless coefficient

xj and an effective cutoff scale Λ̃j for each operator in (2.4)-(2.5),

xj ≡
fΦ,jv

2

Λ2
≡ sign(fΦ,j)

v2

Λ̃2
j

, Λ̃j ≡
Λ√
|fΦ,j |

. (2.6)

2If the light neutrinos turn out to be Majorana fermions, there is a unique dimension-5 effective operator [29],

(fνij/Λ5)HαHβLα
′T
i ĈLβ

′

j εαα′εββ′ , which provides Majorana neutrino masses and violates lepton number by two

units. Here Ĉ = iγ2γ0 is the charge-conjugation operator, (i, j) are flavor indices of left-handed lepton doublet,
and (α, α′, β, β′) are indices of SU(2) doublets. This dimension-5 operator is irrelevant to our current study of the
Higgs self-interactions.
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Since OΦ,3 is a non-derivative operator, it only affects Higgs mass and self-couplings. In par-

ticular, it modifies the relation between the observed Higgs mass and cubic Higgs coupling. The

derivative operator OΦ,2 induces the following term for Higgs field,

OΦ,2 →
x2

2v2
(h+ v)2∂µh∂µh , (2.7)

with x2 defined in (2.6). This modifies the Higgs kinetic term as,

Lkin =
1

2
(1 + x2) ∂µh∂µh . (2.8)

Thus, we can define the canonical Higgs field via rescaling h→ ζh , with the factor,

ζ ≡ (1 + x2)−
1
2 . (2.9)

This induces a universal modification to all Higgs couplings with SM particles. After the normal-

ization, Eq. (2.7) also generates a derivative cubic Higgs interaction, 1
vx2ζ

3h∂µh∂µh . In contrast to

the SM cubic Higgs coupling, this new derivative interaction vertex will be enhanced by the center of

mass energy in high energy processes, and thus may have distinctive kinematic feature. The modified

cubic Higgs coupling is

h− h− h : −i
3M2

h

v
ζ

(
1− x3ζ

2 2v2

3M2
h

)
+ i

x2

v
ζ3
(
p2

1 + p2
2 + p2

3

)
= −i

ζ

v

[
3 (1 + r̂)M2

h − x̂
(
p2

1 + p2
2 + p2

3

) ]
(2.10)

In the above, Mh is the physical mass of the Higgs boson, which receives contributions from both

the kinetic rescaling factor (2.9) and the dimension-6 operator OΦ,3 . So, we deduce the Higgs mass

formula, M2
h = M2

h0[1 − x3/(2λ)]ζ2 , where Mh0 =
√

2λ v is the SM Higgs mass. We see that Mh

depends on {ζ, x3}. For convenience, we replace (x2, x3) by another two independent inputs (r̂, x̂)

which parametrize the modifications of cubic Higgs coupling with different kinematic properties,

r̂ ≡ −x3 ζ
2 2v2

3M2
h

, x̂ ≡ x2 ζ
2 . (2.11)

With x̂ , the rescaling factor can be rewritten as ζ = (1 − x̂)1/2. We also note that the operators

(OΦ,2, OΦ,3) do not affect the W mass at tree-level, so the Higgs VEV is determined by the Fermi

constant GF as in the SM, v =
(√

2GF
)−1/2 ' 246 GeV. The modification to Higgs-gauge boson

coupling only arises from rescaling the Higgs field,

Vµ − Vν − h : i
2m2

V

v
ζ ηµν , (2.12a)

Vµ − Vν − h− h : i
2m2

V

v2
ζ2ηµν , (2.12b)
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where V = W,Z . In unitary gauge, the Higgs-fermion dimension-6 operator (2.5) generates following

term,

OΦ,f →
xf

2
√

2v2
(v+h)3f̄f . (2.13)

This contributes to fermion mass, mf = v√
2

(
ysm
f −

1
2xf

)
, where ysm

f is the SM Yukawa coupling.

At the same time, it modifies the f − f̄ − h Yukawa coupling. Replacing ysm
f by mf , we deduce the

following effective Yukawa coupling,

f̄ − f − h : − i
ζ mf

v

(
1−

xf v√
2mf

)
(2.14)

This operator also induces a dimension-5 vertex h2f̄f ,

f̄ − f − h− h : iζ2
3xf√

2v
. (2.15)

It contributes to the gluon fusion production gg → hh with triangle quark loop. Since top quark is

most relevant in practice, it is natural to set f = t for the present analysis.

The dimension-6 operators (2.4) and (2.5) are subject to constraints from measurements of single

Higgs production at the LHC. The current data put the best bound on Higgs-gauge couplings (2.12a)

[31]. For a future e+e− Higgs factory with 250 GeV collision energy, the sensitivity to e+e− → Zh

cross section is expected to be δσ/σ = O(0.5%) [32] with a 5ab−1 integrated luminosity. This is

a direct probe of the modification of Higgs-gauge couplings and thus constraints |x̂| at 1% level

[33]. The operator OΦ,3 will contribute to the e+e− → Zh cross section via one-loop corrections

[34]. From this, the sensitivity to λsm
3 is estimated to be about 35% at the e+e− Higgs factory with

a 5ab−1 integrated luminosity. Besides, many other dimension-6 operators can contribute to the

gauge boson kinetic terms and thus the wavefunction renormalization. This will further shift Higgs-

gauge couplings, and make the constraint on individual operators much weakened. For top Yukawa

coupling, the LHC run-2 has weak sensitivity to probing the deviations in (2.14). The precision of a

high-luminosity LHC (HL-LHC) is expected to be around 10% [35].

Dihiggs production at high energy hadron colliders is an important way to measure the cubic

Higgs coupling. The dimension-6 operators (2.4)-(2.5) contribute in different dihiggs production

channels. For gluon fusion and top-pair associated production, three operators OΦ,3, OΦ,2 and OΦ,t

are relevant. For the two operators that modify Higgs self-interactions, OΦ,3 contributes to the SM

cubic Higgs coupling by a simple shift (without affecting its Lorentz structure), and is commonly

studied in the dihiggs production literature. On the other hand, OΦ,2 induces derivative cubic

Higgs coupling (2.10), and is rarely studied for dihiggs production. This operator contributes to

the Higgs-gauge coupling via Higgs wavefunction renormalization and thus may receive constraint

6



from measuring single Higgs productions (via vector boson fusion or Higgs-gauge-boson associated

production) at colliders. But, since other dimension-6 operators also contribute to the Higgs-gauge

couplings with interferences and possible cancellations, there is no unique constraint on OΦ,2 .3

Hence, it is important to directly probe the derivative cubic Higgs coupling induced by OΦ,2 via

dihiggs production, which has distinctive kinematic features from other non-derivative operators.

For the present study, we will focus on the new physics contributions to the Higgs self-couplings in

dihiggs production, and drop the fermionic operator OΦ,t (which was considered before [27][28] and

is irrelevant to Higgs self-interactions)4. With these considerations, we define our parameter space

by identifying the two rather unique bosonic dimension-6 operators,

OΦ,2 =
1

2
∂µ(H†H)∂µ(H†H) , OΦ,3 =

1

3
(H†H)3. (2.16)

In the following subsection 2.2, we will further motivate the operator OΦ,2 from the Higgs-gravity

interaction. Then, we derive generic perturbative unitarity bound on OΦ,2 in Sec. 2.3.

2.2. Motivation from Higgs Gravitational Interaction

The world is apparently described by a joint effective theory of the SM and general relativity (GR)

up to accessible energy scales so far. It is important to probe the interface between the SM and GR.

With the LHC discovery of a light Higgs boson h (125GeV), there is a unique dimension-4 operator

at this intersection, namely, the nonminimal interaction between the Higgs doublet H and the Ricci

scalar-curvature R [36],

Sξ =

∫
d4x
√
−g ξH†HR , (2.17)

where ξ is a dimensionless coupling. With the proper normalization of graviton propagator, it is

clear that under perturbative expansion the coupling ξ is always associated with the suppression

factor 1/M2
Pl . Hence, ξ � 1 can be well consistent with perturbative calculation. The current

LHC constraint on this coupling is actually rather weak, and ξ can be as large as O(1015) [37][38].

Nontrivial constraints from perturbative unitarity were derived before [38]. The operator (2.17)

3One could expect other possible precision constraints on OΦ,2 from such as the muon anomalous magnetic moment
gµ− 2 at two-loop. Again, other new physics operators such as the dimension-5 Pauli term Fµν ψ̄σ

µνψ (with ψ being
muon field) can also contribute to gµ− 2 at tree-level and become dominant. Hence, there is no unique constraint on
OΦ,2 from gµ− 2 at two-loop.

4In principle, OΦ,t could be discriminated from OΦ,2 and OΦ,3 by further performing a combined analysis of three
dihiggs production channels via gluon fusion, VBF production, and top-pair associated production. With these and the
single Higgs production gg → h, we may also discriminate another operator GaµνGaµνH

†H (which does not modify
the Higgs self-coupling). It is possible that some other dimension-6 operators may contribute to the backgrounds as
well, but without any special cut or selection they are expected to be much smaller than the SM backgrounds (from
the dimension-4 operators of the SM). For clarity of the current analysis, we assume that these additional operators
are negligible.
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has many physical applications such as the Higgs inflation [12], gravitational dark matter [39], and

collider signatures [38]. Including this operator, we write the joint effective Lagrangian of the SM

and GR,

SJ =

∫
d4x

√
−g(J)

[(
1

2
M2 + ξH†H

)
R(J) −

∑
j

1

4
F aµνjF

µνa
j + (DµH)†(DµH)− V (H)

]
, (2.18)

where R(J) is the Ricci scalar corresponding to the Jordan frame metric g
(J)
µν , and F aµνi = (W a

µν , B
µν)

are gauge field strengths of the electroweak gauge group SU(2)L ⊗ U(1)Y . In (2.18), we can readily

include the SM fermionic Lagranian LF as well, though it is not relevant to the discussion below. For

practical applications, it is convenient to make a Weyl transformation for metric field, g
(E)
µν = Ω2g

(J)
µν ,

with the factor

Ω2 =
M2+ 2ξH†H

M2
Pl

. (2.19)

After changing variable, we write down the action with new metric g
(E)
µν ,

SE =

∫
d4x
√
−g
[

1

2
M2

PlR−
∑
j

1

4
F aµνjF

µνa
j +

3ξ2

M2
PlΩ

4

(
∂µ(H†H)

)2
+

1

Ω2
(DµH)†(DµH)− 1

Ω4
V (H)

]
. (2.20)

For simplicity, we drop the superscript (E) for all geometric quantities associated with g
(E)
µν here.

Since the nonminimal interaction term is transformed away and the gravity sector becomes normal,

the new metric is called Einstein frame. In this case, all effects of ξ appear in matter sector and are

represented by a series of higher dimensional effective operators. Expanding these ξ-induced terms to

leading order, we can deduce two relevant dimension-6 Higgs operators OΦ,2 and OΦ,3 from (2.20),

3

Λ2
ξ1

(
∂µ(H†H)

)2
+

4λ

Λ2
ξ2

(
H†H

)3
, (2.21)

associated with two different cutoff scales,

Λξ1 =
MPl

ξ
, Λξ2 =

MPl√
ξ
. (2.22)

Among dimension-6 operators in (2.4), Λξ1 is related to OΦ,2 with fΦ,2/Λ
2 = 6/Λ2

ξ1, which is

generated due to the third term of Eq. (2.20). Expanding the 1/Ω factors in (2.20) will induce

(OΦ,3, OΦ,4, OΦ,f ), with a cutoff characterized by Λξ2 = MPl/
√
ξ . For the operator OΦ,3, we have

fΦ,3/Λ
2 = 12/Λ2

ξ2 . The other two operators OΦ,4 and OΦ,f are induced from 1/Ω expansion with

the following coefficients,

− 2

Λ2
ξ2

OΦ,4 +
4yf
Λ2
ξ2

OΦ,f , (2.23)
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where yf is the SM Yukawa coupling of the fermion f . The effective theory with such Higgs-gravity

interactions can be viable for a wide range of ξ . To be relevant to collider physics, we need ξ � 1

[38]5, which implies Λ2
ξ1 � Λ2

ξ2. Hence, in this effective theory, the operator OΦ,2 will give dominant

contributions, while other operators OΦ,3 and (OΦ,4, OΦ,f ) are negligible.

2.3. Constraints from Perturbative Unitarity

In this subsection, we derive perturbative unitarity bound on the parameter space of dimension-

6 operators defined in (2.16). We analyze the longitudinal weak boson scattering and top-Higgs

scattering in high energy regime. We find that their scattering amplitudes are largely enhanced by

E2 and E1 contributions from the derivative cubic Higgs couplings, and would eventually violate

perturbative unitarity with the increase of scattering energy. This places an upper bound on the

validity range of perturbation expansion of the effective theory, above which certain nonperturbative

dynamics or new physics have to set in.6 For the current analysis, we will derive perturbative

unitarity bounds for both types of processes. Since the energy dependence of gg → hh amplitude is

rather mild, it cannot place better bounds than the processes mentioned above, and thus needs no

consideration here.

VL

VL

h/VL

h/VL

Figure 1: Longitudinal weak boson scattering processes, VLVL → hh (VLVL), where V = W±, Z0.
The crossing channels also give gauge-Higgs boson scattering.

Fig. 1 depicts the longitudinal weak boson scattering VLVL → hh (VLVL) and the gauge-Higgs

boson scattering in the crossing channels. The new physics of dimension-6 operators modifies the

Higgs-gauge coupling and the Higgs self-couplings, which can induce nonzero O(E2) enhancement

in the scattering amplitudes [38]. Since dimension-6 operators are gauge-invariant, the longitudinal-

Goldstone boson equivalence theorem (ET) [40] can be established [38]. Hence, the same E2 en-

5As we clarified before [38], in this effective theory formulation, we do not concern any detail of the UV completion
above the cutoff Λξ1,2. There are many well-motivated TeV scale quantum gravity theories on the market. For
instance, extra dimensional models with compactification scale at Λξ1 = O(10TeV) will reveal the Kaluza-Klein modes
at energies above this scale, and other related UV dynamics may show up above this cutoff as well.

6Since the joint effective theory of SM+GR is nonrenormalizable and its UV completion is unknown, any naive partial
resummation within this effective theory itself cannot give reliable unitarity restoration [38]. Hence, the perturbative
unitarity bound is important for such nonrenormalizable effective theories.
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hancement must show up in the corresponding Goldstone boson scattering amplitudes. To derive

the optimal unitarity constraints on dimension-6 operators, we perform a coupled channel analysis

of all electrically neutral channels for Goldstone boson and Higgs boson scatterings, with initial/final

states {|π+π−〉 , 1√
2

∣∣π0π0
〉
, 1√

2
|hh〉 ,

∣∣π0h
〉
}. We compute the relevant leading scattering amplitudes

at O(E2) ,

T [π+π−→ π+π−] = x̂
(1+cos θ)E2

2v2
,

T [π+π−→ π0π0] = x̂
E2

v2
,

T [π+π−→ hh] = T [π0π0→ hh] = x̂ (1−x̂)
E2

v2
, (2.24)

T [π0h→ π0h] = −x̂ (1−x̂)
(1−cos θ)E2

2v2
,

T [π0π0→ π0π0] = O(E0) , T [hh→ hh] = O(E0) ,

where E is the center-of-mass energy and θ denotes the scattering angle. With these, we compute

the corresponding partial wave amplitudes,

a`(E) =
1

32π

∫ 1

−1
d cos θ P`(cos θ)T (E, θ) . (2.25)

We perform a coupled channel analysis for the in/out states {|π+π−〉 , 1√
2

∣∣π0π0
〉
, 1√

2
|hh〉 ,

∣∣π0h
〉
},

Then, we can derive the following 4× 4 matrix for the s-wave amplitudes at O(E2) ,

a0(E) =
x̂ E2

32πv2


1

√
2
√

2(1−x̂) 0
√

2 0 1−x̂ 0
√

2(1−x̂) 1−x̂ 0 0

0 0 0 −(1−x̂)

 (2.26)

For a sizable |1− x̂|, the scattering amplitudes with Higgs in initial/final states have dominant

contributions. We deduce the following eigenvalues,

adiag
0 (E) =

x̂ E2

32πv2
diag

(
1+
√

1+3(1−x̂)2, 1−
√

1+3(1−x̂)2, −(1−x̂), −1
)
, (2.27)

and impose the s-wave unitarity condition |Rea0| < 1/2 on the maximal eigenvalue. Thus, we derive

the perturbative unitarity bound on the scattering energy,

E < ΛU1 =

√
16π v

[ |x̂|(1+
√

1+3(1−x̂)2 ) ]1/2
. (2.28)

We plot this bound ΛU1 as a function of x̂ in Fig. 2(a), where the blue region (including the overlap

with red region) denotes perturbative unitarity violation. We also show the dependence of unitarity

bound on the effective cutoff Λ̃2 of the dimension-6 operator OΦ,2 in plots (b) and (c) for x2 > 0
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and x2 < 0 , respectively. For small |x̂|, we find ΛU1 ≈
√

16π/3 Λ̃2 at leading order. As mentioned

earlier, x̂ could be constrained by measurements of Higgs-gauge coupling in single Higgs production

due to its contribution to the rescaling of Higgs kinetic term. But, given the contributions from

other dimension-6 operators to the Higgs-gauge coupling and their possible large cancellations with

that of OΦ,2, the Higgs-gauge coupling could be SM-like while x2 is more or less free from this

constraint. In this case, OΦ,2 still receives general perturbative unitarity bound from high energy

scattering processes involving its induced derivative Higgs self-couplings, even though Higgs rescaling

effect may be negligible. Thus, we derive the corresponding unitarity bound by turning off the Higgs

rescaling effect in (2.26),

E < Λ′U1 =

√
16π v

31/4|x̂|1/2
. (2.29)

We depict the upper bound (2.29) by the blue dashed curve in Fig. 2(a)-(c). We see that Λ′U1 turns

out to be weaker than the bound ΛU1. In the later analysis of dihiggs production via vector boson

fusion, we will be conservative and select signal events by imposing the weaker bound
√
ŝ < Λ′U1.

Fig. 3 presents Feynman diagrams for t̄t → hh (VLVL) scattering, where V = W±, Z0. In high

energy limit, the leading amplitudes from dimension-6 operator OΦ,2 are enhanced by E1 terms.

According to equivalence theorem, we compute the leading amplitudes with final state VLVL replaced

by the corresponding Goldstone bosons. Among all contributions, the amplitudes with t/u-channel

quark-exchange and the SM Yukawa coupling approach constant in high energy limit. Only the s-

channel Higgs-exchange with cubic derivative Higgs coupling in (2.10) gives the O(E1) asymptotical

behavior and may violate perturbative unitarity. To derive the optimal bound, we define the spin-0

and color-singlet helicity state of top-quark pair, i.e., |t̄t〉s =
1√
2Nc

Nc∑
a=1

(∣∣t̄a+ta+〉− ∣∣t̄a−ta−〉) [41]. Thus,

we compute the scattering amplitudes at the leading O(E1) ,

T [|t̄t〉s→
∣∣π+π−

〉
] = T [|t̄t〉s→

∣∣π0π0
〉
] = −

√
6 x̂ ζ2 mtE

v2
,

T [|t̄t〉s→ |hh〉] = −
√

6 x̂ ζ4 mtE

v2
, T [|t̄t〉s→

∣∣π0h
〉
] = O(E0) , (2.30)

where E is center of mass energy. To optimize the unitarity bound, we can further define an O(4)

singlet final state |S〉 = 1√
8

(
2 |π+π−〉+

∣∣π0π0
〉

+ |hh〉
)

. So, we derive,

T [|t̄t〉s→ |S〉] = −x̂(1− x̂)(4− x̂)

√
3mtE

2v2
. (2.31)

Using (2.25), we compute the partial wave amplitude and impose the s-wave unitarity condition

|Re a0| < 1
2 . With these we deduce the perturbative unitarity bound on scattering energy E ,

E < ΛU2 =
16πv2

√
3mt

1

|x̂(1−x̂)(4−x̂)|
. (2.32)
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Figure 2: Perturbative unitarity violation region from weak boson scattering (blue) and top-Higgs
scattering (red) as a function of x̂ in plot-(a), and a function of Λ̃2 in plots (b) and (c) for x2 > 0
and x2 < 0 , respectively.

t̄

t

h/VL

h/VL

Figure 3: Feynman diagrams for t̄t→ hh (VLVL) scattering, where V = W±, Z0.

We plot the upper bound ΛU2 in Fig. 2 (red contours) as a function of x̂ and Λ̃2 , respectively. For

small |x̂|, we derive ΛU2 ≈ 4πΛ̃2
2/
√

3mt at leading order. It is clear that the bound from top-Higgs

scattering is much weaker than that of the weak boson scattering.
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3. Higgs Pair Production at Hadron Colliders

In this section, we study dihiggs production for the effective theory defined in Eq. (2.16) at both the

LHC (14 TeV) and future pp (100TeV) collider. There are two new parameters (x2, x3), which may be

reparametrized as (x̂, r̂) in Eq. (2.11) for convenience. The major dihiggs production channels at high

energy hadron collider include gluon fusion production (gg → hh), top-pair associated production

(pp → tt̄hh), and VBF production (pp → hhjj). In the following, we analyze these production

channels at parton level, and compare their differences in total cross sections and in kinematical

distributions over the parameter space of (x̂, r̂).

With the modified cubic Higgs couplings (2.10) from dimension-6 operators, we derive the differ-

ential cross section for gluon fusion production,

dσ̂(gg → hh)

dt̂
=

G2
Fα

2
s

512(2π)3
ζ4

[∣∣∣∣((1+r̂ )
3m2

h

ŝ−m2
h

− x̂
ŝ+ 2m2

h

ŝ−m2
h

)
F4 + F�

∣∣∣∣2 + |G�|2
]
, (3.33)

where (ŝ, t̂) are partonic Mandelstam variables, and (F4, F�, G�) are loop functions given in Ap-

pendix B, The new contributions from x2 ( x̂ ) arise in two ways. The first is an overall rescaling

factor ζ4 of the cross section, and the second is contributed by the derivative cubic Higgs coupling.

The parameter x3 only appears in r̂ , which shifts the SM cubic Higgs coupling. We generate signal

events by MadGraph 5 [42].7 The QCD corrections can be significant [43], but they are insensitive

to the structure of cubic Higgs coupling,8 so we normalize the cross section at (r̂, x̂) = (0, 0) to the

SM NLO prediction [17] and implement the same K-factor for full parameter space of (r̂, x̂). For

gluon fusion, we have K = (2.27, 1.44) for
√
s = (14, 100) TeV. But, for analyzing the ratio of the

cross section over that of the SM, it is rather insensitive to the K-factor. We perform numerical fits

for the total cross sections over the range −1 6 r̂ 6 1 and −1 6 x̂ 6 0.5 at both LHC (14TeV) and

pp (100TeV) collider,

σ(gg → hh)

σ(gg → hh)sm

∣∣∣∣
14TeV

= (1−x̂)2
(
1− 0.83 r̂ + 3.7 x̂+ 0.29 r̂2+ 4.2 x̂2− 2.0 r̂ x̂

)
, (3.34a)

σ(gg → hh)

σ(gg → hh)sm

∣∣∣∣
100TeV

= (1−x̂)2
(
1− 0.72 r̂ + 3.6 x̂+ 0.22 r̂2+ 4.3 x̂2− 1.7 r̂ x̂

)
. (3.34b)

This shows that the fitted cross section ratio is not sensitive to the variation of collision energy

from
√
s = 14 TeV to

√
s = 100 TeV. This is mainly due to the m2

f/ŝ suppression in the loop

functions F4 and F� under high energy limit [cf. Eq. (B.52)]. Expanding (3.33) around the SM

values (r̂, x̂) = (0, 0), we derive the r̂ dependence, d(σ/σsm)/dr̂ ' −(0.7−0.8) . For the parameter

7To include the effect of finite top mass, we use the model file SMEFT FF bt for events generation. The relevant
code is available at https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction.

8As shown in Ref.[44], for various dimension-6 operators relevant for gluon fusion production, the correction to the
K-factor is around several per cent.
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Figure 4: Cross sections of dihiggs production via gluon fusion (blue), top-pair associated produc-
tion (purple) and vector boson fusion (red) at the LHC (14TeV) (left plot) and pp(100TeV) collider
(right plot). For each production channel, the (dashed, solid, dotted) curves depict cross sections as
functions of x̂ under three inputs of r̂ = (−1, 0, 1).

x̂ , the prefactor (1− x̂)2 = ζ4 in Eq. (3.34) comes from rescaling factors of Higgs fields hh in

the final state, while x̂ in the second parentheses is contributed by the derivative cubic Higgs

coupling. We note that these two contributions have some cancellation. For x̂ > 0 ( x̂ < 0 ),

the contribution from derivative coupling interferes constructively (destructively) with the SM part

of (r̂, x̂) = (0, 0), while the total cross section is suppressed (enhanced) by the Higgs rescaling

factor (1− x̂)2 . The blue curves in Fig. 4 depict the gluon fusion cross sections at pp(14TeV) and

pp(100TeV). The (dashed, solid, dotted) curves present the cross sections varying with x̂ , under

inputs r̂ = (−1, 0, 1) , respectively. From Fig. 4, we see that the dihiggs production cross sections

from gluon fusion exhibit a minimum in the x̂ < 0 region, and the location of this minimum varies

with the input value of r̂ .

In Fig. 5, using MadAnalysis-5 package [45], we present the normalized kinematic distribution of

final state Higgs bosons at pp(100 TeV) collider. The first column display the leading Higgs pT (h)

distributions; while the second column depict the Mhh invariant-mass distributions of the Higgs pair.

The shapes of distributions at the LHC(14TeV) and pp (100TeV) collider have some similarity since

the cross section only has mild energy dependence. In the first row of Fig. 5, we have input r̂ = 0 ,

and the (blue, red, green) curves correspond to x̂ = (−1, 0, 0.5); while the second row has x̂ = −1 ,

and (blue, red, green) curves correspond to r̂ = (−1, 0, 1). For the parameter range x̂ < 0 , there is

large cancellation between the SM box-loop diagram and the triangle-loop diagram with s-channel

Higgs and new derivative cubic Higgs coupling over the intermediate momentum range. This makes

the distribution more sensitive to r̂ . In particular, if we turn off the SM cubic Higgs coupling by
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Figure 5: Parton level distributions of gg → hh for the leading Higgs pT (1st column) and the
invariant-mass Mhh (2nd column) at pp(100TeV). In the first row, we input r̂ = 0, and the
(blue, red, green) curves correspond to x̂ = (−1, 0, 0.5). In the second row, we input x̂ = −1,
and the (blue, red, green) curves correspond to r̂ = (−1, 0, 1).

setting r̂ = −1 , the events are mostly populated in large pT and Mhh regions, as shown by the

blue curves in the second row of Fig. 5. For x̂ > 0 and r̂ > −1 , all contributions add to each other

constructively, and the normalized distributions do not significantly change.9

Next, we consider the top-pair associated dihiggs production. The dependence of its cross section

on (x2, x3) can be reparametrized in terms of (x̂, r̂), and is similar to that of (3.33). We generate

the signal events by MadGraph 5, and find the factor K = 1.2 for total cross sections at both the

LHC (14TeV) and pp (100TeV) collider [17]. We perform numerical fits of total cross sections for

9In passing, Ref.[46] studied interference between the SM cubic Higgs coupling and other SM contributions in a few
dihiggs production channels, with focus on the variations of collision energy and parton distribution function.
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Figure 6: Parton level distribution of pp → tt̄hh for the leading pT distributions of Higgs boson
(1st row), the invariant-mass distributions Mhh (2nd row) at the LHC(14TeV) (1st column) and the
pp(100TeV) (2nd column). In each plot, we set r̂ = 0 , and input x̂ = (−1, 0, 0.5) which correspond
to (blue, red, green) curves, respectively.

−1 6 r̂ 6 1 and −1 6 x̂ 6 0.5 , which are summarized as follows,

σ(pp→ t̄thh)

σ(pp→ t̄thh)sm

∣∣∣∣
14TeV

= (1−x̂)2
(
1 + 0.23 r̂ − 0.73 x̂+ 0.04 r̂2+ 0.60 x̂2− 0.26 r̂ x̂

)
, (3.35a)

σ(pp→ t̄thh)

σ(pp→ t̄thh)sm

∣∣∣∣
100TeV

= (1−x̂)2
(
1 + 0.23 r̂ − 0.80 x̂+ 0.07 r̂2+ 2.2 x̂2− 0.54 r̂ x̂

)
. (3.35b)

In comparison with the dihiggs production via gluon fusion, the cross section of top-pair associated

production is less sensitive to the change of either r̂ or x̂ , due to the dominance of diagrams irrelevant

to Higgs self-interaction. But, the x̂-dependence of top-pair associated production cross section is

much more sensitive to the increase of collision energy than that of gluon fusion production, especially

for the x̂2 term. We note that the derivative cubic Higgs coupling term interferes destructively

(constructively) with the SM t/u-channel exchange of top for x̂ > 0 ( x̂ < 0 ). Hence, this process

16



is complementary to gluon fusion production. In Fig. 4, we plot the total cross sections of top-pair

associated dihiggs production by purple curves. It is much suppressed in x̂ > 0 region due to the

overall rescaling factor (1−x̂)2 = ζ4 . For r̂ > 0, it adds positive contributions to that of the SM,

and makes the test of r̂ easier [23].

We present in Fig. 6 the normalized kinematic distributions for top-pair associated dihiggs pro-

duction at parton level. The first row shows the leading pT distribution of the Higgs boson, and

the second row depicts the dihiggs invariant-mass (Mhh) distribution, at the LHC (14TeV) (in first

column) and pp(100TeV) collider (in second column). At the LHC, they are rather insensitive to the

variation of (x̂, r̂). However, the pp (100TeV) collisions significantly improve the sensitivity to x̂ . In

comparison with the dihiggs production via gluon fusion in Fig. 5, the top-pair associated production

is more sensitive to the derivative cubic Higgs coupling, with more signal events populated in the

higher pT and larger Mhh region. To maintain perturbative unitarity, we will require signal events

to obey Mhh < ΛU2 , where ΛU2 is derived in (2.32). We find that this bound at x̂ = 0.5 is too

weak to be relevant; and there are 77% (97%) signal events passed this requirement for x̂ = −1 at
√
s = 100 TeV (14 TeV).

Finally, we turn to the dihiggs production via vector boson fusion, pp → V ∗V ∗jj → hhjj . Its

cross section depends on (x2, x3) through the overall rescaling factor ζ4, the modified (SM-like) cubic

Higgs coupling r̂ , and the new derivative cubic Higgs couplings x̂ . We generate signal events by

Madgraph 5 with electroweak process, and apply the following VBF cuts to two tagging jets [47],

14 TeV: 2 < |ηj | < 5 , ηj1· ηj2 < 0 , pT,j > 25 GeV, Mjj > 500 GeV; (3.36a)

100 TeV: 2 < |ηj | < 5 , ηj1· ηj2 < 0 , pT,j > 50 GeV, Mjj > 1000 GeV. (3.36b)

We perform numerical fits to the total cross section for −1 6 r̂ 6 1 and −1 6 x̂ 6 0.5 , and derive

the following,10

σ(pp→ hhjj)

σ(pp→ hhjj)sm

∣∣∣∣
14TeV

= (1−x̂)2
(
1− 0.86 r̂ + 4.8 x̂+ 0.59 r̂2+ 16 x̂2− 4.6 r̂ x̂

)
, (3.37a)

σ(pp→ hhjj)

σ(pp→ hhjj)sm

∣∣∣∣
100TeV

= (1−x̂)2
(
1− 0.47 r̂ + 4.6 x̂+ 0.42 r̂2+ 38 x̂2− 4.1 r̂ x̂

)
. (3.37b)

We find that the cross section of VBF channel is much more sensitive to x̂ than the other two pro-

cesses discussed above. After implementing VBF cuts, the cross section is dominated by longitudinal

weak boson scattering, and the amplitude has E2 enhancement which greatly improves the signal

sensitivity to x̂ in pp(100TeV) collisions. In Fig. 4, we present the cross sections by red curves at

10For the ratio between the VBF signal cross sections in Eq. (3.37), we note that the QCD K-factors are largely
cancelled out and thus this ratio is very insensitive to the K-factors.
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Figure 7: Parton level distributions of pp → V ∗V ∗jj → hhjj for the leading pT of Higgs boson
(first row), the invariant-mass Mhh (second row) at LHC (14TeV) (first column), and pp(100TeV)
(second column). In each plot, we set r̂ = 0 , and input x̂ = (−1, 0, 0.5) which correspond to
(blue, red, green) curves.

the LHC (14TeV) and pp(100TeV) collider. These cross sections are normalized to the NLO SM

prediction [17] at (r̂, x̂) = (0, 0). The total cross sections become comparable to that of the gluon

fusion production over large negative x̂ region, but their dependence on r̂ is weaker.

In Fig. 7, we present the distributions for the leading pT of Higgs boson (first row), the dihiggs

invariant-mass Mhh (second row) at the LHC (14TeV) (first column) and pp (100TeV) collider (sec-

ond column). In comparison with top-pair associated production of Fig. 6, more signal events are

populated in the high pT and Mhh regions for x̂ 6= 0 , which is notable even at the LHC (14TeV). To

further ensure the perturbative expansion of the present effective theory, we will take into account

the unitarity constraint. We require signal events to obey the conservative bound Mhh > Λ′U1 in

(2.29). For
√
s = 14TeV (100TeV) collisions, this allows 84% (31%) signal events under x̂ = −1 ,

and 97% (62%) signal events under x̂ = 0.5 .
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4. Full Analysis of gg → hh→ bb̄γγ at pp(100TeV) Collider

In this section, we study dihiggs production via gluon fusion by performing a full analysis (includ-

ing Delphes 3 fast detector simulations) at the pp (100TeV) collider. We will focus on the channel

gg → hh → bb̄γγ . Our analysis extends the previous Snowmass study [6] by including non-SM-

like derivative cubic Higgs coupling via model-independent dimension-6 effective operators. We also

present a full background study which further includes jet-faking-photon backgrounds and contribu-

tions of jjγγ due to mis-tagging b or b̄ . These improve the analysis of Ref. [6].

4.1. Full Simulations for Signals and Backgrounds

For the present study, we generate the signal and background events by using Madgraph 5 and

Pythia 6.2 packages [42][48], which are then passed to Delphes 3 for detector simulations [49].

We show the full list of backgrounds in Table 1. All background processes include up to one

extra parton with MLM matching to avoid double-counting. We do not include bb̄jj background,

since after all selection cuts it is negligible compared with other faked backgrounds. The detector

responses are based on the current performance of ATLAS and CMS. The b-tagging operation point

is chosen to have 75%, 18.8%, and 1% for bottom, charm, and light flavor jets in the central region

(ET > 50 GeV and |η| < 2.5), respectively. The photon identification efficiency is about 80% for

photons with ET > 50 GeV and |η| < 2.5 . For the jet-faking-photon background, we assign a faking

probability of fj = 0.0093 exp(−ET /27) as a function of ET (in GeV) of the jet, and scale the jet

energy by 0.75 ± 0.12 as the photon energy [50]. The mass resolution is 2 GeV for h → γγ and

17 GeV for h → bb̄ at Mh = 125 GeV. To be consistent with the signal, we select two tagged b-jets

and two isolated photons in the final states, where each object is required to have ET > 25 GeV and

|η| < 2.5 .

We further impose the mass-window cuts on the invariant-masses of two photons and two b-jets.

Compared with the previous study [6], we will narrow down the diphoton invariant-mass window as

122 GeV < Mγγ < 128 GeV. This would kill another 40% backgrounds beyond the previous case

with 10 GeV diphoton mass-window. For two b-jets, we still impose 85 GeV < Mbb̄ < 135 GeV.

Fig. 8 shows the normalized distributions of the pT and the sub-leading ET of two selected photons

(or b-jets) in the first two rows. The last plot of Fig. 8 depicts the reconstructed dihiggs invariant-

mass M
bb̄γγ

for both signals and backgrounds. Here we only show the representative backgrounds.

The distributions of faked bb̄jγ and jjγγ are similar to bb̄γγ, while tt̄γγ and tt̄γ have too few

events after selection. For illustration, we present distributions for the SM and two other cases with

new coupling inputs (r̂, x̂) = (−1, 0.5) and (r̂, x̂) = (1, −1). We find that including the new
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Table 1: For signal and background processes, this table presents σ×Br , generated events, selected
events, acceptance, and the expected events at pp (100 TeV) collider with an integrated luminosity
of 3 ab−1.

Samples σ×BR (fb) Generated Evt Selected Evt Accept Expected

h(bb̄)h(γγ) (SM) 3.53 100000 3955 0.040 418.8± 6.6

bb̄h(γγ) 50.49 99611 78 0.00078 118.6± 13.4
Z(bb̄)h(γγ) 0.8756 68585 378 0.0055 14.5± 0.7
tt̄h(γγ) 37.26 63904 67 0.0010 117.2± 14.3
tt̄γγ 335.8 150654 1 6.6×10−6 6.75± 6.7
tt̄γ 108400 285787 0.013 4.7×10−8 15.2± 3.2
bb̄γγ 5037 763962 11 1.4×10−5 217.6± 65.6
bb̄jγ 8960000 1119406 0.0051 4.6×10−9 123.6± 31.9
jjγγ 164200 813797 0.056 6.9×10−8 33.9± 3.8

Total background − − − − 647.3± 76.0

S/
√
B (S/

√
B+S ) − − − − 16.5 (12.8)

couplings (r̂, x̂) does not significantly change kinematic distributions after full simulation for the

gluon fusion production, as we have expected from the parton level analysis in Sec. 3. Hence, for the

rest of selections, we use the same kinematical cuts as in the Snowmass study [6].

We summarize these cuts as follows,

• Invariant-mass cut: M
bb̄γγ

> 300 GeV ;

• ∆R cuts: ∆Rγγ < 2.5 , ∆R
bb̄
< 2.0 ;

• pT cuts: pT [γ], pT [b] > 35 GeV, pT [γγ], pT [bb̄] > 100 GeV ;

• Decay angle of h→ γγ in the hh rest frame: | cos θh| < 0.8 ;11

• Total number n of jets, photons and leptons are required to be n < 7 in each event.

We present the expected signal and background event numbers at
√
s = 100 TeV and for an

integrated luminosity L = 3 ab−1 in Table 1. For the SM Higgs self-coupling of (r̂, x̂) = (0, 0), we

find the expected signal events to be 418.8 . The expected yield of total background events is 647.3 ,

with the largest contributions coming from bb̄γγ, bb̄jγ, bb̄h(γγ) and tt̄h(γγ) . The resultant signal

statistic significance is about 16.5σ. With some relaxation of kinematical cuts, we find that the

sensitivity becomes a bit worse due to increased background contributions, but the overall picture

remains the same. We have also compared our study with the recent analyses of bb̄γγ channel at

11The decay angle θh is defined as the angle between one of the h directions in the dihiggs rest frame and the dihiggs
momentum in the lab frame.
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Figure 8: Distributions of the sub-leading ET [sub γ] and pT [γγ] of selected diphotons for the sig-
nal/background events are presented in the first row. The distributions of ET [sub b-jet] and pT [bb̄] of
the selected bb̄ jets are depicted in the second row. The invariant-mass distributions of the selected
γγbb̄ events are plotted in the third row.
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pp(100) TeV in the literature [51][25]. Ref. [51] studied this channel for the SM cubic Higgs coupling,

and estimated 179 signal events with 447 background events after all cuts and for the same luminosity.

Our study gives 418.8 signal events and 647.3 background events. The difference is likely due to their

more conservative assumptions for the detector performance, especially the photon identification

efficiency, which is lower than ours. In the future, it would be helpful to directly compare the results

by using the same assumptions for detector performance. Ref. [25] estimated S/
√
B = 15.2 under all

cuts and the same condition, which is in good agreement with ours.

For the signal analysis, we perform full simulations for parameters within the range −1 6 r̂ 6 1

and −1 6 x̂ 6 0.5 . We find that the number of selected signal events can be fitted by similar

functions as in Eq. (3.34). Under the above cuts, we deduce

σ

σsm

∣∣∣∣
All

= (1− x̂)2
(
1− 0.55 r̂ + 3.4 x̂+ 0.11 r̂2 + 3.9 x̂2 − 1.2 r̂ x̂

)
. (4.38)

Compared with the parton level fit (3.34b), we see that the cross section becomes less sensitive to

the parameters (r̂, x̂). This is what we would expect from the contamination of parton shower,

hadronization, and detector simulation.

To further discriminate r̂ and x̂ dependence, we can utilize distributions in different recon-

structed dihiggs invariant-mass bins [27, 25], which include different kinematic features of contri-

butions from r̂ and x̂ . To efficiently suppress the background, we choose Mhh(= Mbb̄γγ) bins as

follows,

Mhh bins (GeV): [300, 500], [500, 700], [700, 900], [900, 1100]. (4.39)

We note that for the bb̄γγ final state, due to the small branching fraction of h → γγ and the fast

decline of gluon parton distribution function, the probe of Mhh is not much higher than 1 TeV

even at the pp (100TeV) collider. Since the derivative cubic Higgs coupling brings in more energy

enhancement, higher Mhh bin is more sensitive to x̂ . This can be seen from event fits in each bin

as follows,

σ

σsm

∣∣∣∣
bin 1

= (1− x̂)2(1− 0.82 r̂ + 3.4 x̂+ 0.17 r̂2 + 3.3 x̂2 − 1.5 r̂ x̂) , (4.40a)

σ

σsm

∣∣∣∣
bin 2

= (1− x̂)2(1− 0.42 r̂ + 3.3 x̂+ 0.06 r̂2 + 3.8 x̂2 − 0.95 r̂ x̂) , (4.40b)

σ

σsm

∣∣∣∣
bin 3

= (1− x̂)2(1− 0.14 r̂ + 3.5 x̂+ 0.04 r̂2 + 5.6 x̂2 − 0.85r̂ x̂) , (4.40c)

σ

σsm

∣∣∣∣
bin 4

= (1− x̂)2(1− 0.03 r̂ + 4.0 x̂+ 0.03 r̂2 + 8.6 x̂2 − 0.65 r̂ x̂) . (4.40d)

With increasing Mhh, the coefficients of r̂ terms decrease, while x̂ terms become more important.

In passing, we clarify the difference of our analysis from Ref. [25]. The paper [25] simplifies the
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computation by doing hadron-level analysis for the SM case only, and infers the signal rate at other

points by parton-level analysis with rescaling of hadron-to-parton ratio for the SM, i.e., they assumed

that the hadron-to-parton cuts efficiency remains the same over the parameter space. We test this

assumption with our full analysis in the r̂ − x̂ parameter space. We find that it works well in

lower Mhh bins, but would induce O(10%−100%) deviations in high mass bins 12. For the inclusive

rate, it is not a problem since it is dominated by low mass bins. But, it could affect the conclusion

of exclusive analysis (cf. Sec. 4.2). For later convenience, we summarize the numbers of selected

background events for each bin in Table 2.

4.2. Probing Cubic Higgs Interactions via Parameter Space (r̂, x̂)

In this section, we analyze the probe of r̂ − x̂ parameter space at the pp (100 TeV) collider with a

sample data from 3 ab−1 (30 ab−1) integrated luminosity. As mentioned in Sec. 2, due to interferences

with other possible dimension-6 operators, the measurement of single Higgs productions cannot

uniquely constrain x̂ . Hence, it is important to independently probe the parameter space of x̂

via dihiggs production, which receives energy enhancement from the derivative coupling induced by

OΦ,2 . To study sensitivities to different regions of the (r̂, x̂) parameter space, we choose four kinds

of benchmark points,

Benchmark A : (r̂, x̂)sm = (0, 0) ;

Benchmarks B1, B2 : (r̂, x̂) = (0, 0.2), (0, 0.5) ; (4.41)

Benchmarks C1, C2 : (r̂, x̂) = (−0.5, 0), (0.5, 0) ;

Benchmarks D1, D2 : (r̂, x̂) = (−0.5, 0.2), (0.5, −0.5) .

Benchmark A corresponds to the SM Higgs boson, and the sensitivity in this case can be directly

translated into a bound on the effective cutoffs of dimension-6 operators (OΦ,2, OΦ,3). We use

Benchmarks B1 and B2 to represent the cases as predicted by nonminimal coupling model with

r̂ = 0 and x̂ > 0 (cf. Sec. 2.2). Benchmarks C1 and C2 correspond to nonzero r̂ and vanishing

derivative cubic Higgs coupling x̂ . The last two benchmarks D1 and D2 denote the general cases with

both r̂ and x̂ nonzero. For all non-SM benchmarks, we choose (r̂, x̂) values corresponding to the

effective cutoffs Λ̃2, Λ̃3 & 500 GeV. Note that the effective cutoff scale Λ̃j = Λ/
√
fΦ,j is not exactly

the mass scale of an underlying new particle (as the dimensionless coupling fΦ,j could be larger

than one and is usually less than about 4π). One example is the model of Higgs-gravity interactions

in Sec. 2.2 with dimension-6 operators (2.21)-(2.22). From the viewpoint of effective theory, the

12Depending on the luminosity, there could be O(10%) statistical uncertainty in the last Mhh bin at 30 ab−1. But
the statistical uncertainties in other bins are much smaller.
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Table 2: Selected events in different Mhh bins for the SM signal and backgrounds at the pp (100TeV)
collider with an integrated luminosity of 3 ab−1.

Mhh bins (GeV) [300, 500] [500, 700] [700, 900] [900, 1100]

h(bb̄)h(γγ) (SM) 200 170 52.5 11.1

bb̄h(γγ) 67.1 31.9 15.8 3.81
Z(bb̄)h(γγ) 11.2 2.77 0.46 0.04
tt̄h(γγ) 97.5 15.9 3.22 0.58
tt̄γγ 5.41 1.1 0.24 0.0
tt̄γ 13.9 1.09 0.16 0.05
bb̄γγ 188 23.7 5.25 0.32
bb̄jγ 107 11.8 3.44 1.32
jjγγ 30.3 2.58 0.82 0.24

Total Backgrounds 521 90.8 29.4 6.37

major issue is to make sure that the energy scale is within the perturbative unitarity bound, so

that the perturbative analysis is valid. In Fig. 2, the plots (b)-(c) show that for the effective cutoff

Λ̃2 & 500 GeV, the unitarity bounds on the scattering energy are well above 1 TeV. This justifies our

perturbative analysis of signal events with dihiggs invariant-mass Mhh . 1.1 TeV.

For each benchmark, we first analyze the sensitivities in different Mhh bins as defined in (4.39).

For a given set of (r̂, x̂), the 68% C.L. contour is defined as follows,

∆Si(r̂, x̂)√
Bi + Si(r̂, x̂)

= 1 , (4.42)

where signal Si and background Bi in Table 2 denote the numbers of selected events in a given bin

M
(i)
hh , and ∆Si(r̂, x̂) = |Si(r̂ + δr̂, x̂+ δx̂)− Si(r̂, x̂)|. The dependence of signal on the parameters

(r̂, x̂) is determined by the numerical fits in Eq. (4.40). Around the origin of (r̂, x̂), it is well ap-

proximated by the linear expansion, Si ' ci + aiδr̂+ biδx̂ . It means that the signal is only sensitive

to the combination aiδr̂ + biδx̂ , but not the perpendicular direction biδr̂ − aiδx̂ . We call the later

as “degenerate direction”, along which the signal remains constant nearby the origin. Using the fit

(4.38), we further derive the sensitivity contour with inclusive data.∑
i

∆Si(r̂, x̂)√∑
i

[Bi + Si(r̂, x̂)]

= 1 . (4.43)

Finally, to fully utilize the information of different Mhh bins, we can derive the combined contour at

68% C.L., ∑
i

(
∆Si√
Bi + Si

)2

= 1 , (4.44)

24



Figure 9: Sensitivity to δr̂ − δx̂ around Benchmark A, (r̂, x̂) = (0, 0). In each plot, the dashed
(solid) curve depicts 68% C.L. contour with 3 ab−1 (30 ab−1) integrated luminosity, and the dotted
line denotes the degenerate direction around the origin. Plots (a)-(d) present the results for each
Mhh bin. Plots (e) and (f) show the inclusive sensitivity (4.43) and exclusive sensitivity (4.44),
respectively.

which we will call “exclusive” sensitivity. This is stronger than the “inclusive” sensitivity (4.43)

which only uses the total rates.

In Fig. 9, we analyze the sensitivity for Benchmark A, which corresponds to taking the central

values (r̂, x̂) = (0, 0) as in the SM. We present the 68% C.L. contours for each Mhh bin in the

plots (a)-(d). Then, we show the inclusive sensitivity contour (4.43) in plot-(e), and the exclusive

sensitivity contour (4.44) in plot-(f). For each plot, the dashed (solid) curve depicts 68% C.L. contour

with 3 ab−1 (30 ab−1) integrated luminosity, while the dotted line shows the degenerate direction

around the origin. The slope of dotted line varies for different bins of Mhh. It is clear that higher

Mhh bins are more sensitive to x̂ , as also noted before [27, 25]. However, the final sensitivity of

a given bin also depends on the number of selected events in this bin. Due to suppression in the

tail region of Mhh distribution, events number in the highest bin (purple) could be quite small.

This is the case with 3 ab−1 data in Fig. 9(d), where the sensitivity to x̂ is much lower than that

in other bins. So, the inclusive sensitivity is mainly determined by the first two bins. For 30 ab−1

data, there are enough events in the last bin to probe x̂ with a good accuracy. Impressively, since
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Figure 10: Exclusive sensitivity contours (68% C.L.) in Λ̃2 − Λ̃3 plane for Benchmark A at the
pp (100TeV) collider with an integrated luminosity of 3 ab−1 (dashed curves) and 30 ab−1 (solid
curves). The two red and blue contours correspond to x2x3 > 0 and x2x3 < 0 , respectively. The
region on the right-hand-side of each contour (and above it) is allowed.

various bins are sensitive to different combinations of r̂ and x̂ , the exclusive analysis (4.44) makes

a big improvement of the sensitivity, as shown in Fig. 9(f). Note that the exclusive analysis does

not improve much of the sensitivity for each parameter alone, but helps to break the degenerate

direction in the 2-dimensional plane. This demonstrates the important role played by the derivative

cubic Higgs coupling x̂ in the dihiggs production. It means that gluon fusion production could probe

both (r̂, x̂) to a good accuracy. This is a new point. For comparison, we derive the sensitivity to

each parameter alone by fixing the other parameter to its SM value. We find that the exclusive

sensitivity to δr̂ is about 13% (4.2%), and that to δx̂ is about 5% (1.6%), for the 3 ab−1 (30 ab−1)

integrated luminosity.

In Fig. 10, we present the exclusive sensitivity contours (68% C.L.) in Λ̃2 − Λ̃3 plane for Bench-

mark A at the pp (100TeV) collider with an integrated luminosity of 3 ab−1 (dashed curves) and

30 ab−1 (solid curves). The region on the right-hand-side of each contour (and above it) is allowed.

The cases of x2x3 > 0 ( x̂ r̂ < 0 ) and x2x3 < 0 ( x̂ r̂ > 0 ) are shown by the two red and blue con-

tours, respectively. For each contour, the asymptotically flat or vertical behavior gives the sensitivity

to one operator (when the other is absent), which can be read from the intersection of 68% C.L.

sensitivity contour in Fig. 9(f) with each axis. The sensitivities of probing the two operators are

comparable, Λ̃2, Λ̃3 & 1 TeV with 3 ab−1, and Λ̃2, Λ̃3 & 2 TeV with 30 ab−1. For the blue contours,

the cusps correspond to the end points of ellipse long axis in Fig. 9(f). These cusp regions give the

weakest 2d sensitivities, Λ̃2, Λ̃3 & 0.75 TeV for 3 ab−1 data, and Λ̃2, Λ̃3 & 1.4 TeV for 30 ab−1 data.
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Figure 11: Sensitivity contours in δr̂ − δx̂ plane for Benchmark B1 with (r̂, x̂) = (0, 0.2) as shown
in plot-(a), and for Benchmark B2 with (r̂, x̂) = (0, 0.5) as shown in plot-(b). In each plot, the
dashed (solid) curve depicts 68% C.L. contour with 3 ab−1 (30 ab−1) integrated luminosity, and the
dotted line denotes the degenerate direction around the origin. The blue and red contours depict the
inclusive sensitivity (4.43) and exclusive sensitivity (4.44), respectively.

For the red contours, the 2d sensitivity is always stronger.

In Fig. 11, we present the inclusive sensitivity (4.43) and exclusive sensitivity (4.44) for Bench-

mark B1 [plot-(a)] and Benchmark B2 [plot-(b)] by blue and red contours, respectively. The dashed

(solid) curve depicts 68% C.L. contour with 3 ab−1 (30 ab−1) integrated luminosity, and the dotted

line denotes the degenerate direction around the origin. The Higgs gravitational interaction predicts

r̂ = 0 and x̂ > 0 . As shown in plots (a) and (b), the sensitivity contours, including slope of the

degenerate direction, strongly depend on the explicit value of x̂ . Fig. 12 demonstrates the sensi-

tivities for Benchmark C1 [plot-(a)] and Benchmark C2 [plot-(b)], where x̂ = 0 and two nonzero r̂

values take opposite signs. We find that their shape and sensitivity range are quite similar to that

of Benchmark A (the SM case). This is expected given the fact that the dihiggs total cross section

and invariant-mass (Mhh) distribution are much more sensitive to x̂ than r̂ .
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Figure 12: Sensitivity contours in δr̂− δx̂ plane for Benchmark C1 with (r̂, x̂) = (−0.5, 0) as shown
in plot-(a), and for Benchmark C2 with (r̂, x̂) = (0.5, 0) as shown in plot-(b). In each plot, the
dashed (solid) curve depicts 68% C.L. contour with 3 ab−1 (30 ab−1) integrated luminosity, and the
dotted line denotes the degenerate direction around the origin. The blue and red contours depict the
inclusive sensitivity (4.43) and exclusive sensitivity (4.44), respectively.

Figure 13: Sensitivity contours in δr̂ − δx̂ plane for Benchmark D1 with (r̂, x̂) = (−0.5, 0.2) as
shown in plot-(a), and for Benchmark D2 with (r̂, x̂) = (0.5, 0.5) as shown in plot-(b). In each plot,
the dashed (solid) curve depicts 68% C.L. contour with 3 ab−1 (30 ab−1) integrated luminosity, and
the dotted line denotes the degenerate direction around the origin. The blue and red contours depict
the inclusive sensitivity (4.43) and exclusive sensitivity (4.44), respectively.

In Fig. 13, we present the inclusive sensitivity (4.43) and exclusive sensitivity (4.44) for Bench-

mark D1 [plot-(a)] and Benchmark D2 [plot-(b)] to illustrate the features for (r̂, x̂) both nonzero.

Benchmark D1 represents the case that the signals in the first two bins of Mhh are quite insensi-

tive to δx̂ at the linear order, and the shape of the 68% sensitivity contour is mainly determined
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by quadratic terms. Although the last two bins still have strong dependence on x̂ , the inclusive

sensitivity is determined by the first two bins (due to their large rates) with parabola-like shape.

The exclusive sensitivity is largely improved, especially with 30 ab−1 data. Fig. 13(b) presents the

sensitivity contours (68% C.L.) for Benchmark D2, where all Mhh bins have strong dependence on

x̂ . The sensitivity to x̂ is significantly enhanced as compared to other Benchmarks.13 Since the

sensitivity has little change among different bins, the 68% contour is only slightly improved by the

exclusive analysis (4.44).

In summary, the qualitative feature of sensitivity contour in the δr̂ − δx̂ plane can vary signif-

icantly for different benchmarks. In some cases (such as Benchmarks A, B1, C1, C2, and D1), the

exclusive analysis of different Mhh bins makes big improvements. In particular, it can break the

possible degenerate direction around the origin, and impose much stronger constraints on the 2d

parameter space even with the dihiggs production measurement alone. For some other cases (such

as Benchmarks B2 and D2), the parameter-dependence of signals appears quite similar in different

bins. Thus, both the exclusive and inclusive analyses give comparable sensitivity.

5. Conclusions

Despite the LHC Higgs discovery, the Higgs boson self-interaction is fully untested so far. It is the

key ingredient of Higgs potential, and plays vital roles for electroweak symmetry breaking, vacuum

stability, electroweak phase transition, and Higgs inflation. This is a most likely place to encode new

physics beyond the standard model (SM).

In this work, we studied the probe of cubic Higgs interactions via dihiggs production at hadron

colliders. We parametrized the new physics of Higgs self-interactions in terms of model-independent

dimension-6 effective operators in section 2. We take the nonminimal Higgs-gravity interaction as

an explicit example to motivate such effective operators. The contributions of the two dimension-6

operators (2.16) to cubic Higgs couplings have different kinematic structures as shown in Eq. (2.10).

They give different kinematic distributions in various dihiggs production channels due to the different

energy-dependence. This is demonstrated in Figs. 5–7 of section 3. We also analyzed the weak boson

scattering and tt̄ scattering at high energies, and derived perturbative unitarity constraints on the

parameter space in Fig. 2. Among the three channels of dihiggs production, top-pair associated

production and vector boson fusion (VBF) production are more sensitive to the energy-enhancement

in high energy collisions, though their cross sections are generally smaller than the gluon fusion

production (Fig. 4).

In section 4, we performed systematical Monte Carlo analysis of dihiggs production gg → hh

13Note that the plot range of δx̂ in Fig. 13(b) is much smaller than that in Fig. 13(a).
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in the decay channel hh → bb̄γγ by using Delphes 3 fast detector simulations. We computed both

signals and full SM backgrounds at the pp (100TeV) collider with a 3 ab−1 integrated luminosity,

as summarized in Table 1 and Fig. 8. This channel shows a good potential of discovering cubic

Higgs couplings in pp (100TeV) collisions. Our derived significance is in main agreement with the

literature [25], while a difference from [51] appears due to the different assumptions about detector

performance. We further studied the probe of new physics effects in the r̂− x̂ parameter space with

full simulations. Since different bins of the dihiggs invariant-mass Mhh exhibit distinctive kinematical

features, we used them to discriminate the two dimension-6 operators. We did an exclusive analysis

to incorporate such kinematical information and obtained a big improvement of sensitivity. We

further identified four kinds of representative benchmarks (4.41) for the parameter space of cubic

Higgs coupling, which have qualitatively different features. For each benchmark, we studied the

sensitivity to the 2d parameter space of (r̂, x̂), via both the inclusive analysis (4.43) and exclusive

analysis (4.44). For comparison, we used two sample integrated luminosities (3 ab−1 and 30 ab−1) of

the pp (100TeV) collider. For Benchmark A (SM case), the exclusive analysis breaks the degeneracy

in the 2d plane and makes it possible to probe both (r̂, x̂) to a good accuracy by the dihiggs

measurement alone. This is demonstrated in Fig. 9–10. For one-parameter analysis, we found that

with a 3 ab−1 (30 ab−1) integrated luminosity, the exclusive sensitivity to r̂ and x̂ are about 13%

(4.2%) and 5% (1.6%), respectively. Fig. 11 presented Benchmarks B1 and B2 with r̂ = 0 and

x̂ > 0, as motivated by nonminimal Higgs-gravity interaction. We found that the sensitivity contours

strongly depend on the size of x̂ . Fig. 12 analyzed Benchmarks C1 and C2 with x̂ = 0 and different

values of r̂ . As expected, the dependence on the change of r̂ is pretty weak. For general regions

with (r̂, x̂) both nonzero, we found the sensitivity contours to be qualitatively different from the SM

case of (r̂, x̂) = (0, 0), as shown in Fig. 13(a)-(b) for Benchmarks D1 and D2. In the case where the

parameter-dependence of signals in different bins is similar, such as Benchmark D2 in Fig. 13(b), the

improvement of the exclusive analysis over the inclusive analysis becomes rather modest.

A. Redundancy of Dimension-6 Operators

In this appendix, we discuss the redundancy of dimension-6 operators in Eqs. (2.4) and (2.5). In the

SM action, the Higgs sector contains the following terms,

Ssm ⊃
∫
dx4
[
(DµH)†(DµH) + µ2H†H − λ(H†H)2 − yfLHfR + h.c.

]
, (A.45)

where L = (fuL, f
d
L)T denotes the SU(2)L doublet, and fR the SU(2)L singlet. Then, we can derive

EOM for the Higgs field, (D2H)† = µ2H† − 2λ(H†H)H† − yfLfR , and its hermitian conjugate.
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After integration by part, we can rewrite the operator OΦ,2 as

2OΦ,2 = ∂µ(H†H)∂µ(H†H) = −(H†H)∂µ∂
µ(H†H) + (total derivative)

= −(H†H)
[
2(DµH)†(DµH) +H†D2H + (D2H)†H

]
= −2OΦ,4 − 2µ2(H†H)2 + 12λOΦ,3 +

(
yfOΦ,f + h.c.

)
, (A.46)

where ∂µ(H†H) = Dµ(H†H). In the above, we have neglected the total derivative term. We have

also implemented the SM EOM in the last step, since we only keep operators up to dimension-6.

With the relation (A.46), we may replace OΦ,4 by other operators,

1

Λ2

[
fΦ,2OΦ,2 + fΦ,3OΦ,3 + fΦ,4OΦ,4 + fΦ,f (OΦ,f + h.c.)

]
= −

µ2fΦ,4

Λ2
(H†H)2 +

fΦ,2−fΦ,4

Λ2
OΦ,2 +

fΦ,3+6λfΦ,4

Λ2
OΦ,3 +

(
2fΦ,f+yffΦ,4

2Λ2
OΦ,f + h.c.

)
→ 1

v2

{
(x2−x4)OΦ,2 +

(
x3+x4

3M2
h

v2

)
OΦ,3 +

[(
xf+

yf
2
x4

)
OΦ,f+ h.c.

]}
. (A.47)

Note that this also shifts the quartic Higgs coupling in the original Higgs potential, but can be

absorbed by a coupling redefinition, λ → λ − µ2fΦ,4/Λ
2 . At the order of Λ−2, the coupling λ in

front of fΦ,4 can be replaced by the leading order relation λ = M2
h/2v

2. Hence, for on-shell physical

amplitudes, we can organize their dependence on (fΦ,2, fΦ,3, fΦ,4, fΦ,f ) via the three combinations

in (A.47).

B. Loop Functions for Triangle and Box Diagrams

For the analyses of Sec. 3–4, we need to compute cross sections of the dihiggs production via gluon

fusion g(pa)g(pb)→ h(pc)h(pd), which invoke loop functions of triangle and box diagrams [52]. The

triangle loop function is given by

F4 = τf [1 + (1− τf )f(τf )] , (B.48a)

f(τf ) =


arcsin2 1√

τf
, τf > 1 ,

−1
4

[
log

1+
√

1−τf
1−
√

1−τf
− iπ

]2

, τf < 1 ,
(B.48b)
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where τf ≡ 4m2
f/ŝ, and ŝ is the partonic center of mass energy. The box loop functions are defined

as follows,

F� =
1

S2

[
4S + 8m2

fSCab − 2m4
fS(S + 2ρ− 8)(Dabc +Dbac +Dacb)

]
+m2

f (2ρ− 8)
[
T (Cac+ Cbd) + U(Cbc+ Cad)−m2

f (TU − ρ2)Dacb

]
, (B.49a)

G� =
1

S(TU − ρ2)

{
m2
f (T 2 + ρ2 − 8T )

[
SCab + T (Cac+ Cbd)−m2

fSTDbac

]
+m2

f (U2 + ρ2 − 8U)
[
SCab + U(Cbc+ Cad)−m2

fSUDabc

]
−m2

f (T 2 + U2 − 2ρ2)(T + U − 8)Ccd

−2m4
f (T + U − 8)(TU − ρ2)(Dabc+Dbac+Dacb)

}
, (B.49b)

where ρ = M2
h/m

2
f , S = ŝ/m2

f , T = t̂/m2
f , U = û/m2

f , T = T −ρ and U = U −ρ . The two scalar

integrals are given by

Cij =

∫
d4q

iπ2

1

(q2−m2
f )
[
(q+pi)

2−m2
f

] [
(q+pi+pj)

2−m2
f

] , (B.50a)

Dijk =

∫
d4q

iπ2

1

(q2−m2
f )
[
(q+pi)

2−m2
f

] [
(q+pi+pj)

2−m2
f

] [
(q+pi+pj+pk)

2−m2
f

] . (B.50b)

In the low energy limit ŝ� m2
f , the loop functions behave as

F4 =
2

3
+O

(
ŝ

m2
f

)
, F� = −2

3
+O

(
ŝ

m2
f

)
, G� = O

(
ŝ

m2
f

)
. (B.51)

In the high energy limit m2
f � ŝ , they take the asymptotical forms,

F4 = −
m2
f

ŝ

[
log

m2
f

ŝ
+ iπ

]2

+O

(
m2
f

ŝ

)
, F� = O

(
m2
f

ŝ

)
, G� = O

(
m2
f

ŝ

)
. (B.52)

Acknowledgments

We thank Nima Arkani-Hamed, Matthew Reece, and Matthew Strassler for discussions during the

finalization of this work. We also thank Margarete Muhlleitner, Tilman Plehn and Michael Spira

for correspondences and discussions. HJH was supported in part by National NSF of China, and

the visiting grants of Harvard and IAS Princeton. JR was supported in part by the International

Postdoctoral Exchange Fellowship Program of China. WY was supported in part by the Office of

Science, Office of High Energy Physics, of the U.S. Department of Energy under contract DE-AC02-

05CH11231.

32



References

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-ex]];

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235 [hep-

ex]].

[2] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; A. Salam, in Elementary Particle Theory, Nobel

Symposium No. 8, edited by N. Svartholm (Almqvist & Wiksells, Stockholm, 1968), p.367.

[3] F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; P. W. Higgs, Phys. Rev. Lett. 13 (1964)

508; P. W. Higgs, Phys. Lett. 12 (1964) 132; G. S. Guralnik, C. R. Hagen, and T. Kibble, Phys.

Rev. Lett. 13 (1965) 585; T. Kibble, Phys. Rev. 155 (1967) 1554.

[4] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C (2015) arXiv:1507.04548 [hep-ex];

V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662].

[5] M. E. Peskin, arXiv:1312.4974 [hep-ph], in Snowmass 2013 Electronic Proceedings, Community

Summer Study, Minneapolis, MN, USA, July 29–August 6, 2013; and references therein.

[6] W. Yao, arXiv:1308.6302 [hep-ph], in the Proceedings of the Snowmass Community Summer

Study (CSS 2013), Snowmass on the Mississippi, July 29–August 6, 2013, Minneapolis, MN, USA.

[7] Snomass Higgs Working Group Report, arXiv:1310.8361 [hep-ex], Community Summer Study

2013: Snowmass on the Mississippi (CSS2013), July 29–August 6, 2013, Minneapolis, MN, USA;

and references therein.

[8] F. Goertz, A. Papaefstathiou, L. L. Yang, J. Zurita, JHEP 1306 (2013) 016 [arXiv:1301.3492].

[9] J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker, and A. Riotto, Phys. Lett. B 679 (2009) 369

[arXiv:0906.0954 [hep-ph]]; D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A.

Salvio, and A. Strumia, JHEP 1312 (2013) 089 [arXiv:1307.3536 [hep-ph]]; M. Fairbairn and R.

Hogan, Phys. Rev. Lett. 112 (2014) 201801 [arXiv:1403.6786 [hep-ph]]; A. Kobakhidze and A.

Spencer-Smith, arXiv:1404.4709 [hep-ph]; and references therein.

[10] V. Branchina and E. Messina, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193 [hep-ph]];

V. Branchina, E. Messina and M. Sher, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302 [hep-ph]].

[11] For a review, M. Trodden, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479]; and references

therein.

[12] For a review, F. Bezrukov, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708]; and refer-

ences therein.

33



[13] W. Buchmuller and D. Wyler, Nucl. Phys. B 268 (1986) 621.

[14] A. Djouadi, W. Kilian, M. Muhlleitner, and P. M. Zerwas, Eur. Phys. J. C 10 (1999) 45 [hep-

ph/9904287]; U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. D 68 (2003) 033001 [hep-

ph/0304015]; Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056].

[15] For a review, A. Djouadi, Phys. Rept. 457 (2008) 1 [arXiv:hep-ph/0503172]; and references

therein.

[16] T. Plehn and M. Rauch, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321]; and references

therein.

[17] J. Baglio, A. Djouadi, R. Grober, M. M. Mhlleitner, J. Quevillon and M. Spira, JHEP 1304

(2013) 151 [arXiv:1212.5581 [hep-ph]]; R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-

telaer, P. Torrielli, E. Vryonidou and M. Zaro, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340

[hep-ph]].

[18] E.g., V. Barger, L. L. Everett, C. B. Jackson, A. D. Peterson and G. Shaughnessy, Phys. Rev. D

90 (2014) 095006 [arXiv:1408.2525 [hep-ph]]. A. J. Barr, M. J. Dolan, C. Englert, D. E. Ferreira

de Lima and M. Spannowsky, JHEP 1502 (2015) 016 [arXiv:1412.7154 [hep-ph]].

[19] The ATLAS Collaboration, ATL-PHYS-PUB-2014-019, October 21, 2014.

[20] U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024];

M. J. Dolan, C. Englert and M. Spannowsky, JHEP 1210 (2012) 112 [arXiv:1206.5001 [hep-ph]];

A. Papaefstathiou, L. L. Yang and J. Zurita, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489

[hep-ph]]; A. J. Barr, M. J. Dolan, C. Englert and M. Spannowsky, Phys. Lett. B 728 (2014)

308 [arXiv:1309.6318 [hep-ph]]; D. E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky,

JHEP 1408 (2014) 030 [arXiv:1404.7139 [hep-ph]]; C. Englert, F. Krauss, M. Spannowsky and

J. Thompson, Phys. Lett. B 743 (2015) 93 [arXiv:1409.8074 [hep-ph]]; and references therein.

[21] Q. Li, Z. Li, Q. S. Yan, X. Zhao, arXiv:1503.07611 [hep-ph].

[22] A. Papaefstatihiou, arXiv:1504.04621 [hep-ph].

[23] C. Englert, F. Krauss, M. Spannowsky and J. Thompson, Phys. Lett. B 743 (2015) 93

[arXiv:1409.8074 [hep-ph]]; T. Liu and H. Zhang, arXiv:1410.1855 [hep-ph].

[24] M. J. Dolan, C. Englert, N. Greiner and M. Spannowsky, Phys. Rev. Lett. 112 (2014) 101802

[arXiv:1310.1084 [hep-ph]].

34



[25] A. Azatov, R. Contino, G. Panico and M. Son, arXiv:1502.00539 [hep-ph].

[26] F. Goertz, A. Papaefstathiou, L. L. Yang and J. Zurita, arXiv:1410.3471 [hep-ph].

[27] C. R. Chen and I. Low, Phys. Rev. D 90 (2014) 013018 [arXiv:1405.7040 [hep-ph]].

[28] C. T. Lu, J. Chang, K. Cheung, and J. S. Lee, arXiv:1505.00957 [hep-ph].

[29] S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566.

[30] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, Phys. Rev. D 87,

015022 (2013) [arXiv:1211.4580 [hep-ph]]; and references therein.

[31] J. Ellis, V. Sanz and T. You, JHEP 1503 (2015) 157 [arXiv:1410.7703 [hep-ph]].

[32] E.g., M. Ruan et al., arXiv:1411.5606 [hep-ex], “Higgs measurement at e+e− circular colliders”,

presentation at 37th International Conference on High Energy Physics (ICHEP-2014), July 2-9,

2014, Valencia, Spain.

[33] N. Craig, M. Farina, M. McCullough, M. Perelstein, JHEP 1503 (2015) 146 [arXiv:1411.0676].

[34] M. McCullough, Phys. Rev. D 90 (2014) 015001 [arXiv:1312.3322 [hep-ph]].

[35] R. Brock, M. E. Peskin, K. Agashe, M. Artuso, J. Campbell, S. Dawson, R. Erbacher and

C. Gerber et al., arXiv:1401.6081 [hep-ex].

[36] N. A. Chernikov and E. A. Tagirov, Annales Poincare Phys. Theor. A 9 (1968) 109;

C. G. Callan, Jr., S. R. Coleman and R. Jackiw, Annals Phys. 59 (1970) 42.

[37] M. Atkins and X. Calmet, Phys. Rev. Lett. 110 (2013) 051301 [arXiv:1211.0281 [hep-ph]].

[38] J. Ren, Z. Z. Xianyu, H. J. He, JCAP 1406 (2014) 032 [arXiv:1404.4627 [gr-qc]];

Z. Z. Xianyu, J. Ren, H. J. He, Phys. Rev. D 88 (2013) 096013 [arXiv:1305.0251].

[39] J. Ren and H. J. He, JCAP 1503 (2015) 052 [arXiv:1410.6436].

[40] For a review, H. J. He, Y. P. Kuang and C. P. Yuan, DESY-97-056 [arXiv:hep-ph/9704276]; and

references therein.

[41] D. A. Dicus and H. J. He, Phys. Rev. D 71 (2005) 093009 [hep-ph/0409131]; Phys. Rev. Lett.

94 (2005) 221802 [hep-ph/0502178].

[42] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106 (2011) 128

[arXiv:1106.0522 [hep-ph]].

35



[43] S. Dawson, S. Dittmaier and M. Spira, Phys. Rev. D 58, 115012 (1998) [hep-ph/9805244]; J.

Grigo, J. Ho, K. Melnikov and M. Steinhauser, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340 [hep-

ph]]; R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou

and M. Zaro, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340 [hep-ph]]; F. Maltoni, E. Vryonidou

and M. Zaro, JHEP 1411 (2014) 079 [arXiv:1408.6542 [hep-ph]]; D. de Florian and J. Mazzitelli,

Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206 [hep-ph]]; Phys. Rev. Lett. 111 (2013) 201801

[arXiv:1309.6594 [hep-ph]]; J. Grigo, K. Melnikov and M. Steinhauser, Nucl. Phys. B 888 (2014)

17 [arXiv:1408.2422 [hep-ph]].

[44] R. Grober, M. Muhlleitner, M. Spira and J. Streicher, arXiv:1504.06577 [hep-ph].

[45] E. Conte, B. Fuks and G. Serret, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599

[hep-ph]].

[46] D. A. Dicus, C. Kao, W. W. Repko, arXiv:1504.02334 [hep-ph].

[47] [ATLAS Collaboration], ATL-PHYS-PUB-2013-007 and arXiv:1307.7292 [hep-ex].

[48] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [hep-ph/0603175].

[49] J. de Favereau et al., [DELPHES 3 Collaboration], JHEP 1402 (2014) 057 [arXiv:1307.6346].

[50] ATLAS Collaboration, “Performance assumptions for an upgraded ATLAS detector at a High-

Luminosity LHC,” ATL-PHYS-PUB-2013-004 (2013).

[51] A. J. Barr, M. J. Dolan, C. Englert, D. E. Ferreira de Lima and M. Spannowsky, JHEP 1502

(2015) 016 [arXiv:1412.7154 [hep-ph]].

[52] T. Plehn, M. Spira, and P. M. Zerwas, Nucl. Phys. B 479 (1996) 46 [Erratum, B 531 (1998) 655]

[hep-ph/9603205].

36


