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We report on a calculation of the B⇤Bp coupling in three-flavour lattice QCD. This coupling, defined from
the strong-interaction matrix element hBp|B⇤i, is related to the leading order low-energy constant in heavy
meson chiral perturbation theory (HMcPT). We carry out our calculation directly at the b-quark mass using
a non-perturbatively tuned clover action that controls discretization effects of order |~pa| and (ma)n for all n.
Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki
gauge action at two lattice spacings of a�1 = 1.729(25)GeV, a�1 = 2.281(28)GeV, and unitary pion masses
down to 290MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final
result for the coupling gb = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. This is the
first calculation performed directly at the physical b-quark mass and lies in the region one would expect from
carrying out an interpolation between previous results at the charm mass and at the static point.

I. INTRODUCTION

The power of lattice QCD in probing the Standard Model
and uncovering evidence for new physics lies predominantly
in the flavour sector. To constrain the CKM unitarity trian-
gle [1–3] requires many inputs that must be evaluated non-
perturbatively, particularly in the B-meson sector. For in-
stance, an important constraint on the apex of the CKM unitar-
ity triangle comes from neutral B-meson mixing, which gives
information on the ratio of CKM elements |Vts|2/|Vtd |2. Ac-
cessing these CKM elements from the experimental data re-
quires knowledge of the B-meson decay constant and bag pa-
rameter, or alternatively the SU(3) breaking ratio

fBs

p
BBs

fBd

p
BBd

. (1)

Lattice calculations of the decay constants fBd and fBs are
also necessary inputs for the Standard Model predictions of
BR(B ! tn) and BR(Bs ! µ

+
µ

�) respectively, while lattice
calculations of the B ! pln form factor allow a determination
of the CKM matrix element |Vub|. For both semileptonic form
factors and mixing matrix elements, the precision of lattice
calculations lags behind experiment. The experimental mea-
surements will continue to improve with the large data sets
available at Belle II and from LHCb. Therefore it is essen-
tial to reduce further the theoretical uncertainties in the non-
perturbative hadronic parameters in order to maximise the sci-
entific impact of current and future B-physics experiments.
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A major source of uncertainty in all previous lattice calcula-
tions is from practical difficulties simulating at physical light-
quark masses. Theoretical insight from HMcPT can guide ex-
trapolations down to the physical point, but lack of knowledge
of the low-energy constants (LECs) of the theory introduces
uncertainties. For example, at next-to-leading order (NLO) in
HMcPT and lowest order in the heavy-quark expansion the
logarithmic dependence of fBd and BBd on the light-quark (or
equivalently, pion) mass is given by [4, 5]
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where ĝ is the leading-order LEC. The strong-interaction ma-
trix element hBp|B⇤i is used to determine a coupling gb,
which would become ĝ in the static limit of an infinitely heavy
b quark. At the order used above in Eqs. (2) and (3), we are
free to use gb in place of ĝ; differences between the two are of
order 1/mb.

In this work we perform the first calculation of the coupling
gb directly at the b-quark mass. Previous determinations of the
coupling have been hindered by the difficulties of simulating
heavy quarks on the lattice. Lattice calculations have been
performed for gc, the analogous coupling for D-mesons [6–
9], and for ĝ itself [7, 10–13]. Having a reliable theoretical
calculation of the coupling for the B system is important since
this coupling cannot be accessed directly through experiment.
The strong coupling gD⇤Dp

has been measured by the CLEO
collaboration [14, 15] and more recently by BaBar [16, 17],
but with B-mesons there is not enough phase-space for the
B⇤ ! Bp decay to occur. Model estimates exist for gb, includ-
ing from QCD sum rules [18–21] and non-relativistic quark
models [22].

The rest of this paper is organised as follows. In section II
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we briefly review the framework of HMcPT, show how gb
enters and present the method for extracting gb from lattice
matrix-element calculations. Section III describes the param-
eters of the light-quark, gluon, and heavy-quark actions used
in the numerical calculation and presents the ratios of two-
and three-point correlators used to obtain gb. In section IV
we fit the correlator ratios to extract gb and then extrapolate
these results to the continuum and physical quark masses us-
ing SU(2) HMcPT. We estimate the systematic errors in gb in
section V, discussing each source of uncertainty in a different
subsection. We conclude in section VI by presenting our fi-
nal results and error budget, and comparing our result to other
similar calculations.

II. HEAVY MESON CHIRAL PERTURBATION THEORY

In the infinite heavy-quark mass limit the properties of
heavy-light mesons become independent of the heavy quark’s
spin and flavour quantum numbers. Combining this with the
chiral symmetry present in the massless light-quark (mq ! 0)
limit of QCD provides the basis for heavy meson chiral per-
turbation theory. This effective theory of QCD is a joint ex-
pansion in powers of the inverse heavy-quark mass 1/mQ and
the light-quark-mass mq.

In HMcPT the heavy-light pseudoscalar and vector
mesons, P and P⇤, are combined in a covariant 4⇥ 4 matrix
representation

H =
1+/v

2
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�
. (4)

If one includes three light dynamical quark flavors (u,d,s),
this corresponds to SU(3) HMcPT with the usual octet of
pseudo-Nambu-Goldstone bosons for the light pseudoscalars:
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Because the strange-quark mass is almost thirty times larger
than the average up-down quark mass, however, one can also
treat the strange quark as heavy and include only the up-
and down-quark dynamical degrees of freedom; this leads
to SU(2) HMcPT (with the corresponding modification of
M ). At lowest order the interactions between the heavy and
light mesons are determined by a Lagrangian with a single
LEC [23, 24]

L int
HMcPT = ĝTr(H̄aHbA
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g5), (6)
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and x = exp(iM / f
p

). The roman indices run over light-quark
flavour and the trace is over Dirac indices. We use a conven-
tion where f

p

⇡ 130MeV.

The matrix element for the strong transition B⇤ ! Bp is
parametrised by gB⇤Bp

,

hB(p0)p(q)|B⇤(p,l )i= gB⇤Bp

q · e(l )(p), (8)

where q = p� p0 and e

(l )(p) is the polarization vector for
polarization state labelled by l . Evaluating the same matrix
element at leading order in HMcPT,

hP(p0)p(q)|P⇤(p,l )i= 2MP

f
p

ĝ q · e(l )(p), (9)

enables the determination of gb from

gB⇤Bp

=
2MB

f
p

gb, (10)

with gb equal to ĝ up to 1/mn
b corrections.

Performing an LSZ reduction and using the partially-
conserved axial current relation for a soft pion, Eq. (8) be-
comes
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where Aµ = ȳ1g

µ

g5y2 is the light-quark axial-vector current.
Using a form-factor decomposition of the matrix element
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we see that at q2 = 0

gB⇤Bp

=
2MB⇤A0(0)

f
p

. (13)

On the lattice, we cannot simulate exactly at q2 = 0 with-
out using twisted boundary conditions. Furthermore and from
Eq. (11), we see that the form factor A0 contains a pole at the
pion mass, so it will be difficult to do a controlled extrapola-
tion to q2 = 0. However, the decomposition in Eq. (12) must
be free of unphysical poles, which allows us to obtain the re-
lation

gB⇤Bp

=
1
f
p

[(MB⇤ +MB)A1(0)+(MB⇤ �MB)A2(0)] . (14)

The A1 term is expected to dominate because the relative con-
tribution of A2 is suppressed by the ratio (MB⇤ �MB)/(MB⇤ +
MB) whose value is 0.004 for the physical B and B⇤ masses.
It is this relation that we use for our numerical calculation.
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TABLE I. Lattice simulation parameters. All ensembles are gen-
erated using 2+1 flavours of domain-wall fermions and the Iwasaki
gauge action. All valence pion masses are equal to the sea-pion mass.

L/a a/ fm mla msa # configs # sources M
p

/MeV
24 0.11 0.005 0.04 1636 1 329
24 0.11 0.010 0.04 1419 1 419
24 0.11 0.020 0.04 345 1 558
32 0.08 0.004 0.03 628 2 289
32 0.08 0.006 0.03 889 2 345
32 0.08 0.008 0.03 544 2 394

III. CALCULATIONAL STRATEGY

A. Light quarks and gauge fields

Our analysis is carried out using ensembles produced by the
RBC and UKQCD collaborations [25, 26] with the Iwasaki
gauge action [27, 28] and 2+1 flavour dynamical domain-
wall fermions [29, 30]. The configurations are at two lat-
tice spacings, the finer 322 ensembles have an inverse lattice
spacing of a�1 = 2.281(28)GeV and the coarser 243 ensem-
bles have a�1 = 1.729(25)GeV, corresponding to approxi-
mately 0.086fm and 0.11fm respectively. All ensembles have
a spatial extent of 2.6fm. We simulate with unitary light-
quarks corresponding to pion masses down to M

p

= 289MeV.
On all ensembles the strange sea-quark mass is tuned to
within 10% of its physical value. The fifth dimensional ex-
tent of both lattices is LS = 16, corresponding to a residual
quark mass of mresa = 0.003152 on the 243 ensembles and
mresa = 0.0006664 on the 323 ensembles. The lattice quark
masses corresponding to the physical u/d and s quarks are

m̃u/da = 0.00136(4), m̃sa = 0.0379(11) on the 243 ensembles
and m̃u/da = 0.00102(5), m̃sa = 0.0280(7) on the 323 ensem-
bles. The tildes indicate that these values include the residual
quark mass.

Our calculation makes use of unitary light-quark propaga-
tors with point sources previously generated as part of the
RBC/UKQCD B-physics program [31–35]. Full details of the
ensembles and propagators used are presented in Table I. We
perform a random translation on each gauge field configura-
tion to minimise the effects of autocorrelations on our results,
allowing us to use more closely spaced trajectories and gain
statistics. For each configuration in the 323 ensembles we use
propagators computed at two time sources separated by half
the lattice temporal extent to compensate for the smaller en-
semble sizes.

B. Bottom quarks

Simulating heavy quarks on the lattice presents the problem
of dealing with mQa � 1. A number of approaches have been
developed to tackle this problem. In the limit of infinite mass
the quarks become a static source of colour charge and their
lattice propagator reduces to a trace of a product of temporal
gauge links. This is the static action of Eichten and Hill [36]
which has been used extensively to calculate the coupling g•,
most recently in [13, 37]. Another approach is nonrelativis-
tic QCD (NRQCD) [38], where the usual QCD Lagrangian is
expanded in powers of v/c.

Here we use the relativistic heavy-quark (RHQ) action [39–
41] to simulate fully relativistic bottom quarks while con-
trolling discretization effects. Although mQa is large for the
heavy quark in a heavy-light meson, the spatial momentum
|~pa| is of O(aLQCD). The RHQ action is an anisotropic Wil-
son action with a Sheikholeslami-Wohlert term [42]

SRHQ = a4 Â
x,y

ȳ(y)
✓

m0 + g0D0 +z

~
g ·~D� a

2
(D0)

2 � a
2

z (~D)2 +Â
µn

ia
4

cps

µn

F
µn

◆

y,x
y(x). (15)

El-Khadra, Kronfeld and Mackenzie showed that, for cor-
rectly tuned parameters, the anisotropic Clover action can be
used to describe heavy quarks with controlled cut-off effects
to all orders in mQa and of O(|~pa|) [39]. Christ, Li, and
Lin [41] later showed that only three independent parameters
need to be determined and, further, presented a method for
performing this parameter tuning non-perturbatively [43].

This tuning has been completed for b quarks [31] on the
RBC/UKQCD configurations and those results (Table II) are
exploited in this calculation. The heavy-quark propagators
and the correlation functions used in this analysis are calcu-
lated using the Chroma software library [44]. We apply Gaus-
sian smearing to the heavy-quark propagators using parame-
ters tuned in [31]. Because the correlators become very small
at large time separations owing to the large masses in the ex-

ponentials, we run the inverter for the heavy quark propaga-
tors to a very small relative residual (10�45). We found that
pursuing the conjugate gradient iteration to this small resid-
ual is equivalent to demanding convergence separately for the
residual on each time slice.

C. Three-point correlation functions

The matrix element that we wish to calculate in Eq. (12)
corresponds to the quark-flow diagram shown in Fig. 1. To
fully benefit from the available pre-calculated light-quark
propagators, we arrange the calculation so that the axial-
vector current is positioned at the light-quark propagator’s
source. This means that we use the periodicity of the lattice,
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TABLE II. Tuned RHQ parameters for b quarks from Ref. [31].
The uncertainties shown are statistical, heavy-quark discretization
effects, lattice-scale uncertainty, and from experimental inputs (the
spin-averaged Bs-meson mass and Bs hyperfine splitting) respec-
tively.

a/ fm m0a cp z

0.11 8.45(6)(13)(50)(7) 5.8(1)(4)(4)(2) 3.10(7)(11)(9)(0)
0.08 3.99(3)(6)(18)(3) 3.57(7)(22)(19)(14) 1.93(4)(7)(3)(0)

B B<

A�

x = (tx, x)y = (ty, y)

z = (0, 0)

b

d u���5
�
5

�i

FIG. 1. Quark flow diagram

creating the B⇤ meson at large time tx, propagating to the ori-
gin at t = 0, where the current acts and continuing to small
time ty, where the B-meson is annihilated. With this setup,
we need only one inversion, a heavy-quark propagator calcu-
lated from ty, using a light-quark propagator for the sequential
source. The necessary trace is

C(3)
µn

�
tx, ty;~p,~p0

�
=

Â
~x,~y

e�ı~p·~x�ı~p0·~y Tr
⇥
Sl(0,y)g5Sh(y,x)gn

Sl(x,0)gµ

g5
⇤
. (16)

Because of the periodicity of the lattice there are further pos-
sible contributions beyond the desired Wick contraction in

Fig. 1. An operator located at time t can also be considered at
location t �T , where T is the lattice’s temporal extent. If we
take into account separately the cases where tx > ty and tx  ty,
there are eight possible contributing arrangements (consider-
ing t + nT for integer n gives further contributions, but for
increasing |n| these are more and more suppressed). These
are shown in Fig. 2. Using the approximation that the ground
states immediately dominate the time dependence and that the
matrix elements are all unity, we can estimate the time depen-
dence of the three-point correlation function:

C(3)(tx, ty) =(
A(tx, ty)+B(tx, ty)+C(tx, ty)+D(tx, ty) tx > ty,
E(tx, ty)+F(tx, ty)+G(tx, ty)+H(tx, ty) tx  ty.

(17)

It is expected that the signal from which to extract the B⇤Bp

coupling will be seen at large tx (approaching T from below),
coming from the contribution shown as C(tx, ty) in Fig. 2.
Figure 3 shows the relative size of the different contribu-
tions as a function of tx with all matrix elements set to unity.
As anticipated, C is the dominant contribution in a region
T/2+ ty < tx < T . This result appears steady for a range of
the masses MB,MB⇤ ,M

p

. Plotting the sum of the contributions
as a function of tx (setting all matrix elements to unity) we see
a peak at tx = ty and an overall cosh-like form shifted by ty as
shown on the right in Fig. 4. On the left of Fig. 4 we show
good agreement with this form for our numerical data, with
ty the time-position of the source for the sequential inversion.
This gives us confidence that we can extract the desired matrix
element from the large tx region of the three-point correlator.

D. Ratios

To access the matrix element in Eq. (12) we calculate the
lattice three-point function

C(3)
µn

�
tx, ty;~p,~p0

�
= Â

~x,~y
e�i~p·~xe�i~p0·~yhB(y)A

n

(0)B⇤
µ

(x)i
T�tx>0

ty>0
⇡ Â

l

Z1/2
B Z1/2

B⇤

2EB2EB⇤
hB(p0)|A

n

|B⇤(p,l )ie(l )
µ

e�EBty�EB⇤ (T�tx) (18)

and the vector and pseudoscalar two-point functions

C(2)
BB (t;~p) = Â

~x
e�i~p·~xhB(x)B(0)i ⇡ ZB

e�EBt

2EB
, (19)

C(2)
B⇤

µ

B⇤
n

(t;~p) = Â
~x

e�i~p·~xhB⇤
n

(x)B⇤
µ

(0)i

⇡ ZB⇤
e�EB⇤ t

2EB⇤

✓
d

µn

�
p

µ

p
n

p2 ,

◆
. (20)

If we set both the vector and pseudoscalar momenta to zero
in Eq. (18), such that ~q = ~p = ~p0 = 0 and q2 = q2

0 = (MB⇤ �

MB)2 ⇡ 0, we can see from Eq. (12) that the only form factor
accessible is A1. Hence we form the ratio (not summed on i):

R1(tx, ty) =
C(3)

ii (tx, ty;~p = 0,~p0 = 0)Z1/2
B Z1/2

B⇤

C(2)
BB (ty;~p = 0)C(2)

B⇤
i B⇤

i
(T � tx;~p = 0)

= (MB⇤ +MB)A1(q2
0), (21)

where we can average over the three spatial directions (i =
1,2,3). To access the other form factors we need to inject
a unit of momentum, such that ~q = ~p = (1,0,0)⇥ 2p/L and
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FIG. 2. Leading contributions to the three-point correlator for tx > ty (A,B,C,D) and tx  ty (E,F,G,H).

~p0 = 0. Following [6], we define the ratios:

R2(tx, ty) =
C(3)

10 (tx, ty;~p 6= 0,~p0 = 0)Z1/2
B Z1/2

B⇤

C(2)
BB (ty;~p0 = 0)C(2)

B⇤
2B⇤

2
(T � tx;~p 6= 0)

= Â
l

hB(p0)|A0|B⇤(p,l )ie(l )1 , (22)

R3(tx, ty) =
C(3)

11 (tx, ty;~p 6= 0,~p0 = 0)Z1/2
B Z1/2

B⇤

C(2)
BB (ty;~p0 = 0)C(2)

B⇤
2B⇤

2
(T � tx;~p 6= 0)

= Â
l

hB(p0)|A1|B⇤(p,l )ie(l )1 , (23)

R4(tx, ty) =
C(3)

22 (tx, ty;~p 6= 0,~p0 = 0)Z1/2
B Z1/2

B⇤

C(2)
BB (ty;~p0 = 0)C(2)

B⇤
2B⇤

2
(T � tx;~p 6= 0)

= Â
l

hB(p0)|A2|B⇤(p,l )ie(l )2

= (MB⇤ +MB)A1(q2). (24)

These allow access to the form factor A2 through

A2

A1
=

(MB⇤ +MB)2

2M2
Bq2

1

"
�q2

1 +EB⇤(EB⇤ �MB)

� M2
B⇤(EB⇤ �MB)

EB⇤

R3

R4
� i

M2
B⇤q1

EB⇤

R2

R4

#
. (25)

The ratio in Eq. (25) is obtained at non-zero values of q2 and
needs to be extrapolated to q2 = 0. However, from Eq. (14)
the contribution of A2(0) relative to A1(0) is suppressed by the
ratio (MB⇤ �MB)/(MB⇤ +MB). The form factor A1 is obtained
at q2

0 = (MB⇤ �MB)2 from Eq. (21), but examination shows
that the slight extrapolation to q2 = 0 is not necessary at the
resolution possible with the available statistics. If we define
functions G1 and G2

G1(q2) = (MB⇤ +MB)A1(q2),

G2(q2) = (MB⇤ �MB)A2(q2),
(26)
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FIG. 3. The estimated relative sizes, with ty = 8, of the eight contri-
butions to the B⇤Bp three-point function arising from different Wick
contractions, using a linear scale (left) and log scale (right). Each
contribution is scaled by dividing by the maximum contribution at
that time. The matrix element of interest comes from C which is
shown as a solid red line on both plots. This contribution dominates
for large tx.

we can write the coupling as G1(0) plus a small correction
from the ratio G2/G1,

gb =
ZA

2MB
G1(0)

✓
1+

G2(0)
G1(0)

◆
, (27)

where ZA is the light axial-vector current renormalization fac-
tor. In our simulations A2 is of comparable size to A1. The
mass suppression in the ratio G2/G1 means that the correc-
tion term in (27) is at most 2% on our ensembles and typically
at the sub percent level, with an error comparable to its size.

We take ZA from the RBC/UKQCD combined analysis of
the light hadron spectrum, pseudoscalar meson decay con-
stants and quark masses on the 243 and 323 ensembles [26].
The values are calculated from the ratio of the conserved and
local vector currents, extrapolated to the chiral limit and are
shown in Table III.

TABLE III. Axial current renormalization factors used in this work,
calculated in [26].

Ensemble a/fm ZA

243 0.11 0.7019(26)
323 0.086 0.7396(17)

TABLE IV. Fit ranges used for the two-point functions and the ra-
tios. For non-zero momenta, equivalent combinations are averaged.
Fit ranges are the same for different light-quark masses at the same
lattice spacing, except in the case of the B⇤ two-point function with
momentum (1,1,0) on 243, mla = 0.020 for which a range 7–15 is
used in place of 9–15 listed in the table.

fit range tmin–tmax

~pa/(2p/L) 243 323

B (0,0,0) 8–16 8–17
B⇤ (0,0,0) 7–15 8–16
R1 (0,0,0) 50–58 50–58
B⇤ (1,0,0) 7–15 8–16
R2 (1,0,0) 51–60 47–55
R3 (1,0,0) 50–56 46–55
R4 (1,0,0) 50–57 47–56
B⇤ (1,1,0) 9–15 10–16
R2 (1,1,0) 51–60 47–55
R3 (1,1,0) 49–55 46–55
R4 (1,1,0) 51–57 46–54

IV. ANALYSIS

A. Correlator fits

We first calculate the three-point function on the 243 en-
semble with aml = 0.005 for values of ty ranging from 6 to
18. Examining the data for R1 (see Fig. 5), it is clear that the
best signal is achieved with ty = 6. We therefore choose ty = 6
for our analysis on the 243 ensembles and ty = 8 on the 323 en-
sembles because it corresponds to the same physical distance.

Fig. 6 shows the ratios R1, R2, R3 and R4 calculated on the
243, mla = 0.005 ensemble, and Fig. 7 shows the vector and
pseudoscalar effective-mass plots. In all cases, we estimate
the statistical error with a single-elimination jackknife. The
two-point functions are fitted to a single exponential to extract
ZB and ZB⇤ . Using these values of ZB(⇤) , we then fit the ratios
to a constant in the regions given in Table IV where we expect
excited-state contamination to be small. We choose the fit
ranges for each ratio such that we obtain a good correlated
c

2/dof, and apply them to all ensembles of the same lattice
spacing consistently.

From the ratios we use the procedure described in the previ-
ous section to extract gb on each ensemble, giving the values
listed in Table V.
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FIG. 4. The three-point correlator of Eq. (18) evaluated on the 243, mla = 0.005 ensemble with ty = 6 (left). The time dependence closely
matches that predicted from the analysis in Sec. III C (right).

FIG. 5. The ratio R1(t, ty) evaluated for different values of ty on the
243, mla = 0.005 ensemble. ty = 6 gives the cleanest signal and
longest plateau. The points for different ty have small horizontal off-
sets to help distinguish them on the plot.

TABLE V. Results for gb on the 243 and 323 ensembles. Errors for
gb are statistical. Pion masses are from [26].

L/a mla M2
p

/GeV2 gb

24 0.005 0.108 0.533±0.027
24 0.010 0.175 0.568±0.023
24 0.020 0.311 0.580±0.035
32 0.004 0.084 0.548±0.020
32 0.006 0.119 0.603±0.016
32 0.008 0.155 0.596±0.018

B. Chiral and Continuum Extrapolations

We perform a chiral extrapolation using the SU(2) HMcPT
formula for the axial coupling matrix element derived in [45]:

gb = g0

✓
1�

2(1+2g2
0)

(4p f
p

)2 M2
p

log
M2

p

µ

2 +aM2
p

+ba2
◆
, (28)

which is next-to-leading order in the chiral expansion, but
only leading order in the heavy-quark expansion. We param-
eterize the light-quark and gluon discretization effects with
an a2 term, as expected for the domain-wall light-quark and
Iwasaki gauge actions. The lattice-spacing dependence from
the RHQ action is more complicated. However, we argue
in the next section that heavy-quark discretization effects are
negligible and that an extrapolation in a2 captures the lead-
ing scaling behaviour. We use the PDG value [46] of the pion
decay constant, f

p

= 130.4MeV.
Fig. 8 shows the chiral-continuum extrapolation of the nu-

merical simulation data to the physical light-quark mass and
continuum using Eq. (28). The values of ZA, as calculated
in [25] and [26], are included for each ensemble. The statis-
tical errors in ZA are added in quadrature to the Monte-Carlo
statistical errors in the lattice data for gb before performing
the chiral fit. The six ensembles are statistically independent,
hence the fit is calculated by minimizing an uncorrelated c

2

function. The parameters that minimise the c

2 are g0 = 0.515,
a = �1.324GeV�2, b = �0.648GeV2. We use these fitted
parameters and their covariance matrix to estimate the error
bands in our plots and to give the errors in gb. Our fitted result
is gb = 0.557±0.027.

V. SYSTEMATIC ERRORS

A. Chiral Extrapolation

Our chiral extrapolation relies on NLO SU(2) HMcPT with
pion masses above 400MeV. Therefore we may be using the
theory beyond its range of applicability and we are certainly
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FIG. 6. Ratios R1(t, ty), R2(t, ty), R3(t, ty) and R4(t, ty) for ty = 6 on the 243, mla = 0.005 ensemble. R1 is calculated with ~p = ~p0 = 0, the other
ratios with ~p = (1,0,0,0)2p/L, ~p0 = 0.

FIG. 7. B-meson (left) and B⇤-meson (right) effective masses on the 243, mla = 0.005 ensemble.

omitting higher order terms in the chiral expansion. To es-
timate the uncertainty this introduces we consider a range of
possible fits. First, we consider the effect of neglecting the
heaviest mass from each ensemble (center left plot in Fig. 9).
This alters the form of the fit dramatically but does not sig-
nificantly change the final result. In the bottom row of Fig. 9
we replace f

p

in the coefficient of the NLO chiral logarithms
with fK = 156.1MeV [46] or with f0 = 112MeV in the SU(2)

chiral limit from the RBC/UKQCD light pseudoscalar me-
son analysis [26]. This changes the relative size of NLO and
NNLO and higher-order terms in the chiral expansion. Fi-
nally, we note that our data does not show any strong evidence
of chiral log curvature, presumably because our lightest data
point corresponds to M

p

⇡ 289MeV and is still rather heavy.
We therefore consider an analytic fit, shown in the centre right
plot of Fig. 9, where we extrapolate linearly in M2

p

. Of these
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FIG. 8. Chiral and continuum extrapolation. The bottom (blue) curve
is the fit through the 243 ensemble points. The (red) curve above is
the fit through the 323 ensemble points and the (green) error band and
curve show the continuum extrapolation. The intersection with the
vertical grey line corresponds to the physical pion mass. The result
at the physical mass is shown by the (black) point with error.

variations, the largest difference from our central value for
gb is from the linear fit in M2

p

and a2. This value is larger
than our full chiral-continuum fit by 10.6%. Because the chi-
ral and continuum extrapolations are treated together in our
fitting procedure, however, discretization and chiral extrapo-
lation errors cannot be fully disentangled. In section V E 2 be-
low we consider light-quark and gluon discretization errors,
estimating a systematic error of 11.5%. This is the largest de-
viation seen in the chiral-continuum fits in Fig. 9 and is there-
fore the error we take for the combined chiral and continuum
extrapolation.

B. Lattice-scale uncertainty

The coupling gb is a dimensionless number calculated from
ratios of correlators, so it should have only a mild dependence
on the physical value of the lattice spacing. However, varia-
tions in a affect the chiral and continuum extrapolations. We
estimate the error in gb due to the lattice-spacing uncertainty
by varying the 243 and 323 lattice spacings by their quoted
(statistical plus systematic) uncertainties, s24 and s32 [26],
one at a time whilst keeping the other fixed. Shifting the lat-
tice spacing on the finest ensemble changes gb by 0.7%, and
on the coarser ensemble gb changes by 0.6%. Therefore as-
cribing an error of 0.9% (the sum in quadrature) to this source
of uncertainty seems a conservative estimate.

C. Unphysical sea strange-quark mass

Our simulation is performed with a sea strange-quark mass
that differs from the physical value by approximately 10%. To
investigate the effect of the sea strange-quark mass on gb we
use results from [45] for the NLO axial current matrix ele-

ment in partially quenched HMcPT. This allows us to eval-
uate the expression with different valence and sea strange-
quark masses. The NLO matrix element has four different
contributions, coming from so called sunset diagrams, wave-
function renormalization, tadpole diagrams and the NLO an-
alytic terms. We have calculated the effect of a 10% change
in the sea strange-quark mass in the loop diagrams, assum-
ing the values of the low-energy constants obtained from our
preferred chiral fit, on the value of the coupling gb. We find
a change in gb of 1.5%. This result is numerically consis-
tent with the effect of the strange sea-quark mass on the pion
decay constant observed by the RBC/UKQCD collaboration
in [26]. Therefore we ascribe an error of 1.5% in gb due to the
unphysical strange-quark mass.

D. RHQ parameter uncertainties

1. Statistical

To test the dependence of gb on the uncertainties in the
tuned RHQ parameters we calculate the coupling on the 243

mla = 0.005 ensemble using the full “box” of RHQ parame-
ters used to interpolate to the tuned values:

2

64
m0a
cp

z

3

75 ,

2

64
m0a±sm0a

cp

z

3

75 ,

2

64
m0a

cp ±scp

z

3

75 ,

2

64
m0a
cp

z ±s

z

3

75 .

(29)
For our 243 ensembles, the box parameters are given by

(m0a,cp,z ) = (8.40,5.80,3.20),
(sm0a,scp ,sz

) = (0.15,0.45,0.30).
(30)

We then linearly interpolate gb to the point of the tuned pa-
rameters. By following this procedure underneath the jack-
knife we can propagate the statistical errors from parameter
tuning through to gb. Comparison of this determination to the
result calculated directly using the tuned values of the parame-
ters gives a measure of how sensitive gb is to the uncertainties
arising from the tuning. We find that the central values differ
by 0.01% and the errors agree to two significant figures. In
the context of the overall uncertainty this can be considered
negligible.

Figure 10 shows gb calculated on the seven sets of param-
eters indicated in Eq. (29) for the 243 mla = 0.005 ensemble.

2. Systematic

We also consider the effect on gb of systematic uncertainties
in the RHQ parameters. These are estimated in Ref. [31] and
given in Table II. The three significant contributors are heavy-
quark discretization effects, uncertainty in the lattice spacing,
and uncertainty from the experimental inputs. To determine
the sensitivity of gb to these uncertainties we use the calcu-
lation on the box of parameters, Eq. (29), described in the
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FIG. 9. Variations of chiral fits. Top left: 322 data points only; top right: data points from both lattices with no a2 term. Center left: heaviest
masses dropped; center right: fit to a function linear in M2

p

. Bottom left: replacing f
p

with fK = 156.1MeV; bottom right: replacing f
p

with
f0 = 112MeV. In each plot, the result of the preferred fit from Fig. 8 is shown as the black point, with error, on the vertical line at the physical
pion mass.

previous subsection. We assume a linear dependence of gb on
the RHQ parameters for small shifts, then shift one parameter
at a time by each systematic uncertainty and take the overall
error as the effect of each of these shifts added in quadrature.
The combined effect, shown in Table VI, is an error of 1.5%
in gb.

E. Discretization errors

1. Heavy-quark discretization errors

We estimate heavy-quark discretization errors using an ef-
fective field theory approach [39, 47, 48] in which both our
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FIG. 10. gb calculated for the sets of RHQ parameters used to define
the parameter “box” on the 243 mla = 0.005 ensemble. The blue
points are the results for the box parameter choices and the red point
shows gb calculated directly at the tuned parameter values.

lattice theory and QCD are described by effective continuum
Lagrangians built from the same operators and errors stem
from mismatches between the short-distance coefficients of
higher-dimension operators in the two effective theories. Ok-
tay and Kronfeld [48] have catalogued the relevant operators
and calculated the mismatch coefficients at tree level.

Because we are evaluating a matrix element of the light-

TABLE VI. The effect of systematic uncertainties in the RHQ pa-
rameters on gb. Each parameter was shifted by the uncertainty from
each source and the effect on gb calculated by assuming gb depends
linearly on the parameters.

% error from parameter
Source m0a cp z Total
HQ discretization 0.25 0.65 0.30 0.76
Lattice scale 0.97 0.65 0.24 1.19
Experimental inputs 0.14 0.33 0 0.35
Total 1.01 0.98 0.38 1.46

quark axial-vector current, heavy-quark discretization errors
stem from mismatches in higher-dimension operators in the
heavy-quark action which correct the B and B⇤ meson masses.
We expect these effects to be negligible. From our tuning
procedure [31] we can relate changes in the meson masses
to changes in the RHQ parameters m0a, cp and z , while in
section V D below, we relate changes in the RHQ parameters
to changes in gb. Hence we can estimate the effect of errors in
the meson masses on gb.

In Appendix C of [31], we estimated the heavy-quark
discretization error on the spin-averaged Bs meson mass as
0.05%. Also in [31], that spin-averaged mass was most sen-
sitive to variations in m0a, with a 0.05% shift corresponding
to a change of around 0.02 in m0a on the 243 mla = 0.005
ensemble. From section V D, shifting m0a by the halfwidth
of our tuning “box” changes gb by no more than 1.5%. For
the 243 mla = 0.005 ensemble, this shift in m0a is 0.15 and
hence we expect a heavy-quark discretization error on gb of
no more than (0.02/0.15)⇥ 1.5% = 0.2%, which is negligi-
ble compared to our overall uncertainty.

2. Light-quark and gluon discretization errors

Leading discretization errors from the domain-wall light-
quark action and the Iwasaki gauge action are both O(a2) and
are included as an a2 term in the combined chiral-continuum
extrapolation. However the data is also compatible within er-
rors with assuming no lattice-spacing dependence; a fit with
no a2 term also yields an acceptable, albeit larger, c

2/dof.
The top row of Fig. 9 shows chiral fits to the data without
an a2 term. To estimate the systematic errors coming from the
continuum extrapolation we use the difference of 11.5% in gb
between a fit to our finest data set (a ⇡ 0.086fm) and the a2

extrapolation using both lattice spacings. This is the largest
effect in all variations of our chiral and continuum extrapola-
tions and is therefore the value appearing in Table VII for the
combined chiral and continuum extrapolation uncertainty.

F. Finite-volume effects

We expect that finite-volume effects are small since there
are no propagating light particles in the simulated system. To
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TABLE VII. Error budget for systematic and statistical errors.

Statistical errors 4.8%
Chiral and continuum extrapolation 11.5%
Lattice scale uncertainty 0.9%
Finite volume effects 1.0%
RHQ parameter uncertainties 1.5%
Unphysical sea strange-quark mass 1.5%
Systematic errors total 11.8%

FIG. 11. Comparison of quenched (downward triangles), Nf = 2 (up-
ward triangles) and Nf = 2+1 (circles) calculations of the couplings
gc, gb and ĝ [6–8, 10–13, 49–52]. Error bars represent the sum in
quadrature of all quoted errors (statistical and systematic).

estimate their size we compare the value of gb obtained from
an NLO heavy-meson cPT fit to our data, with and without
finite volume effects included. We compare the finite and
infinite-volume fit result at all of our simulated pion-mass val-
ues. The largest finite-volume correction, which occurs for
our lightest pion mass, is <⇠ 1%, so we take 1% as the finite-
volume error in our calculation of gb.

VI. CONCLUSIONS

The sum in quadrature of all the systematic errors described
in section V gives a total systematic uncertainty of 12%. Our
final error budget is given in Table VII and our final value of
the coupling gb including statistical and systematic errors is

gb = 0.56(3)stat(7)sys (31)

Our calculation is the first directly at the physical b-quark
mass, and has a complete systematic error budget. Fig. 11
compares our result to earlier dynamical calculations at the
charm-quark mass and in the static limit. The dependence
of g on the value of the heavy-quark mass is mild, and our
result lies in the region that would be expected from interpo-
lating between the charm- and infinite-mass determinations.
Our result is compatible with the experimental value gexp

c =
0.570 ± 0.004 ± 0.005 extracted from the natural linewidth
of the transition D⇤(2010)+ ! D0

p

+ by the BaBar Collab-
oration in [17]. This further suggests that 1/mn

Q corrections
to the coupling g are small. Our result has been used by
the RBC/UKQCD collaboration in the chiral extrapolations
of numerical lattice data for the B-meson leptonic decay con-
stants [32, 33] and B ! p`n and Bs ! K`n semileptonic form
factors [34, 35].

ACKNOWLEDGMENTS

BS was supported by EPSRC Doctoral Training Centre
Grant EP/G03690X/1. We acknowledge the use of the Iridis
High Performance Computing Facility and associated support
services at the University of Southampton, USQCD resources
at Fermilab, in part funded by the Office of Science of the U.S.
Department of Energy, as well as computers at Brookhaven
National Laboratory and Columbia University. Fermilab is
operated by Fermi Research Alliance, LLC, under Contract
No. DE-AC02-07CH11359 with the U.S. Department of En-
ergy.

[1] J. Charles et al., Eur. Phys. J. C 41, 1 (2004), arXiv:0406184
[hep-ph].

[2] M. Bona et al., J. High Energy Phys. 2005, 028 (2005),
arXiv:0501199v2 [hep-ph].

[3] J. Laiho, E. Lunghi, and R. S. Van de Water, Phys. Rev. D81,
034503 (2010), arXiv:0910.2928v2.

[4] J. Goity, Phys. Rev. D46, 3929 (1992), arXiv:hep-ph/9206230
[hep-ph].

[5] S. R. Sharpe and Y. Zhang, Phys. Rev. D53, 5125 (1996),
arXiv:hep-lat/9510037 [hep-lat].

[6] A. Abada et al., Phys. Rev. D66, 074504 (2002), arXiv:0206237
[hep-ph].

[7] A. Abada et al., J. High Energy Phys. 2004, 016 (2004).
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