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Despite their importance for precision QCD calculations, correlations between in- and out-of-
jet regions of phase space have never directly been observed. These so-called non-global effects
are present generically whenever a collider physics measurement is not explicitly dependent on
radiation throughout the entire phase space. In this paper, we introduce a novel procedure based on
mutual information, which allows us to isolate these non-global correlations between measurements
made in different regions of phase space. We study this procedure both analytically and in Monte
Carlo simulations in the context of observables measured on hadronic final states produced in e+e−

collisions, though it is more widely applicable. The procedure exploits the sensitivity of soft radiation
at large angles to non-global correlations, and we calculate these correlations through next-to-leading
logarithmic accuracy. The bulk of these non-global correlations are found to be described in Monte
Carlo simulation. They increase by the inclusion of non-perturbative effects, which we show can
be incorporated in our calculation through the use of a model shape function. This procedure
illuminates the source of non-global correlations and has connections more broadly to fundamental
quantities in quantum field theory.

I. INTRODUCTION

Because of the infrared divergences in a weakly-coupled
gauge theory, like QCD at high energy, final states man-
ifest themselves as collections of jets. To connect the
observed final state to final states from fixed-order per-
turbative calculations, infrared and collinear (IRC) safe
jet algorithms [1] have been invented to make these jets
well-defined. Traditionally, these jets have been used as
a proxy for the short distance degrees of freedom, quarks
and gluons, and provide definite objects for matching to
fixed-order calculations of cross sections inclusive over
the entire final state. However, with a definite algorithm,
individual jets can be studied in their own right, ignor-
ing or integrating over all other radiation in the final
state, that is not included in the jet. This introduces
implicit dependence into the jet on the relevant scales
of the out-of-jet radiation, the dominant effects of which
are referred to as non-global logarithms (NGLs) [2]. Non-
global effects and logarithms arise generically whenever
an observable is only measured on a restricted region of
phase space.

For observables measured exclusively on jets, like the
jet mass for example, NGLs can introduce large correc-
tions in specific phase space regions, and have proved
challenging to understand systematically [3–6]. There
has been significant advances recently in theoretical
progress for understanding and calculating NGLs [2, 3, 7–
25] as well as the development of techniques for elim-
inating them by removal of appropriate soft radiation
in jets [26–28]. Despite their importance and relevance,
NGLs and non-global correlations in general, have never
directly been observed. In particular, their effects on ob-
servables such as the jet mass, while potentially large, are
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difficult to unambiguously disentangle from perturbative
and non-perturbative uncertainties when comparing with
measurements. In this paper, we introduce a novel pro-
cedure which directly measures non-global correlations
between in-jet and out-of-jet phase space regions, and
which vanishes when such correlations are not present.
We present theoretical calculations of this observable to
next-to-leading logarithmic (NLL) accuracy in QCD, and
study its properties in Monte Carlo simulation.

While our procedure for measuring non-global correla-
tions can be applied widely, we will restrict our discussion
to correlations between hemisphere jets in e+e− annihi-
lation to hadrons. In that case, we first separate events
into left and right hemispheres using a cone jet algorithm
defined about recoil-free jet axes [29–31]. This is neces-
sary to eliminate back-reaction of soft particles near the
hemisphere boundary on the jet finding. With identi-
fied hemispheres, we then measure IRC safe two-point

energy correlation functions e
(β)
2 [29, 32–34], defined by

the angular exponent β, in each hemisphere. The energy
correlation functions are sensitive to wide-angle, soft ra-
diation and so by measuring the correlation between the
measured values in each hemisphere, one defines an ob-
servable that is sensitive to non-global correlations. The
problem of measuring non-global correlations is then re-
duced to defining a measure of the correlation between
the left and right hemisphere values of the energy corre-
lation functions.

While there are many measures that can be used to de-
termine the correlation, the one we will use is the mutual
information. For the application of non-global correla-
tions, the mutual information measures the number of
bits of information that are known about the probability
distribution of the right hemisphere energy correlation

function, e
(β)
2,R, given that the distribution of the energy

correlation function in the left hemisphere, e
(β)
2,L, is known

(or vice-versa). The definition of mutual information,
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Here p(a) is the probability distribution of an observable
a and p(a, b) is the joint probability distribution of two
observables a and b. Note that

p(a) =

∫
db p(a, b) . (2)

If the left and right hemisphere observables e
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2,L and e
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are truly uncorrelated, then
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and the mutual information is zero.1 Therefore, the mu-

tual information I
(
e

(β)
2,L, e

(β)
2,R

)
is only non-zero if there

are non-trivial correlations between the hemispheres.
Just the absolute value of the mutual information is dif-
ficult to interpret because it can range anywhere from 0
to ∞.

Mutual information by itself is just one number, and
it can potentially be unclear what that number means.
We are able to learn about the origin of the correlation
between the left and right hemispheres by measuring the
mutual information over a range of angular exponents
β. As we will discuss in Sec. III, the energy correlation
functions are defined such that by increasing the angular
exponent β, one becomes increasingly sensitive to soft,
wide angle emissions. These soft wide angle emissions
are the most sensitive to non-global correlations between
the hemispheres. Therefore, as the angular exponent β

increases, I
(
e

(β)
2,L, e

(β)
2,R

)
should also increase due to the

increasing importance of soft emissions sensitive to non-

global correlations. As the β dependence of I
(
e

(β)
2,L, e

(β)
2,R

)
is most important for understanding non-global effects,

we will denote I
(
e

(β)
2,L, e

(β)
2,R

)
≡ Iβ . Monotonically in-

creasing Iβ with β is an unambiguous signal of non-global
physics. There may be baseline correlations due to other
effects, but these would not be manifest as a rise in Iβ
with β.

An important prediction of this framework is that
when appropriate methods are used to remove soft wide-
angle radiation, so-called jet grooming algorithms, the
correlations between the hemispheres should vanish. It

1 Ref. [35] discusses other basic properties of the mutual informa-
tion and its calculation in the context of correlations of multiple
observables measured on the same jet.

has been shown that the modified mass drop [26, 27]
and the soft drop [28] jet groomers eliminate NGLs, at
least through NLL accuracy. Therefore, in our analyti-
cal calculations, when these jet grooming techniques are
applied, Iβ is close to zero and does not increase with β.
This is also borne out in Monte Carlo simulation of e+e−

collision events.
We choose to use mutual information to measure cor-

relations as it has been used in some other studies
of correlations of QCD jet observables [35–37]. How-
ever, any procedure that tests the difference between
the joint probability distribution of two observables and
the product of the individual probability distributions
would be sufficient. Other examples, though not exhaus-
tive, that quantify correlations used in statistical anal-
yses include Hellinger distance, Jensen-Shannon diver-
gence, Kolmogorov-Smirnov test, and Rényi divergence.
The Hellinger distance is actually a metric and ranges
strictly between 0 and 1. More ambitiously, although we
have focused on methods which allow for the reduction
of the correlations to a single number, it would also be
interesting to directly study the double differential dis-

tribution of p
(
e

(β)
2,L, e

(β)
2,R

)
− p

(
e

(β)
2,L

)
p
(
e

(β)
2,R

)
. This is,

however, considerably more complicated to directly in-
terpret, and we therefore restrict ourselves to the study
of the mutual information, which summarizes the corre-
lations in a single number.

It is tempting to draw an analogy between these non-
global correlations and quantum entanglement of the two
hemispheres, but mutual information is measured on the
asymptotic states, long after decoherence. It is therefore
challenging to make a direct connection to the underlying
quantum correlations. More generally, in an experiment
that only measures energy deposits it is not possible to
construct non-commuting operators at the same point in
the detector, so as to test Bell’s inequalities [38]. It may
be possible to do so, however, with idealized detectors in
toy models, as was recently proposed in the context of
inflation [39]. We leave a study of possible connections
between NGLs and entanglement to future work.

The outline of this paper is as follows. In Sec. II,
we review the source of dominant non-global correlations
and logarithms from fixed-order matrix elements in e+e−

collisions. In Sec. III, we define the two-point energy
correlation functions appropriate for e+e− collisions and
calculate the mutual information Iβ to NLL accuracy,
capturing non-global logarithms with the dressed gluon
expansion of Ref. [22]. We are also able to include non-
perturbative effects by convolving the perturbative dis-
tributions with a shape function, and we demonstrate
that non-perturbative effects in general increase the cor-
relation between the hemispheres. In Sec. IV, we calcu-
late the mutual information in Monte Carlo simulation
and find good agreement between our analytical calcu-
lation and the simulations. We conclude in Sec. V and
discuss other scenarios where non-global effects can be
directly measured in a similar manner. Calculational de-
tails both of the analytics and algorithms for determining
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the mutual information on finite data sets are presented
in appendices.

II. NON-GLOBAL PHYSICS

In this section, we briefly review non-global physics
in the context of e+e− → dijets events. Our goal is
to calculate the distribution of observables measured on
the left and right hemispheres (appropriately defined) of
each event and we choose these observables such that a
non-zero value regulates the soft and collinear singular-
ities. While the two-point energy correlation functions
are one example of such observables, other examples in-
clude hemisphere masses or hemisphere thrust. By de-
manding that both hemisphere masses are non-zero, for
example, means that the lowest order contribution to the
double differential cross section or joint probability dis-
tribution is at O(α2

s). Sufficient for our analysis here, we
can consider purely gluonic radiation from the initial qq̄
dipole. Then, we must calculate the Feynman diagrams
that contribute to this final state.

If we assume that QCD is an abelian gauge theory, then
gluons are emitted exclusively off of the qq̄ dipole. For
two positive helicity abelian gluons, the matrix element
can be written in spinor helicity notation [40, 41] as

A(e−a , ē
+
b → q+

1 , g
+
2 , g

+
3 , q̄

−
4 )

A(e−a , ē
+
b → q+

1 , q̄
−
4 )

=
〈14〉
〈12〉〈24〉

〈14〉
〈13〉〈34〉

, (3)

where the quarks are particles 1 and 4, the gluons are
particles 2 and 3, and we have stripped away couplings.
The Born-level matrix element is

A(e−a , ē
+
b → q+

1 , q̄
−
4 ) =

〈4a〉2

〈14〉〈ab〉
, (4)

again, stripped of couplings, with the initial electron and
positron particles a and b. The spinor products are de-
fined with |〈ij〉|2 = sij . In Eq. (3), we have dropped the
momentum conserving δ-function, also. Momentum con-
servation does correlate the two hemispheres, but in the
limit that gluons 2 and 3 become soft, this correlation
vanishes. Note also that even away from the soft limit
the matrix element factorizes into two contributions, one
for each gluon. In the soft limit and demanding that
the gluons are in different hemispheres, the gluons are
completely uncorrelated. Therefore, in an abelian gauge
theory like QED, there are no NGLs to this order in per-
turbation theory.

In a non-abelian gauge theory, however, gluons can
radiate more gluons. For the same selection of helicities,
the color-ordered matrix element for the emission of two
gluons is

A(e−a , ē
+
b → q+

1 , g
+
2 , g

+
3 , q̄

−
4 )

A(e−a , ē
+
b → q+

1 , q̄
−
4 )

=
〈14〉

〈12〉〈23〉〈24〉
, (5)

where, again, we strip couplings and momentum-
conserving δ-functions. Taking the soft limit of gluons

2 and 3 removes correlations through momentum conser-
vation, but even in this limit, the matrix element does not
factorize. The soft gluons in each hemisphere will know
about the other through the matrix element, unlike in an
abelian theory. Therefore, in the soft limit, these correla-
tions will manifest themselves as large logarithms in the
cross section of the hemisphere observables. Resumma-
tion of these large logarithms is necessary for convergence
of the perturbation theory in the singular region of phase
space. In the next section, we present the details of the
method for measuring these correlations directly.

III. ANALYTICAL CALCULATION OF
MUTUAL INFORMATION

Isolating non-global correlations between the hemi-
spheres is subtle and robust definitions of the hemi-
spheres and observables measured on them are required.
In this section, we define how we identify hemispheres,
measure the energy correlation functions, and present a
calculation to NLL accuracy.

A. Observable Definitions

Because wide angle soft radiation is most sensitive to
non-global correlations, we need a procedure for identi-
fying the hemispheres that is insensitive to back-reaction
by the soft particles on the boundary. Effectively, we
must define the hemispheres with an algorithm that does
not introduce clustering logarithms [42, 43]. Our proce-
dure for doing this is the following. We first cluster the
event with the exclusive kT algorithm [44] to two jets us-
ing Winner-Take-All (WTA) recombination [30, 31, 45].
WTA recombination ensures that the jet axes lie along
the direction of the hardest radiation in the event, and
are not displaced by recoil effects from soft, wide an-
gle radiation. We then identify the axis defined in this
way of the highest energy jet in the event and cluster
all radiation within an angle of π/2 of this axis into one
hemisphere, and all of the remaining radiation into the
other hemisphere. This effectively defines an exclusive
cone jet algorithm. We then randomly choose one of the
hemispheres to be the left hemisphere, and the other to
be the right hemisphere.

With these hemisphere definitions, we then measure
energy correlation functions on each hemisphere. The

two-point energy correlation functions e
(β)
2 are defined

for e+e− collision events as

e
(β)
2 =

1

E2
J

∑
i<j∈J

EiEj

(
2pi · pj
EiEj

)β/2
, (6)

where EJ is the total energy of the jet (or otherwise iden-
tified region), the sum runs over all distinct pairs of par-
ticles in the jet, and β is an angular exponent required
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to be larger than 0 by IRC safety. Note that for massless
particles,

2pi · pj
EiEj

= 2(1− cos θij) , (7)

and so larger values of β give greater weight to wide-
angle emissions. The two-point energy correlation func-
tion is non-zero for a jet with two particles. By separately

measuring e
(β)
2 in each hemisphere and demanding that

both are non-zero requires that each hemisphere has at
least two particles. We will denote the energy correlation

functions measured on the left (right) hemisphere as e
(β)
2,L

(e
(β)
2,R).
We emphasize that no other cuts are performed: the

left and right hemisphere energy correlation functions are
measured on every e+e− → hadrons collision event.

B. Perturbative Calculation

With robust jet definitions and observables measured
on the jet hemispheres, we now calculate the joint prob-
ability distribution or double differential cross section of

the measured values of e
(β)
2,L and e

(β)
2,R. Our calculation will

be accurate to NLL order, and here, we will not include
fixed-order corrections. These are expected to be a small
effect on our results because the bulk of the distribution
is in the region where logarithms of the observables are
large, and therefore well-described by a resummed calcu-
lation.

The first relevant fixed-order corrections arise at
O(α2

s), when each hemisphere has an extra emission. The
O(αs) corrections are not representative of power correc-
tions, because one hemisphere necessarily has zero mass.
That means that at O(αs), the hemispheres are com-
pletely uncorrelated (except for total momentum conser-
vation). Matching fixed-order at O(α2

s) to our resummed
expressions will be addressed in future work.

For the resummation of energy correlation functions
measured in each hemisphere, there are two components
that contribute to NLL accuracy. First, there are global
logarithms, which arise from soft or collinear emissions
in each hemisphere that are uncorrelated with emissions
in the other hemisphere. In App. A, we present the cal-
culation of the global logarithms of the two-point energy
correlation functions measured on a hemisphere to NLL
accuracy using soft-collinear effective theory (SCET) [46–
49], though other methods can be used and produce iden-
tical results [29]. The global cumulative probability dis-
tribution or double cumulative cross section ΣG for the
hemisphere energy correlation functions can be expressed
as

ΣG
(
e

(β)
2,L, e

(β)
2,R

)
≡ Σ

(
e

(β)
2,L

)
Σ
(
e

(β)
2,R

)
, (8)

where Σ
(
e

(β)
2,L

)
is the global NLL resummed cumula-

tive distribution of the left-hemisphere energy correla-

tion function. Because the left and right hemispheres are

otherwise identical, Σ
(
e

(β)
2,L

)
is identical to Σ

(
e

(β)
2,R

)
. If

this was the only contribution to the distribution, then
the mutual information of the two hemispheres would
be zero, as there is no correlation between between the
hemispheres.

However, in addition to global logarithms, at NLL ac-
curacy, there are also NGLs that must be included that
introduce correlations between the hemispheres. To this
accuracy, NGLs can be included by Monte Carlo simula-
tion [2] or by solving the Banfi-Marchesini-Smye (BMS)
equation [9]. Here, we will use the dressed gluon ex-
pansion [22], including NGLs with the one-dressed gluon
approximation. The one-dressed gluon does not include
complete NGLs at NLL accuracy, but was shown to agree
with the solution of the BMS equation at the percent level
over the range

αsCA
π

∣∣∣∣∣log
e

(β)
2,R

e
(β)
2,L

∣∣∣∣∣ <∼ 1.5 .

The one-dressed gluon resummation of non-global loga-
rithms can be expressed as

S
(1,NGL)
nn̄ (µL, µR) = 1− 2CF

β0

[
γE

∣∣∣∣log
αs(µR)

αs(µL)

∣∣∣∣ (9)

+
β0

2CA
log Γ

(
1 +

2CA
β0

∣∣∣∣log
αs(µR)

αs(µL)

∣∣∣∣)] .

Here, Γ(x) is Euler’s Gamma function, γE ' 0.577 is the
Euler-Mascheroni constant, and β0 is the leading coeffi-
cient of the β-function,

β0 =
11

3
CA −

2

3
nf , (10)

where nf is the number of active quark flavors. The
scales µL and µR are set by the measured values of the
left and right hemisphere energy correlation functions.
Up to factors of order 1, the left hemisphere scale is, for
example,

µL ' e(β)
2,LEL , (11)

where EL is the energy of the left hemisphere. This scale
can be varied to provide a measure of perturbative un-
certainties.

Then, to NLL accuracy with the one-dressed gluon to
capture NGLs, the double cumulative cross section of the
hemisphere energy correlation functions can be expressed
as

Σ
(
e

(β)
2,L, e

(β)
2,R

)
= Σ

(
e

(β)
2,L

)
Σ
(
e

(β)
2,R

)
S

(1,NGL)
nn̄ (µL, µR) .

(12)
The double differential cross section or joint probability
distribution is found by the double derivative:

p
(
e

(β)
2,L, e

(β)
2,R

)
=

1

σ

∂2

∂e
(β)
2,L ∂e

(β)
2,R

Σ
(
e

(β)
2,L, e

(β)
2,R

)
. (13)
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FIG. 1: The mutual information Iβ as calculated to
NLL accuracy with the one-dressed gluon to capture

NGLs. The lighter band reflects conservative theoretical
uncertainties.
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FIG. 2: Plot of the dependence of the mutual
information on the size of the non-global contributions.

The parameter B controlling the size of the NGLs is
varied from 0.5 to 2.

With this result, we can then calculate the mutual infor-
mation Iβ as defined in Eq. (1).2

In Fig. 1, we plot the mutual information Iβ as cal-
culated from Eq. (13) as a function of the angular expo-
nent β for e+e− collisions at 1 TeV center of mass energy.
As expected, the mutual information is non-zero and in-
creases with β, reflecting the increasing importance of

2 While other non-global observables have appeared in the litera-
ture e.g. that of Refs. [50, 51], a key advantage of the use of mu-
tual information between IRC safe observables is that we have a
precise definition of the non-global correlations that are probed
in terms of an all orders factorization theorem. The above dis-
cussion defines precisely what this constitutes for the case of
hadronic jets in e+e−.

soft, wide angle emissions to the energy correlation func-
tions. The lighter band is representative of theoretical
uncertainties, determined by varying the natural scales
appearing in the double differential cross section by fac-
tors of 2 and taking the envelope. While the uncertainties
are large, the increase of Iβ with β is robust.

It is interesting to study the sensitivity of the mutual
information Iβ to the size of the NGLs. We can demon-
strate this sensitivity by modifying the one-dressed gluon
by a coefficient B to be

S
(1,NGL)
nn̄ (µL, µR;B) = 1−B 2CF

β0

[
γE

∣∣∣∣log
αs(µR)

αs(µL)

∣∣∣∣ (14)

+
β0

2CA
log Γ

(
1 +

2CA
β0

∣∣∣∣log
αs(µR)

αs(µL)

∣∣∣∣)] .

By varying B we can observe the corresponding response
of the mutual information. In Fig. 2, we plot the mu-
tual information Iβ for B = 0.5, 1, 2, without including
theoretical uncertainties. Iβ exhibits roughly linear de-
pendence on B, demonstrating that this observable is
very sensitive to both the value of αs and the size of
non-global effects.

C. Including Non-Perturbative Effects

One can additionally include the effects of non-
perturbative physics due to hadronization by convolu-
tion with a non-perturbative shape function [52, 53] be-
cause the energy correlation functions are additive ob-
servables. Korchemsky and Tafat [53] introduced a shape
function differential in both hemisphere scales εL and εR,
F (εL, εR). The non-perturbative distribution can then be
expressed as

σ(e
(β)
2,L, e

(β)
2,R) (15)

=

∫
dεL dεR F (εL, εR)σp

(
e

(β)
2,L −

εL
EL

, e
(β)
2,R −

εR
ER

)
,

where σp denotes the perturbative distribution. The
shape function is normalized:

1 =

∫
dεL dεR F (εL, εR) , (16)

and has support over a region of size set by the non-
perturbative scale of QCD, ΛQCD. The parametrization
of the shape function introduced by Korchemsky and
Tafat is

F (εL, εR) = N
(εLεR

Λ2

)a−1

e−
ε2L+ε2R+2bεLεR

Λ2 . (17)

N is set by the normalization of the shape function, and
a, b, and Λ are parameters of the shape function. By
fitting data for heavy jet mass, they suggested the values
a = 2, b = −0.4, and Λ = 0.55 GeV. It is important to
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emphasize that this is a parameterization, and other pos-
sibilities are possible. Most generally, a complete basis
of shape functions should be considered [54].

The parameter b controls the amount of correlation be-
tween the hemispheres introduced by non-perturbative
effects. A value of b = 0 eliminates non-perturbative cor-
relations, while b > −1 is required for the shape function
to be normalizable. In general, we expect the amount
of non-perturbative correlation to depend on the angu-
lar exponent β of the energy correlation functions. We
are able to parametrize this dependence by considering
simple limiting cases. As β → ∞, the non-perturbative
correlations should become unbounded because the mu-
tual information is controlled by emissions right at the
hemisphere boundary. Therefore, as β → ∞, we expect
that b→ −1. If β ≤ 1, then collinear emissions live at an
equal or lower virtuality than soft emissions. Thus, for
β ≤ 1, non-perturbative corrections will be dominated by
high energy collinear splittings with relative transverse
momentum near the scale ΛQCD. The non-perturbative
correlations should therefore vanish for β <∼ 1, because
different hard collinear sectors are uncorrelated, up to
corrections at higher powers in the observables. There-
fore, as β → 1, b → 0. A simple parametrization of b
that accounts for these expected limits is

b =
1− β
β

. (18)

We do not, however, have a proof of this relation. Mea-
surement of b as a function of β, perhaps using our mu-
tual information observable, would shed light onto the
non-perturbative correlations between observables. For
the hemisphere mass, β = 2 and b = −0.5, close to the
value suggested by Korchemsky and Tafat. We will there-
fore use this value of b in our analysis. Since our pertur-
bative uncertainties are large, we will not study in detail
the variation of non-perturbative parameters. Instead,
our focus is simply on showing how non-perturbative ef-
fects can be incorporated, and understanding their im-
pact on the mutual information.

It is interesting to note that while to leading loga-
rithmic accuracy the mutual information, Iβ , vanishes
in perturbation theory, this is no longer true once non-
perturbative effects are included with a non-zero value
of the shape function parameter b. A non-zero b in-
duces correlations between the energy correlation func-
tions as measured on the left and right hemispheres even
if they are not present perturbatively. A measurement
of the mutual information could therefore also prove
useful in constraining non-perturbative correlations in
event shape observables, and improving their modeling
in Monte Carlo programs.

The non-perturbative scale Λ will also have depen-
dence on β. From the universality of the leading non-
perturbative corrections [55, 56], it has been demon-
strated that for observables like the energy correlation
functions that are additive and have an angular expo-

� � � � �
����

����

����

����

����

����

����

����

β

� β

����/����� ���������� ������ �����������

��� �������� + ����� ��������

� ���� �+�-→ ������

Ω = ���� ���

σ� ⊗ �

σ�

FIG. 3: The mutual information Iβ as calculated to
NLL accuracy with the one-dressed gluon to capture
NGLs including a non-perturbative shape function

(solid). The lighter band reflects conservative
theoretical uncertainties and the purely perturbative

result is shown for comparison (dashed).

nent parameter, the non-perturbative scale Λ is

Λ =
Ω

β − 1
, (19)

where Ω is a fixed energy scale set by a non-perturbative
matrix element. Following Korchemsky and Tafat, we
set Ω = 0.55 GeV. Note that this is only sensible for β >
1, where soft emissions dominate the non-perturbative
corrections.

While non-perturbative correlations can be large, they
do not necessarily result in a large change of the mu-
tual information. Non-perturbative corrections are only
dominant near the singular regions of phase space. For
large values of the energy correlation functions the ef-
fect of the shape function reduces to a shift of the per-
turbative distribution by an amount proportional to the
non-perturbative scale. However, a shift of the distribu-
tion does not affect the mutual information (which can
be seen by a simple change of variables in its definition).
So, non-perturbative effects contribute to the mutual in-
formation an amount suppressed by the volume of phase
space in which they dominate.

In Fig. 3, we plot the mutual information Iβ including
non-perturbative corrections, as a function of β. For this
plot, we set the parameters in the shape function to be

a = 2 ,

b =
1− β
β

,

Λ =
0.55 GeV

β − 1
.

Additionally, we include an estimate of perturbative un-
certainties by varying scales in the perturbative distri-
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bution. For comparison, we also include the perturba-
tive mutual information. We can only compute the non-
perturbative mutual information for β >∼ 1, for the rea-
sons described above. Especially as β increases, we see
that non-perturbative correlations further increase Iβ , as
expected. While we only plot for one value of the non-
perturbative parameter Λ, we found only very weak de-
pendence on this value.

IV. MONTE CARLO STUDY

In this section, we compare our analytical calculations
of non-global correlations to Monte Carlo simulation of
e+e− collision events. We generate e+e− collision events
at 1 TeV center of mass energy with both Pythia 8.210
[57, 58] and Vincia 1.2.02 [59–64] Monte Carlos. For
comparison to our analytic calculations, we consider par-
ton level and hadron level events. We then cluster the
event into two jets with the exclusive e+e− kT algorithm
[44] with WTA recombination [30, 31, 45, 50] as imple-
mented in FastJet 3.1.3 [65]. About the axis of the
highest energy jet in the event, we cluster particles into
one hemisphere if they lie within an angle of π/2 of this
axis, and cluster them into the other hemisphere if they
are outside this region. The hemispheres are then ran-
domly assigned to be left or right and the energy corre-
lation functions are measured on them.

The calculation of the mutual information from these
event samples is quite subtle, and a detailed discussion
of calculating mutual information from finite statistics is
described in Ref. [35].3 While we do not present a de-
tailed discussion of the calculation of mutual information
on finite data, we will present the results. Mutual infor-
mation can be equivalently defined through the Shannon
entropies of the various distributions. For observables a
and b, the mutual information can be written as

I(a, b) = H(a) +H(b)−H(a, b) . (20)

For binned data, the entropy H(a) is

H(a) = −
∑
i∈bins

ni
Na

ev

log2

ni
Nev

, (21)

where Na
ev is the total number of events in the a sample

and nai is the number of events in bin i for observable a.
For a finite data set, the number of events per bin will
fluctuate, and the leading effect of these fluctuations on
the mutual information can be calculated. The mutual
information is then

I(a, b) = I∞(a, b)− 1

2 log 2

(
nabins

Na
ev

+
nbbins

N b
ev

− nabbins

Nab
ev

)
+ . . .

(22)

3 The effects described there have actually been known for a very
long time in other applications of mutual information; see, e.g.,
Refs. [66, 67].

Here, I∞(a, b) is the mutual information with infinite
statistics, nabins is the number of bins in the a sample,
and Na

ev is the number of events in the a sample. To
remove, or at least minimize, effects of finite binning, we
want to set the term in parentheses in Eq. (22) equal to
zero with judicious choices of bin and sample sizes. The
choice used in this paper is to set nabins = nbbins ≡ nbins

and nabbins = n2
bins. With this choice the one dimensional

sample sizes are

Na
ev = N b

ev =
2Nab

ev

nbins
. (23)

With this choice, we find that the mutual information
that we calculate on Monte Carlo data is largely inde-
pendent of the number of bins nbins. There do exist non-
parametric methods for estimating mutual information
that often have the advantage that a significantly smaller
amount of data can be used. We discuss one such algo-
rithm in App. B.

We plot the extracted mutual information Iβ in both
parton level and hadron level Monte Carlo in Fig. 4. Both
Monte Carlos exhibit the characteristic increase in Iβ as
β increases, indicative of non-global correlations. The
values of Iβ are nicely consistent with our calculations at
both parton level (Fig. 1) and hadron level (Fig. 3), as
well as with each other. We do not have a clear expla-
nation for the slight discrepancy between the two gener-
ators observed at higher β at parton level, as it is well
within our perturbative uncertainties. The Monte Carlo
also manifests the expected increase of non-global corre-
lations with the addition of hadronization.

Non-global effects and NGLs in particular, strictly first
occur at NLL order, and this observable demonstrates
that formally leading logarithmic parton showers do in-
clude some amount of NGLs. This is perhaps not too
surprising, because even in the Monte Carlos it is possi-
ble that an emission in the left hemisphere subsequently
emits into the right hemisphere. What may be surprising
is that the strength of these correlations seems to be con-
sistent with that calculated to NLL accuracy. Because of
the slightly different physics incorporated in the Monte
Carlo predictions and the analytic calculations, we have
chosen not to show them on the same plot. As non-global
effects are probed in more detail, it will important to un-
derstand, preferably with a proof from the evolution ker-
nels in the parton shower, to what extent parton shower
Monte Carlos reproduce, for example, the BMS equation.
It would also be interesting to improve the perturbative
uncertainties in the analytic calculation of the mutual in-
formation by including higher order NGLs, for example
using the formalisms proposed in Refs. [21, 22, 24, 25],
allowing for a more precise comparison between analytic
calculations and Monte Carlo programs.

To provide further support for our interpretation of the
rise of Iβ with β being due to non-global interactions of
soft QCD particles, in Fig. 5 we show a comparison of the
mutual information on Pythia dijet events measured be-
fore and after the application of the modified mass drop
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FIG. 4: The mutual information Iβ as calculated in Pythia and Vincia Monte Carlo at (a) parton-level and (b)
hadron-level.
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FIG. 5: The mutual information for e+e− → dijets
before and after the application of the modified mass

drop (mMDT) grooming procedure.

(or equivalently, soft drop) grooming procedure [26–28]
with fractional energy cut zcut = 0.1. In analytic calcula-
tions, this jet groomer has been shown to eliminate NGLs
by removing wide angle soft radiation from the jet. This
prediction is supported by Fig. 5, where the groomed Iβ is
small relative to Iβ measured on the original event, and
exhibits minimal dependence on β. This suggests that
soft wide angle radiation is not responsible for the resid-
ual correlations. We have restricted the range of the plot
to a single unit interval in β, as for angular exponents
β >∼ 2, the values of the energy correlation function after
grooming become very small and our numerical methods
become unstable. Because the characteristic increase of
Iβ with β is not present in the groomed events, NGLs
have indeed been removed.

V. CONCLUSIONS

Despite their importance for precision jet calculations,
NGLs have never directly been observed. In this pa-
per, we introduced a novel procedure that allows us to
isolate non-global correlations and their manifestation as
NGLs. The correlation between hemispheres in e+e− col-
lisions as quantified by the mutual information is calcula-
ble and measurable and we find good agreement between
analytics and Monte Carlo simulation. This correlation
is also very sensitive to the value of the coupling αs,
which can be brought under better theoretical control
with higher-order calculations. Non-perturbative contri-
butions generically increase the correlation between the
hemispheres, but are still subdominant effects to pertur-
bative NGL correlations. The mutual information Iβ
is sensitive to physics formally beyond the accuracy of
Monte Carlo generators, and so could be a powerful ob-
servable for tuning. Additionally, while we focused on
correlations in TeV collisions, this procedure could be
applied for collisions at the Z pole at LEP. Perturba-
tive non-global correlations would still exist, but non-
perturbative correlations would be significantly larger.

While we have focused our discussion on the mutual in
formation in the context of e+e− collisions it, or some-
thing similar, can in principle be measured at a hadron
collider. A potentially clean measurement which is di-
rectly related to our discussion at e+e− colliders is the
decay of a color singlet initial state into hadrons. One
could create such a sample at the LHC by identifying the
hadronic decays of electroweak bosons. With all particles
from the decay, one can boost the system to its center of
mass, identify the hemispheres, and measure the correla-
tions. It would also be interesting to use this observable
to measure correlations between jet properties in pp →
dijets, or more generally in QCD events. In particular,
this procedure can be entirely data driven, and could be
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used as a powerful probe of correlations for measurements
made in distinct regions of the detector. Experimen-
tally, this would be significantly challenging, especially
controlling effects from contamination. Nevertheless, be-
cause it probes explicitly higher-order physics, measuring
these non-global correlations could provide powerful in-
sight into subleading QCD effects.
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Appendix A: Global Logarithm Resummation

In this appendix, we collect the expression of the re-
summed cross section to NLL order for global logarithms
in the framework of SCET. The first factorization the-
orem and resummation of the global logarithms of jet
observables to NLL was presented in Ref. [68]. Ref. [31]
extended that analysis to the resummation of recoil-free
angularities [69, 70] and energy correlation functions. To
NLL accuracy, the energy correlation functions were also
resummed by the CAESAR collaboration [29]. The mas-
ter formula for resummation of global logarithms of the
hemisphere energy correlation functions is

σG
(
e

(β)
2,L, e

(β)
2,R

)
= exp [KH(µ, µH) +KJR(µ, µJR) +KJL(µ, µJL) +KSR(µ, µSR) +KSL(µ, µSL)] (A1)

× exp

[
2γE
β

(ωJR(µ, µJR) + ωJL(µ, µJL)) + 2 (γE + (β − 1) log 2) (ωSR(µ, µSR) + ωSl(µ, µSL))

](
µ2
H

4E2
J

)ωH(µ,µH)

×

 µ2
JR(

e
(β)
2,R

)2/β

E2
J


ωJR (µ,µJR ) µ2

JL(
e

(β)
2,L

)2/β

E2
J


ωJL (µ,µJL ) µ2

SR(
e

(β)
2,R

)2

E2
J


ωSR (µ,µSR ) µ2

SL(
e

(β)
2,L

)2

E2
J


ωSL (µ,µSL )

× 1

Γ
(

1− 2
βωJr (µ, µJR)− 2ωSR(µ, µSR)

) 1

Γ
(

1− 2
βωJL(µ, µJL)− 2ωSL(µ, µSL)

) .

The functions Ki(µ, µi) and ωi(µ, µi) are defined as

Ki(µ, µi) = Ci
Γ0

2β2
0

[
4π

αs(µi)

(
log r +

1

r
− 1

)
+

(
Γ1

Γ0
− β1

β0

)
(r − 1− log r)− β1

2β0
log2 r

]
− γ0

2β0
log r , (A2)

ωi(µ, µi) = −Ci
Γ0

2β0

[
log r +

αs(µi)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

]
,

and the various QCD constants are

β0 =
11

3
CA −

2

3
nf , (A3)

β1 =
34

3
C2
A −

10

3
CAnf − 2CFnf , (A4)

Γ0 = 4 , (A5)

Γ1 = 4CA

(
67

9
− π2

3

)
− 40

9
nf , (A6)

r =
αs(µ)

αs(µi)
. (A7)

The color factors and non-cusp anomalous dimensions
appearing in the K and ω functions are:

CH = −2CF , (A8)

γH = −12CF , (A9)

CJ =
β

β − 1
CF , (A10)

γJ = 6CF , (A11)

CS =
1

1− β
CF , (A12)

γS = 0 . (A13)
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For canonical resummation of the hemisphere observables
to NLL, one sets the scales µi to their canonical values
as determined by the ratios appearing in Eq. (A1). By
consistency of the factorization, the master formula is
independent of the scale µ. By varying the scales µi
in Eq. (A1) by order-1 amounts, one can estimate the
perturbative uncertainty by not resumming to higher ac-
curacy.

Appendix B: Non-Parametric Algorithm for Mutual
Information

In this appendix, we describe a non-parametric algo-
rithm for calculating the mutual information on a finite
data set, introduced in Ref. [71]. We will not present a
proof of the algorithm here, but just describe the method
and demonstrate its performance on simulated Monte
Carlo data.

Given a two-dimensional data set over an N number
of events,

Z = {X,Y } , (B1)

we define the distance measure between two events as

||z − z′|| = max {||x− x′||, ||y − y′||} , (B2)

where || || denotes any metric; for example, just the ab-
solute value of the difference of measured values of the
observables in the two events. Here, X or Y denote the
set of events and x and y denote the measured values of
a particular event. Then, given an integer k, for each
event measurement zi, one determines the minimal dis-
tance εi from zi in which k other events are contained.
The estimate of the mutual information is then

I(X,Y ) = ψ(N) + ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉 (B3)

where ψ(x) is the digamma function. nx(i) and ny(i) are
the number of events which have measured values of x
and y, respectively, that are within a distance of εi of
event i. The angle brackets 〈〉 denote averaging over the
ensemble.

We demonstrate in Figs. 6 and 7 the effectiveness of
this procedure for calculating the mutual information of
the energy correlation functions of the two hemispheres
from Monte Carlo simulation, as a function of the number
of events N used in the sample. In these plots, we take
k = 1. While it takes several thousand events for the
fluctuations of the mutual information to stabilize, for
N >∼ 104, the non-parametric mutual information does
exhibit the expected ordering as a function of angular
exponent β.
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FIG. 6: The non-parametric mutual information dependence on the number of events used in the sample.
Hadron-level Vincia is shown in (a) and Pythia in (b).
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FIG. 7: The non-parametric mutual information dependence on the number of events used in the sample, zoomed in
to larger sample sizes. Hadron-level Vincia is shown in (a) and Pythia in (b).
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